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Abstract
Backdoor attacks have seriously threatened deep
neural networks (DNNs) by embedding concealed
vulnerabilities through data poisoning. To coun-
teract these attacks, training benign models from
poisoned data garnered considerable interest from
researchers. High-performing defenses often rely
on additional clean subsets/seeds, which is unten-
able due to increasing privacy concerns and data
scarcity. In the absence of additional clean sub-
sets/seeds, defenders resort to complex feature ex-
traction and analysis, resulting in excessive over-
head and compromised performance. To address
these challenges, we identify the key lies in suffi-
cient utilization of both the easier-to-obtain target
labels and clean hard samples. In this work, we
propose a Bi-perspective Splitting Defense (BSD).
BSD distinguishes clean samples using both se-
mantic and loss statistics characteristics through
open set recognition-based splitting (OSS) and al-
truistic model-based data splitting (ALS) respec-
tively. Through extensive experiments on bench-
mark datasets and against representative attacks,
we empirically demonstrate that BSD surpasses
existing defenses by over 20% in average Defense
Effectiveness Rating (DER), achieving clean data-
free backdoor security.

1. Introduction
Recent studies exposed the vulnerabilities of deep neural
networks (DNNs) to various attacks (Carlini & Wagner,
2017; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2018;
Zeng et al., 2019; Ilyas et al., 2018), among which back-
door attacks (Li et al., 2022; Wenger et al., 2021; Zhang
et al., 2021; Wang et al., 2020) have emerged as a signif-
icant threat due to their ease of execution and profound
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impact. Owing to their non-model-manipulation property
and congruence with actual model training scenarios, data
poisoning-based backdoor attacks (Goldblum et al., 2022;
Shafahi et al., 2018) stand out as prevalent and impactful
threats, highlighting the importance of backdoor defense re-
search. Taking facial recognition as an example (Figure 1),
poisoned data may induce DNNs to erroneously learn a
strong correlation between the adversary-defined trigger
pattern (e.g., sunglasses) and the target label (e.g., a high-
authority individual). While behaving normally without the
trigger, the backdoored model predicts any individuals wear-
ing sunglasses as the predetermined high-authority person.
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Figure 1. Illustration of data-poisoning-based backdoor attacks.

Recently, a branch of in-training defenses has focused on
training benign models directly from poisoned data, which
is particularly significant when developing our own models
using untrustworthy datasets. They primarily adhere to a
data-splitting paradigm that differentiates between benign
and poisoned samples, and disrupts the association between
trigger patterns and target labels to mitigate backdoor behav-
iors (Li et al., 2021a; Huang et al., 2022; Gao et al., 2023).
However, these defenses either highly rely on impractical
clean subsets/seeds(i.e., additional clean data outside the
training set; hereafter referred to as “clean subsets” or “clean
seeds”) or have unsatisfactory performance due to limited
defensive perspective.

Clean subsets have proven effective in various backdoor
defenses (Zhu et al., 2024; Liu et al., 2018; Wu & Wang,
2021; Zeng et al., 2021; Li et al., 2023a; Gao et al., 2023),
as they provide insights into benign samples. However,
recollecting a clean subset can be prohibitively expensive,
especially when the training set contains numerous classes
(e.g., acquiring new benign facial records for millions of
individuals in a facial recognition database). Additionally,
manually inspecting a large training set to identify a clean
subset is both labor-intensive and raises significant privacy
concerns. Seemingly effective, some methods expand the
clean subset under the premise that an additional clean set
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is available (Pan et al., 2023), which still contradicts real-
world scenarios.

Existing potential clean data acquisition methods, however,
yield only a very small clean subset and still rely on down-
stream defenses (Zeng et al., 2023a). This exacerbates the
already large hyperparameter search space. Moreover, in the
event of potential failures, the presence of evaded malicious
samples can erode the effectiveness of the clean subset and
ruin the defense pipeline.

In practical scenarios where no clean seed samples are avail-
able, existing in-training defenses that do not effectively
utilize the semantic and loss statistics perspectives are strug-
gling to distinguish poisoned samples. They involve compli-
cated feature extraction and analysis, suffering from signifi-
cant training costs (Huang et al., 2022) and compromised
performance (Li et al., 2021a; Chen et al., 2022a; Tran et al.,
2018; Weber et al., 2023; Liu et al., 2023).

These constraints bring us back to the core issue: How to
eliminate dependence on impractical clean subsets while
maintaining both the efficiency and effectiveness of de-
fenses?

In this work, we focus on improving the state-of-the-art
in-training defense under the practical yet challenging non-
clean-seed-involved scenario. We identify that existing
methods have failed to fully utilize the readily available
target labels and clean hard samples, leading to incomplete
exploitation of the information inherent in the poisoned
dataset. By integrating an open set recognition game into
a refined loss-guided split, we propose a Bi-perspective
Splitting Defense (BSD). Specifically, BSD introduces open
set recognition-based splitting (OSS) and altruistic model-
based data splitting (ALS). OSS reframes the identification
of poisoned samples within the target class as an open set
recognition problem and identify poison samples seman-
tically. ALS utilizes an altruistic model to reveal reliable
clean hard samples with high loss values. These two mecha-
nisms complement each other by leveraging distinct judg-
ment perspectives, the intersection of their results provides
a robust clean pool.

Through extensive experiments on benchmark datasets and
against representative attacks, we empirically demonstrate
that BSD surpasses existing defenses by over 20% in aver-
age Defense Effectiveness Rating (DER), achieving clean-
data-free backdoor security.

2. Related works
Currently, backdoor defenses fall into two main categories:

Post-training backdoor defenses focus on repairing a back-
doored model with a set of locally prepared clean training
sets. Trigger inversion (Sur et al., 2023) is a popular method

to reconstruct the trigger pattern and then unlearn it to ren-
ovate the model. In addition to trigger-synthesis defenses,
pruning, distillation, finetuning, and model connectivity
analysis (Liu et al., 2018; Wu & Wang, 2021; Li et al.,
2023a) are widely applied in the realm of backdoor defense
as well. Despite the promising results, most post-training
methods assume using an extra clean set for defense, which
introduces potential limitations.

In-training backdoor defenses aim at training a benign
model from the polluted dataset, which holds considerable
practical significance (Chen et al., 2022a; Tran et al., 2018;
Weber et al., 2023; Liu et al., 2023). Following an intuitive
idea of splitting the dataset into clean and poison pools and
treating them separately, several representative training-time
defenses, namely Anti-backdoor learning (ABL) (Li et al.,
2021a), Decoupled-based defense (DBD) (Huang et al.,
2022), and Adaptive splitting-based defense (ASD) (Gao
et al., 2023), have garnered attention. Anti-backdoor learn-
ing (ABL) (Li et al., 2021a) isolates a small ratio of poi-
soned samples through local gradient ascent and unlearns
these samples to neutralize the effect of remaining poi-
soned samples in the clean pool. Decoupling-based defense
(DBD) (Huang et al., 2022) utilizes self-supervised learn-
ing to acquire a benign feature extractor and uses a clean
subset to initialize the classifier head. Then, it separates
the suspicious according to the loss magnitude and breaks
the link between the trigger and the target label through
semi-supervised learning. Adaptive splitting-based defense
(ASD) (Gao et al., 2023) further improves the initialization
based on clean seed samples and introduces meta-split to
identify clean hard samples, achieving higher clean accuracy
(CA). Besides these defenses, adopting differential-privacy
SGD (Du et al., 2019) and strong data augmentation (Borg-
nia et al., 2021) can also defend against backdoor attacks
to some degree. Our BSD belongs to the data-splitting
in-training defenses and makes further adaptions.

3. Preliminaries
3.1. Threat model

Following (Gao et al., 2023), We adopt the poisoning-based
threat model used in previous works (Gu et al., 2017; Chen
et al., 2017; Turner et al., 2018), where the training dataset
contains a set of pre-crafted poisoned samples provided by
attackers. As a typical setting of training-time defenses in
previous works (Gao et al., 2023; Borgnia et al., 2021; Du
et al., 2019; Huang et al., 2022; Li et al., 2021a), we assume
that defenders have control over the training process.

3.2. Problem formulation

The malicious training set from the adversaries can be de-
noted as D = Dc ∪ Dp, where Dc and Dp are two disjoint
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part of the raw benign dataset Draw = {(xi, yi)}Ni=1. Each
xi ∈ X ⊂ RC×W×H . The ground-truth labels yi ∈ Y =
{0, 1, . . . , C − 1}, with C being the number of categories.
Given the poisoning rate ρ, Dc has (1− ρ)N samples. The
poisoned set Dp = {(G(x), T (y)) | (x, y) ∈ Draw\Dc},
where G : X → X , T : Y → Y are the attack-specific poi-
soned image generator and label modifier. As an example,
G(x) = m⊙ x+ (1−m)⊙ t, T (x) = yt, where the mask
m ∈ {0, 1}C×W×H , t ∈ X is the trigger pattern, and yt is
the target label. We call the {(x, y)|y ̸= yt, (x, y) ∈ D} as
non-target samples Dnt, and {(x, y)|y = yt, (x, y) ∈ D}
as target samples Dt, {(x, y)|y = yt, (x, y) ∈ Dc} as clean
target samples Dct. Note that under our clean-seed-free
scenario, defenders have no knowledge of which portions
of the training set D are benign and which are not, nor do
they have access to any additional clean samples as external
clean subsets or seeds.

Following the natural idea to exclude the poison samples
from the training set, defenders can divide D into a clean
pool Dc̃ and a poison pool Dp̃. To prevent the model from
being backdoored while preserving the performance on be-
nign samples, the core is breaking the link between triggers
and target labels, and making the best of the poison pool.
We follow DBD and ASD to use semi-supervised learning
(Berthelot et al., 2019b) that only leverages visual features
of samples in the poison pool:

Lsemi =
∑

(x,y)∈Dc̃

Ls (x, y; θ) + λ
∑

x∈Dc̃\Dp̃

Lu (x; θ) , (1)

where θ denote the weights of the main model f(x; θ) (fθ
for simplicity), Ls is a common supervised loss function
such as cross-entropy loss, the unsupervised Lu is applied
on the suspicious polluted set Dc̃\Dp̃, with a trade-off co-
efficient λ. Appendix B.6 provides a detailed definition of
semi-supervised learning.

The main task under this framework lies in finding an appro-
priate indicator that helps maximize the difference between
benign and poisoned samples, thus returning a clean pool
with high precision and a poison pool with high recall, i.e.:

min
Dc̃

|Dp ∩ Dc̃| s.t. Dc̃ ⊂ D, max
Dp̃

|Dp ∩ Dp̃| s.t. Dp̃ ⊂ D.

(2)

3.3. Open set recognition

There are four basic recognition categories of classes in
Open set recognition (Geng et al., 2020): 1) known known
classes (KKCs), i.e., the classes with distinctly labeled
positive training samples (also serving as negative sam-
ples for other KKCs), and even have the corresponding
side-information like semantic/attribute information, etc; 2)
known unknown classes (KUCs), i.e., labeled negative sam-
ples, not necessarily grouped into meaningful classes, such

as the background classes, the universum classes, etc; 3)
unknown known classes (UKCs), i.e., classes with no avail-
able samples in training, but available side information (e.g.,
semantic/attribute information) of them during training; 4)
unknown unknown classes (UUCs), i.e., classes without any
information regarding them during training: not only unseen
but also having not side information (e.g., semantic/attribute
information, etc.) during training.

4. Proposed method
Our BSD has three main components as illustrated in Fig-
ure 2. As we assume no extra clean subset/seeds access,
pool initialization is vital to the defense. To ensure a secure
initialization, open set recognition-based splitting (OSS)
and altruistic model-based splitting (ALS) focus on the per-
spectives of image semantic information and loss statistics
respectively. Based on the altruistic model introduced in
ALS, we further improve the pool update with class comple-
tion and selective dropping strategy.

(1) OSS is motivated by the similarity between the open set
recognition task and poison sample detection in backdoor
defense. As the main model is warmed up usingDnt, poison
samples are unknown-known-classes (UKCs) whose seman-
tic information is included in Dnt, thus having smaller mini-
mum distances to feature clusters of known-known-classes
(KKCs). Clean target samples fall into a new cluster and
have larger minimum distances. Detailed description in
Section 4.1.1.

(2) ALS highlights the clean hard samples with high loss
values in the altruistic model, which could filter out the
overfitted poison samples. A detailed description of ALS is
provided in Section 4.1.2.

(3) Subsequent training of BSD follow a loss-guided split,
which uses the loss difference of a sample between the main
and altruistic model to distinguish samples. BSD compen-
sates the less selected categories and drops the evaded poi-
son samples using class completion and selective dropping
strategies respectively. A detailed description of subsequent
training is provided in Section 4.2.

The detailed algorithm is presented in Appendix A.

4.1. The initialization of clean and poison pools

The initialization of the clean and poison pool is then ob-
tained by intersecting the consensual clean samples in ALS
and OSS:

Dc̃ = Dcals
∩ Dcoss , Dp̃ = Dpals

∪ Dposs
, (3)

where the Dcals
and Dpals

is the split result of ALS, Dcoss

and Dposs is the split result of OSS. The following two
subsections will explain the two initialization mechanisms.
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Figure 2. An overview of our BSD. BSD consists of two main initialize mechanisms, i.e., open set recognition-based splitting (OSS) and
altruistic model-based splitting (ALS). BSD use the intersection of Dcoss and Dcals from OSS and ALS as the clean pool initialization. In
the next two stages of the subsequent training, BSD dynamically updates the clean and poison pools based on a loss-guided split strategy
based on the loss discrepancy of the main model fθ and the altruistic model gφ. The pseudo-code of BSD is provided in Appendix A.

4.1.1. OPEN SET RECOGNITION BASED SPLITING

Open set recognition (OSR) is a task that aims to accurately
identify known classes while also recognizing or reject-
ing unknown classes when the input may contain both. In
the context of OSR, identifying unknown-known classes
(UKCs) and unknown-unknown classes (UUCs) are two ma-
jor tasks. Here UKCs refer to classes that have no available
samples during training, but their side information (such as
semantic/attribute information, etc.) can be obtained during
training. UUCs refer to classes that do not have any relevant
information during the training process: not only have they
not been seen, but there is also no side information during
the training process.

We notice that distinguishing the clean target samples and
poison samples is related to the UKCs and UUCs iden-
tification in OSR. The poison samples are sort of UKCs
because the triggers do not corrupt their semantic informa-

tion. Hence, we set out to cast the clean target samples
to UUCs, which can reframe the splitting within the target
class into an OSR problem.

To make the poison samples and clean target samples belong
to the UKCs and UUCs respectively, the known-known
classes (KKCs, i.e. the training set) should contain the
semantic classes of UKCs (Dp), while information of the
UUCs (Dct) is not included. Therefore, we construct the
KKCs with the non-target classes (Dnt) which satisfies both
requirements above. Thus, we can train the main model fθ
on Dnt for its warm-up, i.e., θ = argminLsemi(Dnt; fθ).

Now the local detection of poisoned samples in Dt has
been reframed as an open set recognition problem. The
clean pool identified by OSS can be acquired by adding the
approximated UUCs (Dc̃t) to the KKCs (Dnt = {(x, y)|y ̸=
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yt, (x, y) ∈ D}):

Dcoss = Dc̃t ∪ Dnt, Dposs
= D\Dcoss . (4)

To approximate the Dc̃t in the reframed problem, it’s ideal
to have the known-unknown classes (KUCs), which again
indicates the need for clean seed samples. Fortunately, there
have been a lot of previous studies on solving this problem
without KUCs. We approximate Dc̃t by:

Dc̃t =
{
(x, y) | S(x) ≥ Percentile

(
DS

t , 1− β
)}

, (5)

where Percentile(Set, ratio) returns the ratio-percentile
in Set, β is a fixed ratio of samples inDt to be added toDnt,
DS

t denotes the set of score values obtained by applying
S to all samples in Dt, i.e., DS

t = {S(x) | (x, y) ∈ Dt}.
Motivated by OpenMAX (Bendale & Boult, 2016), we take
the feature distance to KKCs as a metric to measure the
likelihood of a sample within Dt to be a true clean sample:

S(x) = min
i={0,1,...,C−1}\ỹt

{||fe (x)− µi||2} , (6)

where fe is the feature extractor of f , µi =
1
Ni

∑
fe(xi) is

the cluster center of each KKC.

Approximating yt. It should be noted that it requires yt to
construct Dt and Dnt. Although the target label yt used
in the above process is unknown to the defender, it’s easy
to approximate. There exist various alternative methods to
detect the yt (Gao et al., 2024; Zhu et al., 2024), Here we
are motivated by (Zhu et al., 2024) to use the most frequent
second likely prediction, i.e., yt = argsort(-logit)[1], where
logit means the logit output of a DNN. However, this pre-
diction could be unstable, we further statistics the predicted
yt in each warm-up epoch and use the majority as the final
prediction of yt (this process will be pre-completed in ALS,
details in Appendix A).

4.1.2. ALTRUISTIC MODEL BASED SPLITTING

In our BSD, we introduce an altruistic model g(x;φ) (gφ
for simplicity), which is an independent model having the
same structure as the main model. It serves as a pathfinder
of the main model by exposing itself to the entire malicious
training set, i.e., φ = argminLce(D, gφ), where Lce stands
for the cross-entropy loss.

We calculate the rest unsolved part in (3), i.e., Dcals
and

Dpals
following the equation below:

Dcals
=

{
(x, y) |L(x, y, φ)≥Percentile

(
DL, 1− α

)}
,

Dpals
= D\Dcals

,
(7)

where L is the symmetric cross-entropy loss (Wang et al.,
2019), DL = {L (x, y, φ) | (x, y) ∈ D} is loss values
using gφ of the training set, α is the ratio of samples split to
the clean pool.

Note that although here the altruistic model is just used for
the pool initialization, it also plays a significant role in the
subsequent training.

4.2. Subsequent training

BSD adaptively updates the pools according to the loss dis-
crepancy of fθ and gφ in the subsequent training, ensuring
balanced and robust learning

Class completion strategy. Despite securing good pool ini-
tialization without involving the clean seed samples, the
clean pools may have an unbalanced distribution of classes,
hampering the model’s performance on clean accuracy. This
primarily stems from the imbalanced learning status of cate-
gories and the cyclic positive feedback effect of loss-guided
methods. We further revise the splitting strategy of clean
samples, adding samples in the class with the fewest sam-
ples:

Dc̃1 = {(x, y) | I(x, y)≥Percentile(DI , 1−α)
∨{y = i, I(x, y)≥ Percentile(DI

i , 1−n′
i/Ni)}},

Dp̃1
= D\Dc̃1 ,

(8)

where I(x, y) is an loss based indicator, DI = {I (x, y) |
(x, y) ∈ D} is the mapped D using I. DI

i =
{I (x, y) | y = i (x, y) ∈ D}, Ni = |DI

i |, n′
i =

min{αni, NsecondFew}, NsecondFew is number of samples
in the second-fewest predicted class.

We do subtraction between the loss of samples on the main
and altruistic models, as the poison samples should also
have high loss values on the unaffected main model and low
loss values on the backdoored altruistic model. Thus I is
defined as:

I (x, y) = Lsce (x, y, φ)− Lsce (x, y, θ) , (9)

where Lsce denotes the symmetric cross-entropy loss (Wang
et al., 2019).

Selective dropping strategy. Approaching the end of the
training, we drop the samples that are predicted to be ỹt by
both models:

Dc̃2 = Dc̃1\ {(x, y) | (f (x) = ỹt ) ∧ (g (x) = ỹt )} ,
Dp̃2

= D\Dc̃2 ,
(10)

There exist two probable situations for a sample that will
be dropped: 1) the sample is poisoned; 2) the sample is a
clean sample with the original label being ỹt. For situation
1, it is the correct decision to drop poisoned samples; for
situation 2, the agreement between the two models indicates
the sample is already well-fitted by both models and is
less important. As a result, the dropping of these samples
generally helps improve model performance.
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5. Experiments
5.1. Experimental settings

Datasets and DNN models. We adopt three benchmark
datasets for the evaluation of the backdoor defenses, namely,
CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Stallkamp
et al., 2012), and Imagenet (Deng et al., 2009). The re-
sults are conducted with ResNet-18 (He et al., 2016) and
MobileNet-v2 (Sandler et al., 2018) as the backbone models
for their representativeness and widespread use.

Attack Baselines. We implement seven representative
attacks, i.e., BadNets (Gu et al., 2017), Blended (Chen
et al., 2017), WaNet (Nguyen & Tran, 2021), Label-
Consistent(LC) (Turner et al., 2019), ReFool (Liu et al.,
2020), SIG (Barni et al., 2019), and Narcissus (Zeng et al.,
2023b). All these attacks are implemented based on open-
source codebases of ASD (Gao et al., 2023), DBD (Huang
et al., 2022), Narcissus (Zeng et al., 2023b), backdoor-
Bench (Wu et al., 2022), and BackdoorBox (Li et al., 2023b).
The first five attacks follow the same setting in settings in
(Gao et al., 2023) unless otherwise specified, SIG and Nar-
cissus follow the setting with (Li et al., 2021a) and (Zeng
et al., 2023b) respectively, while the poisoning rate ρ and
target label yt are the same as LC. A detailed description of
the attack implementations is provided in Appendix B.3.

Defense Baselines. We compare our proposed BSD
with five existing backdoor defenses, namely Fine-
pruning (FP) (Liu et al., 2018), Neural Attention Distil-
lation (NAD) (Li et al., 2021b), Anti-Backdoor-Learning
(ABL) (Li et al., 2021a), Decoupling-based Backdoor De-
fense (DBD) (Huang et al., 2022), and Adaptive Splitting-
based backdoor Defense (ASD) (Gao et al., 2023). The
detailed settings for all defense baselines are as suggested
in ASD. For our BSD, we adopt the MixMatch (Berthelot
et al., 2019b) semi-supervised training framework for the
main model, following Decoupling-based Defense (DBD)
and Adaptive Splitting-based Defense (ASD). The altruistic
model undergoes a warm-up phase with 25 epochs, utilizing
the Adam optimizer, cross entropy loss, with a learning rate
of 0.001. The default warm-up epochs for the main model
in OSS are set to 20 (T1 = 20), with a default fixed β of
0.2. Class completion training spans 60 epochs (T2 = 90),
and selective dropping training spans 30 epochs (T3 = 120).
The clean pool ratio α follows a sinusoidal growth curve
during class rebalance training, starts at 0.2, and reaches an
upper limit of 0.6 at the end of the class completion stage,
after which it remains fixed. Additional details are available
in Appendix B.4.

Evaluation metrics. We assess the effectiveness of back-
door defenses using two widely used metrics: Clean Accu-
racy (CA) and the attack success rate (ASR). To be specific,
the CA is the accuracy of clean data, the ASR is defined as

the proportion of poisoned samples that are misclassified
as the target class by the model. In the context of backdoor
defense, superior performance is characterized by higher
CA and lower ASR. To comprehensively evaluate the per-
formance of defense methods, we include another metric
named Defense Effectiveness Rating (DER) (Zhu et al.,
2023a), higher DER indicate better defense performance.
The detailed definition of DER is provided in Appendix B.5.

5.2. Main results

We present a summary of CAs, ASRs, and DERs achieved
by five backdoor defenses against three most representative
backdoor attacks on three benchmark datasets in Table 11.
As illustrated in Table 1, our BSD has the best average DERs
on each dataset, being capable of maintaining high CAs
without compromising the robustness indicated by ASRs. In
comparison with post-training defenses, i.e., FP and NAD,
which require thousands of clean seed samples, BSD con-
sistently outperforms them with lower ASRs when OSS is
used as the alternative initialization. Additionally, the CAs
of BSD surpass those of FP and NAD. Concerning recently
proposed training-time defenses, the BSD has best result
in general. ABL, which assumes no presence of clean sub-
sets, has relatively close performance under CIFAR-10 &
BadNets, GTSRB & BadNets, and GTSRB & Blend. Nev-
ertheless, the CA under CIFAR-10 & WaNet indicates a
class underfitting collapse (CAs on certain classes are close
to 0%) and its performance is inferior to that of BSD in
general. For another representative training-time defense
DBD, although it has a slight edge in ASRs on CIFAR-10,
its average ASRs and CAs fall behind our BSD. ASD, which
assumes an extra small clean seed set is characterized by
consistent high CAs and stable ASRs. However, BSD still
surpasses it in general. In summary, our BSD performance
remains competitive and, in some cases, surpasses that of
state-of-the-art methods.

In addition to the representative attacks, we investigated
four more attacks that may be threatening to existing de-
fenses. They consist of one invisible attack, ReFool (Liu
et al., 2020), and three clean-label attacks, LC (Turner et al.,
2019), SIG (Barni et al., 2019), and Narcissus (Zeng et al.,
2023b). ReFool uses a physical yet stealthy reflection trig-
ger, which makes the backdoor hard to detect. LC, SIG,
and Narcissus belong to the clean-label attack, which is
a type of tricky backdoor attack that does not change the
label of samples, making most of the defenses ineffective
(where DBD has the most significant performance degrada-
tion). For our BSD, clean-label attacks are less threatening.

1Since we strictly follow the same settings, we reference the
baseline results for CIFAR-10 and GTSRB from ASD (Gao et al.,
2023). However, the exact 30 randomly selected classes from the
Imagenet subset used are unknown to us, so we ran all the baselines
on Imagenet using our own randomly chosen 30 classes.
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Table 1. The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating (DER%) of 5 baseline backdoor defense
methods and our BSD against 3 representative backdoor attacks on 3 benchmark datasets. The baselines consist of two post-training
defenses (FP, NAD) and three state-of-the-art training-time defenses (ABL, DBD, ASD). ’Non’ stands for no defense. The best and
second best results are in bold and underlined.

DATASET ATTACK METRIC NON FP NAD ABL DBD ASD BSD(OURS)

CIFAR-10

BADNET
CA 94.9 93.9 88.2 93.8 92.3 93.4 95.1

ASR 100.0 1.8 4.6 1.1 0.8 1.2 0.9
DER - 98.6 94.4 98.9 98.3 98.7 99.6

BLENDED
CA 94.1 92.9 85.8 91.9 91.7 93.7 94.9

ASR 98.3 77.1 3.4 1.6 0.7 1.6 0.8
DER - 60.0 93.3 97.3 97.6 98.2 98.8

WANET
CA 93.6 90.4 71.3 84.1 91.4 93.1 94.5

ASR 99.9 98.6 6.7 2.2 0.0 1.7 0.8
DER - 49.1 85.5 94.1 98.9 98.9 99.6

AVERAGE DER - 69.2 91.0 96.8 98.3 98.6 99.3

GTSRB

BADNET
CA 97.6 84.2 97.1 97.1 91.4 96.7 97.6

ASR 100.0 0.0 0.2 0.0 0.0 0.0 0.0
DER - 93.3 99.7 99.8 96.9 99.6 100.0

BLENDED
CA 97.2 91.4 93.3 97.1 91.5 97.1 96.9

ASR 99.4 68.1 62.4 0.5 99.9 0.3 0.0
DER - 62.8 66.6 99.4 46.9 99.5 99.6

WANET
CA 97.2 92.5 96.5 97.0 89.6 97.2 97.2

ASR 100.0 21.4 47.1 0.4 0.0 0.3 0.2
DER - 87.0 76.1 99.7 96.2 99.9 99.9

AVERAGE DER - 81.0 80.8 99.6 80.0 99.6 99.8

IMAGENET

BADNET
CA 75.7 71.4 51.7 68.1 76.1 81.1 78.3

ASR 99.5 2.6 2.5 7.6 1.2 100.0 1.1
DER - 96.3 86.5 92.2 99.2 50.0 99.2

BLENDED
CA 74.5 73.1 42.8 61.9 77.9 79.7 80.1

ASR 97.7 81.9 0.2 100.0 35.0 51.0 0.2
DER - 57.2 82.9 42.6 81.4 73.4 98.8

WANET
CA 77.1 76.9 74.0 74.9 77.2 78.4 78.7

ASR 81.0 0.4 1.3 1.1 5.2 14.0 0.0
DER - 90.2 88.3 88.9 87.9 83.5 90.5

AVERAGE DER - 81.2 85.9 74.5 89.5 69.0 96.2

Table 2. The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating (DER%) of 5 baseline backdoor defense
methods and our BSD against 4 threatening backdoor attacks on CIFAR-10. The best and second best results are in bold and underlined.

ATTACK METRIC NON FP NAD ABL DBD ASD BSD(OURS)

LC
CA 94.4 87.1 85.9 80.2 83.2 93.9 92.4

ASR 99.9 24.4 50.5 1.6 98.1 73.2 1.2
DER - 84.1 70.5 92.1 45.3 63.1 98.4

SIG
CA 95.0 87.1 85.8 67.6 80.1 93.5 93.8

ASR 95.2 60.8 83.0 5.1 99.9 96.5 0.0
DER - 63.3 51.5 81.4 42.6 49.3 97.0

REFOOL
CA 95.2 86.5 85.6 76.3 90.8 86.8 94.8

ASR 99.0 23.0 42.5 82.0 2.3 0.4 0.5
DER - 83.6 73.4 49.0 96.1 95.1 99.0

NARCISSUS
CA 95.2 87.2 86.5 79.3 87.3 93.9 94.3

ASR 99.5 63.4 81.0 7.1 99.5 0.0 0.0
DER - 64.0 54.8 88.2 46.0 99.1 99.3

AVERAGE DER - 73.8 62.6 77.7 57.5 76.6 98.4

While the OSS mechanism can be evaded as the seman-
tic information is Dt is consistent. Fortunately, ALS still
functions effectively with its loss-perspective splitting in
this scenario, compensating for the limitations of OSS. As
shown in Table 2, BSD is not evaded by any of the attacks
and achieves the best average DER. Additional details of
attack implementation are available in Appendix B.3.

5.3. Robustness to different model structures

BSD makes no assumptions about model structures, en-
suring both compatibility and versatility. To validate this,
we evaluated the defense performance of BSD using another
widely adopted network, MobileNet (Sandler et al., 2018).
As shown in Table 3, BSD consistently outperforms the
baseline method with MobileNet-v2 as the backbone.
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(a) ρ = 0.01 (b) ρ = 0.05 (c) ρ = 0.10 (d) ρ = 0.20

Stable and low ASR!

Higher CA!Higher CA!

Faster 
convergence!

Figure 3. The performance of BSD in comparison with ASD (Gao et al., 2023) under different poisoning rates. The experiment is
conducted on CIFAR-10 against three attacks.

Table 3. The clean accuracy (CA%), attack success rate (ASR%),
and defense effectiveness rating (DER%) on CIFAR-10 of different
defenses using mobilenet v2 (Sandler et al., 2018) as the backbone.

ATTACK & METRIC NON FP NAD ABL DBD ASD BSD

BADNET
CA 94.3 77.9 78.5 79.7 65.5 93.2 91.1
ASR 100.0 8.3 11.7 13.6 0.0 100.0 0.4
DER - 87.7 86.2 85.9 85.6 49.4 98.2

BLENDED
CA 94.0 75.9 76.0 67.3 69.0 87.1 90.0
ASR 99.3 30.8 46.0 2.6 0.0 99.0 0.2
DER - 75.2 67.7 85.1 87.2 46.7 97.6

WANET
CA 94.0 82.2 81.5 50.9 58.4 83.0 90.1
ASR 95.7 2.4 3.2 0.5 12.4 97.7 0.6
DER - 90.7 90.0 76.1 73.9 44.5 95.6

AVERAGE DER - 84.5 81.3 82.3 82.2 46.9 97.1

5.4. Robustness to different poisoning rates

Despite the default poisoning rate ρ = 0.05 being a reason-
able setting that is widely adopted in either backdoor attack
or backdoor defense research (Huang et al., 2022; Gao et al.,
2023; Min et al., 2024; Shi et al., 2023), it’s crucial to verify
the robustness of our BSD under different poisoning rates.
As illustrated in Figure 3, although ASD performs well with
respect to ASRs as well, the CAs of ASD are conspicuously
lower under non-default settings. However, our BSD con-
sistently achieves close-to-zero ASRs and satisfying CAs,
emphasizing its robustness to different poisoning rates.

5.5. Robustness against different target labels

We evaluated the robustness against different targets of our
BSD in Table 4. BSD presents consistently high perfor-
mance against different target labels.

5.6. Training cost evaluation

Our BSD incorporates an altruistic model to assist with pool
initialization and updates, which may raise concerns about
increased training costs. However, as shown in Table 5, the
training cost of BSD is comparable to, or even lower than,

Table 4. The clean accuracy (CA%), attack success rate (ASR%),
and defense effective rating (DER%) of our BSD against 3 repre-
sentitive backdoor attacks with different target labels on CIFAR-
10.

TARGET
BADNETS BLENDED WANET

CA ASR DER CA ASR DER CA ASR DER

0 95.0 0.8 99.6 95.0 0.4 99.0 91.9 0.3 99.0
1 94.9 0.5 99.8 94.9 0.5 98.9 94.2 0.3 99.8
2 95.1 0.8 99.6 94.7 0.9 98.7 90.9 0.7 98.3
3 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6
4 95.0 0.2 99.9 94.8 0.6 98.9 92.4 0.2 99.3
5 95.1 1.7 99.2 95.0 0.5 98.9 91.9 0.4 98.9
6 95.1 0.6 99.7 93.9 0.6 98.8 92.6 0.3 99.3
7 94.7 0.3 99.8 92.6 0.4 98.2 90.3 0.0 98.3
8 92.0 0.3 98.4 95.1 0.5 98.9 91.8 0.3 98.9
9 94.9 0.3 99.8 94.0 0.4 98.9 94.0 0.2 99.9

AVG 94.7 0.6 99.5 94.5 0.6 98.8 92.5 0.4 99.1

that of ASD (Gao et al., 2023). This is due to three key
factors: 1) The altruistic model is updated through standard
training rather than MixMatch, significantly reducing time.
2) The altruistic model is only updated before stage 3, and
its training primarily runs in parallel with the main model. 3)
An imbalanced pool size, as seen in the early stages of ASD,
often triggers frequent dataloader updates in MixMatch,
whereas the clean pool size in BSD is more balanced and
suitable during training.
Table 5. Training cost (hours) of ASD, DBD, and BSD on CIFAR-
10, GTSRB, and Imagenet.

METHOD CIFAR-10 GTSRB IMAGENET AVERAGE

DBD 11.96 10.09 53.21 25.09
ASD 4.81 2.55 12.09 6.48

BSD(OURS) 3.15 2.84 9.20 5.06

5.7. Ablation studies

Effectiveness of different stages. The major components
of BSD are divided into pool initialization and pool up-
dates. We investigated the significance of each component
on CIFAR-10 to demonstrate their necessity, as shown in
Table 6. OSS and ALS initialization are critical for avoid-
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ing backdoor overfitting (ASR); class completion update
helps prevent class underfitting (CA); and selective dropping
update acts as a final step to further reduce ASR, thereby
achieving a higher DER.

Table 6. The ablation study on the strategies involved in BSD under
CIFAR-10. ’Default’ represents the result using all the proposed
mechanisms, ’w/o Init’ represents the results using random initial-
ization. ’w/o Comp’ represents disabling class completion in both
stages 2 and 3. ’w/o Drop’ represents disabling selective drop in
stage 3.

SETTING↓ BADNET BLENDED WANET
CA ASR DER CA ASR DER CA ASR DER

DEFAULT 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6
W/O INIT 94.7 100.0 49.9 95.0 99.2 49.6 93.6 91.5 54.2

W/O COMP 90.7 0.0 97.9 86.8 0 95.5 89.8 0.2 98.0
W/O DROP 94.6 1.1 99.3 94.2 1.1 98.6 94.5 1.9 99.0

Influence of parameters. We here present the influence of
the main parameter, i.e., the parameters α and β controlling
the pool size. As revealed in Table 7, our BSD has robust
performance against all the attacks with a relatively loose
range of α and β , and we recommend using the default set-
ting in normal cases, and a reasonable range for adjustments
is 0.3 < α < 0.8, β < 0.5.

Table 7. Performance of BSD under different α & β on CIFAR-10.
The results that have more than 0.5% DER decrease are marked
using ↓.

SETTING↓ BADNET BLENDED WANET
CA ASR DER CA ASR DER CA ASR DER

DEFAULT 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6

α=0.3, β = 0.2 94.9 1.2 99.4 94.8 0.6 98.9 94.2 1.8 99.1↓
α=0.4, β = 0.2 95.0 1.2 99.4 94.7 0.9 98.7 94.4 1.4 99.3
α=0.5, β = 0.2 95.0 1.7 99.2 94.2 0.8 98.7 94.7 1.4 99.2
α=0.7, β = 0.2 95.2 0.8 99.6 95.1 0.5 98.9 93.0 0.1 99.6
α=0.8, β = 0.2 95.0 1.1 99.5 92.8 0.5 98.2↓ 91.7 1.0 98.5↓
α=0.9, β = 0.2 93.6 0.7 99.0↓ 90.3 0.2 97.2↓ 90.0 0.9 97.7↓

α=0.6, β = 0.1 94.8 0.7 99.6 90.9 0.5 97.3↓ 91.6 0.6 98.7↓
α=0.6, β = 0.3 94.9 1.2 99.4 94.7 0.8 98.8 94.5 0.8 99.6
α=0.6, β = 0.5 94.7 1.4 99.2 94.9 1.6 98.4 94.3 2.3 98.8↓
α=0.7, β = 0.7 94.4 1.7 98.9↓ 94.3 3.7 97.3↓ 94.0 32.8 83.6↓

5.8. Extended experiments

Additional experimental results, including visualizations,
extended ablation studies, more baselines, performance un-
der no attacks, robustness of pseudo target approximation,
resistance to all2all attacks, potential adaptive attacks, and
more, are provided in Appendix D.

6. Conclusion
In conclusion, our proposed BSD effectively mitigates back-
door attacks through bi-perspective splitting mechanisms,
without relying on on extra clean data.
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A. Algorithm outline
The pseudocode of the proposed method BSD is listed as Algorithm 1.

Algorithm 1 Pseudocode for BSD
Input: Poisoned training set D; main model f ; main model warm-up ends at epoch T1, main model training stage2 ends at
epoch T2, main model training stage3 ends at epoch T3, max clean pool ratio α, OSS split ratio β.
Output: Clean model fθ′

1: # Initialization & warm-up
2: Initialize the weights of f as θ
3: Generate an altruistic model g having the same architecture as f , initialize the weights as φ
4: # Prepare for ALS
5: for i = 1 to 25 do
6: for each sample (x, y) in D do
7: loss← Lce(x, y, gφ)
8: φ← φ−∇φloss
9: end for

10: end for
11: # Prepare for OSS
12: Set yt as the majority of most frequent second likely prediction, i.e., yt = Majority(argsort(−logiti)[1]).
13: Calculate Dt and Dnt with yt according to Section 3.2
14: # Main Training Loop
15: while T < T3 do
16: if T < T1 then
17: # Data used for the main model warm-up
18: Dc ← Dnt

19: else if T = T1 then
20: # Pool initialization using ALS and OSS
21: Dc ← Dals ∪ Doss

22: else if T1 + 10 ≤ T < T2 then
23: # Pool update based on loss discrepancy of fθ and gφ, enabling class completion
24: T ′ ← T−T1−10

T2−T1−10T2

25: Current clean ratio αT ← β + (α− β)× (1− cos(π × T ′/T2))/2
26: Set α as αT in (8)
27: Calculate Dc̃1 according to (8)
28: Dc ← Dc̃1

29: else if T ≥ T2 then
30: # Pool update based on loss discrepancy of fθ and gφ, enabling class completion and selective drop
31: Current clean ratio αT ← α
32: Set α as αT in (10)
33: Calculate Dc̃2 according to (10)
34: Dc ← Dc̃2

35: end if
36: Dp ← D \ Dc

37: # Models updating
38: θ ← θ −∇θLsemi # Train the model on Dc(labeled) and Dp by semi-supervised learning
39: if T < T2 then
40: φ← φ−∇φLce # Train the altruistic model by supervised learning
41: end if
42: end while
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B. Implementation details
B.1. Environments

We run all the experiments using PyTorch on a Linux server with an AMD EPYC 7H12 64-core Processor, 256GB RAM,
and 8× NVIDIA GeForce RTX 3090 GPU.

B.2. Illustration of the poisoned samples

Figure 4 illustrates the seven attack types used in this study, displaying both the original and poisoned images along with the
corresponding trigger patterns. For attacks involving a different trigger in the Imagenet dataset, the specific trigger is also
shown at the bottom.

Figure 4. Illustation of the backdoor attacks. We present the examples on CIFAR-10, alternative triggers (if used) on Imagenet are shown
at the bottom.

B.3. Attack settings

Training settings. For all the attack implementations, we follow that in ASD (Gao et al., 2023). On the CIFAR-10 and
GTSRB datasets, we perform backdoor attacks on ResNet-18 for 200 epochs with batch size 128. We adopt the stochastic
gradient descent (SGD) optimizer with a learning rate of 0.1, momentum of 0.9, and weight decay 5× 10−4. The learning
rate is divided by 10 at epoch 100 and 150. For attacks not achieving reported performance in ASD (Gao et al., 2023),
we continue the training for another 100 epochs, and the learning rate is divided by 10 at epoch 200 and 250. On the
Imagenet (Deng et al., 2009) dataset, we train ResNet-18 for 90 epochs with batch size 256. We utilize the SGD optimizer
with a learning rate of 0.1, momentum of 0.9, and weight decay 1× 10−4. The learning rate is decreased by a factor of 10 at
epoch 30 and 60. The image resolution will be resized to 224× 224× 3 before attaching the trigger pattern.

Settings for BadNets. As suggested by (Gu et al., 2017; Huang et al., 2022; Gao et al., 2023), we set a 2× 2 square on the
upper left corner as the trigger pattern on CIFAR-10 and GTSRB. For ImageNet and VGGFace2, we use a 32×32 apple logo
on the upper left corner. The poisoning rate ρ is set to 0.05(5%).

Settings for Blended. Following (Chen et al., 2017; Huang et al., 2022; Gao et al., 2023), we choose“Hello Kitty” pattern
on CIFAR-10 and GTSRB and the random noise pattern on ImageNet and VGGFace2. The blend ratio is set to 0.1. The
poisoning rate ρ is set to 0.05(5%).
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Settings for WaNet. Following (Gao et al., 2023; Huang et al., 2022), we directly use the default warping-based operation
to generate the trigger pattern. For CIFAR-10 and GTSRB, we set the noise rate ρn to 0.2, control gird size k as 4, and
warping strength s as 0.5. For Imagenet, we use the same noise rate, but a larger grid size k = 224, and a warping strength
s = 1.

Settings for Label-Consistent Attack. Following (Gao et al., 2023; Huang et al., 2022; Turner et al., 2019), the noisy
versions of samples are generated using adversarially trained models. The PGD parameters are as follows: for PGD training:
ϵ = 16, α = 2, steps = 7, and the pixel range is [0, 255]; for PGD attack: ϵ = 16, α = 1.5, steps = 30, with the same pixel
range [0, 255]. The same trigger used in BadNets is applied for LC attacks, and the poison ratio is set at 25

Settings for Refool. Following (Li et al., 2021a; Liu et al., 2020), we randomly choose 5,000 images from PascalVOC (Ev-
eringham et al., 2015) as the candidate reflection set Rcand and randomly choose one of the three reflection methods to
generate the trigger pattern during the backdoor attack.

Settings for SIG. Following (Li et al., 2021a; Barni et al., 2019), we adopt the same sinusoidal pattern in ABL as the trigger
and set the poisoning rate to match LC, as SIG is a clean-label attack.

Settings for Narcissus. We also incorporate the recent attack proposed by (Zeng et al., 2023b), which is another clean-label
attack. The parameter settings for generating the Narcissus trigger pattern are as follows: the ℓ∞ ball bound is set to 16/255,
the surrogate model is trained for 200 epochs with an initial learning rate of 0.1 and a warm-up period of 5 rounds. The
trigger-generation learning rate is 0.01, and the generation process lasts for 1000 rounds. The poisoning rate is the same as
LC, given that Narcissus is also a clean-label attack.

B.4. Defense settings

Settings for FP. Following (Gao et al., 2023), we set two steps of FP (Liu et al., 2018) (i.e., pruning and fine-tuning) as
follows. (1) We randomly select 5% clean training samples as the local clean samples and forward them to obtain the
activation values of neurons in the last convolutional layer. The dormant neurons on clean samples with the lowest α%
activation values will be pruned. (2) The pruned model will be fine-tuned on the local clean samples for 10 epochs. In
particular, the learning rate is set as 0.01, 0.01, 0.1 on CIFAR-10, GTSRB, and ImageNet. Unless otherwise specified, other
settings are the same as those used by (Liu et al., 2018). For the hyper-parameters of FP, we search for the best results by
adjusting the pruned ratio α% ∈ 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%. In addition, we add another default setting
in backdoorbench (Wu et al., 2022).

Settings for NAD. NAD (Li et al., 2021b) is also a post trianing method that repairs the backdoored model and needs 5%
local clean training samples. We set the two steps of NAD as follows: (1) Use the local clean samples to fine-tune the
backdoored model for 10 epochs. Specially, the learning rate is set as 0.01, 0.01, 0.1 on CIFAR-10, GTSRB, and ImageNet.
(2) The fine-tuned model and the backdoored model will be regarded as the teacher model and student model to perform
the distillation process. Unless otherwise specified, other settings are the same as those used by (Li et al., 2021b). For the
sensitive hyper-parameter β, we find the search space used by (Gao et al., 2023) too small. We search for the best results by
adjusting the hyper-parameter β from 500, 1000, 1500, 2000, 2500, 5000, 7500, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11. In
addition, we add another default setting in backdoorbench (Wu et al., 2022).

Settings for ABL. ABL (Li et al., 2021a) contains three stages: (1) To obtain the poisoned samples, ABL first trains the
model on the poisoned dataset for 20 epochs by LGA loss and isolate 1% training samples with the lowest loss. (2) Continue
to train the model with the poisoned dataset after the backdoor isolation for 70 epochs. (3) Finally, the model will be
unlearned by the isolation samples for 5 epochs. The learning rate is 5e-4 at the unlearning stage. Unless otherwise specified,
other settings are the same as those used by (Li et al., 2021a). ABL is sensitive to the hyper-parameter γ in LGA loss. We
search for the best results by adjusting the hyper-parameter γ from 0, 0.1, 0.2, 0.3, 0.4, 0.5, In addition, we add another
default setting in backdoorbench (Wu et al., 2022).

Settings for DBD. DBD (Huang et al., 2022) contains three independent stages: (1) DBD uses SimCLR to perform the
self-supervised learning for 1,000 epochs. (2) Freeze the backbone and fine-tune the linear layer by supervised learning for
10 epochs. (3) Adopt the MixMatch to conduct the semi-supervised learning for 200 epochs on CIFAR-10 and GTSRB for
90 epochs on ImageNet and VGGFace2. Unless otherwise specified, other settings are the same as those used by (Huang
et al., 2022). Since DBD is a relatively stable backdoor defense and not sensitive to its hyper-parameter, we only add another
group of default setting in backdoorbench (Wu et al., 2022).
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Settings for ASD. We follow the exact settings for ASD as suggested by (Gao et al., 2023). To name a few settings, we
adopt MixMatch as the semi-supervised learning framework and use the Adam optimizer with a learning rate of 0.002 and a
batch size of 64 for the semi-supervised training. The temperature T is set to 0.5, and the weight of the unsupervised loss
λu is set to 15. The training stages are defined as follows: T1 = 60, T2 = 90, and T3 = 120 for CIFAR-10 and ImageNet,
while T3 = 100 for GTSRB. Similarly, other parameters are the same as used by (Gao et al., 2023) as well.

For our BSD, we adopt the MixMatch (Berthelot et al., 2019b) semi-supervised training framework for the main model,
following Decoupling-based Defense (DBD) and Adaptive Splitting-based Defense (ASD). The semi-supervised learning
parameters align with ASD, including 1024 training iterations, a temperature of 0.5, a ramp-up length of 120, and a learning
rate of 0.002. The altruistic model undergoes a warm-up phase with 25 epochs, utilizing the Adam optimizer, Cross Entropy
loss, with a learning rate of 0.001. The default warm-up epochs for the main model in OSS are set to 20 (followed by a
10-epoch training on the initialized pools)(T1 = 20), with a default β of 0.2. Class completion training spans 60 epochs
(T2 = 90), and selective dropping training spans 30 epochs (T3 = 120). The altruistic model update uses the same loss
and optimizer as in the warm-up on CIFAR-10 and Imagenet for efficiency, on lightweight datasets like GTSRB, we use
the same semi-supervised loss and optimizer as the main model for better performance. The clean pool ratio α follows a
sinusoidal growth curve during class completion training, starts at β, and reaches an upper limit of α = 0.6 at the end of the
class completion stage, after which it remains fixed:

T ′ =
T − T1 − 10

T2 − T1 − 10
T2

αT = β + (α− β)× (1− cos(π × T ′/T2))/2

(11)

The baselines are implemented using:

• BackdoorBench (Wu et al., 2022);

• BackdoorBox (Li et al., 2023b);

• Github repositories of corresponding papers.

We greatly appreciate these outstanding works.

B.5. Definition of DER

Defense Effectiveness Rating (DER) (Zhu et al., 2023a) is a comprehensive measure that considers both ACC and ASR:

DER = [max(0,∆ASR)−max(0,∆ACC) + 1]/2, (12)

where ∆ASR denotes the decrease of ASR after applying defense, and ∆ACC denotes the drop in ACC following the
defense. Higher ACC, lower ASR and higher DER indicate better defense performance.

B.6. Details about semi-supervised loss

Semi-supervised learning (Berthelot et al., 2019a;b; Sohn et al., 2020; Xie et al., 2020; Zhu & Goldberg, 2022) studies
how to leverage a training dataset with both labeled data and unlabeled data to obtain a model with high accuracy. In
addition to its application in normal training, semi-supervised learning also serves as a powerful means for the security of
DNNs (Alayrac et al., 2019; Carmon et al., 2019; Huang et al., 2022).

Here we adopt the MixMatch (Berthelot et al., 2019b). Given a batch X ⊂ DC of labeled samples, and a batch U ⊂ DP of
unlabeled samples, MixMatch generates a guessed label distribution q̃ for each unlabeled sample u ∈ U and adopts MixUp
to augment X and U to X′ and U′. The supervised loss Ls is defined as:

Ls =
∑

(x,q)∈X ′

H(px, q) , (13)

where px is the prediction of x, q is the one-hot label and H(·, ·) is the cross-entropy loss. The unsupervised loss Lu is
defined as:

Lu =
∑

(u,q̄)∈U ′

∥pu − q̄∥22 , (14)
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where pu is the prediction of u.

Finally, the MixMatch loss can be defined as:
L = Ls + λ · Lu, (15)

where λ is a hyper-parameter for trade-off, we adopt the same λ = 15 as in ASD.

C. Supplementary information of the background
C.1. Supplementary Overview of Backdoor Attack Research

The common implementation of backdoor attacks is realized by injecting a few poisoned samples into the training dataset,
i.e., data-poisoning-based backdoor attacks, inducing the model to build a link between the trigger (i.e., a visual particular
pattern) and target class (Gu et al., 2017). Thus the model consistently outputs the target label once the trigger is attached to
the inputs in the inference stage.

Poison-label backdoor attacks are currently the most common attack paradigm, where the trigger pattern in the poisoned
samples is directly connected to the target class by relabeling, inducing the model to treat the trigger as a decision-making
feature of the target class. Recent research (Hu et al., 2022; Li et al., 2020; Qi et al., 2021) focuses on more invisible trigger
designs through generative models and feature space optimizations, as well as exploring backdoor attacks in wider tasks like
natural language processing.

C.2. Extended related works

With the advance of clean subset extraction and backdoor detection, many works tries to split clean subsets from poison
training sets. (Zeng et al., 2023a) proposed detecting poisoned data by identifying shifts in data distributions, which results
in high prediction loss when training on the clean portion of a poisoned dataset and testing on the corrupted portion. They
solve a relaxed of the splitting optimization problem with the help of a weight-assigning network. Although promising
empirical results were presented, the proposed META-SIFT only guarantees a relatively small subset ((Zeng et al., 2023a),
page 10, Figure 5). As a result, META-SIFT still relies on effective downstream defenses, such as NAD and ASD, included
in our baselines, while also increasing the hyperparameter search space. (Pan et al., 2023) are motivated by the same
distributional shift phenomenon and proposed an effective splitting algorithm, ASSET. However, they assume that the
defender has an extra set of clean samples (named ”base set” in (Pan et al., 2023)), which doesn’t suit the background of our
paper, where no extra clean set is available. Plus, ASSET is faced with the same problem that requires effective downstream
defenses to conduct the defense.

In general, these works indeed provide valuable insights into the poisoned data splitting problem and could inspire our
future research. However, they are faced with two major problems. 1) Cannot guarantee a 100% correct split that can be
directly used for training; 2) Rely on an extra clean set which violates the constraints of our scenario.

C.3. Illustration of the model collapse

As presented in Figure 5, the splitting-based defenses (loss-guided ones specifically) encounter two kinds of model collapse.
In backdoor overfitting collapse, poison samples take effect and have low loss values, which consistently corrupt the clean
pool and lead to a backdoored model. Likewise, in class underfitting collapse, the rareness of certain classes will lead to
higher loss values, making them less chosen to be clean samples, which forms a vicious cycle. Note that these two collapses
are common in other categories of defenses as well, while it’s more explainable in splitting-based defense.

D. Extended experimental results
D.1. Illustration of pool update

To showcase the healthy clean pool acquired by our BSD, we plot the number of poison samples in the clean pool at each
training epoch, as well as reveal the accumulated number of poison samples. As shown in Figure 6, our BSD generally
have fewer poison samples in the clean pool during training, with both the number of poisoned samples and the cumulative
number of samples smaller than that fo ASD under different poisoning rates.

In addition, we plot the loss/distance distribution of samples of our BSD in Figure 7. In Figure 7.(a) and Figure 7.(b),
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Figure 5. Typical model collapses in data-splitting backdoor defenses. I: Misclassification of low-loss poisoned samples as clean leads to
a steady increase in the poisoned sample proportion until 100% ASR. II: Higher losses for challenging classes reduce their presence in the
clean pool, rendering the model unable to predict samples from those categories.

the main mechanisms, i.e., ALS and OSS for the pool initialization, successfully distinguished the poison samples. In
Figure 7.(c), the poison samples are highlighted by the high loss discrepancy between the main model and the altruistic
model. The final result shown in Figure 7.(d) reveals the high CAs (clean sample all having low loss values) and low ASRs
(poison samples all having high loss values) of BSD.
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Figure 6. The number of poison samples in the clean pool of BSD and ASD at each epoch, the accumulated number in the dotted line.
The subplots are the results on CIFAR-10, ρ = 0.01, 0.05, 0.10, 0.20.

Figure 7. The split visualization of BSD on GTSRB against the BadNet attack. (a) the loss distribution on the altruistic model after the
ALS warm-up; (b) the distance distribution on the main model after the OSS warm-up; (c) the loss discrepancy at the last epoch; (d) the
loss distribution on the main model at the last epoch.

D.2. Influence of different settings in OSS

Ablation on distance metric of OSS. We investigate the influence of the number of runs for the warm-up and three different
distance calculations of OSS as shown in Figure 8. For the distance calculation, we take three approaches, i.e., the minimal,
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the maximal, and the mean ℓ2 distance to feature clusters of each non-target category. Intuitively, we set the minimal distance
by default, because the poisoned samples we consider are characterized by being far away from all existing cluster centers,
thus maximal and mean distances may misjudgment two categories whose original clustering centers are far apart from each
other as poisoned samples. Whereas, all three approaches exhibit good separation under the default 20-epoch warm-up.

Ablation on warm-up epochs of OSS (T1). Concerning the number of warm-up epochs, we investigate the score distribution
of OSS under the min-distance calculation. As illustrated in Figure 8, the result exhibits poor separation with an insufficient
warm-up. As the number of epochs goes up, it has a certain effect when the number of epochs equals 10, and perfectly
separates some benign samples with larger epochs.

Figure 8 is the complete result of the ablation study on different settings of the warm-up process of OSS. It verifies the
effectiveness of all three distance metrics. Intuitively, the model should have a more separable and reliable initialization of
the two pools with a long warm-up, whereas the result of a 40-epoch warm-up (especially when using the mean distance)
violates this intuition by exhibiting less satisfying separation. A potential reason is that the model overfitted the non-target
classes, thus the poison samples have less similarity to them.

Figure 8. The ablation results on the number of warm-up epochs and different distance calculation methods for OSS.

In general, the default setting of BSD is a suitable choice.

D.3. Influence of different settings in ALS

Ablation study on warm-up epochs of the altruistic model As our yt estimation method takes the majority within the
warm-up epochs in ALS, we visualize the prediction in each single epoch in Figure 9. As seen in this figure, all the final
majority predictions and the most internal majority prediction of yt are the same (yt = 3), which is the ground truth target
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label.

Figure 9. The result of the alternative method for yt approximation. In the default 25 epochs of warm-up, we count the pred yt at each
epoch and the most pred yt by that epoch respectively. The experiment is conducted on CIFAR-10, against BadNet, Blended, WaNat, and
LC.

Alternative method for approximating yt For unseen failures that we failed to correctly approximate yt, we provide
an alternative method for approximating yt against new backdoor attacks that may appear in the future. We here adopt a
lightweight solution by just slightly modifying the warm-up of the altruistic model. We add local gradient ascent (Li et al.,
2021a) and a local voting process: ỹt = argmaxc |{(x, y) | y = c ∧ (x, y) ∈ Dlga}| , where Dlga denotes the isolated 1%
samples having the smallest loss values after local gradient ascent training on the altruistic model. In common scenarios
where the dataset is a large but well-known benchmark dataset, the number of samples in each class is known to the public,
yt can be just approximated through label statistics.

Notably, for this alternative yt estimation method, if the detection precision exceeds 50%, it indicates that more than half of
the isolated samples are poison samples, thus we can obtain yt. Although the experimental results presented by (Li et al.,
2021a) in their Figure 7, page 16 has already verified a more than 50% against most common attacks, we further check its
robustness to the warm-up epochs in Table 8.

Table 8. The prediction of yt under different warm-up epochs. The ’num’ represents the number of poison samples in the isolated set.

WARM-UP EPOCHS
BADNET BLENDED

NUM POISON y t NUM POISON y t

5 0 WRONG 0 WRONG
15 461 CORRECT 457 CORRECT
25 370 CORRECT 344 CORRECT
35 85 CORRECT 126 WRONG
45 177 CORRECT 114 CORRECT

D.4. Additional baselines

We added two recent defense, VaB (Zhu et al., 2023b) and D-ST/D-BR (Chen et al., 2022b). The additional baselines are
implemented based on the official implementation. We use CIFAR-10 as the dataset. Since the label-consistent attack is not
consistently implemented, we use SIG as a clean label attack here. As shown in Table 9, VaB has the most competitive
result against poison label attacks, but struggles to defend against SIG.

D.5. Performance under no attacks

Most backdoor defense research focuses on performance under attack, while it is concerning that these defenses may
degrade model performance in the absence of attacks. Therefore, we evaluated the performance of BSD in scenarios without
attacks. There are no poisoned samples in the training set, we test the clean and poisoned samples (BadNets trigger) for
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Table 9. The clean accuracy (CA%), attack success rate (ASR%), defense effective rating (DER%) and time cost (hours) of 2 additional
backdoor defense methods and our BSD against 4 threatening backdoor attacks on CIFAR-10. The best and second best results are in
bold and underlined.

METHOD
BADNETS BLENDED WANET SIG AVG TIME

CA ASR DER CA ASR DER CA ASR DER CA ASR DER DER COST

VAB 94.0 1.3 98.9 94.2 1.1 98.6 93.6 1.7 99.1 94.0 66.6 63.8 90.1 5.5
D-ST 66.8 5.7 83.1 65.0 7.1 81.1 60.8 15.2 76.0 87.9 95.1 46.5 71.6 4.3
D-BR 87.5 0.8 95.9 83.0 80.7 53.2 16.9 14.6 54.3 85.7 0.1 92.9 74.1 -

BSD(OURS) 95.1 0.9 99.6 94.9 0.8 98.8 94.5 0.8 99.6 93.8 0.0 97.0 98.7 3.2

inference. As shown in Table 10, it is worth noting that even in the absence of attacks, there can be a low attack success rate
(ASR), where these samples are just being misclassified to the target label. As Table 10 reveals, our method achieves a
lower ASR compared to the baseline, effectively suppressing natural backdoors. Additionally, our method shows significant
improvements in accuracy over the baseline.

Table 10. The clean accuracy (CA%) and attack success rate (ASR%) of BSD and ASD under no attacks.

METHOD
CIFAR-10 GTSRB

ACC ASR ACC ASR

NO DEFENSE 95.3 1.9 97.7 0.2
ASD 93.2 1.8 96.6 0.1

BSD (OURS) 94.9 0.6 97.6 0.0

D.6. Robustness of pseudo target approximation

Pseudo target approximation test on GTSRB. We evaluated the approximation of yt on the GTSRB dataset with various
ground truth target labels, as shown in Table 11 (using the main approximation method). The results demonstrate that yt was
successfully approximated for all of the first 10 classes in GTSRB.

Table 11. Testing the yt approximation on different target labels (the first 10 classes) on GTSRB.

ATTACK 0 1 2 3 4 5 6 7 8 9

BADNETS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BLENDED ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Performance under forced incorrect pseudo target label. We conducted interesting additional tests by forcing yt to be
assigned to an incorrect class and observed the model’s performance (on CIFAR-10, against BadNets). As illustrated in
Figure 10, BSD retained partial defensive capabilities even when the pseudo-label was deliberately set incorrectly. In most
cases presented, BSD managed to purify the model successfully, leveraging the loss-guided splitting based on the Altruistic
model.

It is worth noting that in experiments where the ground truth target class was 5 (dog), forcibly setting the pseudo-label
to 3 (cat) led to a significant failure of the defense. This may be attributed to the inherent difficulty in distinguishing
between these two classes. Furthermore, when faced with broader attack scenarios and dataset settings, relying solely on loss
statistics may not be sufficient to ensure effective defense. Fortunately, our experiments demonstrate the strong robustness
of the proposed Pseudo Target Approximation method. The OSS mechanism functioned as expected, enabling a resilient
bi-perspective defense under challenging conditions.

Insurance for the worst cases We have intensively investigated our yt approximation method in both the main text
(Section 5.4, Section 5.3, Section 5.5) and all the Appendix above. As the insurance, we have to state that, in the worst
cases (if encountered), we could have the last resort that turns to a relatively weak assumption that is broadly applicable in
common scenarios: In common scenarios where the dataset is a large but well-known benchmark dataset, the number of
samples in each class is known to the public, and yt can be directly detected through label distribution.

D.7. Resistance to Potential Adaptive Attacks

In the above experiments, we assume that attackers have no information about our backdoor defense. In this section, we
consider a more challenging setting, where the attackers know the existence of our defense and can construct the poisoned
dataset with an adaptive attack.
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Figure 10. The clean accuracy (CA%), attack success rate (ASR%), and robust accuracy (RA%) of BSD when Forcing the pseudo target
from x(ground truth) to 3.
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Threat model for the attackers. Following existing work (Gao et al., 2023; Chen et al., 2017; Gu et al., 2017; Turner et al.,
2018), we assume that the attackers can access the entire dataset and know the architecture of the victim model. However,
the attackers can not control the training process after poisoned samples are injected into the training dataset.

Method for adaptive attack. Our method initializes the clean pool using bi-perspective splitting through OSS and ALS,
which separate poisoned samples based on semantic and loss statistics, respectively. In general, there is a contradiction
between increasing the loss values of poisoned samples (to bypass ALS) and achieving backdoor objectives. Furthermore,
maintaining high semantic similarity to the target class (to bypass OSS) adds to the complexity. To craft such a trigger
pattern that satisfies the above objectives, we use a PGD optimization to search for an average noise (among non-target
classes) that is semantically close (judged by a proxy model) to the target class (to bypass OSS). Meanwhile, we control the
ℓ∞ ball bound as 8/255 and the poisoning rate as 0.01 to prevent it from being an obvious trigger that will be easily fitted (to
bypass ALS).

Settings. We conduct experiments on CIFAR-10 with the following parameters: number of iterations, 15; step size, 1.5/255;
perturbation magnitude, 8/255; trigger size, 32×32; and poisoning rate, 0.01. Although the attacker is assumed to have no
knowledge of the model structure, we adopt a more challenging setting where the adversary uses the same model structure
as the proxy model.

Results. The Clean Accuracy (CA) and Attack Success Rate (ASR) of this adaptive attack are 94.422% and 2.421%,
respectively. While the ASR is slightly higher than that of other attacks on CIFAR-10, our defense clearly demonstrates
strong resistance to the adaptive attack. Furthermore, when we increase the poisoning rate to 0.2 (20%), the CA and ASR
remain at 91.040% and 0.903%, respectively, which is still within an acceptable range.

D.8. Robustness against all2all attacks

All-to-all (all2all) attacks may pose challenges to certain components of our defense, particularly OSS and selective drop.
However, all2all attacks are not typically considered essential scenarios in backdoor defense research currently (Li et al.,
2021a; Huang et al., 2022; Zhu et al., 2023b; Guan et al., 2024; Zhang et al., 2023), for the following reasons: 1) The
increased number of trigger-target pairs in all2all attacks requires significantly more training epochs for success. And all2all
attacks reduce clean accuracy and exhibit slower convergence, making them easier to detect. ((Huang et al., 2024), Page 2:
“As the number of classes increases, the accuracy and the attack success rate will decrease.”) 2) Research on all2all attacks
remains limited ((Li et al., 2022), Page 10: “However, there were only a few studies on all-to-all attacks. How to better
design the all-to-all attack and the analysis of its properties remain blank.”). 3) In practical applications, all2all attacks do
not allow attackers to arbitrarily control predictions to specific targets, limiting their real-world threat.

Nevertheless, we still conducted supplementary experiments on BadNets with an all2all setting.

Attack setting: Following BadNets, with yt = (y + 1)%nc, where nc is the number of classes.

Defense setting: To handle multiple target labels, BSD incurs additional computational costs by iterating through all
classes as pseudo-targets during OSS. Clean indices from each pseudo-target are intersected to form the final OSS result.
Additionally, we early stop at Stage 2 to avoid meaningless cost in Stage 3.

Since all-to-all attacks do not fundamentally change the nature of poison-label attacks, OSS remains effective for each
individual classes. We visualized OSS spliting results in Figure 11, which reveals effective separation of clean samples
of OSS. The CA, ASR, and DER performance are presented in Table 12, demonstrating a significant DER improvement
compared to baseline methods. Notably, while BSD’s ASR increases under all-to-all attacks, it effectively limits the attack
success rate to the level of random prediction (1/nc = 10%).

In conclusion, our BSD method remains effective against all-to-all attacks. Furthermore, the OSS module can serve as a
highly effective component for identifying clean samples in other backdoor defense methods.

Table 12. The clean accuracy (CA%), attack success rate (ASR%), and defense effective rating (DER%) of ASD and our BSD against
BadNets-all2all on CIFAR-10.

METHOD
BADNETS-ALL2ALL

CA ASR DER

NO DEFENSE 91.8 93.8 -
ASD 70.2 2.4 84.9

BSD (OURS) 91.2 10.5 91.3
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Figure 11. Visiualization fo the effectiveness of OSS against BadNet-all2all attack.

D.9. Searching the best result of baselines

Notably, some baseline methods are sensitive to their hyper-parameter settings. The results reported in Table 1 represent
their best performance obtained through grid search, as outlined in ASD (Gao et al., 2023). Similarly, for the additional
attack settings, the results in Table 2 and Table 3 are based on their best outcomes (ranking on DERs) after grid search. For
DBD, which is not sensitive to parameters, we report the best result using the default settings from BackdoorBench and the
same configuration as in ASD.

Table 13. Grid search for FP against additional attacks on ResNet18 (Default represents the result under the default setting provided by
backdoorbench).

RATIO
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 87.1 24.4 87.1 60.8 86.5 23.0 87.2 63.4
0.1 87.3 79.8 87.2 81.4 86.8 25.6 87.4 72.4
0.2 87.0 59.4 87.0 82.4 86.5 28.0 86.7 77.8
0.3 86.7 51.6 87.0 83.2 86.5 27.6 87.2 73.9
0.4 87.0 49.0 87.2 85.7 86.4 28.8 87.2 77.6
0.5 85.7 67.3 86.2 86.1 85.2 29.6 86.7 79.0
0.6 86.0 73.6 86.7 90.1 85.6 31.6 86.6 80.7
0.7 86.3 80.0 86.8 88.5 86.1 31.0 87.1 79.6
0.8 87.0 74.9 86.9 87.7 86.4 28.3 87.3 78.5
0.9 87.3 62.0 87.0 80.3 86.5 25.2 87.6 72.3
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Table 14. Grid search for FP against representative attacks on Mobilenetv2 (Default represents the result under the default setting provided
by backdoorbench).

RATIO
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 77.9 8.3 75.9 30.8 82.2 2.4
0.1 80.8 58.3 78.4 57.9 79.3 3.0
0.2 79.6 84.0 78.6 56.1 80.1 3.8
0.3 80.6 99.8 79.0 51.8 77.2 5.8
0.4 79.5 73.5 77.8 53.7 77.3 4.4
0.5 79.5 10.9 77.1 70.0 78.3 1.3
0.6 79.7 19.3 76.6 67.3 78.6 2.0
0.7 79.1 61.7 76.3 65.7 79.1 1.9
0.8 79.7 12.7 77.3 66.1 78.3 1.2
0.9 80.4 99.2 78.4 62.6 79.3 2.5

Table 15. Grid search for NAD against additional attacks on ResNet18 (Default represents the result under the default setting provided by
backdoorbench).

BETA
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
100 87.3 98.7 87.1 95.9 86.5 66.9 86.8 93.3
500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9

1000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
2000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
2500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
5000 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
7500 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9

1.E+04 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1.E+05 86.2 69.7 86.0 83.6 85.3 49.3 86.1 84.9
1.E+06 86.2 69.9 85.8 83.3 85.3 49.3 86.2 84.9
1.E+07 85.9 50.5 85.7 84.5 85.5 46.5 86.5 81.0
1.E+08 86.0 73.9 85.8 88.7 85.6 42.9 86.1 83.2
1.E+09 85.3 68.2 85.7 87.0 85.6 44.8 86.5 84.1
1.E+10 85.9 69.5 85.8 83.0 85.4 47.7 86.0 86.2
1.E+11 85.9 65.6 85.7 86.3 85.6 42.5 86.4 83.4

Table 16. Grid search for NAD against representative attacks on Mobilenetv2 (Default represents the result under the default setting
provided by backdoorbench).

BETA
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 78.5 11.7 76.2 51.6 81.1 4.2
100 79.7 99.1 79.5 56.8 77.3 3.4
500 78.5 11.7 76.2 51.6 81.1 4.2

1000 78.5 11.7 76.2 51.6 81.1 4.2
1500 78.5 11.7 76.2 51.6 81.1 4.2
2000 78.5 11.7 76.2 51.6 81.1 4.1
2500 78.5 11.7 76.2 51.6 81.1 4.1
5000 78.5 11.7 76.2 51.6 81.1 4.1
7500 78.5 11.7 76.2 51.6 81.1 4.1

1.E+04 78.5 11.7 76.2 51.6 81.1 4.1
1.E+05 78.6 29.1 76.1 51.3 79.8 4.0
1.E+06 78.5 23.0 75.9 49.4 81.5 3.2
1.E+07 79.3 25.4 76.8 47.6 81.0 3.8
1.E+08 78.8 14.8 76.8 58.9 81.0 3.2
1.E+09 78.9 17.9 76.0 46.0 80.7 5.4
1.E+10 79.2 25.0 76.5 51.8 81.6 4.1
1.E+11 78.8 41.5 76.7 56.9 81.3 4.3
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Table 17. Grid search for ABL against additional attacks on ResNet18 (Default represents the result under the default setting provided by
backdoorbench).

GAMMA
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 71.1 4.3 37.5 0.0 63.3 94.0 62.7 0.4
0.0 81.2 7.3 81.2 74.6 79.4 86.4 80.7 76.7
0.1 81.2 6.0 79.7 41.5 72.0 93.5 80.3 35.1
0.2 80.3 3.8 73.9 16.5 76.3 82.0 79.4 32.7
0.3 78.1 0.9 76.1 14.4 76.0 86.5 79.3 7.1
0.4 80.2 1.6 67.6 5.1 71.4 85.4 76.6 44.1
0.5 78.7 1.0 67.0 6.9 75.2 93.8 78.3 17.5

Table 18. Grid search for ABL against representative attacks on Mobilenetv2 (Default represents the result under the default setting
provided by backdoorbench).

GAMMA
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 68.0 24.4 67.3 2.6 50.9 0.5
0.0 81.3 36.9 77.3 21.6 68.9 74.8
0.1 81.3 36.9 77.3 21.6 68.9 74.8
0.2 81.3 36.9 77.3 21.6 68.9 74.8
0.3 81.3 36.9 77.3 21.6 68.9 74.8
0.4 79.7 13.6 78.4 15.1 68.9 74.8
0.5 81.3 48.1 80.4 33.4 68.9 74.8

Table 19. Result of DBD against additional attacks on ResNet18 (Default represents the result under the default setting provided by
backdoorbench, Default2 represents the recommended setting used in ASD).

SETTING
LC SIG REFOOL NARCISSUS

CA ASR CA ASR CA ASR CA ASR

DEFAULT 83.2 98.1 77.6 99.9 87.0 0.1 87.3 99.6
DEFAULT2 82.46 99.42 80.12 99.9 90.84 2.34 80.73 99.61

Table 20. Result of DBD against representative attacks on Mobilenetv2 (Default represents the result under the default setting provided by
backdoorbench, Default2 represents the recommended setting used in ASD).

SETTING
BADNET BLENDED WANET

CA ASR CA ASR CA ASR

DEFAULT 65.5 0.0 69.0 0.0 58.4 12.4
DEFAULT2 54.34 0 64.22 0 57.22 14.11
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