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Abstract
Data Augmentation (DA) is frequently used001
to provide additional training data without ex-002
tra human annotation automatically. However,003
data augmentation may introduce noisy data004
that impairs training. To guarantee the qual-005
ity of augmented data, existing methods either006
assume no noise exists in the augmented data007
and adopt consistency training or use simple008
heuristics such as training loss and diversity009
constraints to filter out “noisy” data. However,010
those filtered examples may still contain use-011
ful information, and dropping them completely012
causes a loss of supervision signals. In this pa-013
per, based on the assumption that the original014
dataset is cleaner than the augmented data, we015
propose an on-the-fly denoising technique for016
data augmentation that learns from soft aug-017
mented labels provided by an organic teacher018
model trained on the cleaner original data. To019
further prevent overfitting on noisy labels, a020
simple self-regularization module is applied021
to force the model prediction to be consistent022
across two distinct dropouts. Our method can023
be applied to general augmentation techniques024
and consistently improve the performance on025
both text classification and question-answering026
tasks.027

1 Introduction028

The development of natural language understand-029

ing (NLU) comes along with the efforts in curating030

large-scale human-annotated datasets (Brown et al.,031

2020; Srivastava et al., 2022). The performance032

of NLP models usually highly correlates with the033

quantity and quality of training data. However,034

human data annotations are usually expensive to035

acquire and hard to scale (Paulheim, 2018). To036

address this challenge, automatic data augmenta-037

tion becomes an attractive approach to effectively038

increase the scale of training data, and improve the039

performance of neural models, particularly in low-040

resource scenarios (Wei and Zou, 2019; Xie et al.,041

2020a; Yang et al., 2020; Feng et al., 2021).042
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Figure 1: An example in a sentiment classification task
about the noise brought by text-editing data augmenta-
tion. The noisy augmented text has the probability of
being a “positive” attitude due to the removal of “not”.

However, automatic data augmentation tech- 043

niques, regardless of token-level (Wei and Zou, 044

2019; Xie et al., 2020a) or sentence-level (Sennrich 045

et al., 2016; Yang et al., 2020) ones, may intro- 046

duce noise to the augmented data. For example, in 047

text classification or sentiment analysis tasks, alter- 048

ing or removing some decisive words can change 049

the original label (Troiano et al., 2020). In addi- 050

tion, automatic data augmentation may distort the 051

core semantic meaning or impair the fluency of 052

the original text, leading to meaningless data in- 053

stances (Bayer et al., 2021). 054

To improve the quality of augmented data, var- 055

ious filtering techniques have been developed to 056

select a subset of high-quality data. Typical filter- 057

ing paradigms design an uncertainty- or diversity- 058

based metric to select data examples, for which the 059

metric could be the loss of the task model trained 060

on the original data (Zhao et al., 2022; Kamalloo 061

et al., 2022), diversity of the augmented data (Zhao 062

et al., 2022; Yang et al., 2020; Kim et al., 2022), in- 063

fluence functions (Yang et al., 2020), and logit con- 064

sistency across multiple trained models (Li et al., 065

2020; Zhou et al., 2021). However, data filtering 066

mechanisms set a discrete threshold and potentially 067

discard examples that the model can still acquire 068

signals from using properly designed denoising 069

objectives (Li et al., 2020). Alternative solutions 070

to continuously re-weighting (Yi et al., 2021) aug- 071

mented data or adopting consistency training (Xie 072

et al., 2020a) often focus solely on the learnability 073
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of data or assume noisy examples should have the074

same label as the original ones, rather than mitigat-075

ing their noise.076

In this paper, we address the problem of learning077

from noisy augmented data without (1) the effort of078

producing extra augmentations for filtering and (2)079

the risk of losing useful supervision signals from080

examples that are discretely filtered out. Noisy data081

augmentation does not necessarily lead to a hard082

flipped label but a soft change in the original la-083

bel distribution, as illustrated in Fig. 1. Therefore,084

we propose a soft noisy label correction framework085

called On-the-fly Denoising for Data Augmentation086

(ODDA), which distills task signals to noisy aug-087

mented instances and proactively mitigates noise.088

Different from the learning from noisy label (LNL)089

setting in fully supervised (Wang et al., 2019a,b;090

Zhou and Chen, 2021) or distantly supervised train-091

ing (Meng et al., 2021), in data augmentation, the092

original dataset is cleaner and offers a natural dis-093

tributional prior for estimating the noise level of094

augmented data, since the purpose of training data095

creation always involves approximating the data096

distribution in test time. This assumption is also097

used in other works such as NoisyStudent (Xie098

et al., 2020b). To leverage such signals, we pro-099

pose an Organic Distillation1 module that uses a100

teacher model finetuned on the cleaner original101

dataset to provide soft labels for augmented data,102

where noisy data are softly relabeled to prevent103

the student model from overfitting to wrong labels.104

Besides augmentation noise, the original data and105

organic distillation may also bring the noise. To ad-106

dress this issue, we further add a dropout-enabled107

self-regularization objective to force the predicted108

label distributions to be similar across two different109

dropout masks. It is based on the observations that110

noisy labels may be forgotten during training or111

by perturbations, and self-regularization will force112

the consistency between perturbations and improve113

noise robustness (Aghajanyan et al., 2021).114

To summarize, the contributions of this paper are115

three-fold. First, we cast light on the problem of116

learning from noisy augmented data with soft label117

correction instead of discretely filtering them out.118

Second, we propose a simple yet effective on-the-119

fly denoising technique that continuously distills120

useful task signals to noisy augmentations, coupled121

with a self-regularization loss to reduce overfitting122

1We call it organic as the teacher model for distillation is
trained on the original dataset.

to noise in general. Third, we conduct extensive 123

experiments on two NLU tasks, text classification 124

and question answering, and show the effectiveness 125

of our method for denoising both representative 126

token-level and sentence-level data augmentation 127

techniques. 128

2 Related Works 129

Data Augmentation and Filtering Recent stud- 130

ies on data augmentation for NLP have led to two 131

main paradigms: token-level augmentation and 132

sentence-level augmentation (Chen et al., 2021). 133

Token-level augmentation conduct text editing on 134

tokens from the input text. Such techniques include 135

using synonym replacement (Zhang et al., 2015; 136

Wang and Yang, 2015; Kobayashi, 2018) and word 137

replacement with contextualized embedding or a 138

masked language model (Yi et al., 2021; Kumar 139

et al., 2020), etc. Particularly, EDA (Wei and Zou, 140

2019) combines paraphrasing and random dele- 141

tion, insertion, and swapping to perturb the text 142

for augmentation. Sentence-level augmentation, 143

on the other hand, modifies the whole sentence 144

at once. Methods include paraphrase-based aug- 145

mentation techniques such as back-translation (Sen- 146

nrich et al., 2016; Yu et al., 2018) and paraphrase 147

generation (Prakash et al., 2016). Another popu- 148

lar approach is to use conditional text generation 149

models finetuned on the task dataset to automat- 150

ically synthesize more training data. It has been 151

applied to tasks such as text classification (Anaby- 152

Tavor et al., 2020; Kumar et al., 2020), machine 153

reading comprehension (Puri et al., 2020) , rela- 154

tion extraction (Hu et al., 2023), commonsense 155

reasoning (West et al., 2022; Yang et al., 2020), 156

and dialogue systems (Kim et al., 2023). Instead of 157

focusing on concrete augmentation techniques, our 158

paper study denoising synthetic data provided by 159

any data augmentation method. 160

Learning with Noisy Labels Various techniques 161

have been developed to combat labeling noise in 162

NLP datasets. Filtering-based techniques identify 163

noisy examples through training dynamics or latent 164

space features and then filter them out to produce a 165

cleaner and more selective training dataset. Such 166

techniques are based on prediction consistency of 167

different models (Zhou et al., 2021), loss-based 168

uncertainty estimation (Han et al., 2018), and fea- 169

ture or representation-based outlier detection (Wu 170

et al., 2020; Feng et al., 2021; Wang et al., 2022a). 171

Besides noise filtering, an alternative approach to 172
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Figure 2: Overview of our ODDA framework.

learning from noisy labels is to add an auxiliary173

learning objective to improve the noise robustness174

of a supervised model. Techniques of this kind175

include mixing up noisy examples (Zhang et al.,176

2018), consistency training (Xie et al., 2020a,b), co-177

regularization (Zhou and Chen, 2021), curriculum178

loss (Lyu and Tsang, 2020), and semi-supervised179

training on noisy data (Li et al., 2020).180

In data augmentation, recent studies have sug-181

gested using a filtering mechanism to select high-182

quality synthetic data from potentially noisy ones.183

Typical filters include diversity (Zhao et al., 2022),184

task loss (Fang et al., 2022), consistency between185

two models (Wang et al., 2022b), influence func-186

tion (Yang et al., 2020), similarity with original187

data (Avigdor et al., 2023), and the alignment of the188

fully augmented Jacobian with labels/residuals (Liu189

and Mirzasoleiman, 2022). Instead of filtering,190

our method continuously learns from noisy labels191

with a cleaner teacher model and a denoising ob-192

jective without discarding noisy instances, thus can193

more sufficiently acquire supervision signals from194

all augmented instances. Our work also differs195

from consistency training, which assumes that aug-196

mented data, even if noisy, should have similar197

predictions to the original instances. In contrast,198

we aim to mitigate such noise, which runs counter199

to the objective of consistency training.200

3 Method201

This section introduces the problem formulation202

(§3.1) and our ODDA framework (§3.2-§3.3).203

3.1 Problem Formulation204

We consider the problem formulation of general205

text classification tasks. We denote the dataset as206

D = {(xi, yi)}, i = 1, · · · , n, where xi is the input207

text, yi ∈ Y is the label of xi from the pre-defined208

label set Y , and n is the number of instances in the209

dataset. A data augmentation algorithm derives an210

augmented dataset D′ = {(x′i, y′i)}, i = 1, · · · , kn211

from the original dataset D, with an amplification212

factor k denoting that for each data instance we213

generate k augmentations. We use both the orig- 214

inal dataset D and the augmented dataset D′ to 215

train the classifier. Other NLU tasks, such as sen- 216

timent analysis, multiple-choice question answer- 217

ing, and natural language inference, can be easily 218

converted to a text classification paradigm. For 219

example, multiple-choice question answering can 220

be converted to text classification by treating each 221

question-answer pair as an input instance. 222

3.2 On-the-fly Denoising 223

This subsection introduces the details of our On- 224

the-fly Denoising for Data Augmentation (ODDA) 225

framework. ODDA first trains an (organic) teacher 226

model on the original dataset and then uses this 227

teacher model to assign soft labels to the aug- 228

mented dataset. During the learning process of aug- 229

mented data, the model is jointly trained with two 230

denoising objectives, where one is a cross-entropy 231

loss on the distilled soft labels, and the other is 232

a self-regularization loss to encourage robustness 233

and consistency across two different dropout masks 234

to automatically correct the noisy labels. The latter 235

is important as the teacher model may also bring 236

the noise to the soft labels, and self-regularization 237

can serve as a general denoising channel for both 238

forms of noise. An overview illustration of ODDA 239

is shown in Fig. 2. 240

Organic Distillation (OD). The first component 241

of our framework is Organic Distillation. We 242

first train a teacher model on the original train- 243

ing dataset D. The resulting model (the organic 244

teacher), denoted as T , uses the same model ar- 245

chitecture as the later student model. Denote 246

z = fT (x) as the function that produces logits 247

z given input x using the teacher model T . For an 248

instance x, the teacher model can predict the soft 249

probability over the label set Y with a temperature- 250

controlled softmax g(z, τ): 251

qy = g(z, τ)y =
exp (zy/τ)∑
j∈Y exp (zj/τ)

, (1) 252
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Algorithm 1 On-the-fly DA Denoising (ODDA)
Input: Teacher model fT (·), student model f(·), original

dataset D = {(xi, yi)}, i = 1, · · · , n, augmented
dataset D′ = {(x′

i, y
′
i)}, i = 1, · · · , kn, OD tem-

perature τ , SR coefficient α. Max training steps
for the organic teacher sT and the student sS .

Output: The trained student model f(·)
1: Initialize the teacher model fT (·)
2: s← 0 ▷ Training steps for OD
3: while s < sT do
4: Sample a batch B from {(xi, yi)}
5: Train fT (·) with cross-entropy loss on B
6: end while
7: s← 0 ▷ Training steps for Denoising
8: D+ ← {(xi, yi)} ∪ {(x′

i, y
′
i)} ▷ Mix D & D′

9: while s < sS do
10: Sample a batch B′ from D+

11: Train f(·) with loss in Eq. (4) on B′ with Organic
Distillation and Self-Regularization to do deonising

12: end while

where qy is a predicted probability of a class y253

from Y , τ is a temperature hyperparameter where254

a larger temperature results in a smoother distribu-255

tion. Specifically, we omit τ = 1 in g(·, τ), and256

use g(x) to represent the standard softmax function.257

We denote f(x) as the student model that produces258

logits, and the loss function as cross-entropy loss259

lCE(p, q) = −(q log p+(1− q) log(1−p)), where260

p denotes the ground labels and q denotes the pre-261

dicted probabilities.262

Organic distillation distills knowledge from the263

organic teacher model to the augmented data. As264

the original dataset is inherently of better quality265

than the augmented data, it can be used to provide a266

distributional prior on the level of noisiness in aug-267

mented data, thus calibrating the learning process268

of data augmentation and preventing overfitting the269

labeling noise. For an augmented data instance270

(x′, y′), we first compute the soft probabilities pre-271

dicted by the organic teacher as q′ = g(fT (x
′), τ),272

as in equation (1). Then p′ = g(f(x′)) is the prob-273

ability distribution over the label set Y predicted by274

the student model when training on synthetic data.275

Then the corresponding loss function of organic276

distillation on the augmented example x′ is:277

LOD(x
′) =lCE(p

′, q′)278

=lCE

(
g
(
f(x′)

)
, g
(
fT (x

′), τ
))

. (2)279

280
Self-Regularization (SR). As the OD module281

may also introduce noise to the learning process,282

we introduce another general denoising channel.283

Recent studies have shown that noisy instances284

generally tend not to be “memorized” easily by285

machine learning models, and are frequently “for- 286

getten” given small perturbations (Xie et al., 2020a; 287

Aghajanyan et al., 2021) and along with the train- 288

ing steps (Zhou and Chen, 2021). The often incon- 289

sistent characteristics of noisy instances over the 290

learning curve is mainly attributed to their contra- 291

diction to the model’s overall task inductive bias 292

represented coherently by the clean data. To mit- 293

igate the impact of noise from individual data in- 294

stances, inconsistent outputs resulting from small 295

perturbations should be corrected." Instead of fil- 296

tering noisy examples out with the risk of losing 297

useful information, we learn from noisy (and clean) 298

examples with an additional objective by bounding 299

the model’s output to be consistent under small per- 300

turbations. Following R-Drop (Liang et al., 2021), 301

the perturbations are introduced with dropout, and 302

a regularization loss forcing the model prediction 303

to be consistent across two different dropout out- 304

puts is adopted2. Denote d(f(x)) as the function 305

that outputs the predicted probability distribution 306

under a dropout mask d, and di is the i-th dropout 307

mask. Then the self-regularization loss is defined as 308

the Kullback-Leibler (KL) divergence between the 309

average probability distribution of the m dropout 310

operations and the output of each dropout: 311

p̄ =
1

m

m∑
i=1

g(di(f(x
′))), 312

LSR(x
′) =

1

m

m∑
i=1

KL
(
p̄||g

(
di(f(x

′))
))

. (3) 313

3.3 Joint Training 314

In the end, the model is jointly trained with the OD 315

and SR objectives on the original dataset {(xi, yi)} 316

and the augmented dataset {(x′i, y′i)}: 317

L =
1

n

n∑
i=1

lCE

(
g
(
f(xi)

)
, yi

)
318

+
1

kn

kn∑
i=1

LOD(x
′
i) 319

+ α
1

kn+ n

kn+n∑
i=1

LSR(x
′
i). (4) 320

The overall loss function is the sum of the cross- 321

entropy loss on the original data with hard labels, 322

2A detailed explanation to self-regularization is presented
in Appx. §B.
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the cross-entropy loss of the augmented data with323

soft labels distilled with the organic teacher, and324

the KL divergence between the average probabil-325

ity across m different dropouts and each of the326

m dropouts. Here lCE(·) is the cross-entropy loss327

function, n is the number of original examples and328

k is the amplification factor for data augmentation,329

and α is a hyper-parameter to control the effect330

of self-regularization. In the third term, the SR is331

applied to both the original and augmented data,332

where the number of instances n + kn indicates333

the collection of both the original and augmented334

data. Though we derive these formulations based335

on the text classification task, in multiple-choice336

QA tasks, the formulation can be accordingly con-337

verted to a c-class classification task, where c is the338

number of choices per question. The algorithm is339

outlined in Alg. 1.340

4 Experiments341

This section introduces experimental settings and342

results analysis. We evaluate on two repre-343

sentative tasks in NLU, few-shot text classifica-344

tion (Section §4.1) and multiple-choice (common-345

sense) question answering (Section §4.2). We use346

EDA (Wei and Zou, 2019) as a representative token-347

level based augmentation method for text classifi-348

cation, and use Generative Data Augmentation (G-349

DAUG) (Yang et al., 2020) to explore task-aware350

sentence-level augmentation methods for hard QA351

tasks that require commonsense reasoning abili-352

ties. In Section §4.3, we provide ablation studies to353

show the effect of ODDA under synthetic noise on354

augmented data, the influence of hyperparameters,355

and the effect of denoising modules.356

4.1 Text Classification357

Setup. Following the previous work (Zhao et al.,358

2022), we use five text classification datasets:359

TREC (Li and Roth, 2002) (Question classifica-360

tion, n=5,452), Irony (Hee et al., 2018) (Tweets361

Irony Classification, n=3,817), AGNews (Zhang362

et al., 2015) (News Classification, n=120,000),363

Sentiment (Rosenthal et al., 2017) (Tweets Senti-364

ment Analysis, n=20,631), and Offense (Founta365

et al., 2018) (Tweets Offense Detection, n=99,603).366

We randomly sample different proportions of each367

dataset for experiments to fully demonstrate the ef-368

fect of data augmentation, where the percentage in369

Tab. 1 (%) indicates the percentage of data sampled370

for training, leading to around 100 and 1000 exam-371

ples sampled for the two few-shot proportions, re- 372

spectively. BERT-base (Devlin et al., 2019) is used 373

as the backbone model for all the text classification 374

experiments, which is incorporated with EDA (Wei 375

and Zou, 2019) for data augmentation. The aug- 376

mentation probability of the four edit operations in 377

EDA is equally set as 0.05. We report the average 378

macro-F1 across five different random seeds and 379

the standard deviation in subscripts. Each original 380

data example is associated with k = 3 augmented 381

data. The OD temperature τ is searched within 382

{0.5, 1, 2, 3}, and the SR α is searched within {5, 383

10, 20, 50, 100}. Early stopping is used to select 384

the model with the best performance. More hyper- 385

parameters are shown in Appx. §A.1. 386

Baselines. We compare three types of base- 387

line denoising techniques, which are filtering, re- 388

weighting, and consistency training. For filtering, 389

we use EPiDA (Relative Entropy Maximization 390

+ Conditional Entropy Minimization, Zhao et al. 391

(2022)), Glitter (selecting augmented data with 392

higher task loss, Kamalloo et al. (2022)), Large- 393

loss (select augmented data with small loss, Han 394

et al. (2018)), to filter out low-quality augmented 395

training data. For re-weighting, we use the re- 396

weighting factors in Yi et al. (2021), where ex- 397

amples with larger training loss are given larger 398

weights. For consistency training (denoted as Con- 399

sist.), we use the idea in Unsupervised Data Aug- 400

mentation (UDA; Xie et al., 2020a) to add a con- 401

sistency loss between original examples and the 402

corresponding augmented examples. More details 403

are provided in Appx. §A.1. 404

Results and Analysis. The main experimental 405

results of text classification are presented in Tab. 1. 406

First, we can see that ODDA can provide remark- 407

able improvements over EDA, the base data aug- 408

mentation method without any filtering or denois- 409

ing. The notable improvement of F1 2.5% increase 410

in average for the smaller few-shot split and 1.0% 411

F1 increase in average for the larger few-shot split 412

over EDA indicate the importance of addressing 413

the noise issue in augmented data. 414

Second, ODDA outperforms filtering-based 415

baselines (EPiDA, Glitter, and Large-loss) in all 416

datasets and splits except for the 1% Sentiment. 417

Note that these baselines need to select k = 3 418

augmented examples per original example from a 419

candidate pool of 50 EDA-generated augmented ex- 420

amples per original example, while in our method 421

directly generates the k = 3 augmented examples 422
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Method TREC Irony AGNews Sentiment Offense
1% 10% 1% 10% 0.05% 0.1% 1% 10% 0.1% 1%

Sup. 60.64±0.60 90.53±0.47 55.48±1.05 63.14±0.99 84.05±0.47 86.43±0.07 54.10±1.22 65.56±0.22 51.91±0.53 64.35±0.12

Data Augmentation
EDA 61.68±0.29 93.83±0.63 57.07±0.66 64.55±0.52 84.01±0.18 86.43±0.07 56.57±0.75 65.80±0.14 51.86±0.37 64.61±0.15

EPiDA 64.92±0.50 93.96±0.18 58.25±0.95 64.72±0.58 84.51±0.31 86.68±0.19 57.20±0.32 65.58±0.24 51.55±0.49 64.45±0.16

Glitter 64.16±0.20 93.55±0.06 58.76±0.44 64.73±0.95 84.84±0.32 87.00±0.29 57.73±0.31 65.52±0.20 51.69±0.42 64.45±0.15

Large-loss 62.21±1.71 94.06±1.90 57.07±2.13 64.42±1.28 83.48±0.97 86.43±0.28 57.13±1.27 65.66±0.49 51.78±0.77 64.49±0.41

Re-weight 64.37±1.69 95.28±0.97 58.14±2.34 64.56±1.73 84.45±1.12 86.82±0.50 56.81±1.52 65.55±1.50 51.70±1.10 64.54±0.43

Consist. 65.55±0.81 95.15±0.90 58.32±1.71 64.50±1.24 84.34±0.78 86.45±0.26 57.10±1.26 65.64±0.46 51.86±0.98 64.66±0.43

Denoising Data Augmentation (EDA as the DA algorithm)
Ours (OD) 65.17±1.25 95.02±1.42 58.51±2.67 64.73±0.18 84.91±0.44 86.84±0.26 57.09±1.63 65.68±0.51 52.13±1.43 65.16±0.64

Ours (SR) 65.87±1.22 95.50±0.68 57.51±1.92 64.24±0.61 84.80±0.57 86.75±0.57 57.42±1.09 65.74±0.27 52.01±0.99 65.06±0.49

Ours (both) 67.16±0.37 96.04±0.08 60.66±1.43 65.54±0.37 86.30±0.13 87.14±0.17 57.17±0.37 65.90±0.19 52.34±0.53 65.43±0.29

Table 1: Performance of different filtering and re-weighting methods on the five text classification datasets, where
EDA is used as the base data augmentation algorithm for all methods. 1% means using 1% of the original training
data for training. We report the average f1 score across five different random seeds.

per original instance. Those filtering baselines are423

more costly and require generating 16 times more424

augmentations than our method to perform filtering.425

We can conclude that learning with a denoising ob-426

jective for data augmentation can be far more data427

efficient than filtering by exploiting the denoising428

training signals from noisy examples without filter-429

ing them out.430

Third, ODDA outperforms re-weighting and431

Consist. by a large margin. These two methods432

adopt an opposite idea of denoising to some ex-433

tent. For re-weighting, augmented examples with434

larger training loss, which can be regarded as more435

noisy (Shu et al., 2019), will be up-weighted dur-436

ing training, while in our Organic Distillation and437

Sefl-regularization, examples identified noisier will438

be down-weighted to rectify the effect of noisy439

augmented instances. For Consistency training,440

it assumes that the original and its corresponding441

augmented example should share the same label442

and train them with a consistency loss, which is443

also opposite to our assumption that augmented444

data may be noisy. From the comparison of those445

two methods, we can conclude that the denoising446

objective better suits the scenario of data augmen-447

tation than both the learnability-based re-weighting448

and the consistency training with label-preserving449

assumption.450

4.2 Commonsense Question Answering451

Setup. We follow the setups in G-DAUG (Yang452

et al., 2020) to conduct commonsense QA exper-453

iments. We study a full-shot setting here for the454

QA tasks as a supplement to the few-shot text clas-455

sification experiments, and select two representa- 456

tive multiple-choice commonsense QA datasets, 457

WinoGrande (Sakaguchi et al., 2020) and Com- 458

monsenseQA (CSQA; Talmor et al. 2019). Other 459

datasets are not selected as they either adopt a 460

few-shot setting, or the augmented data is not 461

publicly available. We use the released version 462

of augmented data by Yang et al. (2020)3 pro- 463

duced with finetuned GPT-2 (Radford et al., 2019). 464

RoBERTa-large (Liu et al., 2019) is used as the 465

backbone QA model, and the hyperparameters are 466

the same as in Yang et al. (2020). We evaluate 467

the model performance using accuracy for each 468

subset in WinoGrande, and an AUC calculated 469

with the curve of the logarithm of the number of 470

instances of each subset against the correspond- 471

ing accuracy, to present an overall performance on 472

WinoGrande across the five subsets. Accuracy is 473

used for CSQA as the evaluation metric. As linear 474

learning rate decay is applied during the training, 475

we report the performance of the last checkpoint 476

during training. Different from the original paper 477

of G-DAUG (Yang et al., 2020), which reports the 478

performance of only one run, we report the average 479

and standard deviation across five different random 480

seeds. More details about models and datasets are 481

presented in Appx. §A.2. 482

Baselines. As in G-DAUG, the augmented in- 483

stances are already filtered with an influence func- 484

tion (Koh and Liang, 2017) and diversity heuristics, 485

we do not conduct further filtering as baselines. 486

3https://github.com/yangyiben/G-DAUG-c-Generative-
Data-Augmentation-for-Commonsense-Reasoning
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WinoGrande CSQA
XS S M L XL AUC

Supervised 60.28±1.52 62.23±2.06 66.00±1.28 74.68±0.28 79.09±0.56 68.12 76.35±0.31

G-DAUG 60.49±0.44 66.04±0.48 72.22±0.43 76.79±0.77 80.09±0.53 71.32 77.38±0.36

Ours (OD) 61.18±0.59 67.45±0.47 72.38±0.73 77.35±0.22 80.75±0.36 72.01 78.41±0.40

Ours (SR) 60.68±0.72 67.06±0.69 72.34±0.68 77.09±0.38 80.57±0.56 71.76 77.62±0.41

Ours (both) 61.30±0.55 67.62±0.48 72.68±0.70 77.65±0.21 80.80±0.51 72.23 78.69±0.31

Table 2: Performance of commonsense question answering.
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Figure 3: (1) The effect of OD temperature τ on the
classification performance for AGNews dataset. (2) The
effect of SR coefficient α on the classification perfor-
mance for TREC dataset.

And as no direct mapping exists between the orig-487

inal and augmented examples, the re-weighting488

and consistency training baseline does not fit the489

sentence-level data augmentation setting. Hence,490

we only compare the performance of adding our on-491

the-fly denoising technique on top of the already-492

filtered augmented dataset against the performance493

of G-DAUG and the supervised learning baseline494

without data augmentation. We also check the ef-495

fect of each channel (OD and SR).496

Results and Analysis. The QA results are shown497

in Tab. 2. When we apply ODDA to the augmented498

data generated by G-DAUG filtered with influence499

function and a diversity heuristic defined in Yang500

et al. (2020), the performance can be consistently501

improved across different few-shot splits of Wino-502

Grande and full-shot CSQA. These experiments503

first demonstrate that besides token-level data aug-504

mentation, where each augmented example can505

be aligned with its original example, ODDA can506

also work well for sentence-level data augmenta-507

tion, where there is no explicit mapping between508

augmented data and original data. This is an advan-509

tage as some data augmentation boosting methods510

need to leverage the mapping between original and511

augmented examples to select semantically similar512

augmentations (e.g., EPiDA) or use consistency513

training, while our method is not restricted by this514

precondition. Second, we show that our method515

can not only be used for boosting text classification,516

but can work well for more complex commonsense 517

reasoning tasks. 518

4.3 Ablation Study 519

Organic teacher distillation. The Organic Distil- 520

lation (OD) module distills the knowledge from the 521

relatively cleaner original dataset to the augmented 522

data with soft labels, preventing overfitting on hard 523

noisy labels. We check the influence of the dis- 524

tillation temperature τ on the model performance, 525

shown in Fig. 3 (1) for the AGNews dataset as 526

an example. Specifically, the model performance 527

reaches its best when the temperature τ = 2, indi- 528

cates a softer label distribution. For other datasets 529

such as TREC, Irony, and Offense, the variance 530

of different temperatures is relatively minor, and 531

we select τ = 1 as the default. While for AG- 532

News and Sentiment, the model can benefit from 533

larger temperature, which may indicate that there 534

is more noise in the augmented data from those 535

two datasets, and softer distribution help reduce 536

overfitting on the augmented data. 537

Self-regularization. The self-regularization (SR) 538

module in our framework serves as a general de- 539

noising channel to minimize the discrepancy of 540

model outputs between two dropouts. The α in 541

Equation (4) is the hyperparameter measuring the 542

importance of the denoising effect. We take the 543

TREC dataset as an example to show the effect of 544

α on the model performance as in Fig. 3 (2). We 545

can see that for TREC 1%, the performance reaches 546

the maximum when α = 100, and for TREC 10%, 547

the model performs the best when α = 20. Such a 548

difference indicates that in TREC 1%, which con- 549

tains only fewer than 100 training examples, it can 550

benefit more when the effect of self-regularization 551

out-weight the original cross-entropy loss. Simi- 552

lar results are shown in other datasets under the 553

smaller few-shot training set. 554

Adding synthetic noise. We further show the 555

effect of our denoising method by introducing syn- 556

thetic noise of different levels to augmented data. 557
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Method Irony 10%
pn = 0.0 pn = 0.1 pn = 0.3 pn = 0.5

EDA 64.55 63.27 63.26 60.41
EPiDA 64.72 64.57 63.94 63.24
Glitter 64.73 65.04 62.99 61.85
Large-loss 64.42 63.42 63.27 61.56
Re-weight 64.56 64.38 64.53 63.79
Ours (both) 65.54 65.54 65.54 65.54

Table 3: Experiments on adding synthetic noise to aug-
mented data for the Irony dataset (10%), when original
data remain still. pn indicates the probability that the la-
bel of an augmented example is flipped. As our method
learns with the soft labels provided by the clean origi-
nal dataset, it is not affected by noise on labels in the
augmented dataset.

The original dataset remains unchanged to show the558

effect of a cleaner original dataset. To better demon-559

strate the effect of denoising in augmented data, we560

control the noise level by setting a probability pn561

of flipping the label of augmented data. We select562

the dataset Irony (with 10% training data) as an563

example, as Irony is a binary classification task and564

flipping the label will definitely lead to an opposite565

label (for other datasets such as AGNews, there566

may be slight overlaps between different labels).567

The results are presented in Tab. 3. We can see568

that EDA and all filtering methods suffer from per-569

formance degradation along with increased noise570

proportions, while our method is not influenced by571

such synthetic noise as we do not rely on the hard572

label of augmented data but the soft label provided573

by the organic teacher model. The performance574

degradation is not too drastic when pn increases575

as the labels of original data are retained. Such an576

experiment further consolidates the effectiveness577

of our denoising method for data augmentation.578

Alternative denoising techniques. We also579

study the alternative solutions to our denoising580

framework. There are alternative ways to the or-581

ganic teacher. For example, we could iteratively582

select the best-performed teacher model during the583

training with augmented data (denoted as an it-584

erative teacher). For the general denoising chan-585

nel SR, there are other techniques that perform586

denoising, such as using Exponential Moving Av-587

erage (EMA) over training steps (Tarvainen and588

Valpola, 2017), or using the consistency of two589

independently-trained models to perform logits reg-590

ularization (Zhou and Chen, 2021). We also study591

whether increasing the number of dropouts m to592

Method TREC Irony AGNews
1% 10% 1% 10% 0.05% 0.1%

Iter. Teacher 66.89 95.56 58.73 64.49 84.15 86.17
EMA 64.10 95.26 57.37 64.40 84.16 86.36
Co-Reg 65.19 95.08 58.29 64.86 84.81 86.54
Co-Teaching 64.62 94.69 57.39 65.51 84.83 86.91
Ours (SRx3) 66.19 95.54 58.31 64.56 84.44 86.56
Ours (SRx4) 65.88 95.69 58.95 64.62 84.67 86.33

Ours (OD) 65.17 95.02 58.51 64.73 84.91 86.84
Ours (SR) 65.87 95.50 57.51 64.24 84.80 86.75
Ours (both) 67.16 96.04 60.66 65.54 86.30 87.14

Table 4: Ablations on the effect of Organic Distillation
(OD) and Self-Regularization (SR), compared to their
counterparts. SRxn means dropouts are done n times.

do regularization will help the model performance. 593

These experiments are collectively presented in 594

Tab. 4. We can see that our proposed method 595

achieves the best among other alternative choices. 596

For the Iterative Teacher, though the teacher model 597

is iteratively updated, it may lose the information 598

by cleaner original dataset when further trained 599

on the augmented data. For Co-Regularization, 600

it achieves similar performance when two iden- 601

tical models are simultaneously trained to im- 602

prove consistency. However, it doubles the cost 603

of training. When doing multiple dropouts in self- 604

regularization, the performance on the 1% split of 605

TREC and Irony can be improved when m > 2, 606

while for others, the improvements are not signif- 607

icant. Considering that using m = 3 or 4 will 608

lead to 1.5 and 2 times the computational cost, we 609

choose m = 2 to make the training more efficient 610

while keeping competitive results. 611

5 Conclusion 612

In this paper, we address the problem of improv- 613

ing data augmentation via denoising, and propose 614

an efficient on-the-fly data augmentation denoising 615

framework that leverages a teacher model trained 616

on the cleaner original dataset for soft label cor- 617

rection and a self-regularized denoising loss for 618

general denoising. Such a denoising pipeline can 619

well benefit the tasks with limited annotated data 620

and noisy augmented data. Experiments show that 621

our denoising framework performs consistently bet- 622

ter than the baselines of filtering, re-weighting, 623

and consistency training, with both token-level and 624

sentence-level data augmentation methods on few- 625

shot text classification and commonsense question- 626

answering tasks. 627
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Limitations628

We only include one representative token-level and629

sentence-level data augmentation technique in our630

experiments, while cannot enumerate all others631

such as masked language models replacing (Yi632

et al., 2021). In addition, we only include two633

representative NLU tasks in the experiments while634

others such as natural language inference (Bowman635

et al., 2015) are missing due to the limited presen-636

tation space. As for the method ODDA itself, we637

conduct denoising using the training information638

within a single training step without considering639

longer dependencies and training dynamics across640

different training steps or epochs, which can be a641

future work of this study.642
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Appendices1081

A More Details about Experiments1082

A.1 More Details about Text Classification1083

We use the codebase and experimental settings1084

from EPiDA4 (Zhao et al., 2022) to conduct our1085

experiments. Table 6 shows the essential hyper-1086

parameters that are used for each dataset. During1087

the training, we first train a few epochs on the1088

original dataset, and then finetune on the union of1089

augmented data and original data.1090

For EPiDA (Zhao et al., 2022), we follow the1091

setting in the original paper to first produce k = 501092

augmented examples per original example using1093

EDA, and then select top 3 scored by its Relative1094

Entropy Maximization (REM) and Conditional En-1095

tropy Minimization (CEM) filter. The trade-off1096

parameter between REM and CEM is set as 0.5, as1097

in the original paper.1098

For Glitter (Kamalloo et al., 2022) and large-1099

loss, similar with EPiDA, we sample 50 augmented1100

examples first, and select the top 3 examples with1101

the largest/smallest loss in the current run. For1102

Re-weight (Yi et al., 2021), we use the following1103

re-weighting equation to re-weight the augmented1104

data in a batch:1105

wxi =
exp

(
1
λ lCE

(
g(f(xi)), yi

))
∑

xj∈B exp
(

1
λ lCE

(
g(f(xj)), yj

))
where wxi is the re-weighting factor for the ex-1106

ample xi, B is the current batch, and λ is a tempera-1107

ture parameter. The re-weighting factor is basically1108

the softmax of the loss of the current batch.1109

For UDA (Xie et al., 2020a), we leverage the1110

augmented data in consistency training. In addi-1111

tion to the cross-entropy loss of the original data,1112

we jointly train with the objective that minimiz-1113

ing the consistency loss between original data and1114

augmented data:1115

L =
n∑

i=1

(
lCE

(
g(f(xi)), yi

)
(5)1116

+ αc

k∑
j=1

KL
(
g(f(xi)) || g(f(x′i,j))

))
1117

where x′i,j is the j-th augmented example de-1118

rived from xi. αc is the hyper-parameter to control1119

4https://github.com/zhaominyiz/EPiDA

Method TREC Irony AGNews
1% 10% 1% 10% 0.05% 0.1%

Back-Trans. (BT) 62.55 93.62 52.29 64.69 85.39 86.35
BT+OD 62.19 94.67 57.50 64.57 85.53 86.74
BT+OD+SR 65.02 95.65 58.10 65.28 86.03 86.83

Table 5: Experiments on using back-translation as the
backbone data augementation method.

the effect of consistency training. It’s set as 10 after 1120

sufficient parameter searching. 1121

Besides using EDA as the backbone data aug- 1122

mentation method, we also test our ODDA frame- 1123

work on back-translation5 in Tab. 5. We can find 1124

that the ODDA framework can also work on back- 1125

translation, indicating a good generalizability of 1126

our framework. 1127

A.2 More Details about Question Answering 1128

For question answering tasks, following previous 1129

works (Sakaguchi et al., 2020; Yang et al., 2020), 1130

we use RoBERTa as the base encoder. For each 1131

question-option pair, the input format is then [CLS] 1132

context [SEP] option [SEP]. We take the em- 1133

bedding of the [CLS] token as the representation of 1134

the question-option pair. Then an MLP + softmax 1135

layer is put after the embeddings of the c options, 1136

and the model is optimized with cross-entropy loss 1137

given a correct option. 1138

WinoGrande is a commonsense reasoning bench- 1139

mark to explore hard coreference resolutions prob- 1140

lems such as “The fist ate the worm, ___ was tasty” 1141

(choose from “fish” and “worm”). It’s hard as it 1142

requires commonsense knowledge that “the subject 1143

of eat tends to be hungry and the object of eat tend 1144

to be tasty”, while machine learning models may 1145

associate “fish” with “tasty” with larger likelihood 1146

as they frequently co-occur in human corpora. The 1147

WinoGrande dataset is composed of 5 subsets with 1148

different sizes, XS (n = 160), S (n = 640), M 1149

(n = 2558), L (n = 10234), and XL (n = 40398). 1150

CommonsenseQA is a commonsense question 1151

answering dataset constructed from the common- 1152

sense knowledge in ConceptNet (Speer et al., 2017). 1153

It aims to study the commonsense relations among 1154

daily entities within certain context. For example, 1155

the correct answer to “Where would you store a pil- 1156

low case that is not in use?” is “drawer”. There are 1157

some distractor options such as “bedroom”, which 1158

5We use the implementation from the nlpaug package
(https://github.com/makcedward/nlpaug)
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TREC Irony AGNews Sentiment Offense
1% 10% 1% 10% 0.05% 0.1% 1% 10% 0.1% 1%

Optimizer AdamW
Weight Decay 1e-3
Adam ϵ 1e-8
LR 2e-5
Batch Size 32
Max Length 512
Organic Epoch 40 30 100 20 30 30 30 10 30 30
Augmentation Epoch 40 30 100 30 30 30 30 10 30 30
Evaluation Interval 1 5 1 1 5 5 5 20 1 5
Temperature τ 1 1 1 1 2 2 0.5 0.5 1 1
SR α 10 10 10 10 10 10 10 10 10 10

Table 6: Hyperparameters for text classification experiments.

is a common place where a pillow locates without1159

the context “not in use”.1160

The augmentation method that we use for solv-1161

ing commonsense question answering is Genera-1162

tive Data Augmentation (Yang et al., 2020). It uses1163

three generation models to generate questions, cor-1164

rect answers, and distractors, respectively. Then in1165

the data selection phase, influence function and a1166

specifically designed heuristics that favors diverse1167

synthetic data are used to select high-quality syn-1168

thetic data. Then the model is trained with a two-1169

stage finetuning, where they first finetune the QA1170

model on the synthetic data, and then finetune on1171

the original data. We use the released augmented1172

data from Yang et al. (2020). The number of aug-1173

mented instances for each dataset is presented in1174

Table 7. The hyperparameters that are used for the1175

experiments for QA are presented in Table 8.1176

B Self-Regularization1177

We explain the reasons why Self-Regularization1178

can serve as a denoising channel and yield better1179

performance. It is shown that the following fine-1180

tuning method can enhance the robustness of rep-1181

resentation learning, which provide guarantees for1182

stochastic gradient descent algorithms by bound-1183

ing some divergence between model at step t and1184

t+ 1 (Pascanu and Bengio, 2014):1185

arg min∆θ L(θ +∆θ)

s.t. KL(f(·, θf )||f(·, θf +∆θf )) = ϵ

(6)

1186

Here, f is a function that outputs vector represen-1187

tations, θ is the trainable parameters. An approxi-1188

mation to this computationally intractable equation1189

is proposed as follows (Aghajanyan et al., 2021):1190

L(f, g, θ) = L(θ) + λKLS(g · f(x)||g · f(x+ z))

s.t. z ∼ N (0, σ2I) or z ∼ U(−σ, σ)
(7) 1191

Here g is a function that converts the output em- 1192

bedding of f to a probability distribution. KLS 1193

is the symmetric KL divergence, and z is sampled 1194

from the corresponding distribution as small pertur- 1195

bations. Instead of providing small perturbations 1196

using a random noise, Self-Regularization pro- 1197

vide such perturbation with two different dropouts, 1198

which has shown to be effective in previous 1199

works (Liang et al., 2021). 1200

Moreover, there are other empirical findings that 1201

favors the effect of self-regularization in terms of 1202

denoising. Noisy examples tend to be frequently 1203

forgotten after training for a long time (Toneva 1204

et al., 2019), since the noise conflict with what 1205

have been learned in the model and the prediction 1206

can vary. Self-regularization can be an alternative 1207

objective that mitigate the importance of the exam- 1208

ple. 1209
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WinoGrande CSQA
XS S M L XL

# Original 160 640 2,558 10,234 40,398 9,727
# Synthetic 52,346 97,733 127,509 132,849 136,052 50,014

Table 7: Number of training instances for WinoGrande and CommonsenseQA.

WinoGrande CSQA
XS S M L XL

Optimizer AdamW AdamW
Weight Decay 0.01 0.01
Adam ϵ 1e-6 1e-6
LR synthetic 5e-6 5e-6
LR organic 1e-5 1e-5
Batch Size 16 16
Max Length 70 70
Synthetic Epoch 1 1 1 1 1 1
Organic Epoch 10 8 5 5 5 5
LR Decay Linear Linear
Warmup Ratio 0.06 0.06
SR Warmup Steps 2000 5000 5000 7000 7000 2500
τ 2 1 1 1 1 1
α 0.5 0.1 1.0 0.5 0.5 0.5

Table 8: Essential Hyperparameters for WinoGrande and CommonsenseQA.
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