
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOGETS: AUTOMATED GENERATION OF TEXT
SYNTHETICS FOR IMPROVING TEXT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

When developing text classification models for real world applications, one ma-
jor challenge is the difficulty to collect sufficient data for all text classes. In this
work, we address this challenge by utilizing large language models (LLMs) to
generate synthetic data and using such data to improve the performance of the
models without waiting for more real data to be collected and labelled. As an
LLM generates different synthetic data in response to different input examples,
we formulate an automated workflow, which searches for input examples that lead
to more “effective” synthetic data for improving the model concerned. We study
three search strategies with an extensive set of experiments, and use experiment
results to inform an ensemble algorithm that selects a search strategy according
to the characteristics of a class. Our further experiments demonstrate that this en-
semble approach is more effective than each individual strategy in our automated
workflow for improving classification models using LLMs.

1 INTRODUCTION

A critical impediment to developing robust text classification models for real-world applications is
the pervasive challenge of class imbalance and data scarcity, particularly for underrepresented text
categories. Many industrial applications, such as ticketing systems, require classification models to
process large volumes of unstructured text data, such as problem descriptions and user comments,
which are often heavily imbalanced in class sizes. In modern industrial environments, ticketing sys-
tems play a vital role in managing and resolving technical issues, service requests, and operational
incidents (Al-Hawari & Barham (2021)). As shown in the workflow (Figure 1), models are initially
trained on a set of labeled tickets, but newly introduced or infrequent classes often arise after de-
ployment, necessitating manual classification and correction. This reliance on manual intervention
for new or underrepresented classes creates operational bottlenecks and impairs model adaptation to
evolving data distributions. Over time, the model’s performance degrades, particularly for small or
specialized categories, as obtaining balanced and adequately labeled data across all classes remains
challenging. Consequently, models often fail to generalize effectively across diverse data distri-
butions, especially for underrepresented categories Gandla et al. (2024). Traditionally, addressing
data scarcity involves collecting additional real-world data, which can be both time-consuming and
resource-intensive, especially for rare or newly introduced classes. Furthermore, the manual label-
ing of such data introduces additional delays and costs Li et al. (2022). In this context, synthetic
data generation has emerged as a promising solution to address class imbalance and data scarcity,
particularly for underrepresented classes. By augmenting training datasets with synthetic samples,
models can achieve improved performance and generalization across different categories.

Synthetic data has gained popularity in recent years as a way to overcome the limitations of real-
world data, which can be scarce, sensitive, or expensive to obtain (Patki et al. (2016)). Research
in this area consistently highlights the potential of synthetic data to enhance the performance of
ML models across diverse fields (Lu et al. (2023)), addressing challenges such as data shortages in
computer vision and NLP (Mumuni et al. (2024)), generating diverse datasets in medical imaging
(Frid-Adar et al. (2018b)), and providing safe training scenarios for autonomous driving systems
(Song et al. (2023)). Its utility extends to financial modeling for algorithm testing under simulated
market conditions and cybersecurity for developing threat detection systems (Potluru et al. (2023);
Chalé & Bastian (2022)). In the domain of text analysis, synthetic data has been increasingly em-
ployed to enhance ML models, particularly in tasks such as text classification, sentiment analysis,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and natural language understanding. Moreover, researchers have shown generating synthetic sam-
ples with only targeted data examples could more effectively improve the model (Jin et al. (2024)).
However, the process of identifying these optimal data examples often requires substantial domain
expertise and manual effort, making it time-consuming and less scalable for real-world applications.

trained
modelm m m m m••• M

M

M

⁞

service 1

service 2

service k

M

manual
classification M

trained
model

training
& testing

MM …M M

⁞

• small classes for
 special business needs

M

• newly introduced classes

• time taken to collect a sufficient
amount of data to improve

data distribution for retraining

messages without class labels

messages with class labels

with
erroneous
label

further data collection

with
corrected

label

Figure 1: The workflow for developing and deploying a classification model in an industrial ticketing
system, and the main obstacles impacting on the performance of the model.

To overcome these challenges, this paper introduces Automated Generation of Text Synthetics (Au-
toGeTS), an algorithmic solution that automates the search for optimal data examples based on spe-
cific improvement objectives, eliminating the need for human intervention. Through experiments
with three search strategies and four objective functions, we identify key patterns between optimal
strategy-objective combinations and data characteristics. We propose an ensemble algorithm that
effectively improves text classification models across various real-world tasks.

2 RELATED WORK

Synthetic data is increasingly used as a powerful tool for generating realistic datasets to enhance the
performance of the task across various domains (Meier et al. (1988); Bersano et al. (1997)). Early
synthetic data generation methods include bootstrapping (Efron (1992); Breiman (1996)), which
resamples from original data to estimate distributions and reduce variance in predictions, proved
effective for a range of predictive algorithms including tree-based models (Sutton (2005)). How-
ever, bootstrapping couldn’t introduce new patterns. The Synthetic Minority Over-sampling Tech-
nique (SMOTE) (Chawla et al. (2002)) advanced imbalanced dataset handling but risked overfitting.
Data augmentation (Jaderberg et al. (2014)) improved model robustness by transforming existing
data points, increasing diversity, yet still limited to patterns in the original dataset. The advent of
deep learning introduced more sophisticated techniques, notably Generative Adversarial Networks
(GANs) by Goodfellow et al. (Goodfellow et al. (2014)), which generate highly realistic synthetic
data capturing dataset complexity. Studies have shown models trained on GAN-generated synthetic
data often perform comparably to those trained on real data in various predictive tasks (Zhang et al.
(2017); Cortés et al. (2020)). Frid-Adar et al. (Frid-Adar et al. (2018a)) enhanced liver lesion diag-
nosis using GAN-generated images, while Yale et al. (2020) demonstrated comparable performance
using GAN-generated synthetic electronic health records for ICU patient predictions.

GANs have been extensively used for synthetic text generation. For instance, Croce et al. (2020)
demonstrated their effectiveness in generating realistic text for NLP tasks, while He et al. (2022)
explored task-specific text generation. However, GAN-generated data for text classification often
lacks semantic coherence and relevance to specific tasks (Torres (2018)). Recent advancements in
large language models (LLMs), such as GPT-2 (Croce et al. (2020)), provide new approaches to
overcome these limitations. LLMs excel in few-shot and zero-shot learning (Brown (2020); Wang
et al. (2021)), adapting to unseen tasks and generating contextually relevant data that improves model
robustness. Yoo et al.’s GPT-3Mix (Yoo et al. (2021)) demonstrates LLMs’ capability to generate di-
verse, high-quality synthetic data for text classification through careful prompt engineering. Prompt
optimization strategies have shown that carefully crafting input prompts can significantly impact
the quality of generated data (Wang et al. (2023)). Automated search techniques for identifying the
most effective prompts, such as those used in AutoPrompt (Shin et al. (2020); Xu et al. (2024)),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

offer a potential solution for improving synthetic data generation. Beyond prompt engineering, se-
lecting appropriate input examples has emerged as a crucial focus. Selecting example data, either
with a uniform distribution or human identification through VIS4ML, to form the prompt for LLM
to generate synthetics is shown effective (Li et al. (2023); Jin et al. (2024)). Despite these advance-
ments, LLM-generated data still struggles to fully capture real-world diversity, especially in highly
subjective tasks (Li et al. (2023)). To address this, we propose AutoGeTS, an automated approach
that optimizes input example selection for LLM-generated synthetic data. Designed for real-world
business requirements, AutoGeTS reduces human intervention while systematically identifying im-
pactful examples, enhancing model performance in scenarios of data scarcity and class imbalance.

3 METHODS

3.1 AUTOGETS ARCHITECTURE AND WORKFLOW

Figure 2 illustrates the AutoGeTS architecture. After training and evaluating the original model M0,
improvement requirements (overall or class-specific) are determined. For a selected class C, visual
encoding is applied to the training dataset. The optimal strategy-objective is employed to select
example message sets Es from C, which are then processed through GPT-3.5’s API using a zero-
shot prompt template, one message per chat (detailed in Appendix B.1). Each example generates
multiple synthetic samples through automated parsing and format cleaning of the LLM responses.
These samples are appended to the training set for model retraining. The best-performing model in
testing, according to the specified goals, is selected for deployment.

LLM

model
𝑀0

training testingMM …M MM T0

visual
encodingV

example
selection

text
synthesis EM

retraining model
𝑀𝑖

⁞

testing Ti

model
selection

model
𝑀𝑥

Tx

Training Data Management
adding & removing synthetic data

testing
results

currently the best
model and potentially

for deployment

testing results
of the selected model

imagery
data

example
messages

selection
algorithm

Figure 2: The architecture of AutoGeTS and the workflow for training and improving a model.

3.2 OBJECTIVES FOR MODEL OPTIMIZATION

Ticketing systems deployed in specific organizational environments often face different, sometimes
conflicting, requirements. Typical business requirements and related performance metrics include:

R1. The accuracy of every class should be as high as possible and above a certain threshold. One
may optimize a model with a performance metric such as class-based balanced accuracy
or F1-score as the objective function, with each threshold value as a constraint.

R2. The overall classification accuracy of a model should be as high as possible and above a
certain threshold because misclassified messages lead to undesirable consequences. One
may optimize a model with a global performance metric, such as overall balanced accuracy
and overall f1-score.

R3. The recall for some specific classes (e.g., important) should be as high as possible and above
a certain threshold in order to minimize the delay due to the messages in such a class being
sent to other services. Class-based recall is the obvious metric for this requirement. Often
one may make a balanced judgment by observing Pareto fronts of recall in conjunction
with another class-based metric (e.g., balanced accuracy or F1-score).

These requirements inform the definition of objective functions and constraints for AutoGeTS opti-
mization. However, because the use of LLMs to generate synthetic data to aid ML (i.e., the workflow
in Figure 2) is a recent approach, it is necessary to understand how different example selection al-
gorithms for LLMs may impact the optimization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 STRATEGIES FOR EXAMPLE SELECTION

Defining the search space for example selection is critical, especially when augmenting datasets with
synthetic examples. This space includes all possible subsets of training data D = x1, x2, . . . , xn,
each data dot labeled with a specific class. The primary objective is to identify the optimal subset
W ∗ ⊆ D that maximizes performance metrics when used for synthetic data generation via LLM.
With 2n − 1 possible subsets for n examples, exhaustive search becomes intractable, necessitating
heuristic strategies.

The general goal can be formulated as an ideal multi-objective optimization problem:

W ∗ = arg max
W⊆D

J(W) (1)

where J(W) is the objective function measuring the performance of a retrained model M(W) using
synthetic data generated from subset W :

J(W) = w1 · Recall(M(W)) + w2 · BalancedAccuracy(M(W)) + w3 · F1(M(W)) (2)

where w1, w2, and w3 reflect metrics weights in the overall objective. Given the practical challenges
in defining such a compound objective, we employ a simplified, single-metric function:

W ∗ = arg max
W⊆D

J ′(W) (3)

where J ′(W) represents one of the following metrics: Class-based Recall (CR), Class-based Bal-
anced Accuracy (CBA), Overall Balanced Accuracy (OBA), and Overall F1-Score (OF1).

Thus, the policy for selecting optimal subsets involves two core components:

1. A strategy for selecting subsets of examples for synthetic data generation and retraining.
2. An evaluation metric, J ′(W), to be maximized as the objective for the search towards the

optimal subset W ∗.

The challenge is to efficiently search the space while balancing between computational cost (i.e.,
cumulative model retraining time) and performance improvement (i.e., maximum gain in J(W)).
Initial experiments with random selection yielded limited improvements, particularly for class-based
metrics (detailed in Appendix B.1.3). Thus, we explore three primary strategies to optimize the
subset selection: brute-force (Sliding Window, SW), gradient-based (Hierarchical Sliding Window,
HSW), and evolutionary algorithms (Genetic Algorithm, GA), as illustrated in Figure 3.

3.3.1 SLIDING WINDOW (SW)

The Sliding Window (SW) strategy represents a brute-force approach, where the search space is
exhaustively segmented into ”windows” or subsets. For each window Wk ⊆ D, synthetic data is
generated, the model is retrained, and the performance is evaluated based on the objective function
J ′(Wk). The goal is to identify the window W ∗

k that yields the maximum improvement:

W ∗
k = arg max

Wk⊆D
J ′(Wk) (4)

The brute-force nature of SW ensures that no region of the search space is neglected, but the cost in
terms of time and computational resources can become prohibitive.

3.3.2 HIERARCHICAL SLIDING WINDOW (HSW)

The Hierarchical Sliding Window (HSW) strategy builds on the principles of hierarchical selection,
offering a more computationally efficient approach by incrementally narrowing the search space to
promising regions. At each level l, the current search space is partitioned into smaller windows
Wk,l. For each window, synthetic data is generated, the model is retrained, and the performance

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

is evaluated. Only the windows with the highest objective function values are selected for further
hierarchical subdivision in the next level:

W ∗
k,l+1 = arg max

Wk,l+1∈Subspace(Wk,l)
J ′(Wk,l+1) (5)

The process repeats until improvement in J ′(W) plateaus or a predefined stopping criterion is met.
HSW thus is akin to a targeted optimization approach that progressively homes in on the optimal
subset W ∗, balancing thorough exploration with reduced computational complexity compared to the
brute-force SW method.

Sliding Window Hierarchical-Sliding Window Genetic Algorithm

Figure 3: The three examples subset selection strategies.

3.3.3 GENETIC ALGORITHM (GA)

The Genetic Algorithm (GA) begins by initializing a population

P = {S1, S2, . . . , Sm} (6)

where each candidate solution Si ⊆ D represents a subset of the training data D, encoded as a
priority value-based chromosome. Each above threshold element indicates that the corresponding
data example is included in the subset.

The GA evolves this population over generations, guided by a fitness score F (S) defined as the
objective function J ′(S), derived from the AutoGeTS process and subsequent performance evalua-
tion of the retrained model M(S). The algorithm applies three main genetic operators: Selection:
At each generation, Lexicase selection Spector (2012) and Clustered Tournament selection Xie &
Zhang (2012) are employed to select individuals into the mating pool based on their fitness, where
Lexicase selection evaluates the F (S) of input class and the J ′(S) of other randomly chosen classes.
Crossover: Weight Mapping Crossover Gen et al. (2006) is used to combine two parent solutions
Si and Sj from the mating pool to produce offspring Ok for local exploration. Mutation: Adaptive
Polynomia Mutation Si et al. (2011) is applied to offspring Ok to introduce variability for global
search. The GA repeats the selection, crossover, and mutation process until reaching a specified
number of generations or a convergence criterion. The subset S∗ that maximizes the fitness score:

S∗ = arg max
Si∈P

F (Si) (7)

where F (Si) = J ′(Si), is finally retrieved. For further details and the step-by-step breakdown of
HSW and GA algorithms, refer to Algorithm 1 and 2 in Appendix C.1.

Each AutoGeTS run targets a single class Ci, aiming to improve its specific or overall performance
through synthetic sample addition. However, class interactions in synthetic data generation have
been observed; Jin et al. (2024) found that synthetic data for one class can improve performance for
others. Given these interactions and the collective contribution of all classes to overall classification

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

performance, an ensemble algorithm applying AutoGeTS across multiple classes is necessary to
optimize both class-specific and overall performance.

3.4 ENSEMBLE ALGORITHM

The ensemble algorithm depends on the specific business requirements, as outlined in Section 3.2:

To lift all classes performances above a threshold (R1): Iteratively apply AutoGeTS to each
underperforming class (Clow) with optimal strategy-objective combination, in the order that most
likely improves class performance. In each iteration, append synthetic samples from the optimal
retrained model to the training set, and maintain improvements for processed Clow above a specified
threshold. Terminate when unable to maintain improvements. To improve overall classification
accuracy (R2): The same process is applied to each class (C), except the class order that most
likely improves overall performance is used, and the algorithm terminates when overall performance
plateaus. To improve specific important class’s performance (R3): For an important class (IC),
identify related classes (RC) that could enhance IC performance with AutoGeTS. Apply AutoGeTS
to IC and RC iteratively with optimal strategy-objective combinations, in the order that prioritizes
IC performance improvement. Terminate when IC performance plateaus.

Experimental determinations include performance thresholds, RC identification, class order, and
optimal strategy-objective combinations, which will be studied in Section 4. The specific details and
the step-by-step breakdown of the algorithms are provided in Algorithm 3, 4, and 5 in Appendix C.2.

4 EXPERIMENTS AND RESULTS

AutoGeTS is evaluated through 1 GPU hour fixed-time experiments to improve M0 in meeting
business requirements and to determine optimal strategy-objective policy as outlined in Section 3.2.

4.1 EXPERIMENT SETUP

Table 1: Original CatBoost Model M0 Performance

Class Class Size Balanced Accuracy Recall F1-Score
T2 11350 0.950 0.941 0.921
T1 8529 0.986 0.979 0.977
T3 4719 0.952 0.914 0.922
T5 2755 0.889 0.794 0.794
T7 1963 0.883 0.780 0.766
T6 1888 0.821 0.665 0.623
T10 1699 0.761 0.540 0.554
T9 1466 0.861 0.747 0.680
T4 1387 0.899 0.801 0.859
T8 1028 0.828 0.665 0.672
T14 764 0.772 0.548 0.607
T15 543 0.726 0.452 0.596
T11 471 0.973 0.947 0.967
T12 358 0.742 0.484 0.608
T13 180 0.666 0.333 0.469

Overall 39100 0.923 0.856 0.856

We evaluated the AutoGeTS framework using a dataset from an enterprise IT support ticketing sys-
tem, comprising 39,100 entries labeled into 15 task classes. The dataset is highly imbalanced, with
some classes representing less than 1% of the total entries. To mitigate the effect of this imbalance,
we split the dataset into 80% for training/validation and 20% for testing, with a further 80-20 split
on the training set for validation. The imbalanced nature of the dataset mirrors real-world challenges
faced by classification systems in industrial applications.

We used GPT-3.5 (version: 2023-03-15-preview) to generate synthetic text, employing parameters
such as temperature = 0.7, max tokens = 550, top p = 0.5, frequency penalty = 0.3, and presence
penalty = 0.0. Comparative experiments with the Easy Data Augmentation (EDA) tool (Wei &
Zou (2019)), a traditional data augmentation method, demonstrated that while AutoGeTS improved

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

performance with both approaches, LLM-based workflow yielded superior results (detailed in Ap-
pendix E). For the baseline classification model, we utilized CatBoost with fixed hyperparameters
(300 iterations, learning rate = 0.2, depth = 8, L2 leaf regularization = 1) to ensure consistency
across all retrained models. More detailed M0 analysis and prompt are provided in Appendix A
and B.1. The effectiveness of AutoGeTS was evaluated using class-based balanced accuracy, recall,
and F1-score for local performance, as well as overall balanced accuracy and F1-score for global
performance. The performance of the original CatBoost model M0 is shown in Table 1.

Table 2: Performance Comparison with M0, comparing Overall and Class Balanced Accuracy.

Class Class M0 Sliding Window Hierarchical SW Genetic Algorithm
Name Size Bal Acc Overall Class Overall Class Overall Class

T2 11350 0.950 ▲0.0030 ▲0.0050 ▲0.0034 ▲0.0048 ▲0.0009 ▼0.0010
T1 8529 0.986 ▲0.0028 ▲0.0005 ▲0.0029 ▲0.0005 ▲0.0018 ▼0.0018
T3 4719 0.952 ▲0.0030 ▲0.0058 ▲0.0027 ▲0.0062 ▲0.0029 ▲0.0069
T5 2755 0.889 ▲0.0032 ▲0.0189 ▲0.0034 ▲0.0140 ▲0.0010 ▲0.0059
T7 1963 0.883 ▲0.0036 ▲0.0228 ▲0.0034 ▲0.0226 ▲0.0012 ▼0.0026
T6 1888 0.821 ▲0.0035 ▲0.0190 ▲0.0030 ▲0.0196 ▲0.0015 ▲0.0073

T10 1699 0.761 ▲0.0034 ▲0.0281 ▲0.0044 ▲0.0247 ▲0.0027 ▲0.0208
T9 1466 0.861 ▲0.0036 ▲0.0147 ▲0.0027 ▲0.0191 ▲0.0026 ▲0.0077
T4 1387 0.899 ▲0.0029 ▲0.0304 ▲0.0033 ▲0.0369 ▲0.0036 ▲0.0323
T8 1028 0.828 ▲0.0030 ▲0.0321 ▲0.0029 ▲0.0358 ▲0.0020 ▲0.0142

T14 764 0.772 ▲0.0023 ▲0.0326 ▲0.0029 ▲0.0395 ▲0.0019 ▲0.0396
T15 543 0.726 ▲0.0033 ▲0.0456 ▲0.0034 ▲0.0446 ▲0.0037 ▲0.0533
T11 471 0.973 ▲0.0030 ▲0.0054 ▲0.0030 ▲0.0053 ▲0.0039 ▲0.0053
T12 358 0.742 ▲0.0037 ▲0.0699 ▲0.0032 ▲0.0772 ▲0.0036 ▲0.0775
T13 180 0.666 ▲0.0030 ▲0.0443 ▲0.0037 ▲0.0548 ▲0.0034 ▲0.0548

4.2 PERFORMANCE IMPROVEMENTS OVERVIEW

The AutoGeTS framework yielded significant improvements in both local and global performance
metrics, effectively addressing the class imbalance problem evident in Table 2.

Smaller, underrepresented classes experienced the largest improvements. For instance, T13’s bal-
anced accuracy increased by 5.48 percentage points (pp) from 66.6% in M0, while T12 showed a
7.75 pp improvement from 74.2%. In contrast, larger classes like T1 (98.6%) and T2 (95%) saw
only marginal gains of around 0.3 pp. This demonstrates AutoGeTS’s ability to significantly im-
prove underrepresented classes without affecting the performance of well-represented ones. This
balance is crucial in maintaining overall system performance. The overall balanced accuracy im-
proved consistently and comparably among classes, with T10 showing the highest overall balanced
accuracy improvement of 0.44 pp. This underscores AutoGeTS’s synergistic effect, where class-
based improvements translate to overall performance gains, with minimal trade-offs between local
and global performance improvements (see Appendix D.1).

4.3 COMPARISON OF EXAMPLE SELECTION STRATEGIES AND OPTIMIZATION OBJECTIVES

Figure 4 compared the performance of three search strategies—SW, HSW, GA—and four objec-
tives—maximizing CR, CBA, OBA, OF1—with respect to both local (class-specific) and global
(overall) metrics. Each bar chart is divided into 4 sections for 4 performance metrics, with the four
bars each representing the maximum improvement in the objective of maximizing CR, CBA, OBA,
or OF1. The choice of strategy-objective played a critical role in the effectiveness of AutoGeTS,
with each demonstrating distinct advantages depending on the size of the target class, and their
performance trajectories over retraining time (see Appendix D.2).

For larger classes, HSW consistently yielded the best results, such as the highest class T1 balanced
accuracy improvement of 0.5%. HSW’s progressive narrowing of the search space proves effective
for larger data sets where an exhaustive search is computationally prohibitive. Objective-wise, max-
imizing CR or CBA each best improved its respective metric, while maximizing OBA or OF1 both
led to the best improvements in global metrics.

GA strategy proved superior for smaller and mid-sized classes, as shown by T13 and T12’s highest
balanced accuracy gains. GA’s evolutionary nature generates diverse synthetic samples, crucial for
small data sets. For these classes, maximizing CBA outperformed other objectives in local metrics,
while OBA or OF1 maximization equally improved global metrics, except for T11, T12, and T15.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

SW showed moderate performance across mid-sized classes, such as improving T5 and T6 balanced
accuracy by up to 1.89% and 1.90%, respectively. SW offers a balanced trade-off between compu-
tational cost and performance improvement for mid-sized data sets. For these classes, maximizing
CR or CBA equally improved both local metrics, and the same applies to maximizing OBA or OF1.

AutoGeTS on T2 AutoGeTS on T1 AutoGeTS on T3

AutoGeTS on T5 AutoGeTS on T7 AutoGeTS on T6

AutoGeTS on T10 AutoGeTS on T9 AutoGeTS on T4

AutoGeTS on T8 AutoGeTS on T14 AutoGeTS on T15

AutoGeTS on T11 AutoGeTS on T12 AutoGeTS on T13

Figure 4: Comparison of improvements across 4 metrics for all classes, showing best-performing
strategies (SW, HSW, GA) and highest improvement values for each objective

4.4 PARETO ANALYSIS FOR REPRESENTATIVE CLASSES

T1 (Large) T6 (Middle) T13 (Small)

Figure 5: Improvements and Pareto Fronts in Class Recall vs Class Balanced Accuracy for topics
T1, T6, and T13, showing models maximizing TR and TBA (note different axis ranges).

Figure 5 shows trade-offs between Class Recall (CR) and Class Balanced Accuracy (CBA) improve-
ments for classes T1 (large), T6 (mid-sized), and T13 (small) when maximizing either CR or CBA.

CR improvements generally correlate with CBA gains, varying by class size. Large class T1 shows
the largest divergence (CR +3.5%, CBA +1.2%). The more synthetic samples needed to impact
a large class directly affects recall but indirectly specificity, leading to larger CR and CBA diver-
gence. Mid-sized class T6 demonstrates aligned improvements, with targeting CR increasing CBA

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

by 2.9%, indicating a less critical objective choice between maximizing CR or CBA. Small class T13
exhibits substantial improvements in both CR and CBA regardless of which metric is maximized, as
maximizing CR improved recall by 33.3% and CBA by 8.2%, reflecting the effectiveness of diverse
synthetic samples and the GA strategy for underrepresented classes and small, imbalanced datasets.
Practically, maximizing CR is preferable for large important classes to minimize misclassification
delay, while either CR or CBA optimization can be effective for middle and small classes.

5 ENSEMBLE ALGORITHM AND FURTHER EXPERIMENTATION

5.1 SUMMARY OF STRATEGY-OBJECTIVE COMBINATIONS

Building on our analysis in Section 4.3, we synthesize the effectiveness of different strategy-
objective combinations across varying class sizes and performance metrics.

Table 3: Optimal Strategy-Objective Combinations across Classes

Class Performance Overall Performance
Topic Recall Topic Balanced Accuracy Overall Balanced Accuracy Overall F1-Score

T2 HSW-TR HSW-TBA/OBA HSW-TBA/OBA
T1 HSW-TBA HSW-OBA/OF1
T3 GA-TR/TBA SW-OBA/OF1
T5 SW-TR/TBA HSW-OBA/OF1
T7 SW-TBA SW-OBA/OF1T6 SW-TR HSW-OBA/OF1
T10 SW-TR/TBA HSW-OBA/OF1
T9

HSW-TR/TBA
SW-OBA/OF1

T4 GA-OBA/OF1
T8 SW-OBA/OF1
T14

GA-TBA

HSW-OBA/OF1
T15 GA-OF1
T11 GA-OBA
T12 GA-OF1
T13 HSW-OBA/OF1

Table 3 summarizes optimal Strategy-Objective combinations for improving 4 metrics across all
classes, serving as a look-up table for the ensemble algorithm in Section 5.

5.2 LOCAL AND GLOBAL METRICS IMPROVEMENT ACROSS CLASSES

We now examine the broader impacts of applying AutoGeTS to individual classes, considering inter-
class effects and overall system performance. Figure 6 illustrates inter-class interaction and overall
effects, guiding class order determination for three requirements: R1 (improve each class) orders
classes by descending diagonal elements of class balanced accuracy improvements; R2 (improve
overall performance) sorts classes by their overall balanced accuracy improvement (Figure 6b); and
R3 (improve an important class) orders related classes RC by their improvement on the class bal-
anced accuracy of important class IC, according to the IC’s column of Figure 6a. The determined
class orders for the three requirements are detailed in Appendix C.2.

5.3 ENSEMBLE CASE STUDY RESULTS FOR R3

We applied ensemble AutoGeTS to improve important class T13 following Algorithm 5 in Ap-
pendix C.2, with related classes T12, T10, T11, and T5 identified and ordered based on T13’s
column of Figure 6a. We selected optimal strategy-objective combinations for each class from Ta-
ble 3. Benchmarks included iterating single strategies and random combinations. We conducted
three runs with different train-validation splits and random seeds. T13 balanced accuracy was used
as the performance metric instead of T13 recall, as they align well for T13 while reflecting changes
in other classes (negative instances for T13) not captured by the recall.

The Ensemble Algorithm in Figure 7 achieved the highest T13 balanced accuracy and second-
highest global improvements, with faster and consistently higher T13 performance gains. While

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

all methods are efficient, with HSW and GA achieving peak performance at 20% of retraining time
and SW and ensemble at 40%, these results indicate a ceiling for iterative AutoGeTS enhancement.

(a) Class Balanced Accuracy. (b) Overall Balanced Accuracy.

Figure 6: Each class impact on class-based 6a and overall balanced accuracy 6b applying AutoGeTS.

Algorithm Stack T13-SW Stack T13-HSW Stack T13-GA Random

Figure 7: Average maximum cumulative T13 and overall improvements for 5 ensemble sequences.

6 CONCLUSIONS

This work introduces AutoGeTS, an automated framework optimizing example data selection for
synthetic text generation using Large Language Models (LLMs). AutoGeTS significantly enhances
the level of automation, reducing human efforts in selecting effective examples. This approach
addresses class imbalance and data scarcity challenges in real-world text classification tasks. Exper-
iments demonstrate AutoGeTS’s effectiveness in improving both local and global performance met-
rics. Using Sliding Window, Hierarchical Sliding Window, and Genetic Algorithm, significant im-
provements in inadequately-sampled classes are observed without compromising well-represented
ones. The ensemble algorithm for selecting the most suitable strategies according to the results of
earlier iterations facilitates more efficient optimization processes in later iterations. This approach
that treats earlier testing results as useful knowledge in optimization will likely have a wider appli-
cation in ML model deployment. These findings establish AutoGeTS as an effective solution for
enriching training data with synthetic samples to meet real-world requirements for the performance
of ML models with limitations in data collection. This work confirms that the automated approach
can perform better than human-centric processes in terms of both effectiveness and efficiency. Mean-
while, there is a need to conduct more large-scale experiments and analyze the experiment results
in order to understand and explain how different synthetic data sets improve or undermine an ML
model. Future work may also explore multi-objective optimization strategies, more advanced en-
semble algorithms, and applications of this approach in other ML domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Feras Al-Hawari and Hala Barham. A machine learning based help desk system for it service
management. Journal of King Saud University-Computer and Information Sciences, 33(6):702–
718, 2021.

Tom Bersano, Brad Clement, and Leonid Shilkrot. Synthetic data for testing in databases. University
of Michigan, 1997.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Marc Chalé and Nathaniel D Bastian. Generating realistic cyber data for training and evaluating
machine learning classifiers for network intrusion detection systems. Expert Systems with Appli-
cations, 207:117936, 2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Andoni Cortés, Clemente Rodrı́guez, Gorka Vélez, Javier Barandiarán, and Marcos Nieto. Analysis
of classifier training on synthetic data for cross-domain datasets. IEEE Transactions on Intelligent
Transportation Systems, 23(1):190–199, 2020.

Danilo Croce, Giuseppe Castellucci, and Roberto Basili. Gan-bert: Generative adversarial learning
for robust text classification with a bunch of labeled examples. In Proceedings of the 58th annual
meeting of the association for computational linguistics, pp. 2114–2119, 2020.

Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics:
Methodology and distribution, pp. 569–593. Springer, 1992.

Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit
Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance
in liver lesion classification. Neurocomputing, 321:321–331, 2018a.

Maayan Frid-Adar, Eyal Klang, Michal Amitai, Jacob Goldberger, and Hayit Greenspan. Synthetic
data augmentation using gan for improved liver lesion classification. In 2018 IEEE 15th interna-
tional symposium on biomedical imaging (ISBI 2018), pp. 289–293. IEEE, 2018b.

Phani Krishna Kollapur Gandla, Rajesh Kumar Verma, Chhabi Rani Panigrahi, and Bibudhendu
Pati. Ticket Classification Using Machine Learning, pp. 487–501. Springer Nature Singapore,
2024. ISBN 9789819950157.

Mitsuo Gen, Fulya Altiparmak, and Lin Lin. A genetic algorithm for two-stage transportation prob-
lem using priority-based encoding. OR spectrum, 28:337–354, 2006.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza Haffari, and Mohammad Norouzi. Generate,
annotate, and learn: Nlp with synthetic text. Transactions of the Association for Computational
Linguistics, 10:826–842, 2022.

M Jaderberg, K Simonyan, A Vedaldi, and A Zisserman. Synthetic data and artificial neural net-
works for natural scene text recognition. In NIPS Deep Learning Workshop. Neural Information
Processing Systems, 2014.

Siwei Jiang, Yew-Soon Ong, Jie Zhang, and Liang Feng. Consistencies and contradictions of perfor-
mance metrics in multiobjective optimization. IEEE transactions on cybernetics, 44(12):2391–
2404, 2014.

Yuanzhe Jin, Adrian Carrasco-Revilla, and Min Chen. igaiva: Integrated generative ai and visual
analytics in a machine learning workflow for text classification. arXiv preprint arXiv:2409.15848,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S Yu, and Lifang
He. A survey on text classification: From traditional to deep learning. ACM Transactions on
Intelligent Systems and Technology (TIST), 13(2):1–41, 2022.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large lan-
guage models for text classification: Potential and limitations. In The 2023 Conference on Em-
pirical Methods in Natural Language Processing, 2023.

Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, and Wenqi Wei.
Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023.

Alan K Meier, John Busch, and Craig C Conner. Testing the accuracy of a measurement-based
building energy model with synthetic data. Energy and buildings, 12(1):77–82, 1988.

Alhassan Mumuni, Fuseini Mumuni, and Nana Kobina Gerrar. A survey of synthetic data augmen-
tation methods in computer vision. arXiv preprint arXiv:2403.10075, 2024.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
international conference on data science and advanced analytics (DSAA), pp. 399–410. IEEE,
2016.

Vamsi K Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth
Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, et al. Syn-
thetic data applications in finance. arXiv preprint arXiv:2401.00081, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2020.

Tapas Si, ND Jana, and Jaya Sil. Particle swarm optimization with adaptive polynomial mutation.
In 2011 World Congress on Information and Communication Technologies, pp. 143–147. IEEE,
2011.

Zhihang Song, Zimin He, Xingyu Li, Qiming Ma, Ruibo Ming, Zhiqi Mao, Huaxin Pei, Lihui Peng,
Jianming Hu, Danya Yao, et al. Synthetic datasets for autonomous driving: A survey. IEEE
Transactions on Intelligent Vehicles, 2023.

Lee Spector. Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, pp. 401–408, 2012.

Clifton D Sutton. Classification and regression trees, bagging, and boosting. Handbook of statistics,
24:303–329, 2005.

D Garcia Torres. Generation of synthetic data with generative adversarial networks. Unpublished
doctoral dissertation). Ph. D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 26, 2018.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2023.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning.
arXiv preprint arXiv:2109.09193, 2021.

Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 6382–6388, 2019.

Huayang Xie and Mengjie Zhang. Parent selection pressure auto-tuning for tournament selection in
genetic programming. IEEE Transactions on Evolutionary Computation, 17(1):1–19, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ran Xu, Hejie Cui, Yue Yu, Xuan Kan, Wenqi Shi, Yuchen Zhuang, May Dongmei Wang, Wei Jin,
Joyce Ho, and Carl Yang. Knowledge-infused prompting: Assessing and advancing clinical text
data generation with large language models. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 15496–15523, 2024.

Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P Bennett. Gen-
eration and evaluation of privacy preserving synthetic health data. Neurocomputing, 416:244–255,
2020.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyoung Park. Gpt3mix:
Leveraging large-scale language models for text augmentation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pp. 2225–2239, 2021.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. Ad-
versarial feature matching for text generation. In International conference on machine learning,
pp. 4006–4015. PMLR, 2017.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach. IEEE transactions on Evolutionary Computation, 3(4):257–
271, 1999.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDICES

In the following appendices, we provide further experiment results through visu-
alization plots. The experimental data will be made available on GitHub after the
double-blind review process. These appendices include:

A. Parameters for ML Training — We report the pilot experiments for select-
ing parameters that were used in the training of the benchmark model M0
(trained without synthetic data). The relatively optimal parameter set was
chosen and used for retraining all other models (trained with both collected
data and synthetic data).

B. Parameters for Example Search — We report the pilot experiments se-
lecting parameters to be used by different algorithms that search message
examples to be used as the inputs to LLMs in order to generate synthetic
data.

C. Algorithms — We report the detailed algorithm flowcharts for example data
subset selection, determined after pilot experiments, and multi-class ensem-
ble algorithms, determined through experiments in Section 4.

D. Fixed-Time Experiments — We report a set of experiments, where three
workflows were allowed to use exactly one hour of GPU time for searching
message examples, generating synthetic data, training and testing a model
in multiple iterations in order to develop a model to improve the benchmark
model M0.

E. Comparison with Traditional Data Augmentation — We provide com-
parative analysis between EDA-based and LLM-based AutoGeTS work-
flow, examining both the best improvements (overall and class-specific) and
the temporal progression of overall balanced accuracy improvement across
all 15 classes. The Easy Data Augmentation (EDA) tool (Wei & Zou (2019))
is a traditional data augmentation method.

A PILOT EXPERIMENTS: PARAMETER FOR ML TRAINING

Before developing the AutoGeTS framework, we aimed to improve the original
CatBoost model, M0, through parameter tuning. A grid search was conducted with
the following parameter ranges:

• learning rate: [0.01, 0.05, 0.1, 0.2, 0.5]

• depth: [4, 6, 8, 10]

• l2 leaf reg: [1, 3, 5, 10]

Five-fold cross-validation was employed, with overall classification accuracy as the
primary criterion for evaluating the model performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1 BENCHMARK M0 PARAMETERS EXPERIMENTS

Figure 8: M0 Parameter Experiments Overview.

Figure 8 presents an overview of all experimented M0 CatBoost model parameters
in a parallel coordinate plot. Each line represents a unique parameter set and its
corresponding classification performance. The first three coordinates depict the
experimented parameters: learning rate, tree depth, and L2 leaf regularization. The
subsequent 15 coordinates (T1 to T15) represent the recall for each of the 15 classes,
while the final coordinate shows the overall classification accuracy, which is the
primary performance metric.

(a) M0 Top Performing Parameters. (b) Performances of Learning Rate = 0.2.

Figure 9: M0 Top Performances and Learning Rate = 0.2.

Figure 9a highlights the top-performing parameter sets. These sets consistently
use a learning rate of 0.2, tree depths of 6 or 8, and L2 leaf regularization values
of 1 or 3. Based on these observations, we further examine the performance of
learning rate = 0.2 and determine the optimal values for depth and L2 leaf regular-
ization.

Figure 9b highlights parameter sets with learning rate = 0.2. All highlighted sets
demonstrate good accuracy, including the three best accuracy scores, confirming
0.2 as the optimal learning rate among the experimented values.

Figures 10a and 10b compare model performances between depth = 6 and
depth = 8 with learning rate set to 0.2. While both depth values yield good ac-
curacy, depth = 8 shows slightly superior results overall.

Figures 11a and 11b compare model performances between
L2 leaf regularization = 1 and L2 leaf regularization = 3 with learning rate

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Performances of Depth = 6. (b) Performances of Depth = 8.

Figure 10: M0 Best Experimented Depth Value.

(a) Performances of L2 Leaf Regularization = 1. (b) Performances of L2 Leaf Regularization = 3.

Figure 11: M0 Best Experimented L2 Leaf Regularization Value.

set to 0.2. Both values produce good performances, but L2 leaf regularization = 1
demonstrates marginally better results.

Based on these analyses, the optimal parameter set for the M0 benchmark CatBoost
model is:

• learning rate = 0.2

• depth = 8

• L2 leaf regularization = 1

This parameter set is used for all experiments involving the CatBoost model.

A.2 FURTHER ANALYSIS ON M0

Despite identifying a relatively optimal parameter set, analysis of class-specific per-
formance revealed significant shortcomings. As shown in Table 1, several classes,
particularly small or underrepresented ones (T12, T13, T14, and T15), exhibited
unacceptable performance levels. These classes had balanced accuracies below 0.8
and recall rates around or below 0.5, potentially causing severe delays in messages
and error reports processing.

To this end, we further realised that a serious class imbalance problem exists in the
dataset with these small classes ranging only from 0.5% to 2% of the whole dataset,
and 1.6% to 6.7% of the largest class. Moreover, data scarcity exists in these small
classes, as illustrated in figure 12 that the red and blue dots distribute loosely across
the plot. We therefore decided to investigate the use of synthetic data to improve
this text classification model.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) T12. (b) T13. (c) T14. (d) T15.

Figure 12: M0 PCA Plots for Small Classes T12, T13, T14, T15.

B PILOT EXPERIMENTS: PARAMETERS FOR EXAMPLE SEARCH

In developing the AutoGeTS framework described in Section 3.1, we found that
parameters for both the LLM’s synthetic sample generation and the three example
selection strategies significantly influenced AutoGeTS performance. To determine
optimal parameter sets and understand their impact, we conducted extensive exper-
iments on each component.

Given that our objectives for each retrained model were to maximize both overall
accuracy and class-specific recall for the chosen class, we employed the Hypervol-
ume (HV) indicator (Zitzler & Thiele (1999); Jiang et al. (2014)) to evaluate per-
formance. This indicator allows us to compare results across different parameter
configurations by considering both class-based recall and overall accuracy simulta-
neously.

We implemented 5-fold cross-validation throughout our experiments. In addition to
the HV indicator, we tracked the best accuracy and best class recall across all five
folds as supplementary performance metrics.

B.1 SYNTHETIC DATA GENERATION PARAMETER EXPERIMENTS

The synthetic data generation process utilizes GPT-3.5 through its API interface.
In preliminary experiments, we also evaluated Llama 3 as an alternative language
model for synthetic sample generation, which yielded comparable results.

For each original text sample, we invoke a new chat session and employ a zero-
shot approach without providing additional context. The input prompt template for
generating synthetic samples follows this format:

’Generate ’ + str(num) + ’ lines of the data similar to this format data:
+ ’ meta_data[’text’].values[i] ’ + ’put & at the end of each line’

where ‘num’ is the number of generated samples, meta data is the input data, and
‘i’ is the data index number.

Upon receiving the LLM’s response, we implement an automated pipeline for
cleaning, parsing, and separating the output into ‘num’ synthetic samples based
on the formatting parameters specified in the prompt template. A verification func-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tion inspects each synthetic sample for format quality assurance, checking includes:

• Empty samples or null responses
• Extraneous empty lines or spaces
• Correct placement of separation symbols (‘&’)

If ‘m’ samples fail these quality checks, the generation process is automatically
repeated for the same input text, adjusting the prompt to request only the remaining
‘m’ samples (i.e., ‘Generate ’ + str(m) + ‘ lines...’).

We investigated the impact of varying ‘num’ on AutoGeTS performance through a
series of experiments.

Figure 13: Synthetic Data Generation Parameter Experiments Overview (F0 HV: Fold 0 Hypervol-
ume, MaxO: Max Overall Accuracy Improvement, MaxT: Max Topic Recall Improvement).

Figure 13 presents a parallel coordinate plot of synthetic text generation parameter
experiments. The study utilized the Hierarchical Sliding Window approach, focus-
ing on classes T2 (orange, largest class), T9 (blue, median size class), and T13
(green, smallest class). The primary parameter under investigation, ”Syn Number,”
represents the number of synthetic text samples generated for each selected origi-
nal text data point. The primary criterion, HV, appears as both the second-left and
rightmost coordinates in the plot.

The results indicate that Syn Number = 5 consistently yielded the best Hypervol-
ume for all three classes among the tested values. Consequently, we adopted the
generation of five synthetic samples per selected original data point for all subse-
quent experiments.

B.1.1 PCA PROJECTION OF SYNTHETIC SAMPLES

To verify the effectiveness of generated synthetic samples in addressing class im-
balance and data scarcity, we projected these data using the same fitted vectorizer
and PCA model used for the original data.

Figure 14 presents updated PCA plots for small classes T12, T13, T14, and T15.
The inclusion of synthetic samples significantly increased the number of colored

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) T12. (b) T13. (c) T14. (d) T15.

Figure 14: M0 PCA Plots with Synthetic Samples for Small Classes T12, T13, T14, T15.

data points. Moreover, these additional points appear more densely clustered, sug-
gesting improvement on the previous data scarcity issues.

To illustrate the nature of the synthetic data generated, we present an example of an
original data example and its corresponding LLM-generated synthetic samples. The
following listing shows the original Spanish text followed by five synthetic samples,
demonstrating how the LLM maintains the context and structure while introducing
variations in content:

Listing 1: Original data example and LLM-generated synthetic samples
Original Data Example:
phone_nmb
En el ticket REQ0026231 se le solicita acceso a unidades de red pero

sigue sin poder acceder y figura como resuelto, revisar por favor, la
usuaria lleva 2 meses con este problema

Synthetic Samples:
1. El cliente reporta que su cuenta de correo electronico ha sido

bloqueada, por favor revisar el caso REQ0027456.

2. Se solicita la instalacion de un software especifico en el equipo del
usuario, el ticket es REQ0028745.

3. El usuario indica que no puede imprimir desde su equipo, se necesita
revision del caso REQ0029367.

4. La usuaria reporta problemas con su conexion a internet, el ticket es
REQ0030172.

5. Se requiere la asignacion de permisos adicionales en el sistema para
el usuario, el caso es REQ0031298.

As evident from Listing 1, the synthetic samples maintain the overall structure of
a ticketing system entry while diversifying the reported issues, demonstrating the
LLM’s ability to generate contextually relevant and varied data.

B.1.2 SYNTHETIC SAMPLES PERFORMANCES WITHOUT EXAMPLES SELECTION

To evaluate the potential of our generated synthetic samples in improving the text
classification model M0, we appended all generated synthetic samples to the train-
ing set and retrained the CatBoost model M0 for small classes T12, T13, T14, and
T15.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Tables 4 and 5 present the results of this experiment. We observed that class-based
performance often improved when synthetic samples for that class were appended,
demonstrating the potential of synthetic data. However, only T12 showed improve-
ment in overall performance. Notably, T13 failed to improve even its class-specific
performance.

Table 4: Performance of Retrained Models with T12 and T13 Synthetic Samples

Class ∆ Balanced Accuracy ∆ Recall ∆ F1-Score
T12 T13 T12 T13 T12 T13

T1 ▼0.0014 ▼0.0011 ▼0.0034 ▼0.0023 ▼0.0006 ▼0.0009
T2 ▲0.0036 ▼0.0033 ▲0.0044 ▼0.0058 ▲0.0053 ▼0.0040
T3 ▲0.0015 ▼0.0003 ▲0.0032 ▲0.0011 ▲0.0013 ▼0.0054
T4 ▲0.0104 ▼0.0001 ▲0.0214 0.0000 ▲0.0064 ▼0.0016
T5 ▼0.0015 ▼0.0018 ▼0.0038 ▼0.0038 ▲0.0022 ▼0.0015
T6 ▼0.0021 ▲0.0036 ▼0.0027 ▲0.0080 ▼0.0102 ▼0.0003
T7 ▲0.0023 ▼0.0039 ▲0.0025 ▼0.0076 ▲0.0161 ▼0.0065
T8 ▲0.0046 ▼0.0104 ▲0.0085 ▼0.0212 ▲0.0144 ▼0.0101
T9 ▼0.0011 ▼0.0066 ▼0.0036 ▼0.0144 ▲0.0093 ▲0.0014
T10 ▲0.0094 ▲0.0043 ▲0.0179 ▲0.0090 ▲0.0192 ▲0.0041
T11 ▲0.0001 0.0000 0.0000 0.0000 ▲0.0053 0.0000
T12 ▲0.0376 ▼0.0234 ▲0.0781 ▼0.0469 ▼0.0497 ▼0.0364
T13 ▼0.0333 ▼0.0127 ▼0.0667 ▼0.0222 ▼0.0753 ▼0.1506
T14 ▲0.0110 ▲0.0040 ▲0.0222 ▲0.0074 ▲0.0144 ▲0.0184
T15 ▼0.0045 ▼0.0298 ▼0.0085 ▼0.0598 ▼0.0177 ▼0.0543

Overall ▲0.0015 ▼0.0023 ▲0.0028 ▼0.0043 ▲0.0028 ▼0.0043

Table 5: Performance of Retrained Models with T14 and T15 Synthetic Samples

Class ∆ Balanced Accuracy ∆ Recall ∆ F1-Score
T14 T15 T14 T15 T14 T15

T1 ▼0.0011 ▼0.0004 ▼0.0029 ▼0.0017 ▼0.0003 ▲0.0005
T2 ▼0.0014 ▼0.0039 ▼0.0071 ▼0.0097 ▲0.0011 ▼0.0030
T3 ▼0.0027 ▼0.0027 ▼0.0054 ▼0.0043 ▼0.0029 ▼0.0063
T4 ▼0.0071 ▲0.0069 ▼0.0142 ▲0.0142 ▼0.0071 ▲0.0037
T5 ▼0.0035 ▼0.0044 ▼0.0075 ▼0.0094 ▼0.0023 ▼0.0027
T6 ▲0.0023 ▼0.0027 ▲0.0054 ▼0.0054 ▼0.0012 ▼0.0042
T7 ▲0.0073 ▲0.0023 ▲0.0152 ▲0.0051 ▲0.0053 ▼0.0007
T8 ▼0.0080 ▼0.0104 ▼0.0169 ▼0.0212 ▼0.0013 ▼0.0101
T9 ▼0.0024 ▼0.0031 ▼0.0072 ▼0.0072 ▲0.0165 ▲0.0047
T10 ▼0.0095 ▲0.0016 ▼0.0179 ▲0.0030 ▼0.0200 ▲0.0039
T11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
T12 ▼0.0156 ▲0.0001 ▼0.0313 0.0000 ▼0.0278 ▲0.0122
T13 0.0000 ▼0.0111 0.0000 ▼0.0222 0.0000 ▼0.0243
T14 ▲0.0135 ▼0.0259 ▲0.0370 ▼0.0519 ▼0.1219 ▼0.0388
T15 ▼0.0128 ▲0.0219 ▼0.0256 ▲0.0513 ▼0.0241 ▼0.1079

Overall ▼0.0026 ▼0.0026 ▼0.0049 ▼0.0049 ▼0.0049 ▼0.0049

These mixed results suggest that indiscriminate use of all generated synthetic sam-
ples may not consistently yield improvements. This observation led us to conclude
that a selective approach to choosing text examples for synthetic data generation is
necessary. Such selection consequently filters the generated samples to be appended
for retraining the text classification model.

To evaluate the effectiveness of selection strategies, we first established a random
selection baseline, followed by our proposed strategic selection methods. The fol-
lowing sections present these evaluations, beginning with the random selection
baseline results.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.1.3 SYNTHETIC SAMPLES PERFORMANCES WITH RANDOM EXAMPLES SELECTION

To establish a baseline for evaluating selection strategies, we implemented a ran-
dom selection approach. For each target class, this baseline process randomly sam-
ples a random number (between 1 and the size of the class pool) of examples with
replacement, where selected examples subsequently go through the synthetic data
generation process described at the beginning of Appendix B.1. We evaluated this
baseline using 1 GPU hour fixed-time experiments to improve M0, maintaining
consistency with the experimental settings described in Section 4.

Figure 15: Random Selection Results Distribution on Improving OBA (left) and CBA (Right).

The optimization process ran multiple iterations for 1 GPU hour, averaging 299
iterations per class, with 4487 sets of random selected examples tested in total.
Figure 15 presents the performance distribution of models retrained using each ex-
ample set. The overall balanced accuracy (OBA) improvement ranged from -0.9%
to 0.2%, with an average of -0.3% and only 3.9% of retraining leading to positive
OBA improvement. At the class level, the class balanced accuracy (CBA) improve-
ment fluctuated between -5.8% and 4.7%, with an average of -2.2% and 9.1% of
retraining achieving positive CBA improvement.

Table 6: Performance Comparison between Random Selection and Strategic Selections.

Class Random Sliding Window Hierarchical SW Genetic Algorithm
Name Overall Class Overall Class Overall Class Overall Class

T2 ▲0.0012 ▼0.0155 ▲0.0030 ▲0.0050 ▲0.0034 ▲0.0048 ▲0.0009 ▼0.0010
T1 ▲0.0009 ▼0.0202 ▲0.0028 ▲0.0005 ▲0.0029 ▲0.0005 ▲0.0018 ▼0.0018
T3 ▲0.0014 ▼0.0148 ▲0.0030 ▲0.0058 ▲0.0027 ▲0.0062 ▲0.0029 ▲0.0069
T5 ▲0.0002 ▼0.0136 ▲0.0032 ▲0.0189 ▲0.0034 ▲0.0140 ▲0.0010 ▲0.0059
T7 ▲0.0018 ▼0.0091 ▲0.0036 ▲0.0228 ▲0.0034 ▲0.0226 ▲0.0012 ▼0.0026
T6 ▲0.0016 ▼0.0124 ▲0.0035 ▲0.0190 ▲0.0030 ▲0.0196 ▲0.0015 ▲0.0073

T10 ▼0.0006 ▲0.0051 ▲0.0034 ▲0.0281 ▲0.0044 ▲0.0247 ▲0.0027 ▲0.0208
T9 ▲0.0016 ▲0.0049 ▲0.0036 ▲0.0147 ▲0.0027 ▲0.0191 ▲0.0026 ▲0.0077
T4 ▲0.0018 ▲0.0118 ▲0.0029 ▲0.0304 ▲0.0033 ▲0.0369 ▲0.0036 ▲0.0323
T8 ▲0.0012 ▲0.0146 ▲0.0030 ▲0.0321 ▲0.0029 ▲0.0358 ▲0.0020 ▲0.0142

T14 ▲0.0009 ▲0.0029 ▲0.0023 ▲0.0326 ▲0.0029 ▲0.0395 ▲0.0019 ▲0.0396
T15 ▲0.0005 ▲0.0067 ▲0.0033 ▲0.0456 ▲0.0034 ▲0.0446 ▲0.0037 ▲0.0533
T11 ▲0.0020 ▼0.0248 ▲0.0030 ▲0.0054 ▲0.0030 ▲0.0053 ▲0.0039 ▲0.0053
T12 ▲0.0014 ▲0.0472 ▲0.0037 ▲0.0699 ▲0.0032 ▲0.0772 ▲0.0036 ▲0.0775
T13 ▲0.0006 ▲0.0237 ▲0.0030 ▲0.0443 ▲0.0037 ▲0.0548 ▲0.0034 ▲0.0548

The best results achieved through random selection are presented in Table 6. While
overall performance improvements were observed, the random selection struggled
particularly with improving class performance for larger classes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

One set of plots showing the overall balanced accuracy (OBA) improvements over
time for the 15 classes is presented in Figure 16, where the random selection bench-
mark results are shown in gray dash-lines. We can observe that random selection
frequently achieves only marginal improvements over the original model, as evi-
denced in classes T7, T13, T14, and T15. Moreover, for T10, the random selection
approach performed worse than the original model.

T2 for OBA T1 for OBA T3 for OBA

T5 for OBA T7 for OBA T6 for OBA

T10 for OBA T9 for OBA T4 for OBA

T8 for OBA T14 for OBA T15 for OBA

T11 for OBA T12 for OBA T13 for OBA

Figure 16: Fixed 1 Hour GPU time (x-axis, in seconds), Comparing on OBA Improvement (y-axis).

These findings motivated us to develop the three example selection strategies and
conduct parameter studies for each, which we present in the following sections.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2 EXAMPLE SELECTION STRATEGIES PARAMETER EXPERIMENTS

B.2.1 SLIDING WINDOW (SW) PARAMETERS EXPERIMENTS

We investigated the parameters of the Sliding Window strategy. Figure 17a presents
an overview of the experimental results. The parameters under investigation are:

• Area Size (AS): the size of the area to which the sliding window is applied
• Num Seg (NS): the number of segments/bins per dimension
• Window Size (WS): the number of bins per window

These parameters are represented by the three leftmost coordinates in the plot. We
used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

(a) Performances of Sliding Window Parameter Exper-
iments. (b) Sliding Window Top Results.

Figure 17: Sliding Window Parameter Experiments Overview and Top Results.

Figure 17b highlights the top-performing parameter sets. The two best configu-
rations both used Number of Segments (Num Seg) = 16 and Window Size = 4.
Subsequent analysis focuses on verifying the effectiveness of these values and de-
termining the optimal Area Size.

(a) Performances of Num Seg = 16. (b) Performances of Window Size = 4.

Figure 18: Sliding Window Num Seg and Window Size Parameter Experiments.

Figure 18a shows that Num Seg = 16 yields both top and suboptimal results,
with consistently good performance when Window Size ¿ 1. Similarly, Figure 18b
demonstrates that Window Size = 4 produces good results when Num Seg ̸= 4.
These findings confirm that Num Seg = 16 and Window Size = 4 are optimal
values among those tested.

Figures 19a and 19b compare the two Area Size values tested:

• FullSize: using the minimum and maximum values from the entire dataset
for each dimension

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Performances of Area Size = FullSize. (b) Performances of Area Size = TopicMinMax.

Figure 19: Sliding Window Area Size Parameter Experiments.

• TopicMinMax: using the minimum and maximum values only from the se-
lected topic/class

The results show no clear advantage for either option. Therefore, we selected
the Area Size that produced the higher hypervolume given Num Seg = 16 and
Window Size = 4. In conclusion, the experimentally determined optimal parame-
ter set for the Sliding Window strategy is:

• Area Size = TopicMinMax
• Num Seg = 16
• Window Size = 4

B.2.2 HIERARCHICAL SLIDING WINDOW (HSW) PARAMETERS EXPERIMENTS

We investigated the parameters of the Hierarchical Sliding Window (HSW) strategy.
Figure 20a presents an overview of the parameter experiments. The parameters
under investigation are:

• Area Size (AS)
• Window Size (WS)
• Level 0 Num Seg (NS0)
• Level 1 Num Seg (NS1)
• Level 2 Num Seg (NS2, using a 3-level structure for HSW)

These parameters are represented by the five leftmost coordinates in the plot. We
used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

Figure 20b highlights the top two parameter sets, both using Area Size = TopicMin-
Max and Window Size = Half of each level’s Num Seg. Subsequent analysis focuses
on verifying these parameter choices and determining optimal Num Seg values for
each level.

Figures 21a and 21b compare FullSize and TopicMinMax Area Size values. While
both show variable performance, TopicMinMax yields more top results, leading to
its selection.

Figures 22a and 22b compare the Window Size of Half and 1. Window Size = Half
clearly outperforms, leading to its selection.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Performances of Hierarchical Sliding Window Pa-
rameter Experiments. (b) Hierarchical Sliding Window Top Results.

Figure 20: Hierarchical Sliding Window Parameter Experiments Overview and Top Results.

(a) Performances of Area Size = FullSize. (b) Performances of Area Size = TopicMinMax.

Figure 21: Hierarchical Sliding Window Area Size Parameter Experiments.

(a) Performances of Window Size = Half. (b) Performances of Window Size = 1.

Figure 22: Hierarchical Sliding Window Window Size Parameter Experiments.

(a) Performances of Level 0 Num Seg = 8. (b) Performances of Level 0 Num Seg = 2.

Figure 23: Hierarchical Sliding Window Level 0 Number of Segments Parameter Experiments.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figures 23a and 23b compare Level 0 Num Seg values of 8 and 2, when Window
Size = Half. Num Seg = 8 shows more consistent good performance, leading to its
selection.

(a) Performances of Level 1 Num Seg = 8. (b) Performances of Level 1 Num Seg = 4.

Figure 24: Hierarchical Sliding Window Level 1 Number of Segments Parameter Experiments.

Figures 24a and 24b compare Level 1 Num Seg values of 8 and 4. While both yield
top results, Num Seg = 4 shows better overall performance, leading to its selection.

Figure 25: Performances of Level 2 Num Seg = 2.

Figure 25 shows results for Level 2 Num Seg = 2. Performance is consistently good
when Level 1 Num Seg ̸= 2, aligns with our previous parameter choices. Therefore,
with Level 0 Num Seg = 8 and Level 1 Num Seg = 4, Level 2 Num Seg = 2 will
provide top results.

In conclusion, the optimal parameter set for the Hierarchical Sliding Window strat-
egy is:

• Area Size = TopicMinMax
• Window Size = Half of each Level’s Num Seg
• Level 0 Num Seg = 8
• Level 1 Num Seg = 4
• Level 2 Num Seg = 2

B.2.3 GENETIC ALGORITHM (GA) PARAMETERS EXPERIMENTS

We investigated the parameters for the Genetic Algorithm (GA) strategy. Figure 26
presents an overview of the parameter experiments. The parameters under investi-
gation are:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Population Size and Selection Size (PSSize)

• Crossover Rate and Initial Mutation Rate (CMRate)

These parameters are represented by the four leftmost coordinates in the plot. We
used the Hypervolume Indicator as the primary comparison metric, supplemented
by the maximum values of both objectives in each of the 5 cross-validation folds.

Figure 26: Genetic Algorithm Parameters Experiment Overview (PSSize: Population-Selection
Size, CMRate: Crossover-Mutation Rate).

(a) Performances of Population and Selection Sizes of
20 and 20.

(b) Performances of Crossover and Initial Mutation
rates of 0.7 and 0.3.

Figure 27: Genetic Algorithm Parameters Experiments.

Figure 27a illustrates the performance when both population size and selection size
are set to 20. These results consistently outperform the alternative configuration of
population size 20 and selection size 10.

Figure 27b shows the performance with a crossover rate of 0.7 and an initial mu-
tation rate of 0.3. This configuration demonstrates superior performance compared
to the alternative rates of 0.9 and 0.1, respectively, when population and selection
sizes are held constant.

Based on these experiments, we determined the optimal parameter set for the Ge-
netic Algorithm strategy:

• Population Size = 20

• Selection Size = 20

• Crossover Rate = 0.7

• Initial Mutation Rate = 0.3

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C ALGORITHMS

C.1 EXAMPLES SUBSET SELECTION STRATEGIES

Based on the parameter experiments reported in Appendix B, we finalized the work-
flows for the three example selection algorithms. To complement the description
provided in Section 3.3, we present here the detailed workflows for the Hierarchi-
cal Sliding Window (HSW) and Genetic Algorithm (GA) strategies.

Algorithm 1 Hierarchical Sliding Window Selection Strategy

Require: a s – x and y range of each PCA plot; n s – list of number of segments for each level;
w s – list of window sizes for each level; data syn – synthetic data; class – the selected class;
l – level of hierarchical sliding window

Ensure: Best windows found on each level
1: for each plot in PCA plots do
2: Initialize l← 0
3: Initialize selected windows← {a s}
4: while l < length of n s and not terminated do
5: best windows← {}
6: for each area in selected windows do
7: Perform sliding window on area using n s[l] and w s[l]
8: for each window in sliding window do
9: Retrieve data dots from window belonging to class

10: syn samples← AutoGeTS(data dots, data syn)
11: Train classification model using syn samples
12: Evaluate model and compute performance metric J ′(W)
13: Record performance metric as the score for window
14: end for
15: Add window with maximum score to best windows
16: end for
17: selected windows← best windows
18: l← l + 1
19: if termination condition met then
20: Set terminated to True
21: end if
22: end while
23: end for
24: return selected windows

Algorithm 1 outlines the Hierarchical Sliding Window (HSW) selection strategy.
This algorithm iteratively refines the search space across multiple levels, efficiently
identifying optimal windows for synthetic data generation.

Algorithm 2 details the Genetic Algorithm (GA) selection strategy. This evolu-
tionary approach uses fitness-based selection, crossover, and mutation operations
to optimize the set of data examples used for synthetic data generation.

C.2 ENSEMBLE MULTI-CLASS ALGORITHMS

This section presents detailed algorithms for the ensemble strategies outlined in
Section 3.4. These algorithms are designed to address specific business require-
ments identified in Section 3.2.

Algorithm 3 addresses Requirement 1, focusing on improving the performance of
underperforming classes. Algorithm 4 targets Requirement 2, aiming to enhance

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 2 GA Selection-Generation-Retraining Approach

Require: n – population size; gmax – maximum generations; F (S) – fitness score from objective
function; mutation – representation mutation function; crossover – representation crossover
function; pcro – crossover probability; pmut – mutation probability.

Ensure: The final individual(s) maximises the fitness score
1: P0 ← randomly generated population of selected data examples of size n with priority value

based chromosome representation
2: F0 ← {F(P0[i]) | i ∈ 1, . . . , n} {Evaluate initial population fitness through AutoGeTS pro-

cess}
3: G← 0 {Generation counter}
4: while G < gmax do
5: Select individuals for the mating pool using Lexicase and Clustered tournament selection

based on fitness score
6: P ′ ← Generate offspring using weight mapping crossover and adaptive polynomial mutation

with probability pcro and pmut
7: Evaluate offspring: F ′ ← {F(P ′[i]) | i ∈ 1, . . . , n} {Evaluate new population}
8: Combine parent and offspring populations: R← PG ∪ P ′

9: Select the next generation PG+1 from R using elitism.
10: G← G+ 1 {Increment generation counter}
11: end while
12: Return the best set(s) of data examples in PG based on fitness score

Figure 28: Class Orders for R1 (improve each class), R2 (improve overall performance), and R3
(improve an important class).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

overall classification performance. Algorithm 5 addresses Requirement 3, which
prioritizes improving the performance of a specific important class.

Each algorithm iteratively utilizes the AutoGeTS process, incorporating insights
from our experimental results, including the strategy-objective combinations from
Table 3 and class relationships and class order from Figures 6b and 6a. In Figure 6a,
each row represents the application of AutoGeTS to one of the fifteen classes, while
each column shows the corresponding improvement in class balanced accuracy for
that particular class. The resulting class orderings for the three requirements are il-
lustrated in Figure 28. The blue column depicts the class ordering for Requirement
1 (improving all individual class performance), where the bottom-most dot repre-
sents the first-ordered class and the top-most dot indicates the last-ordered class.
The green column shows the class ordering for Requirement 2 (improving overall
performance), while the orange columns display the class ordering for Requirement
3 (improving a specific important class), with each R3 column corresponding to a
designated important class.

Algorithm 3 Requirement 1: Improve Bad Performing Classes

Require: Classes with performance metrics, AutoGeTS process, GA parameters
Ensure: Improved classification model for bad-performing classes

1: Sort classes by class size in ascending order
2: for Iteration i, each class Ci with class balanced accuracy < 0.8 do
3: Select strategy-objective that best improves Ci balanced accuracy from Lookup Table 3
4: Apply AutoGeTS to Ci

5: if improvement achieved then
6: Record maximum improvement and corresponding model m for Ci

7: if exist M maintain improvement in each Cn<i balanced accuracy by at least 50% then
8: Select model m from M that best improves Ci’s balanced accuracy
9: else

10: Terminate algorithm
11: end if
12: Append the synthetic sample from m to the training set
13: else
14: Terminate algorithm
15: end if
16: end for

Algorithm 4 Requirement 2: Improve Overall Performance

Require: Classes with performance metrics, AutoGeTS process, GA parameters
Ensure: Improved overall classification performance

1: while overall performance can be improved do
2: Select a class C in descending order of improving overall performance based on figure 6b.
3: Select strategy-objective combination that best improves global metrics for C from Lookup

Table 3
4: Apply AutoGeTS to C
5: Record maximum improvement and corresponding model m for C
6: Append the synthetic sample from m to the training set
7: if overall performance not improved then
8: Terminate algorithm
9: end if

10: end while

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm 5 Requirement 3: Improve Important Class

Require: Classes with performances, AutoGeTS process, GA parameters, Important class IC
Ensure: Improved important class performance

1: Identify related classes RC of IC from figure 6a.
2: Sort IC and RC in descending order of IC improvement according to figure 6a.
3: for iteration i, each class ICi or RC in the order do
4: Apply AutoGeTS to ICi or RC with the strategy-objective combination that best improves

its local metrics according to Lookup Table 3
5: Record maximum improvement in ICi’s class performance and corresponding model m
6: Append the synthetic sample from m to the training set
7: if IC performance not improved then
8: Terminate algorithm
9: end if

10: end for

D FIXED-TIME EXPERIMENTS

D.1 FIXED-TIME EXPERIMENTS: IMPROVING LOCAL VS GLOBAL METRIC

Following our analysis of the Performance Improvement Overview in Section 4.2
and before comparing strategies and objectives in Section 4.3, we investigated
whether AutoGeTS could simultaneously improve both class-specific and overall
performance, and to what extent these goals might be contradictory. To this end,
we compared models trained with synthetic data that achieved maximum improve-
ments in either the local metric (Class Balanced Accuracy) or the global metric
(Overall Balanced Accuracy) for all 15 classes.

Analysis of Figure 29 reveals significant insights into AutoGeTS’s performance.
When optimizing for local metrics, 11 out of 15 classes (excluding T1, T7, T8, and
T14) showed improvements without negatively impacting the global metric. Only
T7 and T8 exhibited relatively larger decreases (−0.1%) in global performance
when local performance was maximized. Similarly, when optimizing for global
metrics, 11 out of 15 classes (excluding T1, T9, T11, and T14) demonstrated im-
provements without compromising local performance. In this case, only T9 showed
a relatively larger decrease (-1%) in local performance when global performance
was maximized. These observations demonstrate AutoGeTS’s capability to simul-
taneously improve both local and global metrics in the majority of cases, confirming
its effectiveness in addressing both class-specific and overall performance goals.

However, the instances where trade-offs occurred between local and global perfor-
mance suggest the need for future research into advanced optimization methods.
Such research could explore both example selection strategies and objective func-
tions capable of optimizing multiple objectives simultaneously, potentially elimi-
nating these trade-offs and further enhancing AutoGeTS’s performance across all
classes.

D.2 FIXED-TIME EXPERIMENTS: PERFORMANCE TRAJECTORIES OVER RETRAINING TIME

Following the comparison of the three example selection strategies in Section 4.3,
we further analyzed their performance improvements with respect to retraining

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Class T2 Class T1 Class T3

Class T5 Class T7 Class T6

Class T10 Class T9 Class T4

Class T8 Class T14 Class T15

Class T11 Class T12 Class T13

Figure 29: Models Found with Maximum Improvements in Class Balanced Accuracy or Overall
Balanced Accuracy for each of 15 Classes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

time. Four experiments were conducted, each maximizing a different metric: Class
Recall, Class Balanced Accuracy, Overall Balanced Accuracy, and Overall F1-
Score. The three example search strategies and 15 classes served as independent
variables, with a constraint of 1 hour total GPU running time.

Figure 30 compares improvements in Class Recall when maximizing Class Recall
is the optimization objective. Figure 31 compares improvements in Class Balanced
Accuracy when maximizing Class Balanced Accuracy is the optimization objective.
Figure 32 compares improvements in Overall Balanced Accuracy when maximiz-
ing Overall Balanced Accuracy is the optimization objective. Figure 33 compares
improvements in Overall F1-Score when maximizing Overall F1-Score is the opti-
mization objective.

For these class-specific metrics, we observed that HSW often achieves its best or
near-best improvements within the first 1/3 of training time, especially for classes
where it performs best. GA typically reaches its peak performance within the first
1/3 of retraining time, except for T14 and T15. However, for these classes, GA
outperforms other strategies even before reaching its best performance. These ob-
servations confirm the computational efficiency of HSW and GA strategies.

SW also often achieves its best performance around 1/3 of retraining time. But for
classes where it outperforms other strategies (e.g., T5 and T10), SW only surpasses
others quite late, starting from around 2/3 or even 4/5 of retraining time. This
reflects both its advantage in avoiding plateaus and its computational inefficiency
due to its brute-force nature.

Figure 33 compares improvements in Overall F1-Score when maximizing Overall
F1-Score is the optimization objective.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

T2 for CR T1 for CR T3 for CR

T5 for CR T7 for CR T6 for CR

T10 for CR T9 for CR T4 for CR

T8 for CR T14 for CR T15 for CR

T11 for CR T12 for CR T13 for CR

Figure 30: Fixed Time, Class Recall as Objective, Comparing on Class Recall Improvement: each
time series plot has six lines. SW max, HSW max, GA max, SW avg, HSW avg, GA avg.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

T2 for CBA T1 for CBA T3 for CBA

T5 for CBA T7 for CBA T6 for CBA

T10 for CBA T9 for CBA T4 for CBA

T8 for CBA T14 for CBA T15 for CBA

T11 for CBA T12 for CBA T13 for CBA

Figure 31: Fixed Time, Class Balanced Accuracy as Objective, Comparing on Class Balanced Ac-
curacy Improvement: each time series plot has six lines. SW max, HSW max, GA max, SW avg,
HSW avg, GA avg.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

T2 for OBA T1 for OBA T3 for OBA

T5 for OBA T7 for OBA T6 for OBA

T10 for OBA T9 for OBA T4 for OBA

T8 for OBA T14 for OBA T15 for OBA

T11 for OBA T12 for OBA T13 for OBA

Figure 32: Fixed Time, Overall Balanced Accuracy as Objective, Comparing on Overall Balanced
Accuracy Improvement: each time series plot has six lines. SW max, HSW max, GA max, SW avg,
HSW avg, GA avg.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

T2 for OF1 T1 for OF1 T3 for OF1

T5 for OF1 T7 for OF1 T6 for OF1

Class T10 Class T9 Class T4

T8 for OF1 T14 for OF1 T15 for OF1

T11 for OF1 T12 for OF1 T13 for OF1

Figure 33: Fixed Time, Overall F1-Score as Objective, Comparing on Overall F1-Score Improve-
ment: each time series plot has six lines. SW max, HSW max, GA max, SW avg, HSW avg, GA
avg.

For these global metrics, we observed that all three strategies often required more
than 1/3 of retraining time to reach their best or near-best performance, especially
for Overall Balanced Accuracy. This suggests improving global metrics would be
more computationally complex than improving local metrics for all three strategies,
as it would require a more synergistic effect.

When improving global metrics, GA often leads in performance gain from early
on (around 1/3 retraining time) for classes where it obtains the largest improve-
ment. SW and HSW show more variable timing in achieving leading performance,
ranging from early to late in the retraining process. GA’s performance pattern con-

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

firms its evolutionary nature, demonstrating an ability to maintain and exploit good
solutions once found.

E BENCHMARK DATA AUGMENTATION COMPARISON EXPERIMENTS

To provide an additional baseline for evaluating the AutoGeTS workflow, we im-
plemented traditional data augmentation methods, alongside the LLM-based ap-
proach, as the generator in the synthetic data generation process. Specifically, we
utilized the Easy Data Augmentation (EDA) tool (Wei & Zou (2019)), which incor-
porates techniques such as synonym replacement, random insertion, random swap,
and random deletion. The evaluation followed our established experimental pro-
tocol of 1 GPU hour fixed-time experiments to improve M0, employing Random,
SW, HSW, and GA selection strategies, each executed separately with either max-
imizing Overall Balanced Accuracy (OBA) or Class Balanced Accuracy (CBA) as
the optimization objective. All experimental parameters remained consistent with
those described in Section 4.

E.1 BEST PERFORMANCE COMPARISON: OBA & CBA IMPROVEMENTS

Table 7: Overall Balanced Accuracy (Global) Comparison between EDA and GPT-3.5 as Generator.

Class Random Sliding Window Hierarchical SW Genetic Algorithm
Name EDA GPT-3.5 EDA GPT-3.5 EDA GPT-3.5 EDA GPT-3.5

T2 ▲0.0001 ▲0.0012 ▲0.0012 ▲0.0030 ▲0.0014 ▲0.0034 ▲0.0004 ▲0.0009
T1 ▲0.0006 ▲0.0009 ▲0.0017 ▲0.0028 ▲0.0024 ▲0.0029 ▲0.0012 ▲0.0018
T3 ▲0.0006 ▲0.0014 ▲0.0011 ▲0.0030 ▲0.0018 ▲0.0027 ▲0.0010 ▲0.0029
T5 ▲0.0003 ▲0.0002 ▲0.0014 ▲0.0032 ▲0.0011 ▲0.0034 ▲0.0006 ▲0.0010
T7 ▲0.0006 ▲0.0018 ▲0.0009 ▲0.0036 ▲0.0015 ▲0.0034 ▲0.0006 ▲0.0012
T6 ▲0.0010 ▲0.0016 ▲0.0010 ▲0.0035 ▲0.0013 ▲0.0030 ▲0.0013 ▲0.0015

T10 ▼0.0011 ▼0.0006 ▲0.0008 ▲0.0034 ▲0.0015 ▲0.0044 ▲0.0016 ▲0.0027
T9 ▲0.0001 ▲0.0016 ▲0.0019 ▲0.0036 ▲0.0014 ▲0.0027 ▲0.0011 ▲0.0026
T4 ▲0.0010 ▲0.0018 ▲0.0005 ▲0.0029 ▲0.0019 ▲0.0033 ▲0.0018 ▲0.0036
T8 ▲0.0006 ▲0.0012 ▲0.0008 ▲0.0030 ▲0.0011 ▲0.0029 ▲0.0014 ▲0.0020

T14 ▲0.0006 ▲0.0009 ▲0.0014 ▲0.0023 ▲0.0019 ▲0.0029 ▲0.0003 ▲0.0019
T15 ▲0.0001 ▲0.0005 ▲0.0011 ▲0.0033 ▲0.0013 ▲0.0034 ▲0.0022 ▲0.0037
T11 ▲0.0012 ▲0.0020 ▲0.0014 ▲0.0030 ▲0.0014 ▲0.0030 ▲0.0022 ▲0.0039
T12 ▲0.0010 ▲0.0014 ▲0.0011 ▲0.0037 ▲0.0021 ▲0.0032 ▲0.0020 ▲0.0036
T13 ▲0.0004 ▲0.0006 ▲0.0013 ▲0.0030 ▲0.0011 ▲0.0037 ▲0.0022 ▲0.0034

Table 8: Class Balanced Accuracy (Local) Comparison between EDA and GPT-3.5 as Generator.

Class Random Sliding Window Hierarchical SW Genetic Algorithm
Name EDA GPT-3.5 EDA GPT-3.5 EDA GPT-3.5 EDA GPT-3.5

T2 ▼0.0212 ▼0.0155 ▲0.0003 ▲0.0050 ▲0.0003 ▲0.0048 ▼0.0011 ▼0.0010
T1 ▼0.0219 ▼0.0202 ▼0.0030 ▲0.0005 ▼0.0027 ▲0.0005 ▼0.0028 ▼0.0018
T3 ▼0.0215 ▼0.0148 ▲0.0015 ▲0.0058 ▲0.0007 ▲0.0062 ▼0.0012 ▲0.0069
T5 ▲0.0001 ▼0.0136 ▲0.0139 ▲0.0189 ▲0.0149 ▲0.0140 ▲0.0048 ▲0.0059
T7 ▼0.0082 ▼0.0091 ▲0.0191 ▲0.0228 ▲0.0180 ▲0.0226 ▲0.0056 ▼0.0026
T6 ▼0.0055 ▼0.0124 ▲0.0122 ▲0.0190 ▲0.0195 ▲0.0196 ▲0.0093 ▲0.0073

T10 ▲0.0013 ▲0.0051 ▲0.0244 ▲0.0281 ▲0.0255 ▲0.0247 ▲0.0203 ▲0.0208
T9 ▼0.0174 ▲0.0049 ▲0.0041 ▲0.0147 ▲0.0071 ▲0.0191 ▼0.0023 ▲0.0077
T4 ▲0.0138 ▲0.0118 ▲0.0293 ▲0.0304 ▲0.0272 ▲0.0369 ▲0.0340 ▲0.0323
T8 ▼0.0000 ▲0.0146 ▲0.0181 ▲0.0321 ▲0.0285 ▲0.0358 ▲0.0242 ▲0.0142

T14 ▼0.0014 ▲0.0029 ▲0.0153 ▲0.0326 ▲0.0221 ▲0.0395 ▲0.0185 ▲0.0396
T15 ▲0.0038 ▲0.0067 ▲0.0245 ▲0.0456 ▲0.0409 ▲0.0446 ▲0.0199 ▲0.0533
T11 ▼0.0143 ▼0.0248 ▲0.0051 ▲0.0054 ▲0.0052 ▲0.0053 ▲0.0051 ▲0.0053
T12 ▲0.0405 ▲0.0472 ▲0.0656 ▲0.0699 ▲0.0705 ▲0.0772 ▲0.0709 ▲0.0775
T13 ▲0.0204 ▲0.0237 ▲0.0415 ▲0.0443 ▲0.0514 ▲0.0548 ▲0.0392 ▲0.0548

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

As our deployment strategy selects the best-performing model for each target class
based on specified objectives, we analyze the maximum OBA and CBA improve-
ments achieved and compare them with the AutoGeTS performance presented in
Section 4.2. Tables 7 and 8 present these comparative results.

The comparison between EDA and LLM (GPT-3.5) approaches reveals consis-
tent performance advantages for the LLM-based AutoGeTS workflow across all
selection strategies. With the random selection, EDA’s best-performing models
performed below LLM’s by margins of 0.06% in OBA and 0.25% in CBA, un-
derperforming in 15 and 11 classes respectively. This performance gap widened
with strategic selection methods: under SW, EDA performed 0.20% lower in OBA
and 0.69% lower in CBA than LLM, with inferior results across all 15 classes for
both metrics. Similarly, with HSW, EDA showed 0.17% lower OBA and 0.51%
lower CBA on average, underperforming in 15 and 13 classes respectively. The GA
strategy yielded comparable results, with EDA’s best-performing models averaging
0.11% below LLM in OBA and 0.51% below in CBA, showing lower performance
in 15 and 11 classes respectively.

E.2 COMPARISON OF OBA IMPROVEMENTS OVER TIME

We extend our analysis to examine the temporal progression of overall balanced
accuracy (OBA) improvements across all 15 classes, comparing EDA and LLM
(GPT-3.5) results within the 1-GPU hour experimental constraint.

Figure 34 presents these comparisons, displaying the results of four selection strate-
gies (SW, HSW, GA, and random selection) for both approaches. The EDA results
are depicted with solid lines, while the corresponding LLM results are shown with
dotted or dashed lines of the same color. Across all 15 classes, each EDA trajectory
(solid line) mostly falls below its LLM counterpart (dotted or dashed line), demon-
strating the superior overall performance of the LLM-based AutoGeTS workflow.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

T2 for OBA T1 for OBA T3 for OBA

T5 for OBA T7 for OBA T6 for OBA

T10 for OBA T9 for OBA T4 for OBA

T8 for OBA T14 for OBA T15 for OBA

T11 for OBA T12 for OBA T13 for OBA

Figure 34: Fixed 1 Hour GPU time (x-axis, in seconds), Comparing on OBA Improvement (y-axis):
solid lines are from EDA and dotted lines are from GPT-3.5.

40

	Introduction
	Related Work
	Methods
	AutoGeTS Architecture and Workflow
	Objectives for Model Optimization
	Strategies for Example Selection
	Sliding Window (SW)
	Hierarchical Sliding Window (HSW)
	Genetic Algorithm (GA)

	Ensemble Algorithm

	Experiments and Results
	Experiment Setup
	Performance Improvements Overview
	Comparison of Example Selection Strategies and Optimization Objectives
	Pareto Analysis for Representative Classes

	Ensemble Algorithm and Further Experimentation
	Summary of Strategy-Objective Combinations
	Local and Global Metrics Improvement Across Classes
	Ensemble Case Study Results for R3

	Conclusions
	Pilot Experiments: Parameter for ML Training
	Benchmark M0 Parameters Experiments
	Further Analysis on M0

	Pilot Experiments: Parameters for Example Search
	Synthetic Data Generation Parameter Experiments
	PCA Projection of Synthetic Samples
	Synthetic Samples Performances without Examples Selection
	Synthetic Samples Performances with Random Examples Selection

	Example Selection Strategies Parameter Experiments
	Sliding Window (SW) Parameters Experiments
	Hierarchical Sliding Window (HSW) Parameters Experiments
	Genetic Algorithm (GA) Parameters Experiments

	Algorithms
	Examples Subset Selection Strategies
	Ensemble Multi-Class Algorithms

	Fixed-Time Experiments
	Fixed-Time Experiments: Improving Local vs Global Metric
	Fixed-Time Experiments: Performance Trajectories over Retraining Time

	Benchmark Data Augmentation Comparison Experiments
	Best Performance Comparison: OBA & CBA Improvements
	Comparison of OBA Improvements over Time

