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Abstract
Conformal prediction (CP) is a promising uncer-
tainty quantification framework which works as a
wrapper around a black-box classifier to construct
prediction sets (i.e., subset of candidate classes)
with provable guarantees. However, standard cal-
ibration methods for CP tend to produce large
prediction sets which makes them less useful in
practice. This paper considers the problem of in-
tegrating conformal principles into the training
process of deep classifiers to directly minimize
the size of prediction sets. We formulate confor-
mal training as a bilevel optimization problem
and propose the Direct Prediction Set Minimiza-
tion (DPSM) algorithm to solve it. The key in-
sight behind DPSM is to minimize a measure of
the prediction set size (upper level) that is con-
ditioned on the learned quantile of conformity
scores (lower level). We analyze that DPSM has
a learning bound of O(1/

√
n) (with n training

samples), while prior conformal training meth-
ods based on stochastic approximation for the
quantile has a bound of Ω(1/s) (with batch size s
and typically s≪

√
n). Experiments on various

benchmark datasets and deep models show that
DPSM significantly outperforms the best prior
conformal training baseline with 20.46% ↓ in the
prediction set size and validates our theory.

1. Introduction
Deep neural networks have achieved high prediction accu-
racy and enabled numerous applications in diverse domains
including computer vision (He et al., 2016; 2017) and natu-
ral language processing (Vaswani et al., 2017; Kumar et al.,
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2016). However, to safely deploy deep machine learning
(ML) classifiers in high-stakes applications (e.g., medical
diagnosis (Begoli et al., 2019; Yang & Fevens, 2021)) and
to build efficient human-ML collaborative systems (e.g., a
classifier produces a small set of decisions and a human
selects from them (Cresswell et al., 2024; Straitouri et al.,
2023; Babbar et al., 2022)), we need reliable uncertainty
quantification (UQ) (Abdar et al., 2021). UQ could take the
form of a prediction set (a subset of classes) for classifica-
tion tasks. For example, in medical diagnosis (Begoli et al.,
2019; Yang & Fevens, 2021), such prediction sets allow a
doctor to rule out harmful diagnoses such as stomach cancer,
even if the most likely diagnosis is a stomach ulcer.

Conformal prediction (CP) is a general framework that pro-
vides finite-sample guarantees of valid prediction sets to
include the correct output, which are agnostic to the ML
model and data distribution (Vovk et al., 2005; Angelopou-
los & Bates, 2021). As a result, CP is increasingly used
for UQ in real-world problems (Cresswell et al., 2024; Lu
et al., 2022b;a). The general principle behind CP is to con-
vert the output of an ML model on a given input example
(e.g., softmax scores of a deep classifier) into a prediction set
(Romano et al., 2020) that contains the true label with a user-
specified probability (e.g., 90% probability) referred to as
coverage via a calibration step. One of the main limitations
of standard CP is that it tends to produce large prediction
sets, which may not be useful in practice (Vovk et al., 2016;
Babbar et al., 2022; Straitouri et al., 2023). Recent prior
work focused on how to improve the predictive efficiency of
CP (Fisch et al., 2021a;b; Angelopoulos et al., 2021; Huang
et al., 2023a; Ding et al., 2024; Shi et al., 2024). However,
their focus is on the calibration step only by considering the
underlying ML model as a black-box.

Recent work has considered integrating CP into classi-
fier training to trade-off between prediction accuracy and
conformal alignment (e.g., minimizing the size of predic-
tion sets) in an end-to-end fashion (Stutz et al., 2021; Ein-
binder et al., 2022; Yan et al., 2024). For instance, ConfTr
(Stutz et al., 2021) incorporates a stochastic approximation
(SA) of the average prediction set size into the training
objective function based on empirical quantiles over mini-
batches. To achieve accurate conditional coverage, con-
formal uncertainty-aware training (CUT) (Einbinder et al.,
2022) employs a similar SA approach to acquire the empiri-
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cal quantiles of non-conformity scores on mini-batches and
penalizes their deviation from the uniformity. However, a
primary challenge for these SA-based conformal training
methods is the large error between the empirical batch-level
quantiles and the true quantiles, resulting in a learning bound
of up to O(1/

√
s) with batch size s (Einbinder et al., 2022) .

This bound is significantly larger than the standard learning
bound of O(1/

√
n) with n training samples in empirical risk

minimization (ERM) (Mohri et al., 2018; Shalev-Shwartz
& Ben-David, 2014). Consequently, it notably degenerates
the overall trade-off between the prediction accuracy and
conformal alignment of the trained classifier. This motivates
the main question of this paper: can we develop a confor-
mal classifier training method to calibrate the conformal
uncertainty with a standard O(1/

√
n) learning bound?

This paper gives an affirmative answer by developing a
novel conformal classifier training algorithm referred to
as Direct Prediction Set Minimization (DPSM). The key
idea behind DPSM is to formulate conformal training as
a bilevel optimization problem (Ghadimi & Wang, 2018;
Zhang et al., 2024) that estimates the empirical quantile
of non-conformity scores by learning a quantile regression
(QR) in the lower-level subproblem. Conditioned on this
learned quantile, the upper-level subproblem measures and
minimizes the prediction set size of CP. This bilevel formu-
lation implicitly defines a conformal alignment objective
and we analyze that minimizing the resulting function leads
to a learning bound of O(1/

√
n). In contrast, we show that

the learning bound of the prior SA-based conformal training
methods is lower bounded by Ω(1/s) with batch size s (typi-
cally s≪

√
n). Moreover, to optimize the DPSM objective,

we develop a simple and practical stochastic first-order algo-
rithm. Our experiments on diverse real-world datasets with
different conformity scores and deep models demonstrate
that DPSM achieves significant reduction (↓ 20.46%) in
prediction set sizes compared to the best baseline.

Contributions. The key contributions of this paper include:

• We develop a new conformal training algorithm DPSM
as a bilevel formulation, which directly minimizes the
prediction set size (upper level) conditioned on the
learned quantile of the conformity scores (lower level).

• We analyze the learning bound of DPSM and find that
it is bounded above by O(1/

√
n), which significantly

improves over the existing conformal training methods
whose lower bound is at least Ω(1/s).

• We develop a simple stochastic first-order algorithm to
optimize the DPSM training objective.

• Experiments on multiple benchmark datasets to demon-
strate significant improvements of DPSM over the best
prior conformal training baseline (20.46% ↓ predic-
tion set size) and to validate our theoretical results.

The DPSM code is available at https://github.
com/YuanjieSh/DPSM_code.

2. Related Work
Conformal Prediction has been extensively studied (An-
gelopoulos & Bates, 2021) recently. Key contributions in-
clude laying the foundational principles in CP (Vovk et al.,
2005; 1999; Shafer & Vovk, 2008). There is some focus
on cross-validation methods (Vovk, 2015) and the jack-
knife+ approach (Barber et al., 2021), but split CP is the
most common approach(Vovk et al., 2005; Romano et al.,
2020; Oliveira et al., 2024), where calibration of a given
pre-trained model is performed on a held-out dataset. CP
is applied in many tasks including classification (Romano
et al., 2020; Angelopoulos et al., 2021; Cauchois et al.,
2021), regression (Romano et al., 2019; Gibbs et al., 2023;
Gibbs & Candes, 2021; Sesia & Romano, 2021), computer
vision (Angelopoulos et al., 2024; 2022; Bates et al., 2021),
adversarial attacks (Liu et al., 2024; Ghosh et al., 2023b),
online learning (Angelopoulos et al., 2023; Bhatnagar et al.,
2023), and generative tasks (Shahrokhi et al., 2025). Valid
coverage and predictive efficiency are two critical and often
competing evaluation measures in CP (Angelopoulos et al.,
2021). Recent CP advances include the development of new
conformity scores (Angelopoulos et al., 2021; Huang et al.,
2023a) and calibration procedures (Fisch et al., 2021b;a;
Guan, 2023; Ghosh et al., 2023a; Ding et al., 2024; Kiyani
et al., 2024b; Shi et al., 2024; Zhu et al., 2025) to improve
predictive efficiency with valid coverage. These methods
follow the general CP workflow by relying on pre-trained
models. Consequently, their predictive efficiency critically
depends on the underlying ML model. However, since the
ML models are not specifically trained for conformal align-
ment, CP may produce large prediction sets (Bellotti, 2021).

Conformal Training aims at integrating CP into the clas-
sifier training process to promote conformal alignment. A
typical approach is to introduce a regularization function
that integrates conformity property into the training pro-
cess(Bellotti, 2021; Stutz et al., 2021; Einbinder et al., 2022;
Yan et al., 2024). For example, ConfTr (Stutz et al., 2021)
integrates CP into the training of deep classifiers through a
differentiable approximation for the average prediction set
size, allowing for smaller and valid prediction sets using
the CP-aware classifier. Conformalized uncertainty-aware
training (CUT) (Einbinder et al., 2022) combines the con-
formity scores with a uncertainty-aware loss function for
accurate conditional coverage. It penalizes the deviation
of the conformity scores from the uniformity during the
training process. However, both ConfTr and CUT employ a
stochastic quantile of non-conformity scores from a mini-
batch of s samples, resulting in a large O(1/

√
s) error with

respect to the true quantile depending on the batch size s.
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Bilevel Optimization has been extensively studied due to
its critical role in many ML use-cases (Liu et al., 2021),
including reinforcement learning (Cheng et al., 2022; Zhou,
2024; Shen et al.), federated learning (Huang et al., 2023b;
Yang et al., 2023), and continual learning (Borsos et al.,
2020; Zhou et al., 2022; Hao et al., 2024; Borsos et al.,
2024). Bilevel optimization methods can be roughly catego-
rized into three groups: (i) implicit gradient methods (Chen
et al., 2021; Ji et al., 2021; Dagréou et al., 2022; Ghadimi
& Wang, 2018; Pedregosa, 2016; Domke, 2012), (ii) itera-
tive differentiation methods (Bolte et al., 2022; 2021), and
(iii) penalty-based methods (Lu & Mei, 2024; Chen et al.,
2024b;a; Shen & Chen, 2023; 2025). Compared to penalty-
based methods, implicit gradient methods typically require
more restrictive assumptions, such as twice differentiable
and strongly-convex lower-level function (Shen & Chen,
2025). On the other hand, iterative differentiation methods
typically require an iterative subroutine for the lower-level
problem with more computational cost (Shen & Chen, 2025).
Instead, penalty-based methods build a single level problem
and only use first-order information (Shen & Chen, 2023).
To summarize, bilevel optimization algorithms either require
restrictive assumptions or have complex update steps. It is
non-trivial to find a practical algorithm that is particularly
tailored for our proposed conformal training problem.

Our goal is to develop a bilevel conformal training algo-
rithm with (i) a standard O(1/

√
n) learning bound for n

training samples to improve over O(1/
√
s) for batch size s

from prior conformal training methods, and (ii) a practical
stochastic first-order bilevel optimization algorithm.

3. Background and Motivation
Notations. Suppose X ∈ X is an input from X , and
Y ∈ Y = {1, 2, · · · ,K} is the ground-truth label, where
K is the number of candidate classes. Let (X,Y ) be a data
sample drawn from an underlying distribution P defined
on X × Y . Let f(X) : X → ∆K

+ denote the confidence
prediction by soft classifier f ∈ F (e.g., Softmax scores),
where ∆K

+ is the (K-1)-dimensional probability simplex,
f(X)y is the confidence score of class y and F denotes a
hypothesis class. Define Dtr = {(Xi, Yi)}ni=1 as the train-
ing set of n samples for training classifier f . We denoteDcal
and Dtest as two separate calibration and testing datasets,
respectively. We assume that there are m calibration sam-
ples, i.e., |Dcal| = m. Define 1[·] as an indicator function.
Denote B = {(Xi, Yi)|i ∈ Is} as a randomly sampled
batch of training data of size s, such that the batch index set
Is ⊂ {1, 2, · · · , n} with |Is| = s. Given a function h(x, y),
we denote ∇xh(x, y) as the directional derivative of h in x

and ∇̂xh(x, y) as its stochastic estimation.

Conformal Prediction. As mentioned above, CP calibrates
predictions from a given model based on a non-conformity

scoring function. Let S : X × Y → R denote a non-
conformity scoring function to measure the difference be-
tween a new data and existing ones (Vovk et al., 2005). For
simplicity of notation, we denote the non-conformity score
of the i-th example as Si = Sf (Xi, Yi) for (Xi, Yi) ∈ Dtr
and of the j-th smallest value in {Si}ni=1 as S(j). Many non-
conformity scoring functions are proposed in prior work
(Huang et al., 2023a; Angelopoulos et al., 2021; Shafer
& Vovk, 2008). In this paper, we consider Homogeneous
Prediction Sets (HPS) (Sadinle et al., 2019), Adaptive Pre-
diction Sets (APS) (Romano et al., 2020), and Regular-
ized Adaptive Prediction Sets (RAPS) (Angelopoulos et al.,
2021) (details are in Appendix A). We assume that there is
no tie in non-conformity scores (Romano et al., 2020).

Given the mis-coverage parameter α and an underlying
model f , on a testing data (Xtest, Ytest), CP aims to achieve
a coverage of the true label with a prediction set Cf : X →
2|Y| with probability at least 1− α, i.e.,

P(Xtest,Ytest)∽P{Ytest ∈ Cf (Xtest)} ≥ 1− α. (1)

CP typically constructs Cf (Xtest) via the empirical quantile
Q̂f (α) on the calibration set Dcal:

Cf (Xtest) = {y ∈ Y : Sf (Xtest, y) ≤ Q̂f (α)}, (2)

where Q̂f (α) is computed as the ⌈(1−α)(1+m)⌉th smallest
value in {Sf,i}mi=1 and is an estimation to the population
quantile Qf (α) = min{τ : PX,Y [Sf (X,Y ) ≤ τ ] ≥ 1−α}.
Throughout this paper, unless otherwise specified, we omit
the target mis-coverage α for notation simplicity, e.g., Qf .

Quantile-based Conformal Training. The goal is to align
the classification model f with favorable conformal prin-
ciples (Bellotti, 2021). A general framework (Stutz et al.,
2021; Einbinder et al., 2022) is to establish the trade-off
between prediction accuracy and conformal alignment on
the training set Dtr with an objective structured as follows:

minf Lcls(f) + λ · Lc(f), (3)

where Lcls(f) is the classification loss (e.g., cross entropy),
Lc(f) is the conformal alignment loss based on the quantile
Qf , and λ is the regularization hyper-parameter. Follow-
ing (Stutz et al., 2021), this paper focuses on a concrete
definition of Lc(f) as the expected differentiable size of
prediction sets:

Lc(f) = ℓ(f,Qf ), such that (4)

ℓ(f, q) ≜ EX

[∑
y∈Y

1̃
[
Sf (X, y) ≤ q

]]
︸ ︷︷ ︸

differentiable EX [|Cf (X)|]

,

where 1̃[·] is a smoothed estimator for the indicator function
1[·] and defined by a Sigmoid function (Stutz et al., 2021),
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i.e., 1̃[S ≤ q] = 1/(1 + exp(−(q − S)/τSigmoid)) with a
tunable temperature parameter τSigmoid. Here, we denote
ℓ(f, q) as a general conformal loss function that takes any f
and q as inputs, and Lc(f) requires the true quantile Qf as
the input to ℓ.

However, it is challenging to accurately compute Lc(f,Qf )
when training f , as Qf is an implicit function of f . On one
hand, updating f iteratively also changes Qf accordingly.
On the other hand, after getting an updated f , re-computing
an empirical quantile Q̂f on training data Dtr requires sort-
ing all n non-conformity scores of training data, with a
computational complexity of O(n log(n)).

To address the above-mentioned challenge, prior conformal
training methods (Stutz et al., 2021; Einbinder et al., 2022)
employ a stochastic approximation (SA) method to esti-
mate Lc(f) in batches. Specifically, at each iteration during
training, they use the empirical batch-level quantile from
a mini-batch B sampled from Dtr, denoted by q̂f , as the
input to ℓ, i.e., ℓ(f, q̂f ). Since q̂f depends on the randomly
sampled batches, we regard q̂f as a random variable drawn
from its underlying distributionQf , i.e., q̂f ∼ Qf (we defer
our analysis for Qf to Proposition 3.4 stated below). Then
the in-effect SA-based conformal loss L̂SA

c (f) is given by

L̂SA
c (f) =Eq̂f∼Qf

[ℓ̂(f, q̂f )], such that (5)

ℓ̂(f, q) ≜
1

n

n∑
i=1

[∑
y∈Y

1̃
[
Sf (Xi, y) ≤ q

]]
,

where ℓ̂(f, q) is an empirical version of ℓ(f, q) on Dtr.

A key limitation of the SA method is the large error gap
between the true and in-effect conformal alignment loss
functions, i.e., |L̂SA

c (f) − Lc(f)|. Prior work (Einbinder
et al., 2022) showed that the error of SA-based conformal
alignment loss is upper bounded by O(1/

√
s) with batch

size s. We further analyze the learning error for the SA-
based conformal alignment loss in this paper, including its
lower bound. We start with the following assumptions.

Assumption 3.1. (Bi-Lipschitz continuity of score S(j))
S(j) is bi-Lipschitz continuous for normalized order j/n
such that L1| j1n −

j2
n | ≤ |S(j1) − S(j2)| ≤ L2| j1n −

j2
n | for

L1, L2 > 0.

Assumption 3.2. (µ-strongly concavity of ℓ̂(f, q)) ℓ̂(f, q)
is µ-strongly concave locally around E[q̂f ] for fixed f .

Remark 3.3. We conduct experiments to empirically verify
the Assumptions 3.1 and 3.2 (See Fig 4). These assumptions
allow us to analyze how the SA-based conformal training
method approaches to the true conformal alignment loss.

The following proposition reveals the specification of the
distribution Qf aforementioned in L̂SA

c (5) that considers
q̂f as a random variable drawn from the training dataset Dtr.

Proposition 3.4. (Distribution of mini-batch quantiles) De-
fine an event Z(j) as “the j-th smallest score S(j) from
{Si}ni=1 is randomly selected as q̂s(α) on a mini-batch B”.
Then the probability of Z(j) is:

P(Z(j)) =

(
j

⌈(1−α)(s+1)⌉
)(

n−j−1
s−⌈(1−α)(s+1)⌉−1

)(
n
s

) .

Furthermore, we have the following asymptotic result

lim
n→∞

P(Z(j)) =
e

n
PBeta

( j
n
;⌈(1− α)(s+ 1)⌉+ 1;

s− ⌈(1− α)(s+ 1)⌉
)
,

where PBeta(x; a; b) is the PDF of Beta distribution with two
shape parameters a, b and e is the Euler’s number.

With the above proposition that captures the random sam-
pling process of the quantile q̂f in each mini-batch, we are
ready to present the following main result analyzing the
learning bound of the SA-based conformal training method.

Theorem 3.5. (Learning bounds of SA method) Suppose
that Assumption 3.1 and 3.2 hold. Assume (1− α)(s+ 1)
is not an integer. If ⌈(1− α)(s+ 1)⌉ − (1− α)(s+ 1) ≥
Ω(1/s) and s ≤

√
n, then the following inequality holds

with probability at least 1− δ:

Ω(1/s) ≤ |L̂SA
c (f)− Lc(f)| ≤ Õ(1/

√
s).

Remark 3.6. Throughout this paper, we use Õ to suppress
the log dependency. The above result shows the upper bound
Õ(1/

√
s) and lower bound Ω(1/s) of learning error of the

SA-based conformal training method. It is worth noting that
even the lower bound Ω(1/s) can be significantly larger than
the standard result O(1/

√
n) as in empirical risk minimiza-

tion (Mohri et al., 2018) under a common setting s ≤
√
n

for training deep models (Masters & Luschi, 2018).

4. Direct Prediction Set Minimization Method
In this section, we first propose Direct Prediction Set
Minimization (DPSM) algorithm by formulating it as a
bilevel optimization problem. Next, we show that the learn-
ing bound of DPSM is at most O(1/

√
n) (Theorem 4.1),

which improves over the SA-based conformal training meth-
ods (Ω(1/s), Theorem 3.5). Finally, we develop a simple
and practical optimization algorithm to solve it.

4.1. Bilevel Problem Formulation and Learning Bound

The key idea to directly minimize the prediction sets is
inspired by quantile regression (QR), a well-studied method
to learn the quantile of a set of random variables. A common
approach to training QR is to minimize an average pinball
loss on a set of data (Narayan et al., 2024; Gibbs et al.,
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2023; Koenker, 2005; Koenker & Bassett Jr, 1978). For the
(1− α)-quantile, the pinball loss is defined as follows.

ρα(q, S) =

{
(1− α)(S − q), if S ≥ q,

α(q − S), otherwise,
(6)

where S and q represent a real value and quantile prediction,
respectively. Minimizing the average pinball loss on a set of
data {Si}ni=1 gives the (1−α)-quantile of n scores {Si}ni=1:

q∗ ∈ argminq
1

n

n∑
i=1

ρα(q, Si). (7)

Conformal Training via Bilevel Optimization. Instead of
using a stochastic quantile on each batch of data, we propose
to incorporate QR into the conformal training objective as a
constraint. Conditioned on solving this QR-based constraint
and acquiring the accurate quantile, we directly minimize
the average size of prediction sets. Specifically, we for-
mulate the following bilevel optimization problem for our
DPSM method for conformal training:

minf,q L̂cls(f) + λ · L̂DM
c (f, q) (8)

s.t. q ∈ U(f) ≜ argminq′ L̂QR(f, q′),

where L̂QR(f, q) = 1
n

∑n
i=1 ρα(q, Sf (Xi, Yi)) in the lower

level is the average pinball loss for the non-conformity
scores on n training samples, and the conformal alignment
loss L̂DM

c (f, q) is given by

L̂DM
c (f, q) =

1

n

n∑
i=1

[∑
y∈Y

1̃[Sf (Xi, y) ≤ q]

]
, (9)

which follows the definition of L̂SA
c (f) in (5) except that

it allows any variable q as the input quantile, instead of a
stochastic quantile q̂f ∼ Qf . To analyze DPSM, following
the bilevel optimization literature (Chen et al., 2024a; Shen
& Chen, 2023), we define the implicit conformal loss:

L̄DM
c (f) ≜ minq∈U(f)L̂DM

c (f, q).

The key innovation in the proposed bilevel conformal train-
ing problem (8) compared with the SA-based method is
to explicitly parameterize the quantile with a single score
variable q. This approach has been used in the CP literature
(Gibbs et al., 2023; Gibbs & Candès, 2024; Kiyani et al.,
2024a; Deshpande et al., 2024; Podkopaev et al., 2024), and
we employ it for conformal training in our bilevel formu-
lation for the first time. Conditioned on q, regardless of
how accurate q is during training relative to the true Qf , the
conformal alignment loss L̂DM

c (f, q) participates in training.

The major benefit of the quantile parameterization idea is
that it decouples the quantile q from the stochastic batches

during training f , rather than the immediate dependency as
in the SA-based conformal training, i.e., q̂f ∼ Qf . Specif-
ically, QR in the lower-level subproblem, due to its well-
known property, enables the iterative updates for q until
attaining the (1− α)-quantile of non-conformity scores as
training f . If an optimization algorithm ensures the simulta-
neous convergence of both variables in Problem (8) to their
optimal solution sets (discussed in Section 4.2), i.e.,

q → U(f), f → argminf L̂cls(f) + λ · L̄DM
c (f),

then we can achieve an improved learning bound for the
conformal alignment loss |L̄DM

c (f)−Lc(f)| that is indepen-
dent from batch size s. This is the reason why we named
our method as direct prediction set minimization (DPSM).

Improved Learning Bound of DPSM. As in Theorem
3.5, we show that the learning error of SA-based method
|L̂SA

c (f)−Lc(f)| is upper bounded by O(1/
√
s) and lower

bounded by Ω(1/s), respectively. We then show that the
learning error of DPSM |L̄DM

c (f)−Lc(f)| can be bounded
above by O(1/

√
n) in the following result.

Theorem 4.1. (Learning bound of DPSM) Suppose As-
sumption 3.1 holds. For any classifier model f ∈ F , with
probability at least 1− δ, we have:

|L̄DM
c (f)− Lc(f)| ≤ Õ(1/

√
n).

Remark 4.2. The above theorem directly answers the central
question that we asked in the introduction, i.e., bilevel con-
formal training calibrates the conformal uncertainty with a
standard O(1/

√
n) learning bound as in ERM (Mohri et al.,

2018; Shalev-Shwartz & Ben-David, 2014). In comparison
with the learning error bounds of the SA-based conformal
training method derived in Theorem 3.5, the DPSM bound
improves by dropping the dependency on the batch size s.

The improved learning bound of DPSM over SA-based
methods is mainly due to smaller error in estimating the true
quantile, i.e., |q−Qf |. Indeed, results shown in Fig 7 (c) and
(d) empirically demonstrates this hypothesis. The practical
significance of this result is that the smaller estimation error
of DPSM results in improved conformal alignment of the
classifier leading to smaller prediction set sizes.

4.2. Stochastic Optimization for DPSM

Challenges for DPSM. There is a large literature on meth-
ods for bilevel optimization (Liu et al., 2021; Beck et al.,
2023). However, existing methods typically require restric-
tive assumptions to guarantee convergence. Some exam-
ples of such assumptions include requiring Lipscthiz Hes-
sians (Chen et al., 2024a; 2021; Dagréou et al., 2022; Yang
et al., 2021a); twice continuously differentiable (Kwon et al.,
2024); requiring solving a subproblem (Liu et al., 2020);
strongly convex lower-level subproblem (Gong et al., 2024b;
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Algorithm 1 Direct Prediction Set Minimization (DPSM)
1: Input: Training dataset Dtr, regularization parameter λ,

learning-rate η, γ > 0, mis-coverage level α
2: Randomly initialize the deep neural network f0 and

quantile regression model parameter q0 ∈ R
3: Randomly split Dtr into two disjoint subsets D1 and D2

with the same size such that |D1| = |D2| = n
2

4: for t← 0 : T − 1 do
5: Randomly sample two batches B1t ⊂ D1,B2t ⊂ D2

6: Compute ∇̂f,t ← ∇̂f L̂cls(ft−1) on batch B1t
7: Compute ∇̂QR

q,t ← ∇̂qL̂QR(ft−1, qt−1) on batch B1t
8: Compute ∇̂DM

f,t ← ∇̂f L̂DM
c (ft−1, qt−1) on batch B2t

9: ft+1 ← ft − η
(
∇̂f,t + λ∇̂DM

f,t

)
10: qt+1 ← qt − γ∇̂QR

q,t

11: end for
12: Output: the trained classification model fT

Kwon et al., 2023; Ji et al., 2021; Gong et al., 2024a; Chen
et al., 2024c; Hong et al., 2023; Khanduri et al., 2021); con-
vexity in both upper and lower levels (Sabach & Shtern,
2017); unique lower-level solution (Liu et al., 2022); and
Lipschitz smoothness (Shen & Chen, 2023) (less restrictive).

In the DPSM problem (8), the standard classification loss
L̂cls(f) and the conformal alignment loss L̂DM

c (f, q) are not
necessarily convex in f and q. Meanwhile, the QR loss
L̂QR(f, q) in the lower level is not continuously differen-
tiable, not strongly convex, and typically has non-unique
solution set even for the case without any tie in confor-
mity scores. To the best of our knowledge, there is no
prior stochastic optimization algorithm that solves DPSM
problem with the assumptions of bilevel optimization liter-
ature satisfied and convergence guaranteed. Consequently,
it is non-trivial and an open challenge to develop a simple
stochastic gradient optimization algorithm to solve a prob-
lem that shares similar conditions with DPSM. We leave
this challenge for future work.

Penalty-based Reformulation. Given that the lower-level
function in DPSM is not strongly convex, implicit gradient
methods,e.g., (Ghadimi & Wang, 2018), cannot handle it.
Penalty-based methods is another large family in the bilevel
optimization literature. A recent paper (Chen et al., 2024b)
studied a penalty-based method when the lower-level prob-
lem satisfies Hölderian error bound, and meanwhile both
upper and lower level objectives are non-smooth, which
is one of the most relevant setting to the DPSM problem
at hand. Hence, we reformulate DPSM as a penalty-based
problem and analyze the global solution of the penalty-based
DPSM problem with a penalty parameter σ.

minf,qL̂cls(f) + λ · L̂DM
c (f, q) (10)

+ σ(L̂QR(f, q)− L̂QR(f, q∗)), where q∗ ∈ U(f).

Definition 4.3. (Hölderian error bound) A function h(x),
where its domain dom(h) is a closed convex set, satisfies
Hölderian error bound if there exists ν ≥ 1 and c > 0 s.t.

dist(x,X∗)ν ≤ c(h(x)−minx′∈X∗h(x′)),∀x ∈ dom(h),

where X∗ = argminx∈dom(h)h(x) is the optimal solution
set for minimizing h(x) and dist(x,X∗) = minx′∥x− x′∥
denotes the Euclidean distance between x and X∗.

Remark 4.4. Hölderian error bound (HEB) is a well-studied
condition in optimization (Pang, 1997; Bolte et al., 2017).
It captures the local sharpness of the objective function that
helps accelerate the optimization convergence (Roulet &
d’Aspremont, 2017; Yang & Lin, 2018). The following
result shows that L̂DM

c (f, q) satisfies HEB w.r.t. q.

Lemma 4.5. (HEB for QR loss) Suppose there is no tie in
conformity scores {Si}ni=1. Then for a fixed f , L̂QR(f, q)
satisfies HEB w.r.t. q for the exponent ν = 1 and c > 0.

Corollary 4.6. (Global solution of penalized problem) Sup-
pose L̂cls(f) and L̂DM

c (f, q) is Lcls- and LDM-Lipschitz
continuous, respectively. For any given ϵ > 0, let l =
(Lcls + LDM) and σ = cl in (10). Then the ϵ-optimal solu-
tion of the penalized problem is an (ϵ, ϵ/l)-optimal solution
of the original problem.

This is an immediate result from Theorem 2.7 in (Chen et al.,
2024b) and connects the solution of the penalized DPSM
problem (10) to that of the original DPSM problem (8).

Simple Stochastic Gradient-based Algorithm. We further
present a simple stochastic gradient algorithm to optimize
Problem (8). We summarize this approach in Algorithm 1. It
mainly follows the common schemes in standard stochastic
gradient methods to iteratively update the two variables f
and q simultaneously. First, it randomly splits the training
set Dtr into two disjoint subsets D1 and D2 with the same
size (Line 3). Next, given the fixed model ft−1 and quantile
variable qt−1, we compute three stochastic gradients over
mini-batches in each training iteration: (i) ∇̂f L̂cls(ft−1) on
mini-batches of D1 (Line 6), (ii) ∇̂f L̂DM

c (ft−1, qt−1) on
mini-batches of D2 (Line 8), and (iii) ∇̂qL̂QR(ft−1, qt−1)
on mini-batches of D1 (Line 7). Next, we update the model
ft (Line 9) and quantile qt (Line 10) accordingly with their
learning rates ηt and γt.

It is worth noting that the proposed DPSM optimization algo-
rithm is particularly tailored for our bilevel conformal train-
ing problem (8). 1) We employ D1 to compute ∇̂fLcls(f)

and ∇̂qL̂QR(f, q), while evaluate ∇̂f L̂DM
c (f, q) onD2. This

has been used in conformal training (Einbinder et al., 2022)
and helps to prevent over-fitting. 2) We rely on simple first-
order information to update, rather than hyper-gradient or
penalization from the existing bilevel optimization methods.
This design keeps the iterative update simple especially for
practitioners. Our empirical results in Figure 7 demonstrate
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Table 1. HPS � Training, HPS and APS � Calibration/Testing (details in Appendix E): The average prediction set size (APSS) on
three datasets with two deep models trained with HPS and calibrated/tested with HPS and APS when α = 0.1. ↓ indicates the percentage
improvement in predictive efficiency compared to the best existing method, whereas ↑ denotes a percentage decrease in predictive
efficiency. All results are averaged over 10 different runs, with the mean and standard deviation reported. DPSM significantly outperforms
almost all the best baselines with 20.46% reduction in prediction set size on average across all three datasets and two scores.

Model HPS APS

CE CUT ConfTr DPSM CE CUT ConfTr DPSM

DenseNet 3.50 ± 0.10 1.62 ± 0.030 4.10 ± 0.19 0.90 ± 0.003 (↓ 44.44%) 8.44 ± 0.15 3.87 ± 0.11 8.64 ± 0.21 1.58 ± 0.022 (↓ 59.17%)
ResNet 1.57 ± 0.018 1.64 ± 0.049 1.52 ± 0.040 0.91 ± 0.005 (↓ 44.51%) 4.50 ± 0.059 4.59 ± 0.072 3.61 ± 0.08 1.74 ± 0.031 (↓ 51.80%)

DenseNet 2.59 ± 0.053 2.27 ± 0.09 2.28 ± 0.07 2.17 ± 0.086 (↓ 4.82%) 3.38 ± 0.12 2.41 ± 0.11 3.08 ± 0.11 2.64 ± 0.086 (↑ 8.71%)
ResNet 3.39 ± 0.10 3.01 ± 0.11 3.77 ± 0.14 2.94 ± 0.08 (↓ 2.32%) 3.98 ±0.13 3.81 ± 0.08 4.90 ± 0.18 3.53 ± 0.11 (↓ 7.35%)

DenseNet 94.58 ± 3.45 77.13 ± 3.72 79.93 ± 3.70 61.22 ± 2.49 (↓ 20.63%) 101.97 ± 3.16 88.93 ± 3.06 90.79 ± 3.17 75.98 ± 2.99 (↓ 14.56%)
ResNet 99.48 ± 8.95 73.09 ± 2.00 76.73 ± 3.87 70.04 ± 1.99 (↓ 4.17%) 95.81 ± 3.80 79.00 ± 2.21 88.70 ± 3.88 79.43 ± 2.39 (↑ 0.54%)

CalTech-101

CIFAR-100

iNaturalist

stable convergence of both upper and lower level problems
of DPSM by employing standard practices for learning rates
η and γ.

5. Experiments and Results
This section describes our experimental evaluation of the
proposed DPSM algorithm and baselines on real datasets.

5.1. Experimental Setup

Datasets. We utilize the benchmark datasets CIFAR-100
(Krizhevsky et al., 2009), Caltech-101 (Fei-Fei et al., 2004),
and iNaturalist (Van Horn et al., 2018), where all details are
summarized in Table 2 of Appendix E.

Deep Models. We train two widely used neural network
architectures with HPS scoring function: ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017). The training
hyperparameters are provided in Table 3 of Appendix.

Conformity scoring functions. We consider three non-
conformity scoring functions: HPS (Vovk et al., 2005; Lei
et al., 2013) APS (Romano et al., 2020), and RAPS (An-
gelopoulos et al., 2021). The detailed review of these scor-
ing functions is in Appendix A.

Baseline methods. We select three different training meth-
ods as baselines: (i) CE, training with standard cross-entropy
loss only; (ii) CUT (Einbinder et al., 2022), mitigating the
overconfidence of the deep neural network by penalizing the
gap between the CDF of the non-conformity scores and the
uniform distribution; and (iii) ConfTr (Stutz et al., 2021),
aiming to decrease prediction set size by inducing confor-
mal loss as the average differentiable prediction set size.
The details of CUT and ConfTr are in Appendix A.

Evaluation metrics. Our first evaluation metric is the
marginal coverage (Marg-Cov), defined as MargCov =

1
|Dtest|

∑
i∈Dtest

1[Yi ∈ Cf (Xi)]. Our second evaluation
metric is the prediction set size (Avg-Set-Size), defined
as Avg-Set-Size = 1

|Dtest|
∑

i∈Dtest
|Cf (Xi)|. To make the

conformal alignment loss smooth, DPSM and ConfTr use
the Sigmoid function to approximate the average prediction
set size (APSS) during training, so we use the third evalu-
ation metric as the Soft Set Size (Avg-Soft-Size), defined
as Avg-Softset-Size = 1

|Dtest|
∑

i∈Dtest

∑
y∈Y 1̃

[
Sf (X, y) ≤

q̂f
]
, recall that 1̃[S ≤ q] = 1/(1+exp(−(q−S)/τSigmoid))

with a hyperparameter τSigmoid.

5.2. Results and Discussion

We discuss the results comparing DPSM with baseline meth-
ods, fine-grained analysis for DPSM to demonstrate its ef-
fectiveness and validate our theoretical results.

DPSM generates smaller prediction sets. Table 1 presents
the prediction set sizes for different methods using HPS
score for training, HPS and APS scores for calibration and
testing phases at α = 0.1, as detailed in Appendix E. On
average, DPSM reduces the prediction set size by 20.46%
across the three datasets relative to the best baseline. Specif-
ically, DPSM provides the best predictive efficiency com-
pared to all other existing methods when calibrated with
HPS. It also outperforms the best baselines when calibrated
with APS in all cases except ↑ 8.71% increase on CIFAR-
100 with DenseNet and ↑ 0.54% increase on iNaturalist
with ResNet in terms of the prediction set size.The cover-
age results for overall comparison and additional results for
calibrating with RAPS scoring function are in Appendix
F.1. We also visualize the coverage rate and APSS with con-
fidence intervals of all methods using DenseNet and HPS
score in Figure 1. It clearly confirms that DPSM achieves
significantly smaller prediction set size while maintaining
the valid coverage.
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(a) Caltech-101 (b) CIFAR-100 (c) iNaturalist

Figure 1. Box plots of coverage (Top row) and APSS (Bottom row) of all methods using DenseNet and HPS score. DPSM achieves
significantly smaller prediction set size while maintaining the valid coverage.

(a) Upper loss (b) Lower loss

(c) Conformal loss
optimization gap

(d) QR loss optimization
gap

Figure 2. Justification experiments for the convergence of
DPSM on CIFAR-100 using DenseNet and HPS score. (a) Upper
level loss (i.e., a combination of classification loss and conformal
alignment loss); (b) Lower level loss (i.e., QR loss); (c) Opti-
mization gap of conformal loss, defined as the difference between
conformal losses using learned batch-level quantiles and dataset-
level quantiles on the training set; (d) Optimization gap of the
lower-level QR loss, defined similarly as the loss difference be-
tween learned batch-level quantiles and dataset-level quantiles.

DPSM converges to stable error for bilevel optimization.
To further explore how DPSM effectively generates smaller
prediction sets, we analyze the convergence of DPSM by
plotting the loss of the upper level function (i.e., a combi-
nation of classification loss and conformal alignment loss)
and the lower level function (i.e., QR loss) over training
epochs. Figure 2 (a) and (b) show the upper-level loss and
lower-level loss over 100 epochs, respectively. We also re-

port the results of 40-epoch training regime in Appendix F.1
for reference. As shown, the upper-level loss of DPSM ex-
hibits an initial increase during the first 5 epochs, reaching
the peak, then steadily decreases before stabilizing around
epoch 35. In contrast, the lower-level loss decreases sharply
within the first 5 epochs, followed by a gradual reduction
until convergence near the end of training. These results
empirically demonstrate that DPSM effectively converges
in terms of both upper and lower level training errors, val-
idating its bilevel optimization approach. To investigate
how the learned quantiles influence the optimization er-
ror, we compute both conformal and QR losses using the
learned quantiles and the optimal (dataset-level) quantiles.
The corresponding optimization errors—defined as the loss
differences between learned and optimal quantiles—are vi-
sualized in Figure 2 (c) and (d). Both errors converge to
nearly 0, indicating that the learned quantiles effectively
approximate the optimal quantiles over training epochs.

DPSM estimates empirical quantiles with small error.
To compare the precision of empirical quantiles estimation
in ConfTr and DPSM, we plot the estimation error between
Q̂n

f (quantiles evaluated on the whole training dataset) and
q̂f (quantiles evaluated in ConfTr or learned in DPSM on
mini-batches). Figure 3 (a) plots this estimation error over
training epochs. For the first 25 epochs, the estimation er-
rors for DPSM are significantly larger compared to ConfTr.
However, as the training progresses, the estimation errors for
DPSM decrease rapidly, converging close to 0 after epoch
35. This result verifies the theoretical result for smaller esti-
mation error in learning bound analysis from Theorem 4.1.
The rapid reduction in estimation error also reflects the con-
vergence of the lower loss (i.e., QR loss), highlighting the
effectiveness of DPSM in accurately estimating quantiles.
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(a) Estimation error of quantiles (b) Average soft set size (c) Learning bound approximation

Figure 3. Justification experiments for the learning bound of DPSM on CIFAR-100 using DenseNet and HPS score. (a) Estimation
error between the Q̂n

f (i.e., the dataset-level quantiles on training data) and q̂f (i.e., either the batch-level quantiles evaluated in ConfTr or
the learned ones in DPSM); (b) Average soft set size (approximated using Sigmoid function) of DPSM and ConfTr; (c) Approximated
learning error comparison between DPSM and ConfTr, measured by their gaps between the training and testing APSS.

Learning bound of DPSM is much tighter than ConfTr.
To approximately compare the learning bounds of DPSM
and ConfTr, we compare the conformal alignment losses of
ConfTr and DPSM during training in terms of the average
soft set size, as shown in Figure 3 (b). The soft set size of
DPSM is consistently smaller than that of ConfTr during
training. Combining the empirical results of the smaller
estimation error of quantiles from Figure 3 (a), we can con-
clude that the learning bound of DPSM is much tighter than
the learning bound of ConfTr, providing the empirical ver-
ification of Theorem 4.1 and 3.5. Although the learning
bound cannot be empirically computed, we approximate it
using a common strategy in ML literature (Yuan et al., 2019;
Yang et al., 2021b), which estimates the generalization error
by the absolute gap between training and test errors. For
CP, we use APSS evaluated on the train and test sets to
approximate the learning errors. Specifically, for DPSM,
at each iteration, we: (i) compute APSS on the training set
using the learned quantiles as thresholds. It includes opti-
mization error since the learned quantiles are not optimal
(true dataset-level quantiles); (ii) compute the APSS on the
testing set using the dataset-level quantiles as thresholds.
The gap between these two APSS values is employed as an
approximation of the learning bound. We apply the same
strategy to the SA-based ConfTr, where the training APSS
is computed using the quantiles evaluated on mini-batches
from the training data, and the test APSS is computed using
the dataset-level quantiles from the test data. This compari-
son is shown in Figure 3 (c), which demonstrates that the
approximated learning error is improved by DPSM.

Assumption 3.1 is empirically valid. Figure 4 (a) illus-
trates the conformity scores against their corresponding
normalized order. The x-axis represents the normalized or-
der, while the y-axis represents conformity scores. It is clear
that the curve does not remain near the x-axis or y-axis, in-
dicating that the gradient of conformity scores with respect
to normalized index is both upper and lower bounded. This
observation empirically validates Assumption 3.1.

Assumption 3.2 is empirically valid. Figure 4 (b) visu-
alizes the soft set size of ConfTr, with input as coverage
rate ∈ [0.02, 0.98] with range 0.02. When coverage rate
approaches 0.9, the curves of all methods exhibit a concave
shape (zoom-in version also shown), providing empirical
verification for Assumption 3.2.

(a) Bi-Lipschitz continuity
of conformity score

(b) Strongly concavity of
conformal loss

Figure 4. Assumption verification on CIFAR-100 using DenseNet
and HPS score on the calibration dataset. (a) HPS scores over
corresponding normalized index produced by ConfTr. The x-axis
is the normalized order, the y-axis is the corresponding conformity
score; (b) The soft set size measure of ConfTr. The input coverage
rate is from [0.02, 0.98] with 0.02 range with its zoom-in version
where coverage rate is close to the target coverage 0.9; When
coverage rate is close to 0.9, the curve for the soft set size exhibits
a concave shape.

6. Conclusion
This paper developed Direct Prediction Set Minimization
(DPSM), a novel conformal training algorithm formulated
as a bilevel optimization problem. By leveraging quantile
regression in the lower-level subproblem, DPSM precisely
learns the empirical quantile of non-conformity scores, lead-
ing to smaller prediction sets. Theoretical analysis showed
that DPSM attains a tight learning bound of O(1/

√
n) with

n training samples. Empirical evaluation on real-world
datasets confirmed that DPSM significantly outperforms
existing conformal training methods, validating both its the-
oretical advantages and practical effectiveness.
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A. Additional background details
Non-conformity scoring functions. The homogeneous prediction sets (HPS) (Sadinle et al., 2019) scoring function is
defined as follows:

SHPS
f (X,Y ) = 1− fθ(X)Y . (11)

(Romano et al., 2020) has proposed another conformity scoring function, Adaptive Prediction Sets (APS). APS scoring
function is based on sorted probabilities. For a given input X , we sort the softmax probabilities for all classes {1, · · · ,K}
such that 1 ≥ fθ(x)(1) ≥ · · · ≥ fθ(x)(K) ≥ 0, and compute the cumulative confidence as follows:

SAPS
f (X,Y ) =

rf (X,Y )−1∑
l=1

fθ(X)(l) + U · fθ(X)(rf (X,Y )), (12)

where U ∈ [0, 1] is a uniform random variable to break ties.

To reduce the probability of including unnecessary labels (i.e., labels with high ranks) and thus improve the predictive
efficiency, (Angelopoulos et al., 2021) has proposed Regularized Adaptive Prediction Sets (RAPS) scoring function. The
RAPS score is computed as follows:

SRAPS
f (X,Y ) =

rf (X,Y )−1∑
l=1

fθ(X)(l) + U · fθ(X)(rf (X,Y )) + λRAPS(rf (X,Y )− kreg)
+, (13)

where λRAPS and kreg are two hyper-parameters.

Objective function for conformal training methods. ConfTr (Stutz et al., 2021) estimates a soft measure of the prediction
set size, defined as follows:

L̂SA
c,CTr(f) =Eq̂f∼Qf

[
1

n

n∑
i=1

∑
y∈Y

1̃
[
Sf (Xi, y) ≤ q̂f

]]
, (14)

where 1̃[·] is a smoothed estimator for the indicator function 1[·] and defined by a Sigmoid function (Stutz et al., 2021), i.e.,
1̃[S ≤ q] = 1/(1 + exp(−(q − S)/τSigmoid)) with a tunable temperature parameter τSigmoid.

CUT (Einbinder et al., 2022) measures the maximum deviation from the uniformity of conformity scores, defined as follows:

L̂SA
c,CUT(f) =Eq̂f∼Qf

[
supα∈[0,1]

∣∣(1− α)− q̂f (α)
∣∣], (15)

where q̂f (α) is the empirical batch-level quantile in B of input α ∈ [0, 1].

B. Proof for Section 3
In this section, we prove Proposition 3.4 and Theorem 3.5 from Section 3.

B.1. Proof for Proposition 3.4

Proposition B.1. (Proposition 3.4 restated, distribution of mini-batch quantiles) Define an event Z(j) as “the j-th smallest
score S(j) from {Si}ni=1 is selected as q̂f (α) on a mini-batch B”. Then the probability of Z(j) is:

P(Z(j)) =

(
j

⌈(1−α)(s+1)⌉
)(

n−j−1
s−⌈(1−α)(s+1)⌉−1

)(
n
s

) .

Furthermore, we have the following asymptotic result

lim
n→∞

P(Z(j)) =
e

n
PBeta

( j
n
; ⌈(1− α)(s+ 1)⌉+ 1; s− ⌈(1− α)(s+ 1)⌉

)
,

where PBeta(x; a; b) is the PDF of Beta distribution with two shape parameters a, b.
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Proof. (Proof of Proposition 3.4) This proof follows the proof for Proposition 1 in (Kawaguchi & Lu, 2020).

Recall the Stirling’s approximation that is used to prove this proposition:

n! ∽
√
2πn(n/e)n.

To simplify the representation, we denote a = ⌈(1− α)(s+ 1)⌉ in this proof. Then, the P(Z(j)) could be rewritten as:

P(Z(j)) =

(
j
a

)(
n−j−1
s−a−1

)(
n
s

) =

j!
a!(j−a)! ·

(n−j−1)!
(s−a−1)!(n−j−s+a)!

n!
s!(n−s)!

=
s!

a!(s− a− 1)!
· j!

(j − a)!
· (n− j − 1)!

(n− j − s+ a)!
· (n− s)!

n!
.

(16)

Applying the Stirling’s approximation when n→∞, we have that:

j!

(j − a)!
· (n− j − 1)!

(n− j − s+ a)!
· (n− s)!

n!

=

√
2πj( je )

j√
2π(j − a)( j−a

e )j−a
·

√
2π(n− j − 1)(n−j−1

e )n−j−1√
2π(n− j − s+ a)(n−j−s+a

e )n−j−s+a
·
√

2π(n− s)(n−s
e )n−s

√
2πn(ne )

n

=
jj

(j − a)j−a
e−a · (n− j − 1)n−j−1

(n− j − s+ a)n−j−s+a
e−s+a+1 · (n− s)n−s

(n)n
es

= e
jj

(j − a)j−a
· (n− j)n−j−1

(n− j)n−j−s+a
· (n)

n−s

(n)n

= e
(n)j( j

n )
j

(n)j−a( j−a
n )j−a

· (n− j)s−a−1 · (n)−s

= e
( j
n )

j

( j−a
n )j−a

(n)a · (n− j

n
)s−a−1(n)s−a−1 · (n)−s

=
e

n
· ( j

n
)a · (1− j

n
)s−a−1 (17)

Combining the Equation (16) and (17), we have that:

lim
n→∞

P(Z(j)) =
e

n
· s!

a!(s− a− 1)!
· ( j

n
)a · (1− j

n
)s−a−1 =

e

n

Γ(a+ 1 + s− a)

Γ(a+ 1)Γ(s− a)
· ( j

n
)a · (1− j

n
)s−a−1

=
e

n
PBeta

( j
n
; ⌈(1− α)(s+ 1)⌉+ 1; s− ⌈(1− α)(s+ 1)⌉

)
,

where Γ(n) = (n− 1)! is gamma function and PBeta(x; a, b) =
Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 is the probability density function
of Beta distribution with shape parameters a and b at x.

B.2. Proof for Theorem 3.5

Theorem B.2. (Theorem 3.5 restated, learning bounds of SA method) Suppose that Assumption 3.1 and 3.2 hold. Assume
(1 − α))(s + 1) is not an integer. If ⌈(1 − α))(s + 1)⌉ − (1 − α))(s + 1) ≥ Ω(1/s) and s ≤

√
n, then the following

inequality holds with probability at least 1− δ:

Ω(1/s) ≤ |L̂SA
c (f)− Lc(f)| ≤ Õ(1/

√
s).

Proof. (Proof of Theorem 3.5)

We need the following helpful technical lemmas:

Lemma B.3. (Lower bound for ℓ̂(f,Eq̂f [q̂f ]) − Eq̂f [ℓ̂(f ; q̂f )]) Suppose that Assumptions 3.1 and 3.2 hold. Then, the
following inequality holds:

|ℓ̂(f,Eq̂f [q̂f ])− Eq̂f [ℓ̂(f, q̂f )]| ≥ Ω(1/s).
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Lemma B.4. (Lower bound for ℓ̂(f,E[q̂f ])− ℓ̂(f,Qf )) Suppose that Assumption 3.1 holds. Assume (1− α))(s+ 1) is not
an integer. If ⌈(1− α))(s+ 1)⌉ − (1− α))(s+ 1) ≥ Ω(1/s) and s ≤

√
n, hen the following inequality holds:

ℓ̂(f,E[q̂f ])− ℓ̂(f,Qf ) ≥ Ω(1/s).

Lemma B.5. (Distance between Lc(f, q̂f ) and Eq̂f [Lc(f ; q̂f )]) Suppose that Assumption 3.1 holds, With probability at
least 1− δ, the following inequality holds:

|Lc(f, q̂f )− Eq̂f [Lc(f, q̂f )]| ≤ Õ(1/
√
s).

The proofs of Lemma B.3, B.4, and B.5 are deferred to the end of this proof.

Recall that

L̂SA
c (f) =Eq̂f∼Qf

[ℓ̂(f, q̂f )] = Eq̂f∼Qf

[
1

n

n∑
i=1

∑
y∈Y

1̃[Sf (Xi, y) ≤ q̂f ]︸ ︷︷ ︸
=ℓ̂(f,q̂f )

]
,

Lc(f) =ℓ(f,Qf ) = EX

[∑
y∈Y

1̃[Sf (X, y) ≤ Qf ]

]
.

We start with the lower bound in Theorem 3.5.

(L̂SA
c (f)− Lc(f))

2 =(Eq̂∼Qf
[ℓ̂(f, q̂f )]− ℓ(f,Qf ))

2 = (Eq̂∼Qf
[ℓ̂(f, q̂f )]− ℓ̂(f,E[q̂f ]) + ℓ̂(f,E[q̂f ])− ℓ(f,Qf ))

2

=(Eq̂∼Qf
[ℓ̂(f, q̂f )]− ℓ̂(f,E[q̂f ]))

2︸ ︷︷ ︸
≥Ω(1/s2), Lemma B.3

+(ℓ̂(f,E[q̂f ])− ℓ(f,Qf ))
2︸ ︷︷ ︸

≥0

+ ((Eq̂∼Qf
[ℓ̂(f, q̂f )]− ℓ̂(f,E[q̂f ]))︸ ︷︷ ︸
≥Ω(1/s), Lemma B.3

(ℓ̂(f,E[q̂f ])− ℓ̂(f,Qf ))︸ ︷︷ ︸
≥Ω(1/s), Lemma B.4

+ ℓ̂(f,Qf )− ℓ(f,Qf )︸ ︷︷ ︸
≥−Õ(1/

√
n), Lemma C.4

)

≥Ω(1/s2),

where the last inequality is due to s≪
√
n.

The above inequality thus indicates the result:

|L̂SA
c (f)− Lc(f)| ≥ Ω(1/s).

Next, we begin to prove the upper bound in Theorem 3.5:

|Lc(f,Qf )− Eq̂f [Lc(f ; q̂f )]|
≤|Lc(f,Qf )− Lc(f ; q̂f )|+ |Lc(f ; q̂f )− Eq̂f [Lc(f ; q̂f )]|︸ ︷︷ ︸

≤O(1/
√
s), according to Lemma B.5

≤L|Qf − q̂f |+O(1/
√
s)

=L
∣∣Sf,(⌈(1−α)(s+1)⌉) − Sf,(⌈(1−α−O(1/

√
s))(s+1)⌉)

∣∣+O(1/
√
s)

≤L · L2

∣∣∣∣⌈(1− α)(s+ 1)⌉
s

− ⌈(1− α−O(1/
√
s))(s+ 1)⌉

s

∣∣∣∣+O(1/
√
s)

≤L · L2 ·O(1/
√
s) +O(1/

√
s) = O(1/

√
s) +O(1/

√
s) = O(1/

√
s),

where the first inequality is due to the triangle inequality, the second inequality is due to the L-Lipschitz continuous of
Lc(f,Qf ) in Lemma C.3 and Lemma B.5, and the third inequality is due to (24) and Assumption 3.1.

Combining the lower and upper learning bound, the proof of Theorem 3.5 is finished.
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B.3. Proof for Lemma B.3

Proof. (of Lemma B.3)

We begin to prove the lower bound of ℓ̂(f,Eq̂f [q̂f ])− Eq̂f [ℓ̂(f ; q̂f )].

By the µ-strong-concavity of ℓ̂(f, q) in q (Assumption 3.2), we have

ℓ̂(f,Eq̂f [q̂f ])− Eq̂f [ℓ̂(f ; q̂f )] = Eq̂f [ℓ̂(f,Eq̂f [q̂f ])− ℓ̂(f ; q̂f )] ≥ Eq̂f [∂q ℓ̂(f,Eq̂f [q̂f ])(q̂f − E[q̂f ]) +
µ

2
(q̂f − E[q̂f ])

2]

=
µ

2
Eq̂f [(q̂f − E[q̂f ])

2] ≥ L2
1 ·

µ

2

Ej

[(
⌈(1− α)(n+ 1)⌉ − j

)2]
n2

≥ L2
1 ·

µ

2

E
[(

E[j]− j
)2]

n2

=L2
1 ·

µ

2
· (⌈(1− α)(s+ 1)⌉+ 1)(s− ⌈(1− α)(s+ 1)⌉)

(s+ 1)2(s+ 2)
≥ L2

1 ·
µ

2
· Ω(1/s) = Ω(1/s),

where the second inequality is due to Proposition 3.4 and Bi-Lipschitz continuity of score S(j) in j (Assumption 3.1), the
third inequality is due to the property of variance, i.e., V(X) = E[(E[X]−X)2] ≤ E[(a −X)2] for any a, and the third
equality is due to the variance of Beta distribution (j satisfies Beta distribution, as Proposition 3.4) is ab

(a+b)2(a+b+a) with
the shape parameter a, b.

B.4. Proof for Lemma B.4

Proof. (of Lemma B.4)

To prove Lemma B.4, we need the following technical lemma (proof is deferred to Section B.6).

Lemma B.6. Assume (1− α))(s+ 1) is not an integer. If ⌈(1− α))(s+ 1)⌉ − (1− α))(s+ 1) ≥ Ω(1/s) and s ≤
√
n,

then ⌈(1−α)(s+1)⌉
s+1 − ⌈(1−α)(n+1)⌉

n ≥ Ω(1/s).

By using the µ-strong-concavity of ℓ(f, q) in q, we have

ℓ(f,E[q̂f ])− ℓ̂(f,Qf ) ≥ −∂qℓ(f,E[q̂f ])(Qf − E[q̂f ]) +
µ

2
(Qf − E[q̂f ])

2

= ∂qℓ(f,E[q̂f ])︸ ︷︷ ︸
>0 due to no tie

(E[q̂f ]−Qf ) +
µ

2
(Qf − E[q̂f ])

2︸ ︷︷ ︸
≥0

≥ B · (E[q̂f ]−Qf ),

where the second inequality is due to no tie in the distribution of non-conformity scores and there exists a value B > 0 as in
(25) such that ∂qℓ(f, q) ≥ B = 0. It suffixes to show the lower bound of E[q̂f ]−Qf .

Due to j satisfies the Beta distribution with the two shape parameters a = ⌈(1−α)(s+1)⌉+1 and b = s−⌈(1−α)(s+1)⌉
(Proposition 3.4) and the mean of Beta random variable is a/(a+ 1), we know that the corresponding probability for E[q̂f ]

is ⌈(1−α)(s+1)⌉
s+1 and it is larger than 1− α if (1− α)(s+ 1) is not an integer.

Recall that Q̂f is the empirical quantile on a set of data. We regard Q̂f as the ( ⌈(1−α)(n+1)⌉
n )-quantile on Dtr. Since Qf (α)

is increasing as α decreases, we use the Bi-Lipschitz continuity of S(j) (Assumption 3.1):

E[q̂f ]−Qf =E[q̂f ]− Q̂f + Q̂f −Qf ≥ L1

(
⌈(1− α)(s+ 1)⌉

s+ 1
− ⌈(1− α)(n+ 1)⌉

n

)
+

(
Q̂f − Q̂f (α− Õ(1/

√
n)

)
≥L1Ω(1/s)− L1Õ(1/

√
n) ≥ Ω(1/s),

where the two inequalities are due to Lemma B.6, Bi-Lipschitz continuity of S(j) (Assumption 3.1) and the concentration
inequality for the empirical and population quantiles in (24).

B.5. Proof for Lemma B.5

Proof. (of Lemma B.5)

18



Direct Prediction Set Minimization via Bilevel Conformal Classifier Training

According to Chebyshev’s inequality, we have that:

P{|Lc(f, q̂f )− Eq̂f [Lc(f, q̂f )]| ≤ ϵ} ≥ 1−
Eq̂f [(Lc(f, q̂f )− Eq̂f [Lc(f, q̂f )])

2]

ϵ2

≥1−
L2Eq̂f [(q̂f − Eq̂f [q̂f ])

2]

ϵ2
≥ 1− L2L2

2

ϵ2
· (⌈(1− α)(s+ 1)⌉+ 1)(s− ⌈(1− α)(s+ 1)⌉)

(s+ 1)2(s+ 2)
≥ 1− δ,

where the first and last inequality hold due to the Chebyshev’s inequality, the second inequality is due to the L-Lipschitz
continuous of Lc(f,Qf ) in Lemma C.3.

Rearranging the above inequality, the following inequality holds with probability at least 1− δ:

|Lc(f, q̂f )− Eq̂f [Lc(f, q̂f )]| ≤ L · L2 ·

√
(⌈(1− α)(s+ 1)⌉+ 1)(s− ⌈(1− α)(s+ 1)⌉)

δ · (s+ 1)2(s+ 2)
≤ L · L2 ·O(1/

√
s) = O(1/

√
s),

where the first inequality is due to Assumption 3.1 and Lemma C.3.

B.6. Proof for Lemma B.6

Proof. (of Lemma B.6)

Recall that (1 − α)(s + 1) is not an integer. Then we begin to compare the upper and lower bound of ⌈(1−α)(n+1)⌉
n and

⌈(1−α))(s+1)⌉
s+1 , respectively:

(1− α) +
1− α

n
≤⌈(1− α)(n+ 1)⌉

n
≤ (1− α) +

2− α

n
, (18)

(1− α) <
⌈(1− α))(s+ 1)⌉

s+ 1
≤ (1− α) +

1

s+ 1
, (19)

where all inequalities are due to (1− α)(n+ 1) ≤ ⌈(1− α)(n+ 1)⌉ ≤ (1− α)(n+ 1) + 1.

Due to s < n and α ∈ [0, 1], we have that:

⌈(1− α))(s+ 1)⌉
s+ 1

− ⌈(1− α)(n+ 1)⌉
n

≤ max
{
(1− α) +

2− α

n
− (1− α), (1− α) +

1

s+ 1
− (1− α)− 1− α

n

}
= max

{
2− α

n
,

1

s+ 1
− 1− α

n

}
≤ O(1/s).

On the other hand, letting B = ⌈(1− α))(s+ 1)⌉ − (1− α))(s+ 1), the lower bound for

⌈(1− α))(s+ 1)⌉
s+ 1

− ⌈(1− α)(n+ 1)⌉
n

≥
( (1− α))(s+ 1)

s+ 1
+B

)
−
(
(1− α) +

2− α

n

)
= B − 2− α

n
≥ Ω(1/s),

where the last inequality is due to the assumption ⌈(1− α))(s+ 1)⌉ − (1− α))(s+ 1) ≥ Ω(1/s) and s ≤
√
n.

C. Proof for Theorem 4.1
Theorem C.1. (Theorem 4.1 restated, learning bound of DPSM) Suppose that Assumption 3.1 holds. For any model f ∈ F ,
the following inequality holds with probability at least 1− δ:

|L̄DM
c (f, q∗(f))− Lc(f)| ≤ Õ(1/

√
n).

Proof. (Proof of Theorem 4.1)

To prove Theorem 4.1, we need the following three technical lemma and defer their proof after proving Theorem 4.1.
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Lemma C.2. (Distance between Qf and q∗ ∈ U(f)) Let q∗f ∈ U(f) = argminq∈R L̂QR(f, q) is a (1 − α)-quantile
computed by minimizing QR loss. Suppose that Assumption 3.1 holds. Then the following inequality holds with probability
at least 1− δ: ∣∣Qf − q∗f

∣∣ ≤ Õ(1/
√
n).

Lemma C.3. (Lipschitz continuity of L̂DM
c (f, q)) L̂DM

c (f, q) is L-Lipschitz continuous in input q with L = K
4τSigmoid

.

Lemma C.4. (Generalization error) Let f : X → R and {X1, ..., Xn} be i.i.d. samples dram from an underlying
distribution. If there exists M > 0 such that |f(X)| ≤M for all X ∈ X , then with probability at least 1− δ, we have∣∣∣EX [f(X)]− 1

n

n∑
i=1

f(Xi)
∣∣∣ ≤M

√
log(2/δ)

2n
.

Then we begin to prove Theorem 4.1. Recall L̄DM
c (f) = L̂DM

c (f, q∗f ), where q∗f ∈ U(f), and define the empirical version of
the conformal alignment loss L̂c(f)

L̂c(f) =
∑
i∈D

[∑
y∈Y

1̃[Sf (Xi, y) ≤ Qf ]

]
= L̂DM

c (f,Qf ), see (4) and (9).

We start with the following triangle inequality:

|L̄DM
c (f)− Lc(f)| =|L̂DM

c (f, q∗f )− L̂c(f) + L̂c(f)− Lc(f)| ≤ |L̂DM
c (f, q∗f )− L̂DM

c (f,Qf )|︸ ︷︷ ︸
L-Lipschitz, Lemma C.3

+ |L̂c(f)− Lc(f)|︸ ︷︷ ︸
≤Õ(1/

√
n), Lemma C.4

≤L |q∗(f)−Qf |︸ ︷︷ ︸
≤Õ(1/

√
n), Lemma C.2

+Õ(1/
√
n) ≤ Õ(1/

√
n).

C.1. Proof for Lemma C.2

Proof. (of Lemma C.2)

In this proof, define q∗f (α) ∈ U(f) = argminq∈R L̂QR(f, q). We explicitly write the probability 1− α for our analysis.

First, we prove that q∗f (α−O(1/
√
n)) ≤ Qf (α) ≤ q∗f (α+O(q/

√
n))

Define Zi = 1[Sf,i ≤ Q(α)] where 1 ≤ i ≤ n Thus, Zi is a Bernoulli random variable. According to the definition of
Qf (α), we have that P{Zi = 1} = 1− α and P{Zi = 0} = α. Let Ẑ = 1

n

∑n
i=1 Zi and E[Ẑ] = 1− α.

According to Chernoff bound, we know

P

{∣∣∣∣∣ 1n
n∑

i=1

Zi − E[Ẑ]

∣∣∣∣∣ ≥ εE[Ẑ]

}
≤ 2 exp

(
− E[Ẑ]ε2/3

)
= 2 exp

(
− n(1− α)ε2/3

)
.

By setting δ = 2 exp(−n(1− α)ε2/3), i.e., ε =
√

(3 log(2/δ))/((1− α)n), we have with probability at least 1− δ:∣∣∣∣∣ 1n
n∑

i=1

1[Vi ≤ Qf (α)]− (1− α)

∣∣∣∣∣ ≤ ε(1− α) =
√
(3(1− α) log(2/δ))/n = Õ(1/

√
n). (20)

Recall the definition of q∗f (α) ∈ argminq∈R L̂QR(f, q). Then we know the following upper bound and lower bound for
1− α:

(1− α) ≤ 1

n

n∑
i=1

1[Sf,i ≤ q∗f (α)], (1− α) ≥ 1

n

n∑
i=1

1[Sf,i ≤ q∗f (α+ 1/n)].
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Re-arranging (20) and using the above upper/lower bounds, with probability at least 1− δ, we have

(1− α)(1− ε) ≤ 1

n

n∑
i=1

1[Sf,i ≤ Qf (α)] ≤ (1− α)(1 + ε)

⇔ 1− (1− (1− α)(1− ε)︸ ︷︷ ︸
=α′

) ≤ 1

n

n∑
i=1

1[Sf,i ≤ Qf (α)] ≤ 1− (1− (1− α)(1 + ε)︸ ︷︷ ︸
=α′′

)

⇒ 1

n

n∑
i=1

1[Sf,i ≤ q∗f (α
′ + 1/n)] ≤ 1

n

n∑
i=1

1[Sf,i ≤ Qf (α)] ≤
1

n

n∑
i=1

1[Sf,i ≤ q∗f (α
′′)]

⇔ q∗f (α
′ + 1/n) ≤ Qf (α) ≤ q∗f (α

′′). (21)

Finally, by using the definition of ε above, we analyze α′ and α′′ as follows

α′ = 1− (1− α)(1− ε) = α+ ε(1− α) = α+
√
3(1− α) log(2/δ)/n = α+ Õ(1/

√
n), (22)

α′′ = 1− (1− α)(1 + ε) = α− ε(1− α) = α−
√
3(1− α) log(2/δ)/n = α− Õ(1/

√
n). (23)

Thus, plugging (22) and (23) into (21), we have

q∗f (α+ Õ(1/
√
n)) ≤ Qf (α) ≤ q∗f (α− Õ(1/

√
n)). (24)

Next, we prove that
∣∣Qf (α)− q∗f (α)

∣∣ ≤ Õ(1/
√
n) from (24):

|Qf (α)− q∗f (α)
∣∣ ≤ L2

∣∣∣∣⌈(1− α)(n+ 1)⌉
n

− ⌈(1− α− Õ(1/
√
n))(n+ 1)⌉

n

∣∣∣∣ ≤ Õ(1/
√
n),

where the first inequality is due to Assumption 3.1.

C.2. Proof for Lemma C.3

Proof. (of Lemma C.3)

Recall that 1̃[S ≤ q] = 1
1+exp(− q−S

τSigmoid
)
. Define u = q−S

τSigmoid
.

We start with the gradient of L̂DM
c (f, q) in q as follows

∂L̂DM
c (f, q)

∂q
=
∂
∑

y∈Y 1̃
[
S ≤ q

]
∂q

=
∑
y∈Y

(∂( 1
1+exp(−u)

)
∂u

· ∂u
∂q

)
=
∑
y∈Y

( exp(−u)
(1 + exp(−u))2

· 1

τSigmoid

)

=
∑
y∈Y

exp(− q−S
τSigmoid

)

τSigmoid
(
1 + exp(− q−S

τSigmoid
)
)2 > 0, (25)

where the first inequality is due to exp(x) > 0. Thus, L̂DM
c (f, q) is a increasing function in input q.

For each component of the summation in above (25), define h(u) = exp(−u)
(1+exp(−u))2 , then the gradient of h(u) is:

h′(u) =
− exp(−u)(1 + exp(−u))2 − exp(−u) · 2(1 + exp(−u)) · (− exp(−u))

(1 + exp(−u))4

=

(
1 + exp(−u)

)
· exp(−u) ·

(
−
(
1 + exp(−u)

)
+ 2(exp(−u)

)
(1 + exp(−u))4

=

(
1 + exp(−u)

)
· exp(−u) ·

(
exp(−u)− 1

)
(1 + exp(−u))4

. (26)
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We can take a closer look at the value of h′(u) in (26): when exp(−u) ∈ (0, 1), or equivalently u > 0, we have h′(u) > 0;
when exp(−u) ∈ (1,+∞), or equivalently u < 0, we have h′(u) < 0. It means that h(u) increases when u > 0 and
decreases when u < 0. Further, when u = 0, we achieve the maximal value of h(u), i.e., maxuh(u) = h(0) = 1/4, or
equivalently exp(−u)

(1+exp(−u))2 ≤ 1/4.

Therefore, considering ∂L̂DM
c (f,q)
∂q > 0 as in (25) and plugging the above inequality into (25),

∣∣∣∂L̂DM
c (f,q)
∂q

∣∣∣ is bounded as
follows

∣∣∣∣∣∂L̂DM
c (f, q)

∂q

∣∣∣∣∣ ≤
∣∣∣∣∣∑
y∈Y

exp(− q−S
τSigmoid

)

τSigmoid
(
1 + exp(− q−S

τSigmoid
)
)2
∣∣∣∣∣ ≤∑

y∈Y

1

4τSigmoid
=

K

4τSigmoid
,

if τSigmoid ̸= 0 and |Y| = K. Therefore, Lc(f, q) is L-Lipschitz continuous for input q with L = K
4τSigmoid

.

C.3. Proof for Lemma C.4

Proof. (of Lemma C.4)

Let Ai = f(Xi) with |Ai| ≤M . According to Hoeffding’s inequality, we have:

P

{∣∣∣∣∣ 1n
n∑

i=1

Ai − E[A]

∣∣∣∣∣ ≥ ϵ

}
≤ 2 exp

(
− 2nϵ2

M2

)
.

By setting δ = 2 exp(−2nϵ2/M2), i.e., ϵ = M
√
log(2/δ)/(2n), we have the following inequality:

P

{∣∣∣∣∣ 1n
n∑

i=1

Ai − E[A]

∣∣∣∣∣ ≤M

√
log(2/δ)

2n

}
≥ 1− δ.

Therefore, with probability at least 1− δ, we have

∣∣∣EX [f(X)]− 1

n

n∑
i=1

f(Xi)
∣∣∣ ≤M

√
log(2/δ)

2n
≤ Õ(1/

√
n).

D. Proofs for Results in Section 4.2
Lemma D.1. (Lemma 4.5 restated, Hölderian error bound condition for QR loss) Suppose there is no tie in {Si}ni=1. Then,
fixing f , the QR loss L̂QR(f, q) satisfies Hölderian error bound w.r.t. q for ν = 1.

Proof. (of Lemma D.1)

Below we assume f is fixed and let g(q) ≜ L̂QR(f, q), so we omit the dependence of g on f for simplicity of notations.
Similarly, we denote the optimal solution set by U = argminqg(q) in this proof.

In the following, we consider two cases to prove Lemma D.1.

Case 1. Suppose we have two quantile variables q1, q2 such that q1 /∈ U , q1 < q2 ∈ U and q2 = argminq′∈U∥q′ − q1∥ is
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the quantile in the optimal set closest to q1. Then we have

n
(
g(q1)− g(q2)

)
=

n∑
i=1

(ρα(q1, Si)− ρα(q2, Si))

=

n∑
i=1

(
1[Si ≤ q1]

(
α(q1 − Si)− α(q2 − Si)

)
+ 1[q1 < Si < q2]

(
(1− α)(Si − q1)− α(q2 − Si)

)

+ 1[q2 ≤ Si]

(
(1− α)(Si − q1)− (1− α)(Si − q2)

))

=

n∑
i=1

(
1[Si ≤ q1]

(
α(q1 − q2))

)
+ 1[q1 < Si < q2]

(
Si − q1 + α(q1 − q2)

)

+ 1[q2 ≤ Si]

(
(1− α)(q2 − q1)

))
(27)

=

n∑
i=1

(
1[Si ≤ q2]α(q1 − q2) + 1[q2 ≤ Si](1− α)(q2 − q1) + 1[q1 < Si < q2](Si − q1)

)

=

n∑
i=1

1[Si ≤ q2]α(q1 − q2) +

n∑
i=1

1[q2 ≤ Si](1− α)(q2 − q1) +

n∑
i=1

1[q1 < Si < q2](Si − q1)

=(1− α)α(q1 − q2)− α(1− α)(q1 − q2) +

n∑
i=1

1[q1 < Si < q2](Si − q1)

=

n∑
i=1

1[q1 < Si < q2](Si − q1). (28)

On the other hand, let ñ =
∑n

i=1 1[q1 < Si < q2]. Denote (1− c′)q1 + c′q2 as the weighted average between q1 and q2
with a weight parameter c′ ∈ (0, 1). Due to that the weighted average between q1 and q2 can be always smaller than the
average score in the set {Si : q1 < Si < q2} for a sufficiently small c′ ∈ (0, 1), we have

q1 + c′(q2 − q1) = (1− c′)q1 + c′q2 ≤
1

ñ

n∑
i=1

1[q1 < Si < q2]Si

⇔ ñ(q1 + c′(q2 − q1)) ≤
n∑

i=1

1[q1 < Si < q2](Si − q1 + q1)

⇔ c′ñ(q2 − q1) ≤
n∑

i=1

1[q1 < Si < q2](Si − q1)
(28)
= n

(
g(q1)− g(q2)

)
⇔ c′ñ

n
(q2 − q1) ≤ g(q1)− g(q2).

Recall that q2 = argminq′∈U∥q′ − q1∥ and (q2 − q1) = dist(q1,U). Plug it into the above equality, we have

c′ñ

n
dist(q1,U) ≤ g(q1)− g(q2).

Denoting c = n/(ñc′) > 0, then we have

dist(q1,U) ≤ c(g(q1)−minq′g(q)), (29)

which satisfies the HEB condition shown as Definition 4.3 with the exponent ν = 1.
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Case 2. Suppose that q1 ∈ U , q1 < q2 /∈ U and q1 = argminq′∈U∥q′ − q2∥. We can start from (27) as follows

n
(
g(q1)− g(q2)

)
=

n∑
i=1

(
1[Si ≤ q1]

(
α(q1 − q2))

)
+ 1[q1 < Si < q2]

(
Si − q1 + α(q1 − q2)

)

+ 1[q2 ≤ Si]

(
(1− α)(q2 − q1)

))

=

n∑
i=1

(
1[Si ≤ q1]α(q1 − q2) + 1[q1 ≤ Si](1− α)(q2 − q1) + 1[q1 < Si < q2](Si − q2)

)

=

n∑
i=1

1[q1 < Si < q2](Si − q2).

With the same notation of ñ =
∑n

i=1 1[q1 < Si < q2], we know that there must exist a constant c′ ∈ (0, 1) such that

q2 + c′(q1 − q2) = c′q1 + (1− c′)q2 ≥
1

ñ

n∑
i=1

1[q1 < Si < q2]Si

Therefore, we have

g(q1)− g(q2) ≤
ñ

n
c′(q1 − q2) = −

ñ

n
c′dist(q2,U).

Denoting c = n/(ñc) > 0, then we have

dist(q2,U) ≤ c(g(q2)−minq′∈Ug(q
′)). (30)

By combining (29) and (30), we show that the QR loss satisfies the Hölderian error bound condition with a constant c > 0
and an exponent ν = 1.

E. Additional Experimental Setup Details
Dataset and Split. We consider the benchmark datasets CIFAR-100 (Krizhevsky et al., 2009), Caltech-101 (Fei-Fei et al.,
2004), and iNaturalist (Van Horn et al., 2018). We split the original testing datasets into used calibration and testing datasets.
Table 2 summarizes key statistics of the used datasets which we elaborate on in the following.

Hyperparameters for training. We set datasets, base models, batch size, training epochs, training parameters (learning rate,
learning schedule, momentum, gamma, and weight decay), and λ as hyperparameter choices. We search for hyperparameters
on batch size ∈ {64, 128}, epochs ∈ {30, 40, 60}, learning rate (η) ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, learning rate schedule
∈ {[3], [25], [25, 40]}, Momentum = 0.9, weight decay ∈ {0.1, 0.97}, and λ = {0.01, 0.05, 0.1, 0.5, 1.0, 5.0} to select
the best combination of hyperparameters of each methods. We also search the learning rate for lower function (γ)
∈ {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5} for DPSM. The hyerparameters employed to get the results presented in
the main paper are summarized in Table 3.

Table 2. Description of the data sets are given in the table. ∗The number of classes in the iNaturalist data set depends on the taxonomy
level (e.g., species, genus, family). We employ”Fungi” species which has 341 different categories.

Data Number of
Classes

Number of
Training Data

Number of Vali-
dation Data

Number of Cali-
bration Data

Number of Test
Data

CIFAR-100 100 45000 5000 3000 7000
Caltech-101 101 4310 1256 1111 2000
iNaturalist 341* 15345 1705 1410 2000
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Table 3. The below table shows the details we used to train our models. We reported the hyperparameters which gives the best predictive
efficiency. We employed SGD optimizer for all training unless specified.

Data Architecture Batch size Epochs η lr schedule Momentum weight decay γ λ

CIFAR-100 DenseNet 64 40 0.1 25 0.9 0.1 0.01 0.05
ResNet 128 40 0.1 25 0.9 0.1 0.01 0.01

Caltech-101 DenseNet 128 60 0.05 25, 40 0.9 0.1 0.1 1.0
ResNet 128 60 0.05 25, 40 0.9 0.1 0.05 0.1

iNaturalist DenseNet 128 60 0.001 3 0.9 0.97 0.001 1.0
ResNet 128 60 0.001 3 0.9 0.97 0.001 0.5

HPS�Training/Calibration/Testing. In our study, we primarily apply cross-entropy loss for the classification model.
For the ConfTr and DPSM methods, we minimize both the classification loss and the HPS non-conformity score-based
predictive inefficiency loss during training. Post-training, we estimate the HPS non-conformal scores using equation 11
for all three methods during calibration and testing. We report the marginal coverage and the prediction set size with the
correpsonding mean and standard deviation, with the results presented in Table 4.

HPS � Training, APS � Calibration/Testing. In our study, we primarily apply cross-entropy loss for the classification
model. For the ConfTr and DPSM methods, we minimize both the classification loss and the differentiable HPS non-
conformity score-based inefficiency loss during training. After training, we estimate APS non-conformal scores using
equation 12. We calculate the marginal coverage and the prediction set size, with the results presented in Table 5.

HPS � Training, RAPS � Calibration/Testing. In our study, we primarily apply cross-entropy loss for the classification
model. For the ConfTr and DPSM methods, we minimize both the classification loss and the differentiable HPS non-
conformity score-based inefficiency loss during training. After training, we estimate RAPS non-conformal scores using
equation 13. Then, we calculate the marginal coverage and the prediction set size, with the results presented in Table 6.

F. Additional Experiments
F.1. Additional Experiments for Marginal Coverage

Table 4. HPS � Training/Calibration/Testing: The APSS on three different datasets with two different deep models trained and
calibrated with HPS when α = 0.1. ↓ indicates the percentage improvement in predictive efficiency compared to the best existing method,
whereas ↑ denotes a percentage decrease in predictive efficiency. All results are the average over 10 different runs, with the mean and
standard deviation reported. DPSM significantly outperforms almost the best baselines with 20.32% prediction set size reduction across
all datasets.

Model Marginal Coverage Prediction Set Size

CE CUT ConfTr DPSM CE CUT ConfTr DPSM

DenseNet 0.90 ± 0.006 0.90 ± 0.005 0.90 ± 0.008 0.90 ± 0.003 3.50 ± 0.10 1.62 ± 0.030 4.10 ± 0.19 0.90 ± 0.003 (↓ 44.44%)
ResNet 0.90 ± 0.004 0.90 ± 0.007 0.90 ± 0.006 0.90 ± 0.005 1.57 ± 0.018 1.64 ± 0.049 1.52 ± 0.040 0.91 ± 0.005 (↓ 44.51%)

DenseNet 0.90 ± 0.007 0.90 ± 0.009 0.90 ± 0.007 0.90 ± 0.006 2.59 ± 0.053 2.27 ± 0.09 2.28 ± 0.07 2.17 ± 0.086 (↓ 4.82%)
ResNet 0.90 ± 0.006 0.90 ± 0.005 0.90 ± 0.007 0.90 ± 0.007 3.39 ± 0.10 3.01 ± 0.11 3.77 ± 0.14 2.94 ± 0.08 (↓ 2.32%)

DenseNet 0.90 ± 0.009 0.90 ± 0.011 0.90 ± 0.011 0.90 ± 0.008 94.58 ± 3.45 77.13 ± 3.72 79.93 ± 3.70 61.22 ± 2.49 (↓ 20.63%)
ResNet 0.90 ± 0.019 0.90 ± 0.007 0.90 ± 0.012 0.90 ± 0.008 99.48 ± 8.95 73.09 ± 2.00 76.73 ± 3.87 70.04 ± 1.99 (↓ 4.17%)

CalTech-101

CIFAR-100

iNaturalist

DPSM generates smaller prediction sets. Table 4 presents the set sizes and coverage rates for different methods using HPS
score across training, calibration, and testing phases. DPSM outperforms all existing baselines with 20.32% reduction in
terms of prediction set size across all datasets. Table 5 presents the set sizes and coverage rates for different methods using
HPS for training and APS for calibrating. DPSM outperforms nearly all existing baselines with 20.61% reduction in terms
of prediction set size across all datasets, except ↑ 8.71% increase on CIFAR-100 with DenseNet and ↑ 0.54% increase on
iNaturalist with ResNet in terms of prediction set size. Table 6 presents the set sizes and coverage rates for different methods
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Table 5. HPS � Training, APS � Calibration/Testing: The APSS on three different datasets with two different deep models trained
with HPS and calibrated with APS when α = 0.1. ↓ indicates the percentage improvement in predictive efficiency compared to the best
existing method, whereas ↑ denotes a percentage decrease in predictive efficiency. All results are the average over 10 different runs, with
the mean and standard deviation reported. DPSM significantly outperforms almost the best baselines with 20.61% prediction set size
reduction across all datasets.

Model Marginal Coverage Prediction Set Size

CE CUT ConfTr DPSM CE CUT ConfTr DPSM

DenseNet 0.90 ± 0.006 0.90 ± 0.007 0.90 ± 0.008 0.90 ± 0.005 8.44 ± 0.15 3.87 ± 0.11 8.64 ± 0.21 1.58 ± 0.022 (↓ 59.17%)
ResNet 0.90 ± 0.006 0.90 ± 0.004 0.90 ± 0.007 0.90 ± 0.005 4.50 ± 0.059 4.59 ± 0.072 3.61 ± 0.08 1.74 ± 0.031 (↓ 51.80%)

DenseNet 0.90 ± 0.007 0.90 ± 0.009 0.90 ± 0.008 0.90 ± 0.006 3.38 ± 0.12 2.41 ± 0.11 3.08 ± 0.11 2.64 ± 0.86 (↑ 8.71%)
ResNet 0.90 ± 0.006 0.90 ± 0.11 0.90 ± 0.007 0.90 ± 0.007 3.98 ±0.13 3.81 ± 0.08 4.90 ± 0.18 3.53 ± 0.11 (↓ 7.35%)

DenseNet 0.90 ± 0.009 0.90 ± 0.010 0.90 ± 0.011 0.90 ± 0.010 101.97 ± 3.16 88.93 ± 3.06 90.79 ± 3.17 75.98 ± 2.99 (↓ 14.56%)
ResNet 0.90 ± 0.013 0.90 ± 0.006 0.90 ± 0.012 0.90 ± 0.009 95.81 ± 3.80 79.00 ± 2.21 88.70 ± 3.88 79.43 ± 2.39 (↑ -0.54%)

CalTech-101

CIFAR-100

iNaturalist

Table 6. HPS � Training, RAPS � Calibration/Testing: The APSS on three different datasets with two different deep models trained
with HPS and calibrated with RAPS when α = 0.1, where λRAPS = 0.01 and kreg = 5. ↓ indicates the percentage improvement in
predictive efficiency compared to the best existing method, whereas ↑ denotes a percentage decrease in predictive efficiency. All results
are the average over 10 different runs, with the mean and standard deviation reported. DPSM significantly outperforms almost the best
baselines with 19.04% prediction set size reduction across all datasets.

Model Marginal Coverage Prediction Set Size

CE CUT ConfTr DPSM CE CUT ConfTr DPSM

DenseNet 0.90 ± 0.007 0.90 ± 0.008 0.90 ± 0.009 0.90 ± 0.006 6.58 ± 0.12 3.53 ± 0.11 6.88 ± 0.17 1.50 ± 0.020 (↓ 57.51%)
ResNet 0.90 ± 0.005 0.90 ± 0.004 0.90 ± 0.007 0.90 ± 0.004 3.89 ± 0.047 3.98 ± 0.59 3.19 ± 0.69 1.67 ± 0.025 (↓ 47.65%)

DenseNet 0.90 ± 0.007 0.90 ± 0.007 0.90 ± 0.006 0.90 ± 0.006 2.73 ± 0.043 2.14 ± 0.55 2.69 ± 0.053 2.34 ± 0.035 (↑ 8.55%)
ResNet 0.90 ± 0.006 0.90 ± 0.11 0.90 ± 0.007 0.90 ± 0.007 3.25 ± 0.14 2.93 ± 0.60 4.02 ± 0.11 2.93 ± 0.05

DenseNet 0.90 ± 0.013 0.90 ± 0.008 0.90 ± 0.015 0.90 ± 0.008 97.27 ± 4.23 82.88 ± 2.47 86.77 ± 6.17 68.17 ± 2.18 (↓ 17.74%)
ResNet 0.90 ± 0.012 0.90 ± 0.011 0.90 ± 0.015 0.90 ± 0.009 97.43 ± 4.17 76.75 ± 4.47 81.18 ± 4.93 76.81 ± 2.68 (↑ 0.08%)

CalTech-101

CIFAR-100

iNaturalist

using HPS for training and RAPS for calibrating. DPSM outperforms existing baselines on several datasets, achieving a
19.04% reduction in prediction set size across all datasets, except for CIFAR-100. On iNaturalist with ResNet, it shows a
marginal 0.08% increase in prediction set size. Combined with above three tables, DPSM improve the predictive efficiency
with 19.99% reduction in term of prediction set size across all settings and all datasets. We also visualize the coverage rate
and APSS with confidence intervals of all methods using DenseNet and HPS score in Figure 5. It clearly confirms that
DPSM achieves significantly smaller prediction set size while maintaining the valid coverage.

DPSM converges to stable error for bilevel optimization. To further explore how DPSM effectively generates smaller
prediction sets, we analyze the convergence of DPSM by plotting the loss of the upper level function (i.e., a combination
of classification loss and conformal alignment loss) and the lower level function (i.e., QR loss) over training 100 epochs
with ResNet model. Figure 6 (a) and (b) show the upper-level loss and lower-level loss over epochs, respectively. We also
report the results of 40-epoch training regime in Figure 7 and 8 for reference. As shown, the upper-level loss of DPSM
exhibits an initial increase during the first 2 epochs, reaching the peak, then steadily decreases before stabilizing around
epoch 35. In contrast, the lower-level loss decreases sharply within the first 2 epochs, followed by a gradual reduction until
convergence near the end of training. These results empirically demonstrate that DPSM effectively converges in terms of
both upper and lower level training errors, validating its bilevel optimization approach. To investigate how the learned
quantiles influence the optimization error, we compute both conformal and QR losses using the learned quantiles and the
optimal (dataset-level) quantiles. The corresponding optimization errors—defined as the loss differences between learned
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(a) Caltech-101 (b) CIFAR-100 (c) iNaturalist

Figure 5. Box plots of coverage (Top row) and APSS (Bottom row) of all methods using ResNet and HPS score. DPSM achieves
significantly smaller prediction set size while maintaining the valid coverage.

(a) Upper loss (b) Lower loss (c) Conformal loss
optimization gap

(d) QR loss optimization gap

Figure 6. Justification experiments for the convergence of DPSM on CIFAR-100 using ResNet and HPS score. (a) Upper level loss
(i.e., a combination of classification loss and conformal alignment loss); (b) Lower level loss (i.e., QR loss); (c) Optimization gap of
conformal loss, defined as the difference between conformal losses using learned batch-level quantiles and dataset-level quantiles on the
training set; (d) Optimization gap of the lower-level QR loss, defined similarly as the loss difference between learned batch-level quantiles
and dataset-level quantiles.

and optimal quantiles—are visualized in Figure 6 (c) and (d). Both errors converge to nearly 0, indicating that the learned
quantiles effectively approximate the optimal quantiles over training.

DPSM estimates empirical quantiles with small error. To compare the precision of empirical quantiles estimation
in ConfTr and DPSM, we plot the estimation error between Q̂n

f (quantiles evaluated on the whole training dataset) and
q̂f (quantiles evaluated in ConfTr or learned in DPSM on mini-batches) with ResNet. Figure 9 (a) plots this estimation
error over training epochs. For the first 25 epochs, the estimation errors for DPSM are significantly larger compared to
ConfTr. However, as the training progresses, the estimation errors for DPSM decrease rapidly, converging close to 0 after
epoch 32. This result verifies the theoretical result for smaller estimation error in learning bound analysis from Theorem
4.1. Furthermore, the rapid reduction in estimation error also reflects the convergence of the lower loss (i.e., QR loss),
highlighting the effectiveness of DPSM in accurately estimating quantiles.

Learning bound of DPSM is much tighter than ConfTr. To approximately compare the learning bounds of DPSM and
ConfTr, we compare the conformal alignment losses of ConfTr and DPSM during training in terms of the average soft
set size, as shown in Figure 9 (b). The soft set size of DPSM is consistently smaller than that of ConfTr during training.
Combining the empirical results of the smaller estimation error of quantiles from Figure 9 (a), we can conclude that the
learning bound of DPSM is much tighter than the learning bound of ConfTr, providing the empirical verification of Theorem
4.1 and 3.5. Although learning bound cannot be empirically computed, we approximate it using a common strategy in ML
literature (Yuan et al., 2019; Yang et al., 2021b), which estimates generalization error by the absolute gap between training
and test errors. For CP, we use APSS evaluated on train and test sets to approximate the learning errors. Specifically, for
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(a) Upper loss (b) Lower loss (c) Est. error of quantiles (d) Average soft set size

Figure 7. Justification experiments for effectiveness of DPSM trained with 40 epochs on CIFAR-100 using DenseNet and HPS score.
(a) Upper level loss (i.e., a combination of classification loss and conformal alignment loss) in DPSM; (b) Lower level loss (i.e., QR loss)
in DPSM; (c) Estimation error between the Q̂n

f (quantiles evaluated on the whole training data) and q̂f (quantiles evaluated in ConfTr or
learned in DPSM on mini-batches); and (d) Average soft set size of DPSM and ConfTr (using Sigmoid function).

(a) Upper loss (b) Lower loss (c) Estimation error of
quantiles

(d) Average soft set size

Figure 8. Justification experiments for effectiveness of DPSM trained with 40 epochs on CIFAR-100 using ResNet and HPS score. (a)
Upper level loss (i.e., a combination of classification loss and conformal alignment loss) in DPSM; (b) Lower level loss (i.e., QR loss) in
DPSM; (c): Estimation error between the Q̂n

f (quantiles evaluated on the whole training data) and q̂f (quantiles evaluated in ConfTr or
learned in DPSM on mini-batches); and (d): Average soft set size of DPSM and ConfTr.

(a) Estimation error of quantiles (b) Average soft set size (c) Learning bound approximation

Figure 9. Justification experiments for the learning bound of DPSM on CIFAR-100 using ResNet and HPS score. (a) Estimation error
between the Q̂n

f (dataset-level quantiles on training data) and q̂f (batch-level quantiles evaluated in ConfTr or learned in DPSM); (b)
Average soft set size of DPSM and ConfTr (using Sigmoid function); (c) Approximated learning error comparison between DPSM and
ConfTr, measured by their gaps between the training and testing APSS.

DPSM, at each iteration, we: (i) compute APSS on the training set using the learned quantiles as thresholds. It includes
optimization error since the learned quantiles are not optimal (true dataset-level quantiles); (ii) compute the APSS on
the testing set using the dataset-level quantiles as thresholds. The gap between these two APSS values is employed as
an approximation of the learning bound. We apply the same strategy to the SA-based ConfTr, where the training APSS
is computed using the quantiles evaluated on mini-batches from the training data, and the test APSS is computed using
the dataset-level quantiles from the test data. This comparison is shown in Figure 9 (c), which demonstrates that the
approximated learning error is improved by DPSM.

Assumption 3.1 is empirically valid. Figure 10 (a) illustrates the conformity scores plotted against their corresponding
normalized order. The x-axis represents the normalized order, while the y-axis represents conformity scores. From this
figure, it is clear that the curve does not remain near the x-axis or y-axis, indicating that the gradient of conformity scores
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(a) Bi-Lipschitz continuity of conformity score (b) Strongly concavity of conformal loss

Figure 10. Verification studies on CIFAR-100 with ResNet model using HPS scoring function on calibration dataset. (a): HPS scores
over corresponding normalized order produced by ConfTr. The x-axis is the normalized order, the y-axis is the corresponding conformity
score; (b): The soft set size measure of ConfTr. The input coverage rate is from [0.02, 0.98] with 0.02 range with its zoom-in version
where 1− α is close to target coverage 0.9; When coverage rate is close to 0.9, the curve for the soft set size exhibits a concave shape.

Table 7. The WSC (↑ better), SSCV (↓ better) and CovGap (↓ better) of all methods on CIFAR-100 with HPS score: The best results
are in bold. These results show that DPSM achieves the best performance for class-conditional coverage (the smallest CovGap). For
size-stratified coverage (SSCV), DPSM has a worse measure compared with CE and CUT, but is better than ConfTr. For WSC, CUT and
DPSM have comparable performance.

Measures DenseNet ResNet

CE CUT ConfTr DPSM CE CUT ConfTr DPSM

WSC 0.88 ± 0.016 0.90 ± 0.022 0.88 ± 0.018 0.89 ± 0.011 0.88 ± 0.012 0.88 ± 0.020 0.88 ± 0.020 0.89 ± 0.019
SSCV 0.12 ± 0.024 0.09 ± 0.019 0.21 ± 0.061 0.17 ± 0.034 0.09 ± 0.018 0.11 ± 0.017 0.14 ± 0.022 0.12 ± 0.019

CovGap 4.54 ± 0.49 5.20 ± 0.29 4.56 ± 0.28 4.43 ± 0.41 4.71 ± 0.38 4.71 ± 0.32 4.70 ± 0.34 4.69 ± 0.26

with respect to normalized index is both upper and lower bounded. This observation empirically supports the validity of
Assumption 3.1.

Assumption 3.2 is empirically valid. Figure 10 (b) visualizes the soft set size of ConfTr, with input as coverage rate
∈ [0.02, 0.98] with range 0.02. When coverage rate approaches 0.9, the curves of all methods exhibit a concave shape
(zoom-in version also shown), providing empirical verification for Assumption 3.2.

F.2. Additional Experiments for Conditional Coverage

DPSM achieves comparable conditional coverage performance and strong class-conditional coverage performance
compared to baselines. To evaluate the impact of prediction set size reduction on the conditional coverage performance of
DPSM, we report three metrics on CIFAR-100 using the HPS score in Table 7: (i) WSC (Worst-Slab Coverage, ↑ better),
introduced in (Romano et al., 2020); (ii) SSCV (Size-Stratified Coverage, ↓ better), from (Angelopoulos et al., 2021); and
(iii) CovGap (Average Class Coverage Gap, ↓ better), proposed in (Ding et al., 2024) to measure class-conditional coverage.
The results show that DPSM achieves the best class-conditional coverage, reflected by the lowest CovGap. For SSCV, DPSM
performs slightly worse than CE and CUT, but better than ConfTr. In terms of WSC, DPSM and CUT achieve comparable
performance. We further visualize the distribution of class-conditional coverage and class-wise average prediction set size in
Figure 11 and 12, providing fine-grained insights into class-conditional performance. DPSM demonstrates slightly more
concentrated class-wise coverage and generally smaller class-wise prediction set sizes.
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(a) Class-wise coverage and size
(DPSM vs CE)
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Figure 11. Class conditional coverage and class-wise prediction set size of all methods on CIFAR-100 with DenseNet and HPS. To
better compare the class conditional coverage, we compare the class-conditional coverage between DPSM and 3 baselines in (a), (b)
and (c) separately. DPSM shows a bit more concentration in terms of class-wise coverage to the nominal coverage (90%) and smaller
prediction set size.

(a) Class-wise coverage and size
(DPSM vs CE)

(b) Class-wise coverage and size
(DPSM vs CUT)

(c) Class-wise coverage and size
(DPSM vs Conftr)

Figure 12. Class conditional coverage and class-wise prediction set size of all methods on CIFAR-100 with ResNet and HPS. To better
compare the class conditional coverage, we compare the class-conditional coverage between DPSM and 3 baselines in (a), (b) and (c)
separately. DPSM shows a bit more concentration in terms of class-wise coverage to the nominal coverage (90%) and smaller prediction
set size.
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