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Abstract001

Understanding 3D scenes with point cloud data002
in tasks such as object referencing, question-003
answering, and captioning poses significant004
challenges to vision language models (VLMs),005
due to the complexity of integrating both lin-006
guistic and spatial information. While existing007
methods have mapped point cloud features into008
LLM space to enable 3D scene comprehension,009
they often overlook viewpoint information and010
the relative spatial distance between objects,011
this can lead to confusion in interpreting spatial012
descriptions and grounding objects. This pa-013
per presents a geometry-enhanced vision LM014
(GeVLM) to address these challenges. Specifi-015
cally, we propose viewpoint-consistent position016
encoding (VCPE) to enhance the relative spa-017
tial relationship representation agnostic to the018
camera viewpoint, and propose the distance-019
aware cross-entropy (DACE) loss to incorpo-020
rate distance information in the label space. We021
additionally introduce the DetailedScanRefer022
dataset, which provides identifiers and spatial023
annotation for each object mentioned in the ref-024
erencing description to further emphasize spa-025
tial relationships. GeVLM demonstrates signif-026
icant improvements over the strong Chat-scene027
baseline, particularly with 1.3% Acc@0.25 and028
1.0% Acc@0.50 improvements on the multiple029
object setup and state-of-the-art overall perfor-030
mance on ScanRefer dataset1.031

1 Introduction032

The rapid advancement of Multimodal Large Lan-033

guage Models (LLMs) has greatly enhanced their034

capabilities in addressing a wide range of tasks035

involving complex input modalities, such as au-036

dio (Tang et al., 2024a; Chu et al., 2023; Gong037

et al., 2024), images (Liu et al., 2024c,b; Li et al.,038

2023; Bai et al., 2023; Lin et al., 2023; Chen et al.,039

2023c) and videos (Zhang et al., 2023a; Cheng040

1We have made all the code, model checkpoints, and
DetailedScanrefer used in this work available at https://
anonymous.4open.science/r/GeVLM-1372/

et al., 2024; Sun et al., 2024). Recent studies 041

have focused on extending the application of LLMs 042

to the understanding of realistic 3D scenes repre- 043

sented by point clouds(Han et al., 2023; Hong et al., 044

2023; Wang et al., 2023b; Huang et al., 2023a; 045

Chen et al., 2024b,a), enabling these models to per- 046

form tasks such as question-answering, object ref- 047

erencing, and captioning for real-world 3D scenes. 048

Specifically, the task of 3D referencing (Chen et al., 049

2020) requires LLMs to comprehend detailed ob- 050

ject descriptions while simultaneously understand- 051

ing complex 3D scenes to accurately identify the 052

object being referenced. This task presents signifi- 053

cant challenges as it requires the understanding of 054

both linguistic and spatial information. 055

Previous work in this area has successfully 056

grounded LLMs on 3D point clouds, demonstrating 057

scene comprehension abilities (Hong et al., 2023; 058

Han et al., 2023). Chat-3D (Wang et al., 2023b) 059

maps 3D features into the LLM space and uses 060

a relation module to capture spatial relationships, 061

showcasing strong conversational abilities within 062

3D environments. Further advancements (Huang 063

et al., 2023a) enhance 3D object referencing by in- 064

tegrating unique identifiers with detailed scene an- 065

notations. Nevertheless, these approaches overlook 066

the importance of viewpoint consistency across 067

different examples by simply using 3D world co- 068

ordinates as input, despite the relative ease of re- 069

covering viewpoint information with modern tech- 070

niques such as SLAM (Thrun, 2008). Moreover, 071

the training objectives are simply cross-entropy 072

(CE) which penalizes other objects equally regard- 073

less of whether they are close or far to the target. 074

These factors limit the model performance in scene 075

understanding and object grounding. 076

To address the aforementioned deficiencies, this 077

paper proposes a geometry-enhanced visual lan- 078

guage model (GeVLM) to improve 3D object 079

grounding performance from perspectives includ- 080

ing model structure, training criteria and dataset an- 081
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notations. Specifically, we propose the viewpoint-082

consistent position encoding (VCPE) which allows083

relative spatial relationships, e.g. left/right, to be084

correctly referred to under arbitrary camera view-085

point. Besides, we propose distance-aware cross-086

entropy (DACE) loss which incorporates relative087

distance information into the label space so that088

non-target object tokens receive different levels of089

penalization depending on their spatial affinity to090

the target. To further boost 3D grounding, we pro-091

pose the DetailedScanRefer dataset which includes092

the object identifier and the location for each object093

mentioned in the description. As a result, GeVLM094

showed consistent improvements over the strong095

Chat-scene baseline on a range of 3D scene un-096

derstanding tasks. The main contributions of this097

paper are summarized as follows.098

• This paper proposes GeVLM, a geometry-099

enhanced VLM for 3D object referencing and un-100

derstanding, leveraging easy-to-refer object iden-101

tifiers. To the best of our knowledge, GeVLM102

is the first visual LLM that formally investigates103

and incorporates 3D viewpoint information and104

relative 3D spatial distance in visual LLMs.105

• We propose VCPE to ensure viewpoint consis-106

tency in position encoding of point cloud coor-107

dinates. In addition, we propose DACE to in-108

ject distance information into label space for im-109

proved grounding. We also curate the Detailed-110

ScanRefer dataset with fine-grained identifier an-111

notations for each object in the description.112

• GeVLM demonstrated state-of-the-art object ref-113

erencing performance with consistent improve-114

ments over the Chat-scene baseline across vari-115

ous 3D scene understanding tasks. In particular,116

GeVLM achieved 1.3% and 1.0% absolute im-117

provements in Acc@0.25 and Acc@0.50 on the118

multi-object partition of the ScanRefer dataset.119

2 Related Work120

3D Grounding using Language Models Recent121

research has explored the integration of Large Lan-122

guage Models (LLMs) with 3D object understand-123

ing for various applications. LLM-Grounder (Yang124

et al., 2024) utilizes LLMs to decompose complex125

queries and evaluate spatial relations for zero-shot126

3D visual grounding. Grounded 3D-LLM (Chen127

et al., 2024b) introduces scene referent tokens and128

contrastive language-scene pre-training to unify129

various 3D vision tasks within a generative frame- 130

work. Transcrib3D (Fang et al., 2024) brings to- 131

gether 3D detection methods and the emergent 132

reasoning capabilities of large language models 133

(LLMs). Cube-LLM (Cho et al., 2024), a multi- 134

modal large language model, can ground and rea- 135

son about 3D objects in images without 3D-specific 136

architectural design or training. 137

Language-Driven 3D Scene Understanding 138

There has been growing interest in using natural 139

language to enhance how computers interpret and 140

interact with 3D environments. It involves training 141

models to understand 3D scenes based on verbal 142

instructions. Several tasks were developed to test 143

the understanding ability. Specifically, 3D Visual 144

Grounding (Chen et al., 2020; Huang et al., 2022; 145

Wang et al., 2023a; Hsu et al., 2023; Yang et al., 146

2024; Unal et al., 2024) involves models identify- 147

ing a specified object within a 3D scene according 148

to a language query. 149

3D Large Multi-modal Models Through the 150

usage of large scale 3D object datasets (Yu 151

et al., 2022; Xue et al., 2023; Zhou et al., 152

2023), 3D Object-level Large Multi-modal Models 153

(LMMs)(Xu et al., 2023; Liu et al., 2024a; Qi et al., 154

2024; Tang et al., 2024b) have managed to bridge 155

the gap between 3D modality and texts. However, 156

these models fall short when complex spatial rea- 157

soning is needed for 3D scenes. Therefore, multi- 158

ple models (Ziyu et al., 2023; Wang et al., 2023b; 159

Huang et al., 2023a; Chen et al., 2024b) have been 160

proposed as scene-level LLMs. 3D-LLM (Hong 161

et al., 2023) uses point clouds and their features 162

as input and can handle various 3D-related tasks. 163

The model attempts to improve the understanding 164

of complex spatial relationships among objects by 165

using positional embeddings and learning location 166

tokens. However, the model projects 3D features 167

into the 2D feature space of a pretrained vision- 168

language model, posing significant challenges to 169

capture the 3D spatial structure and complex re- 170

lationships among objects. Chat-3D (Wang et al., 171

2023b) and Chat-Scene (Huang et al., 2023b) di- 172

rectly utilizes 3D scene-text data to align the 3D 173

scene with large language model (Llama). How- 174

ever, Chat-3D could only handle one target ob- 175

ject per conversation. To overcome this limitation, 176

Chat-3D-v2 (Huang et al., 2023a), as our base- 177

line model, introduced unique object identifiers in 178

addition to 3D object features, and significantly 179

improved the 3D grounding performance. 180
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3 Geometry-Enhanced Visual LM181

We introduce a novel geometry-enhanced vision-182

language model (GeVLM) specifically designed for183

3D object grounding tasks. As illustrated in Figure184

1(A), GeVLM integrates several components: a185

3D segmenter, a 3D feature encoder, a 2D multi-186

view image encoder, a 3D position encoder, and a187

pretrained LLM. In this setup, the 3D segmenter188

and both the 3D and 2D feature encoders remain189

frozen during training. Our primary objective is to190

fine-tune the pretrained LLM so it can effectively191

interpret language-based referring expressions by192

incorporating 3D geometric cues.193

To validate the versatility of our approach, we194

build GeVLM on top of two baseline frameworks:195

Chat-3D-v2 and Chat-scene. The key difference196

between the two frameworks is that Chat-scene197

includes multi-view object images and employs a198

2D encoder, while Chat-3D-v2 does not.199

These geometric cues are considered in two key200

aspects. First, we propose a viewpoint-consistent201

position encoding (VCPE) to account for camera202

perspective in 3D scene understanding, as detailed203

in Section 3.1. Second, we introduce a distance-204

aware cross-entropy (DACE) loss, discussed in Sec-205

tion 3.2, to highlight the importance of spatial affin-206

ity in the grounding task. Additionally, in Section 4,207

we present a densely annotated grounding dataset,208

curated with assistance from GPT-4o.209

3.1 Viewpoint-Consistent Position Encoding210

Imagine you are inside a room and refer to the211

chair in front of you. The success of the refer-212

ring depends on the viewpoint of the observer. In213

other words, ambiguities will arise if the viewpoint214

is not known. This is supported by the fact that215

the annotation from ScanRefer includes the cam-216

era pose information. However, existing methods217

(Wang et al., 2023b; Huang et al., 2023a) overlook218

the viewpoint information, hence refer to the same219

3D point cloud when querying different referring220

descriptions. We notice that the incorrect ground-221

ing outcomes are mainly due to the rotation of the222

camera viewpoint, which makes relative spatial223

descriptions such as left/right and front/back con-224

fusing to LLMs. For example, in the 3D scenein225

Fig.2 with 4 different viewpoints, the description226

"the shelf is to the right of the bed" only makes227

sense when observing the scene from a consistent228

viewpoint, e.g. 1 and 4. Nevertheless, methods like229

Chat-3D and 3D-LLM ignore camera viewpoint,230

and directly utilize world coordinates as input for 231

object grounding. This inevitably introduces view- 232

point inconsistency to the model training and leads 233

to sub-optimal performance. 234

In GeVLM, we carefully transform 3D point 235

cloud to ensure viewpoint consistency across re- 236

ferring expressions. Based on the transformed co- 237

ordinates, we propose a position encoding mod- 238

ule, VCPE, to effectively learn the relative spa- 239

tial relationship for downstream 3D tasks. Specif- 240

ically, to achieve viewpoint consistency, we ap- 241

ply a 3D transformation using the rotation matrix 242

R ∈ R3×3 from the camera’s extrinsic parame- 243

ters. The translation vector is omitted to maintain 244

a consistent scene scale across different datasets 245

and tasks. For an object, its centre point v ∈ R3 246

is transformed to vrot = Rv. This transformation 247

preserves the spatial configuration of objects rela- 248

tive to the camera orientation and aligns with the 249

viewpoint-dependent language description. As a 250

result, VCPE is crucial for VLMs to effectively 251

generalize across varying viewpoints. 252

To capture complex spatial relationships, we ap- 253

ply Fourier Feature Mapping (Tancik et al., 2020) 254

to map the low-dimensional coordinates vrot to cap- 255

ture high-frequency details as shown in Eqn (1): 256

γ(vrot) = [sin(2πBvrot), cos(2πBvrot)] , (1) 257

where B ∈ R3×D is a Gaussian random matrix, 258

and D is the dimensionality of the Fourier fea- 259

tures. This mapping projects the rotated points 260

into a higher-dimensional space, enabling the 261

model to represent positional information with 262

high-frequency components. The Fourier embed- 263

dings for all objects are concatenated into a matrix 264

FF ∈ RO×2D, where O represents the number 265

of objects. These embeddings are then projected 266

through a linear layer, followed by a Gaussian Error 267

Linear Unit (GELU) activation and a multi-head 268

self-attention layer, as shown in Eqn (2): 269

Fattn = MHSA(GELU(FFW + b)), (2) 270

where W ∈ R2D×D′
and b ∈ RD′

are learn- 271

able parameters, MHSA(·) denotes multi-head self- 272

attention, and D′ is the dimensionality of the pro- 273

jected features. This produces attention-weighted 274

embeddings Fattn ∈ RO×D′
that effectively cap- 275

ture spatial relationships. By integrating these com- 276

ponents, VCPE improves the model’s capacity to 277

comprehend complex spatial configurations. 278

3



VCPE3D Encoder

3D Segmenter

LLM

...

The guitar <OBJ037> … behind the sofa <OBJ051>

Fourier Position Embedding

Projector

Self-Attention

Rotated Bounding Box Center

Viewpoint Consistent Position Embedding

Distance-aware CE

(A). Model Structure Overview

(B). Distance-aware CE

(C). Viewpoint Consistent Position Encoding

OBJ023

OBJ018
OBJ034

Distance-aware Soft Label

Hard Label

User Prompt: According to the

given description, “the guitar. The

guitar is behind the sofa," please

append the correct object ID after

each object mentioned in the

description

2D Encoder

OBJ034 OBJ018 OBJ023Multi-view Images

Dik

Dij

Figure 1: The model structure of the GeVLM (A) together with distance-aware CE loss (B) and an illustration of
the viewpoint consistent position encoding (C).

Description: It’s a black three levels shelf. It is located to the right of the bed.Description: It’s a black three levels shelf. It is located to the right of the bed

Groundtruth With VCPE Without VCPE

Description: It’s a black three levels shelf. It is located to the right of the bed

Groundtruth With VCPE Without VCPE

Figure 2: Example scene where viewpoint consistency
is vital. The target shelf in the description is only right
to the bed in the first viewpoint, and the description con-
fuses the model when using other viewpoints, resulting
in an incorrect grounding outcome.

3.2 Distance-Aware Cross-Entropy Loss279

Most 3D VLMs commonly rely on language loss to280

fine-tune 3D tasks due to its simplicity. Efforts have281

been made to unify multimodal tasks under a single282

language-based objective. However, we argue that283

applying standard cross-entropy (CE) loss to 3D284

grounding tasks is inadequate. Specifically, when285

training a model with CE to predict the token for a286

referred object, it penalizes all other object tokens287

equally. This contrasts with 3D object detection288

and segmentation, where the goal is to minimize the289

distance between the ground truth and predictions.290

Building on this insight, we propose DACE to in-291

corporate geometric distance between objects into292

the loss computation. This approach allows spatial293

relationships to be considered during training. We294

categorize tokens into regular tokens and object295

tokens. We append 100 object tokens to represent296

scene objects to existing tokens. For instance, ob-297

ject token <OBJ000> will be indexed by 32,000 in298

Llama2. The DACE loss differentiates regular to- 299

kens and object token: standard CE loss is applied 300

to the regular tokens, while a soft label is used for 301

the object token predictions. We further detail the 302

DACE loss next. 303

As shown in part (B) of Fig.1, for each scene, 304

we precompute a distance matrix D ∈ RVobj×Vobj 305

where Dij denotes the Euclidean distance between 306

objects i and j, and Vobj is the number of object 307

tokens. Then, the DACE loss is defined in Eqn. (3). 308

Ldist =
1

L

L∑
i=1

mi · CE(wi, Pθ(yi|Xi))

+(1−mi) · CE(ŷi, Pθ(yi|Xi)),

(3) 309

where mi = 1 for object tokens and mi = 0 310

for regular tokens. CE(·) denotes the cross-entropy 311

loss, L is the total number of tokens in the sequence, 312

and ŷi is the one-hot label vector. The distance- 313

aware soft label, wi, is computed in Eqn. (4). 314

wi = exp(−Dij/T )/

Vobj∑
k=1

exp(−Dik/T ) (4) 315

where Dij ∈ [0, 1] is the min-max normalized dis- 316

tance between object i and object j, and T is the 317

temperature parameter controlling the sharpness of 318

the soft label. The intuition behind this loss is to 319

encourage the model to focus on objects with close 320

affinity, rather than on more distant yet semanti- 321

cally similar objects. This is particularly useful 322
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Groundtruth With DACE Without DACE

Description: The half circle couch is brown and has a wood 
separator. The couch sits behind a circular coffee table.

Description: The chair is the first one on the left out of 
a row of chairs. It has four legs and a bent seat.

Groundtruth With DACE Without DACE

Description: The half circle couch is brown and has a wood 
separator. The couch sits behind a circular coffee table.

Description: The chair is the first one on the left out of 
a row of chairs. It has four legs and a bent seat.

Groundtruth With DACE Without DACE

Description: The half circle couch is brown and has a wood 
separator. The couch sits behind a circular coffee table.

Description: The chair is the first one on the left out of 
a row of chairs. It has four legs and a bent seat.

Description: The chair is the first one 
on the left out of a row of chairs.

Description: The half circle couch is brown. 
The couch sits behind a circular coffee table

Figure 3: Left: DACE selects the correct chair among
the confusing row of chairs based on the location infor-
mation. Right: DACE accurately finds the sofa near the
coffee table rather than other similar sofas.

in scenarios with multiple similar objects, such as323

chairs in a meeting room, where a specific chair is324

being referred to, as shown in Fig.3.325

4 DetailedScanRefer: A Densely326

Annotated Grounding Dataset327

To further improve grounding, we introduce the De-328

tailedScanRefer dataset, an extension of the Scan-329

Refer dataset (Chen et al., 2020). DetailedScanRe-330

fer features annotations for both target and land-331

mark objects, in contrast to Chat-3D-v2 (Huang332

et al., 2023a) which only annotates the target.333

Unique object identifiers (object IDs) are assigned334

to each object in the 3D scene. The generation335

pipeline is shown in Fig.4. All objects in the de-336

scription are matched to IDs from Mask3D (Schult337

et al., 2023) for consistent object referencing.338

Scene Image Retrieval via Camera Pose Match-339

ing Due to the poor quality of images directly340

rendered from the 3D point, we retrieve a photo341

of the real-world scene with the most similar view342

from the ScanNet dataset (Dai et al., 2017)2. For343

each description in ScanRefer, we retrieve the clos-344

est camera pose from ScanNet, along with its cor-345

responding RGB image and depth map. The best346

matching camera pose Tbest ∈ R3×4 is determined347

by minimizing the mean Euclidean distance be-348

tween the camera coordinates of the entire scene:349

Tbest = argmin
Ti

(
1

N

N∑
k=1

∥∥pk(Ttarget)− pk(Ti)
∥∥
2

)
350

where N is the total number of points in the scene,351

Ttarget ∈ R3×4 is the camera pose corresponding352

to the ScanRefer description, and Ti ∈ R3×4 is353

the i-th candidate pose from the same scene in354

ScanNet. The term pk(T) ∈ R3 represents the355

camera coordinates of the k-th point in the scene356

transformed by the camera pose T. The Euclidean357

2Examples are shown in Appendix A.1

distance between the transformed points under dif- 358

ferent camera poses is averaged over all points in 359

the scene, ensuring that the selected camera pose 360

closely matches the viewpoint described by the 361

ScanRefer description. 362

Visibility and Object Annotation Simply pro- 363

jecting an object’s center onto the image can lead to 364

incorrect annotations, as hidden or partially visible 365

objects may be included by mistake. This becomes 366

particularly problematic in later stages, such as 367

querying GPT4o for high-quality responses, where 368

accurately labeling only visible objects is crucial. 369

To address this issue, we project the 3D instance 370

segmentation mask to image space and compare it 371

with the scene’s depth map. We project 3D points 372

onto the 2D image plane using the camera parame- 373

ters as follows: 374

u =
fxXc

Zc
+ cx, v =

fyYc

Zc
+ cy 375

where (Xc, Yc, Zc) represent the 3D point in the 376

camera coordinate system, and fx, fy and cx, cy 377

denote the focal lengths and principal points of 378

the camera, respectively. Visibility is confirmed 379

by comparing the estimated depth Zc with the 380

depth map Ddepth, using the condition visible = 381∣∣Zc −Ddepth(u, v)
∣∣ ≤ δ, where δ=0.1 meter ac- 382

counts for minor discrepancies due to sensor 383

noise. Appendix A.2 shows the pixel-level visi- 384

bility masks and how objects are annotated. 385

Photo Annotation We generate annotated im- 386

ages by overlaying unique object identifiers at the 387

mean pixel coordinates of each object’s mask. For 388

example, an object with index 13 is labelled as 389

"OBJ013" to clearly tag visible objects in the im- 390

age. Examples of these annotations can be found 391

in the bottom row of Fig.6. These annotated im- 392

ages are then sent to the GPT-4 API, along with 393

the original ScanRefer description, for automatic 394

generation of detailed annotations. In the generated 395

descriptions, object IDs are inserted after the ob- 396

ject references. As shown in Fig.4, for the original 397

description: “This is a brown guitar. It is leaning 398

against the wall." The enhanced output is: “This 399

is a brown guitar <OBJ018>. It is leaning against 400

the wall <OBJ032>." Details of the prompts can 401

be found in Appendix A.3. 402

Data Cleaning and Quality Rating To ensure 403

high-quality annotations, we implemented several 404

data cleaning processes. Key steps included dis- 405

carding annotations where the first object ID did 406
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Retrieval

Ibest

Visibility Check

Segmentation Result S

Visible Pixel Map

Photo Annotation

Tbest
Dbest

ScanNet Dataset

Camera Poses {T1…Tn}

Depth Maps {D1…Dn}

{I1…In}

Camera Pose Ttarget

"this is a green curtain. it 

is behind a bike"

GPT 4o

this is a green 

curtain <OBJ037>. 

it is behind a bike 

<OBJ051>

Figure 4: DetailedScanRefer generation pipeline. Given a ScanRefer description, we first retrieve its corresponding
camera pose, Ttarget. Using a camera pose matching algorithm, we find the closest match, Tbest, from the ScanNet
dataset, along with the corresponding image Ibest and depth map Dbest. The semantic segmentation result S is then
projected from 3D space onto the image using Tbest and the intrinsic matrix of the scene. Dbest is applied to filter
visible pixels for each object, and the visible object IDs are annotated on Ibest. Finally, GPT-4o is used to append an
object ID to each object in the description.

not match the ground truth, in line with ScanRe-407

fer’s assumption that the target object is described408

first. Additionally, any outputs containing NaN val-409

ues were removed. The cleaned annotations were410

then used as ground truth for training, where the411

model predicted object IDs for each mentioned ob-412

ject. Detailed statistics for each data cleaning step413

are provided in Appendix A.4. Furthermore, anno-414

tation quality evaluation details using GPT-4o are415

presented in Appendix A.5.416

5 Experiments417

5.1 Experimental Setup418

Training Data We follow exactly the same train-419

ing data setup as Chat3D-v2 (Wang et al., 2023b) so420

that our results are directly comparable. The train-421

ing datasets include ScanRefer (Chen et al., 2020),422

Scan2Cap (Chen et al., 2021), ScanQA (Azuma423

et al., 2022), SQA3D (Ma et al., 2023), Multi3DRef424

(Zhang et al., 2023b), and NR3D (Achlioptas et al.,425

2020). We also use ObjAlign, which is a dataset426

for aligning object IDs with objects3. Among these427

datasets, only ScanRefer and Scan2Cap tasks use428

viewpoint information, as they are the only datasets429

providing it. The proposed DetailedScanRefer,430

with about 16,000 samples in total, is also used431

where specified. For validation, we use ScanRefer,432

Scan2Cap, ScanQA, SQA3D, and Multi3DRef to433

select the best model checkpoint. The Scan2Cap434

dataset is modified by associating a camera pose435

with each caption under the GeVLM (Chat-3D v2)436

setup. We refer to Appendix B for details.437

3Questions are in the format of "what is Obj14" and the
answer is "chair".

Model and Training Specifications To extract 438

object features, we utilize the pretrained Uni3D 439

(Chen et al., 2023a) as the 3D encoder, which is 440

frozen during training. Mask3D is employed for 441

consistent and accurate segmentation of the 3D 442

data and is frozen during training. OpenIns3D 443

(Huang et al., 2024b) was used to assist with vis- 444

ibility checks and to develop visualization tools. 445

Two versions of GeVLM are developed following 446

the Chat-3D-v2 architecture with Vicuna-v1.5-7B 447

backbone and a Chat-scene(Huang et al., 2023b) 448

architecture with Llama-3-Instruct-8B (Meta AI, 449

2023) backbone respectively. The VCPE module 450

uses a 256-dim final positional embedding and 128- 451

dim Fourier features. The positional embedding 452

projection layer and the multi-head attention mod- 453

ule are trainable components. There are 100 ob- 454

ject proposals for each scene. The entire training 455

process, using the Adam optimizer and a cosine 456

learning rate scheduler for 3 epochs, requires ap- 457

proximately 11 hours on 4 NVIDIA A100 GPUs. 458

Evaluation Metrics For 3D grounding tasks, 459

grounding accuracy is measured at two Intersec- 460

tions over Union (IoU) thresholds: 25% and 50%, 461

referred to as Acc@0.25 and Acc@0.50, respec- 462

tively. For language tasks, metrics such as BLEU 463

scores (Papineni et al., 2002), METEOR (Lavie 464

and Agarwal, 2007) and CIDEr (Vedantam et al., 465

2015) are used to measure the degree of overlap 466

between the generated answer and the reference, 467

with higher scores indicating better performance. 468

5.2 Experimental Results 469

Results on 3D Grounding Tasks We first show 470

the 3D grounding performance using ScanRefer 471
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Table 1: Accuracy on ScanRefer (Chen et al., 2020) validation set using GeVLM at 0.25 and 0.50 IoU. Unique
subset contains samples where the grounding object is unique in the scene, in contrast to Multiple where there are
multiple objects of the same kind as the grounding object.

System Unique Multiple Overall
Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

3DJCG (Cai et al., 2022) - 64.3 - 30.8 - 37.3
D3Net (Chen et al., 2022a) - 72.0 - 30.1 - 37.9
3D-LLM (BLIP2-flant5) (Hong et al., 2023) - - - - 30.3 -
Chat-3D v2* (Huang et al., 2023a) 79.0 74.5 34.7 31.6 42.9 39.6
Chat-scene (Huang et al., 2023b) 89.6 82.5 47.8 42.9 55.5 50.2
GeVLM (Chat-3D v2) (Ours) 82.0 75.7 39.0 34.7 46.9 42.3
GeVLM (Chat-scene) (Ours) 87.8 80.0 49.1 43.9 56.3 50.6

Table 2: Performance comparison. “Expert models” are for specific tasks using task-oriented heads, while “Unifies
models” are designed for general instructions and responses for multiple tasks.

Category System ScanRefer Multi3DRefer Scan2Cap ScanQA SQA3D
Acc@0.25 Acc@0.5 F1@0.25 F1@0.5 C@0.5 B-4@0.5 C B-4 EM EM-R

Expert Models

ScanRefer (Chen et al., 2020) 37.3 24.3 - - - - - - - -
ScanQA (Azuma et al., 2022) - - - - - - 64.9 10.1 - -

3DJCG (Cai et al., 2022) 49.6 37.3 - - 49.5 31.0 - - - -
3D-VLP (Jin et al., 2023) 51.4 39.5 - - 54.9 32.3 67.0 11.1 - -

M3DRef-CLIP (Zhang et al., 2023b) 51.9 44.7 42.8 38.4 - - - - - -
3D-VisTA (Ziyu et al., 2023) 50.6 45.5 - - 66.9 34.0 72.9 13.1 48.5 -

ConcreteNet (Unal et al., 2024) 50.6 46.5 - - - - - - - -
Vote2Cap-DETR++ (Chen et al.,

2023b)
- - - - 67.6 37.1 - - -

Unified Models

3D-LLM(BLIP2-flant5) (Hong et al.,
2023)

30.3 - - - - - 69.4 12.0 - -

LL3DA (Chen et al., 2024a) - - - - 65.2 36.8 76.8 13.5 - -
LEO (Huang et al., 2024a) - - - - 72.4 38.2 101.4 13.2 50.0 52.4

Scene-LLM (Fu et al., 2024) - - - - - - 80.0 11.7 53.6 -
Chat-3D v2 (Huang et al., 2023a) 42.5 38.4 45.1 41.6 63.9 31.8 87.6 14.0 54.7 -
Chat-scene (Huang et al., 2023b) 55.5 50.2 57.1 52.4 77.1 36.3 87.7 14.3 54.6 57.5

GeVLM (Chat-3D v2) (Ours) 46.9 42.3 50.0 46.1 - - 90.5 15.4 53.5 56.0
GeVLM (Chat-scene) (Ours) 56.3 50.6 57.1 52.4 81.9 38.1 89.7 14.3 56.5 59.4

and Multi3DRefer datasets. On the ScanRefer472

dataset shown in Tab.1, the proposed GeVLM473

achieved consistent performance improvement474

compared to the Chat-3D v2 baseline with clear475

margins for both Unique and Multiple subsets.476

The improvement is particularly pronounced when477

there are multiple confusing objects with similar478

semantic classes in the scene, demonstrating the479

importance of viewpoint and relative distance in-480

formation which are crucial to distinguishing those481

objects. Overall, GeVLM (Chat-3D v2) achieved a482

4.0% absolute accuracy improvement at 0.25 IoU483

and a 2.7% improvement at 0.50 IoU respectively484

compared to the Chat-3D v2 baseline.485

We then extend our experiments to the486

Multi3DRefer dataset as shown in Tab.8 where487

an overall 1.2% absolute F1 score improvement488

is achieved. In particular, large improvements489

are found when there are semantically distracting490

classes, with a 5.8% absolute F1 score improve-491

ment on the zero target subset (i.e. the target object492

is not in the scene) and 3.5% on the single target493

subset when distractors are added. For the MT494

subset, where multiple objects sharing the same 495

semantics need to be grounded, we observe a 5.4% 496

performance drop compared to the baseline method. 497

This can be attributed to the nature of the task. First, 498

grounding multiple objects requires less spatial rea- 499

soning, making our proposed VCPE less effective. 500

Second, since the task involves grounding multiple 501

objects that share the same semantics, the model 502

relies more heavily on object category recognition 503

than on spatial differentiation, further diminishing 504

the effectiveness of the DACE loss. 505

Results on Language Tasks: 3D QA and Cap- 506

tioning In addition to object grounding, GeVLM 507

is also beneficial in language tasks, as shown in 508

Table 9. While not explicitly designed to enhance 509

language tasks, GeVLM achieves the best perfor- 510

mance across most metrics compared to other 3D 511

LLMs capable of 3D grounding tasks on ScanQA 512

and achieved on-par performance with Chat-3D 513

v2. Notably, among the listed models, only 3D- 514

LLM, Chat-3D v2, and GeVLM possess grounding 515

capabilities, emphasizing our model’s superior ver- 516
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Table 3: Ablation study on ScanRefer validation set for GeVLM (Chat-3D v2) with VCPE, DetailedScanrefer
(Detailed), and DACE. “World", “Camera", and “Rotate" refer to world coordinates, camera coordinates (both
rotation and translation), and rotated coordinates (rotation only), respectively.

Method VCPE Detailed DACE
Unique Multiple Overall

@0.25 @0.50 @0.25 @0.50 @0.25 @0.50
Chat-3D v2* – – – 79.0 74.5 34.7 31.6 42.9 39.6

Ours

World – – 81.1 76.1 35.8 32.0 44.2 40.2
Camera – – 79.0 74.1 35.6 32.2 43.6 40.0
Rotate – – 79.6 74.7 36.2 32.6 44.2 40.4
Rotate ✓ – 80.7 74.9 35.7 32.3 44.0 40.2
Rotate – T=0.05 79.5 73.7 37.9 33.7 45.6 41.1
Rotate ✓ T=0.05 80.4 74.1 38.1 34.0 46.0 41.4
Rotate ✓ T=0.03 82.0 75.7 39.0 34.7 46.9 42.3

Table 4: Comparison of predicted vs. target object
center distances on Scanrefer, Both average and median
distances are reported for unique and multiple scenarios,
with and without DACE loss. Med. stands for median.

System Unique Multiple

Mean Med. Mean Med.

VCPE(r) 0.60 0.04 1.61 1.13
VCPE(r) + DACE 0.52 0.04 1.49 0.91

satility and performance in both grounding and517

language-based tasks. Detailed Scan2Cap results518

are provided in Appendix B.519

Ablation Studies Ablation studies are performed520

using the ScanRefer dataset to better understand521

the effect of each proposed component in GeVLM,522

as shown in Tab.3. The world, camera, and rotated523

coordinate systems were analyzed using the same524

VCPE model. The rotated coordinates showed the525

best performance. VCPE is especially useful in526

the multi-object case, where it helps clarify which527

object is being referenced among similar objects528

by focusing on their relative positions. Accuracy529

improves further in the Multiple case when using530

the DACE loss, which emphasizes spatial distance531

in the label space, rather than relying only on se-532

mantic similarity. In the Unique case, using De-533

tailedScanrefer alone improves performance, but534

the best results are achieved when combining De-535

tailedScanrefer with DACE loss and VCPE.536

Moreover, to quantitatively demonstrate the ef-537

fect of the DACE loss, the average (mean and me-538

dian) distance between the predicted and the target539

object centers across all test samples is presented540

in Tab.4. The significantly smaller average dis-541

tances observed in both scenarios indicate that the542

DACE loss helps GeVLM focus on locations that 543

are spatially closer to the target object. 544

Qualitative Analysis We qualitatively demon- 545

strate the advantages of GeVLM through examples 546

in Fig. 8 of Appendix E, highlighting four com- 547

mon types of spatial confusion: left/right, near/far 548

with respect to the camera, front/back, and geo- 549

graphical directions. In cases (A) to (C), GeVLM, 550

equipped with VCPE and DACE, accurately se- 551

lects the correct object based on the description, 552

effectively resolving ambiguities that the baseline 553

model fails to address. The baseline consistently 554

picks objects with the correct semantic category but 555

incorrect spatial positioning. In case (D), although 556

GeVLM’s prediction does not perfectly overlap 557

with the ground truth bounding box, it aligns with 558

the described location, indicating a better under- 559

standing of the spatial context compared to the 560

baseline, which selects an object without consider- 561

ing positional cues. 562

6 Conclusion 563

This paper introduces a GeVLM to improve 3D 564

object grounding and scene understanding. By inte- 565

grating the VCPE module and DACE loss, GeVLM 566

achieves improved interpretation of spatial relation- 567

ships while effectively incorporating distance in- 568

formation into the label space. Additionally, the 569

DetailedScanRefer dataset with dense object anno- 570

tation is proposed to enhance the model’s spatial 571

reasoning capabilities. GeVLM achieves signifi- 572

cant performance gains over the strong Chat-scene 573

baseline, particularly with 1.3% in Acc@0.25 and 574

1.0% in Acc@0.50 improvements on the multi- 575

object partition of the ScanRefer benchmark. 576
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7 Limitations577

Our work has several limitations, including the578

need for further refinement of the camera pose-579

matching algorithm to achieve optimal perfor-580

mance. Our approach is specifically tailored to581

tasks that rely heavily on viewpoint information,582

making accurate camera pose information essential583

to fully leverage the model’s capabilities. Many584

existing datasets lack this type of annotation, limit-585

ing the applicability of our method. Furthermore,586

the prompt design for photo annotation could be587

improved to enhance both efficiency and precision.588

Lastly, while this paper uses the Chat-3D-v2 as the589

baseline and follows the exact model and training590

configuration for direct comparability, we also no-591

tice that, as a fast-evolving field, the latest work,592

such as Chat-Scene (Huang et al., 2023b), has pro-593

posed foundation models that surpass the perfor-594

mance of Chat-3D-v2 baseline by clear margins.595

However, our proposed methods are orthogonal to596

these advancements and, in theory, could be ap-597

plied to achieve further improvements. Exploring598

these opportunities will be important future work599

when additional resources and time are available.600
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A Annotation Procedure for900

DetailedScanRefer901

A.1 Comparison between rendered image and902

real-world photo903

We explored the use of rendered images for annota-904

tion but found the image quality lacking compared905

to real-world photos retrieved from the Scannet906

dataset using the Camera Pose Matching algorithm.907

The rendered images often suffer from poor light-908

ing, texture quality, and geometric accuracy, mak-909

ing them less suitable for precise annotations. By910

comparing these renderings with ScanNet photos,911

the limitations of synthetic data are clear, highlight-912

ing the need for higher-fidelity imagery or real-913

world data for accurate annotation tasks.914

A.2 example of pixel-level visibility masks915

A.3 GPT-4o Annotation Prompt916

This is the prompt we used for GPT annotation:917

“You are a helpful assistant designed to918

output JSON. The task is to identify all919

mentioned objects in the image and add920

the matching obj id to the given descrip-921

tion. The OBJID is shown in red font,922

and it should be annotated at the cen-923

tre of the object. Remember, please re-924

turn both the <input_description> and925

the <augmented_description> with obj926

id added. You should not modify the927

<input_description>. Only add the <OB-928

JID> after the object entity if you can929

recognize both the object and the red an-930

notation clearly in the image. Also, if931

you cannot recognize ALL of the objects932

AND ALL of their corresponding red an-933

notation in the description, simply output934

"NAN" in the "augmented_description".935

An example is here: "input_description:936

This is a brown chair. it is at a high ta-937

ble. augmented_description: This is a938

brown chair <OBJ003>. it is at a high939

table <OBJ012>."940

This is the prompt format we used for the De-941

tailedScanrefer Dataset:942

“According to the provided description,943

<input_description>, please append the944

correct object ID after each object men-945

tioned in the description."946

The <input_description> refers to the original 947

ScanRefer description. The annotations generated 948

by GPT-4o serve as the reference captions for each 949

corresponding question. 950

A.4 Dataset Statistics 951

We provide the dataset statistics in Tab.5. The num- 952

bers of descriptions before and after each process- 953

ing step are shown. 954

Description Count

Before processing 32,338
Inconsistent first ObjId 13,836
NaN values 2,191
No ObjId 154
Invalid ObjId range 6

After processing 16,151

Table 5: Data Processing Statistics

Rating Count Percentage

1 28 0.09%
2 3291 10.18%
3 7092 21.93%
4 5617 17.38%
5 16310 50.42%

Total 32338 100%

Table 6: Distribution of GPT-4o Ratings

A.5 Dataset Quality Evaluation 955

We also evaluate the annotation quality automati- 956

cally using GPT4o with the following prompt: 957

“You are tasked with evaluating the ac- 958

curacy and completeness of text anno- 959

tations provided for objects in an image. 960

Some objects in the image is labeled with 961

an object ID (e.g., <OBJ014>), and these 962

IDs are referenced in the text annotations. 963

Your goal is to ensure that every object 964

mentioned in the text annotation has a ac- 965

curate corresponding red-text annotation 966

in the image. First, verify that all ob- 967

jects mentioned in the text are annotated 968

in the image. Second, ensure that the 969

object descriptions in the text correctly 970

match the labeled objects in the image 971

in terms of type, appearance, and loca- 972

tion. After reviewing, provide a rating 973

between 1 and 5, where 1 represents poor 974
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Figure 5: Top row: Scannet Photos. Bottom row: Corresponding Rendered Images. Each pair of images corresponds
to the same ScanRefer description.

annotation quality and 5 represents excel-975

lent quality. The rating should consider976

whether all objects mentioned in the text977

are annotated in the image, and whether978

the descriptions are accurate."979

We submitted both the annotated photo and its980

detailed description to GPT-4o, requesting it to rate981

their consistency and accuracy on a scale from 1 to982

5. An average rating of 3.31 was achieved across983

32,338 descriptions. Specifically, the distribution984

of ratings is presented in Tab.6. Two examples are985

shown in Fig.7, where the annotation, rating, and986

its reasoning are illustrated.987

B Additional Results on Scan2Cap988

In this appendix, we provide a detailed explanation989

of the modifications made to the Scan2Cap dataset990

for our viewpoint-aware captioning task. We also991

discuss the implications for evaluation and how992

these changes affect comparability with existing993

models.994

Scan2Cap (Chen et al., 2021) is a captioning995

dataset generated based on ScanRefer (Chen et al.,996

2020), which provides natural language descrip-997

tions of objects within 3D indoor scenes from the998

ScanNet dataset (Dai et al., 2017).999

Each description in ScanRefer is associated with1000

a specific camera pose. By reusing these camera1001

poses, we reconstruct viewpoints for the Scan2Cap1002

dataset, making it viewpoint-aware. This ap-1003

proach enhances the dataset by incorporating spa-1004

tial context and specific viewpoints, providing a1005

more comprehensive captioning task.1006

The Scan2Cap dataset utilizes a set of predefined1007

prompts to guide the captioning task. Notably,1008

these prompts are used in the original Chat-3D- 1009

v2 task (Huang et al., 2023a). The prompts are 1010

designed to elicit detailed descriptions of objects 1011

and their spatial relationships within a scene. The 1012

prompts include: 1013

1. “Begin by detailing the visual aspects of the 1014

<id> before delving into its spatial context 1015

among other elements within the scene.” 1016

2. “First, depict the physical characteristics of 1017

the <id>, followed by its placement and inter- 1018

actions within the surrounding environment.” 1019

3. “Describe the appearance of the <id>, then 1020

elaborate on its positioning relative to other 1021

objects in the scene.” 1022

4. “Paint a picture of the visual attributes of <id>, 1023

then explore how it relates spatially to other 1024

elements in the scene.” 1025

5. “Start by articulating the outward features of 1026

the <id>, then transition into its spatial align- 1027

ment within the broader scene.” 1028

6. “Provide a detailed description of the appear- 1029

ance of <id> before analyzing its spatial con- 1030

nections with other elements in the scene.” 1031

7. “Capture the essence of the appearance of 1032

<id>, then analyze its spatial relationships 1033

within the scene’s context.” 1034

8. “Detail the physical characteristics of the <id> 1035

and subsequently examine its spatial dynam- 1036

ics amidst other objects in the scene.” 1037
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Figure 6: Pixel-level segmentation masks for object visibility checks. Top: original photos. Middle: corresponding
segmentation masks. Bottom: annotated photos with object identifiers.

9. “Describe the visual traits of <id> first, then1038

elucidate its spatial arrangements in relation1039

to neighboring elements.”1040

10. “Begin by outlining the appearance of <id>,1041

then proceed to illustrate its spatial orientation1042

within the scene alongside other objects.”1043

An example entry from the original Scan2Cap1044

dataset is provided below. Multiple reference cap-1045

tions correspond to a single prompt, offering varied1046

descriptions of the object.1047

Prompt: First, depict the physical char-1048

acteristics of the <OBJ014>, followed by1049

its placement and interactions within the1050

surrounding environment.1051

The corresponding reference captions are as fol-1052

lows:1053

• There are brown wooden cabinets. Placed on1054

the side of the kitchen.1055

• There is a set of bottom kitchen cabinets in1056

the room. It has a microwave in the middle of1057

it.1058

• There is a set of bottom kitchen cabinets in1059

the room. There is a microwave in the middle1060

of them.1061

• Brown kitchen cabinets, the top is decorated 1062

with marble layers, and it is placed on the left 1063

in the direction of view. On the right, there 1064

are four brown chairs. 1065

• The kitchen cabinets are located along the 1066

right wall. They are below the countertop. 1067

The kitchen cabinets are located to the right 1068

of the table and chairs. 1069

In our modified viewpoint-aware Scan2Cap 1070

dataset, each question is associated with a spe- 1071

cific viewpoint (camera pose). Each viewpoint 1072

corresponds to one correct reference caption. The 1073

dataset includes camera parameters (position, 1074

rotation, lookat) for each entry. 1075

Example entries: 1076

Prompt: “First, depict the physical char- 1077

acteristics of the <OBJ014>, followed by 1078

its placement and interactions within the 1079

surrounding environment.", 1080

Given a particular camera pose it would have 1081

one reference caption corresponding to the origin 1082

Scanrefer Dataset: 1083

• “There is a set of bottom kitchen cabinets in 1084

the room. There is a microwave in the middle 1085

of them." 1086
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GPT Annotation: “this is a wicker cabinet
<OBJ019>. it is to the right of the boxes
<OBJ039>."

Rating: 5/5

Reasoning: The annotations are correct. The
wicker cabinet labeled as <OBJ019> matches
the object in the image. The boxes labeled
<OBJ039> are also correctly identified and are
to the left of the wicker cabinet, which aligns
with the described spatial relationship.

GPT Annotation: “this is a brown cabinet
<OBJ027>. it is to the right of a picture
<OBJ032>"

Rating: 1/5

Reasoning: The object IDs are incorrectly at-
tributed in the description. The brown cabinet
is identified as <OBJ027>, which matches the
visible cabinet in the image. However, the pic-
ture is labeled as <OBJ032> in the image, but
spatially it does not appear to be to the left of
the cabinet. Additionally, the context does not
logically support the described spatial relation-
ship.

Figure 7: Comparison of two rating scenarios in different scenes.

The modification of the dataset has significant1087

implications for evaluation: The evaluation method1088

changes due to the dataset modification. Each ques-1089

tion under a specific viewpoint has a single correct1090

reference caption. This differs from the original1091

method, which averaged over multiple reference1092

captions. Consequently, the modified dataset and1093

evaluation method are not directly comparable to1094

models trained on the original Scan2Cap dataset.1095

C Detailed Comparison of GeVLM and1096

other models1097

15



Table 7: Evaluation results on Scan2Cap validation set at IoU thresholds 0.25 and 0.50.

@0.25 IoU @0.5 IoU

System CIDER BLEU-4 METEOR CIDER BLEU-4 METEOR

Chat-3D-v2* (Huang et al., 2023a) 72.20 11.28 18.89 68.63 10.46 18.23
Ours 67.94 11.19 19.06 64.47 10.44 18.38

Table 8: F1 scores at 0.5 IoU on Multi3DRefer (Zhang et al., 2023b) validation set. ZT, ST, and MT refer to zero,
single, and multiple target objects in the scene referenced by each description. "D" refers to distracting objects of
the same semantic class.

ZT w/o D ZT w/ D ST w/o D ST w/ D MT All
Chat-3D v2* (Huang et al., 2023a) 90.7 62.2 64.3 33.0 42.1 44.9
Chat-Scene 90.3 62.6 75.9 44.5 41.1 52.4
GeVLM (Chat-3D v2) (Ours) 90.3 68.0 68.0 36.5 36.7 46.1
GeVLM (Chat-Scene) (Ours) 92.0 63.2 75.7 46.5 36.8 52.4

Table 9: Results on language tasks using ScanQA validation set and SQA3D test set. B1 to B4 represents BLEU-1
to 4, M for METEOR, C for CIDEr, and R for ROUGE-L. The Chat-3D v2 is the reproduced results which is
slightly better than the reported numbers in the original paper.

System ScanQA SQA3D

B1 B2 B3 B4 M C R EM What Is How Can WhichOthersAvg

LL3DA (Chen et al., 2024a) – – – 13.5 15.9 76.8 37.3 – – – – – – – –
LEO (Huang et al., 2024a) – – – 13.2 20.0 101.4 49.2 24.5 – – – – – – 50.0
Scene-LLM (Fu et al., 2024) 42.2 26.4 18.7 11.7 15.8 80.0 35.9 25.6 40.0 69.2 42.8 70.8 46.6 52.5 53.6
3D-LLM (BLIP2-flant5) (Hong et al., 2023) 39.3 25.2 18.4 12.0 14.5 69.4 35.7 20.5 – – – – – – –
Chat-3D v2* (Huang et al., 2023a) 42.3 28.1 19.6 13.4 18.0 88.9 42.1 22.4 43.9 66.0 52.5 66.3 46.4 50.2 52.5
Chat-scene 43.2 29.1 20.6 14.3 18.0 87.7 41.6 21.6 45.4 67.0 52.0 69.5 49.9 55.0 54.6
GeVLM (Chat-3D v2) (Ours) 42.4 28.7 21.3 15.4 18.1 90.5 41.8 21.7 44.1 68.6 52.3 62.7 45.6 55.8 53.5
GeVLM (Chat-scene) (Ours) 44.7 29.5 20.8 14.3 18.3 89.7 42.7 21.9 48.2 71.0 52.7 68.9 47.6 57.8 56.5

Category System
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Expert Model

ScanRefer (Chen et al., 2020) 76.33 53.51 32.73 21.11 41.19 27.40
MVT (Huang et al., 2022) 77.67 66.45 31.92 23.30 39.43 33.26
3D-SPS (Luo et al., 2022) 84.12 66.72 40.32 29.82 48.36 36.98

ViL3DRel (Chen et al., 2022c) 81.58 68.62 40.30 30.71 47.94 37.73
BUTD-DETR (Jain et al., 2022) 84.20 66.30 46.60 35.10 52.20 39.80

HAM (Chen et al., 2022b) 79.24 67.86 41.46 34.03 48.79 40.60
3DRP-Net (Wang et al., 2023a) 83.13 67.74 42.14 31.95 50.10 38.90

EDA (Wu et al., 2023) 85.76 68.57 49.13 37.64 54.59 42.26
M3DRef-CLIP (Zhang et al., 2023b) 85.30 77.20 43.80 36.80 51.90 44.70

ConcreteNet (Unal et al., 2024) 86.40 82.05 42.41 38.39 50.61 46.53
DORa (Wu et al., 2024) - - - - 52.80 44.80

3D-VLP (Jin et al., 2023) 84.23 64.61 43.51 33.41 51.41 39.46
3D-VisTA (Ziyu et al., 2023) 81.60 75.10 43.70 39.10 50.60 45.80

3DJCG (Cai et al., 2022) 83.47 64.34 41.39 30.82 49.56 37.33

3D Grounding + 3D
Captioning D3Net (Chen et al., 2022a) - 72.04 - 30.05 - 37.87

3D Grounding + 3D
Captioning +3D Q&A GeVLM (Ours) 82.00 75.70 39.00 34.70 46.90 42.30

Table 10: Performance comparison of models on Scanrefer.

D Qualitative result of Mask3D1098

The table summarizing key statistics and metrics1099

for Mask3D’s performance across both the training1100

and validation splits, including counts for IoU ≥ 1101

0.25 and IoU ≥ 0.50, along with maximum IoU 1102

rates, to further demonstrate the quality and com- 1103
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prehensiveness of the generated proposals.1104

In the training process, we only use 32,338 anno-1105

tations that meet the strict criterion of IoU ≥ 0.751106

with ground truth objects, ensuring that only highly1107

accurate object proposals are retained. This high1108

threshold reflects the precision and relevance of the1109

dataset for effective downstream tasks.1110
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Metric Train Split Count Validation Split Count
Total Count (Original ScanRefer Dataset) 36,665 9,508
IoU ≥ 0.25 Count 36,187 8,924
IoU ≥ 0.50 Count 35,061 8,168
Max IoU@0.25 0.9870 0.9386
Max IoU@0.50 0.9563 0.8591

Table 11: Summary of Mask3D-generated dataset metrics for training and validation splits.

E Qualitative examples1111

Qualitative examples showcasing the advantage of1112

GeVLM are given in Figure 8, where four types1113

of confusions caused by viewpoint consistency are1114

provided.1115

18



Groundtruth GeVLM Baseline

(A). Description: This is a black computer monitor. The black computer monitor sits on the far right of the desk.

(B). Description: The chair is blue with a white shirt thrown over the back. it is the chair on the right that is closes to 

the far wall

(B). Description: The chair is blue with a white shirt thrown over the back. it is the chair on the right that is closes to 

the far wall

(C). Description: There is a light grey pillow on the bed. it is smaller than the other pillows and in front of the red pillow.

(D). Description: The clothes dryer is in the northeast corner of the room. the clothes dryer has a white color 
and a half circle mirror in the center

Figure 8: Comparison between GeVLM and baseline (Chat-3D v2) on viewpoint-related examples with potential
ambiguities, including: (A) left/right, (B) near/far, (C) front/back and (D) north/south/east/west. The description is
associated with a specific viewpoint and hence becomes confusing in other viewpoints.

F Discussion of License1116

GPT-4o was used to generate annotations for im-1117

ages. According to the terms of use, the output is1118

owned by the users and can be used for academic1119

purposes for DetailedScanRefer as long as they are1120

not "to develop any artificial intelligence models1121

that compete with OpenAI products and services".1122

We believe that the generated content is allowed1123

to be distributed. We will also clearly state in our1124

licence upon public release of the dataset to refer-1125

ence the OpenAI licence.1126
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