
Published in Transactions on Machine Learning Research (09/2022)

Can You Win Everything with A Lottery Ticket?

Tianlong Chen tianlong.chen@utexas.edu
University of Texas at Austin

Zhenyu Zhang zhenyu.zhang@utexas.edu
University of Texas at Austin

Jun Wu jwum@amazon.com
Amazon Web Services

Randy Huang renfu@amazon.com
Amazon Web Services

Sijia Liu liusiji5@msu.edu
Michigan State University
MIT-IBM Watson AI Lab, IBM Research

Shiyu Chang chang87@ucsb.edu
University of California, Santa Barbara

Zhangyang Wang atlaswang@utexas.edu
University of Texas at Austin

Reviewed on OpenReview: https: // openreview. net/ forum? id= JL6MU9XFzW

Abstract

Lottery ticket hypothesis (LTH) has demonstrated to yield independently trainable and
highly sparse neural networks (a.k.a. winning tickets), whose test set accuracies can be
surprisingly on par or even better than dense models. However, accuracy is far from the
only evaluation metric, and perhaps not always the most important one. Hence it might
be myopic to conclude that a sparse subnetwork can replace its dense counterpart, even if
the accuracy is preserved. Spurred by that, we perform the first comprehensive assessment
of lottery tickets from diverse aspects beyond test accuracy, including (i) generalization
to distribution shifts, (ii) prediction uncertainty, (iii) interpretability, and (iv) geometry
of loss landscapes. With extensive experiments across datasets {CIFAR-10, CIFAR-100,
and ImageNet}, model architectures, as well as seven sparsification methods, we thoroughly
characterize the trade-off between model sparsity and the all-dimension model capabilities.
We find that an appropriate sparsity (e.g., 20% ∼ 99.53%) can yield the winning ticket to
perform comparably or even better in all above four aspects, although some aspects
(generalization to certain distribution shifts, and uncertainty) appear more sensitive to the
sparsification than others. We term it as a LTH-PASS. Overall, our results endorse choosing a
good sparse subnetwork of a larger dense model, over directly training a small dense model of
similar parameter counts. We hope that our study can offer more in-depth insights on pruning,
for researchers and engineers who seek to incorporate sparse neural networks for user-facing
deployments. Codes are available in https://github.com/VITA-Group/LTH-Pass.

1 Introduction

State-of-the-art pruning techniques are able to remove the majority of weights from deep neural networks
(DNNs) almost without compromising the test accuracy (Mozer & Smolensky, 1989; Janowsky, 1989; LeCun
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Figure 1: Overall assessments of sparse neural networks. Left figure presents an overview of measurements. Right
figures show achieved full-scale performance, where outer cycles indicate superior (sparse) networks. Dense
is the unpruned full model; LTH (Frankle & Carbin, 2019) denotes the winning ticket identified from the dense
network, which is also a LTH-PASS here; RP represents a randomly pruned sparse model. All sparse networks on
CIFAR/ImageNet only have 32.77%/51.20% parameters of the dense model. Associated with the left figure, {Test
Accuracy, Robustness, OoD}, {Hessian Trace}, {Fidelity, Stability, Composition Neurons}, {NLL, ECE or SCE} are
measurements for generalization ability, geometric of loss surfaces, interpretability, uncertainty respectively. Note that
reported numbers of each metric are normalized by subtracting the minimum and dividing the gap between maximum
and minimum values.

et al., 1990b; Han et al., 2016; Guo et al., 2016; Molchanov et al., 2016). The emerging lottery ticket
hypothesis (LTH) (Frankle & Carbin, 2019) advocates that dense models contain highly sparse subnetworks,
i.e., winning tickets, with the same good trainability, expressiveness, and transferability (Morcos et al., 2019a;
Chen et al., 2020b;a) compared to their dense counterpart. All these intriguing attributes together with the
remarkable efficiency lead to a wide deployment of sparse networks in a resource-constrained real world (Lane
& Warden, 2018). However, while many works narrowly refer to model “performance” as its test set accuracy,
researchers have been long aware of the more complicated myriad of performance dimensions. Indeed, it
remains elusive whether or not there are hidden pitfalls in a winning lottery ticket, besides the test accuracy
versus efficiency, i.e., have we missed or overlooked any unexpected loss along other performance dimensions
when we prune a neural network? This is the central question motivating the current work.

There were preliminary attempts done in earlier literature (Hooker et al., 2019; 2020b; Gui et al., 2019; Ye
et al., 2019; Wang et al., 2018; Zhou et al., 2009; Venkatesh et al., 2020; Chen et al., 2020b;a; Koohpayegani
et al., 2020; Morcos et al., 2019b; Zhang et al., 2021a; Sakamoto & Sato, 2022; Chen et al., 2022c) trying to
address some part of this question. Some researchers advocated the existence of sparse subnetworks (winning
tickets) with comparable transferability to the full dense models (Chen et al., 2020b;a; Koohpayegani et al.,
2020; Morcos et al., 2019b; Chen et al., 2022a) and adversarial robustness (Chen et al., 2022b; Gui et al.,
2019; Ye et al., 2019). Other recent works (Hooker et al., 2019; 2020b) pointed out that sparse networks are
brittle to small changes such as natural image corruptions, and might amplify the class imbalance more than
dense counterparts (Hooker et al., 2020a). Many other important aspects, such as uncertainty, interpretability
,and loss landscape, are not well studied as performance criteria in sparse neural networks, up to our best
knowledge. In many applications, we cannot afford to pay any of them as the “hidden price” of sparsification.
For example, robustness and interpretability are stipulated by safety-critical scenarios like autonomous
cars and medical diagnostic, respectively. With those aspects under-scrutinized, it is hard to draw decisive
conclusions on whether sparse winning tickets can become a drop-in replacement for dense ones, despite their
appealing accuracy-efficiency trade-offs, and putting off their wider adoption with many open concerns. A
comprehensive study into answering this question is thus highly demanded.

To the best of our knowledge, our work for the first time systematically characterizes and quantifies the
full-dimension performance of sparse neural networks obtained by LTH and other pruning mechanisms.
Specifically, we assess sparsity from its impacts on four carefully picked perspectives (Figure 1), including
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generalization to distribution shifts, uncertainty quantification, interpretability, and loss geometry that locally
assess the learned functions. When an identified sparse subnetwork can be separately trained, to match all the
above four aspects as the full dense model can do - we name it a LTH-PASS. Our contributions are outlined:

⋆ We define a more rigorous notion, LTH-PASS, which requires located subnetworks to match all measured
aspects with their dense networks, i.e. with the same or even better ability to generalize to various shifted
data distributions, to quantify uncertainty, to be interpreted (especially by neuron explanations), and to
preserve learned functional approximation as indicated by loss landscape geometry, in addition to the
unimpaired test accuracy. Such LTH-PASS is identified at 20% ∼ 99.53% sparsity from diverse scenarios.

⋆ The excessive sparsification can often deteriorate any of the above aspects, and some aspects are far
more sensitive to sparsity than others, e.g., the generalization to distribution shifts (e.g., with natural
corruptions or adversarial perturbations) and the uncertainty quantification.

⋆ We also observe that it is advantageous to choose a sparse subnetwork (i.e., LTH-PASS) of a larger dense
model, than directly using a small dense network with similar parameter counts (Figure 11), along all those
performance dimensions. That implies the role of sparsity as a sophisticated, comprehensive regularization
affecting multiple aspects of neural networks, rather than just ad-hoc reduction of parameters.

⋆ The above insights are drawn from extensive experiments across multiple datasets: CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al., 2009); using diverse dense model architectures:
ResNets (He et al., 2016) and Wide-ResNets (Zagoruyko & Komodakis, 2016); as well as performing
seven representative sparsification regimes such as magnitude pruning (Han et al., 2016), lottery ticket
hypothesis (Frankle & Carbin, 2019), random pruning, pruning at initialization (Lee et al., 2019; Wang
et al., 2020; Tanaka et al., 2020), and dynamic sparse training (Evci et al., 2020; Liu et al., 2021b). We
hope our benchmarking efforts to motivate more future studies as a common ground for comparison.

2 Related Works

2.1 Pruning, Lottery Ticket Hypothesis, and Dynamic Sparsity

Weight pruning can effectively eliminate redundancy in deep neural networks (LeCun et al., 1990b; Han
et al., 2016) and obtain storage and computational savings. In general, it contains the following iterative
cycles: (a) training the dense neural networks for at least several iterations; (b) removing unnecessary weights
according to certain criteria and deriving subnetworks; (c) fine-tuning obtained sparse model to recover
accuracy. Different sparsity patterns may be pursued, from unstructured (Han et al., 2015; LeCun et al.,
1990a; Han et al., 2016) to structured sparsity (Liu et al., 2017; He et al., 2017; Zhou et al., 2016), the former
being more flexible while the latter is often treated as more hardware friendly.

One of the mainstream pruning techniques is magnitude-based, which zeroes out a percentage of model weights
by thresholding their magnitudes (Han et al., 2015; 2016). Later methods (Blalock et al., 2020) perform
thresholding based on gradients (Molchanov et al., 2016; 2019) or hessian (LeCun et al., 1990a; Hassibi &
Stork, 1992; Hassibi et al., 1993) based measures, instead of raw element magnitudes. The iterative pruning
fashion (Han et al., 2016; Zhu & Gupta, 2017; Tan & Motani, 2020; Liu et al., 2019c) is often adopted for
ameliorating performance degradation. Other pruning strategies formulate pruning as optimization objectives,
by incorporating sparsity-promoting regularization (Liu et al., 2017; He et al., 2017; Zhou et al., 2016) or by
constrained optimization (Boyd et al., 2011; Ouyang et al., 2013; He et al., 2017; Luo et al., 2017; Yu et al.,
2018; Aghasi et al., 2017; Serra et al., 2020; ElAraby et al., 2020; Serra et al., 2021).

Lottery ticket hypothesis (LTH) (Frankle et al., 2019) recently emerges to investigate the independent
trainable, extremely sparse neural networks from scratch, which are capable of recovering or even surpassing
the original dense network’s performance. Sahu et al. (2022) points out that smaller models benefit more
from the ticket search. To scale up LTH for large networks and large-scale datasets, weight rewinding
techniques (Renda et al., 2020; Frankle et al., 2020a) is proposed. The intriguing properties of LTH received
wide attention and have been broadly explored in various contexts, such as image classification (Frankle
& Carbin, 2019; Liu et al., 2019b; Wang et al., 2020; Evci et al., 2019; Frankle et al., 2020b; Savarese
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Table 1: Details of training configurations for experiments with OMP, LTH, RP, PI approaches.
Dataset Learning Rate Batch Size Epochs Optimizer Momentum Weight Decay
CIFAR-10/100 0.1; ×0.1 at 91,136 epoch 128 182 SGD 0.9 1 × 10−4

ImageNet 0.4; ×0.1 at 30,60,80 epoch; linearly warmup 5 epochs 1024 90 SGD 0.9 1 × 10−4

et al., 2020; You et al., 2020; Chen et al., 2020a; 2022c;a), object detection (Girish et al., 2020), natural
language processing (Gale et al., 2019; Yu et al., 2020; Prasanna et al., 2020; Chen et al., 2020b;c), generative
adversarial networks (Kalibhat et al., 2020; Chen et al., 2021a), graph neural networks (Chen et al., 2021b),
reinforcement learning (Yu et al., 2020), and lifelong learning (Chen et al., 2021c). Most of them leverage
unstructured iterative magnitude pruning (Han et al., 2016; Frankle & Carbin, 2019) to identify the winning
tickets, which we also follow in this work.

To save resources at training stages, SNIP (Lee et al., 2019), GraSP (Wang et al., 2020), and SynFlow (Tanaka
et al., 2020) can be introduced to obtain high-quality sparse subnetworks before the training process starts,
i.e., at the random initialization, based on several salience criteria. Another related field is dynamic sparse
training (DST) (Mocanu et al., 2018; Liu et al., 2020) which trains sparse neural networks from scratch by
optimizing the sparse connectivity and model parameters simultaneously. Numerous approaches (Mocanu
et al., 2016; Evci et al., 2019; Mostafa & Wang, 2019; Dettmers & Zettlemoyer, 2019; Liu et al., 2021a;
Dettmers & Zettlemoyer, 2019; Evci et al., 2020; Jayakumar et al., 2020; Raihan & Aamodt, 2020; Liu et al.,
2021b) study such dynamic sparsity, often matching state-of-the-art training performance (Liu et al., 2021b).

2.2 Measurements of Sparse Neural Networks

Although the test set accuracy is often the core interest, more researchers start to examine and characterize
the impact of pruning from more perspectives beyond that. (1) Compression w.r.t. fairness: (Hooker
et al., 2019; 2020b; Paganini, 2020) demonstrates compression may amplify existing algorithmic bias on the
underrepresented long-tail of the data distribution, which is at odds with fairness objectives, and potentially
results in disparate treatments of protected attributes (Zink & Rose, 2020). (2) Compression w.r.t. robustness:
(Gui et al., 2019; Ye et al., 2019) show that with an appropriate sparsity, pruned subnetworks are capable of
maintaining unimpaired adversarial robustness and standard accuracy. (Hooker et al., 2019; 2020b) tell a
different story that compressed models are more sensitive and brittle to shifted data distributions such as
natural corrupted samples (Hendrycks & Dietterich, 2019). (3) Compression w.r.t. privacy: (Wang et al., 2018;
Zhou et al., 2009; Gondara et al., 2021) enable sparse models to obtain a strong differential-privacy guarantee.
(4) Compression w.r.t. transferability: extensive investigations (Chen et al., 2020b;a; Koohpayegani et al.,
2020; Morcos et al., 2019b; Iofinova et al., 2022) indicate that there exist high quality subnetworks with
competitive or even enhanced transferability across diverse datasets. (5) Compression w.r.t. uncertainty:
(Venkatesh et al., 2020) integrates a suite of calibration strategies into existing pruning procedures, and
locates reliable subnetworks with improved uncertainty.

3 Preliminary

Network. We use the official ResNet-20s (R20s), ResNet-18 (R18), ResNet-50 (R50) (He et al., 2016), and
Wide-ResNet-28-10 (WR28-10) (Zagoruyko & Komodakis, 2016) as the original (unpruned) dense networks.
f(x; θ) represents the output of a model with parameters θ ∈ Rd and on input images x. Similarly, subnetworks
extracted from the dense model θ can be depicted as m ⊙ θ, where m ∈ {0, 1}d is a pruning binary mask
and ⊙ denotes the element-wise product. Note that pruning is mainly conducted over networks without
counting their classification heads. Sparsity of a compressed neural network is defined as the ratio of removed
parameters to the total parameters, e.g., sparsity = 1- ∥m∥0

d in our case.

Pruning Methods. To find the subnetworks m⊙θ, we leverage several classical pruning approaches: (1) one-
shot magnitude pruning (OMP) by removing a portion of weights with the globally smallest magnitudes (Han
et al., 2016); (2) the lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019) with iterative weight magnitude
pruning (IMP) (Han et al., 2016). Following the LTH’s standard routines, it iteratively prunes the 20% of
remaining weight with the globally smallest magnitudes and rewinds model weights to the same random
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Figure 2: Test accuracy (↑) of diverse subnetworks with a range of sparsity from 0.00% to 99.53% on CIFAR
datasets. The sparsity levels in X-axis are obtained from iteratively pruning with a ratio of 20%, i.e., (1 − 0.8n) × 100%
and n is the number of pruning rounds. Dense (balck dashed lines) denotes the unpruned dense models. ↑/↓ indicate
a better model should have a lager/smaller measurement. Curves with errors (shadow regions) are the average
across three independent runs, with standard deviations: same hereinafter. Each curve is divided into the region I
(solid lines) of winning tickets; the region II of degraded subnetworks marked by dash lines. Regions I and II are
separated by the extreme sparsity defined as the maximum sparsity when the subnetwork is at most 1% test accuracy
drop compared to its dense counterpart. More detailed can be found in Table A3. The majority of our investigations
are conducted on the high quality winning tickets from region I.

initialization (Frankle & Carbin, 2019) or early training epochs (Frankle et al., 2020b; Chen et al., 2020a).
In our case, weights are rewound to the 3rd/15th epoch for CIFAR and ImageNet experiments respectively,
following the setups in Chen et al. (2020a); (3) random pruning (RP) which usually serves as a necessary
baseline for the sanity check (Frankle & Carbin, 2019); (4) pruning at initialization (PI) mechanisms. Some
representative methods, SNIP (Lee et al., 2019), GraSP (Wang et al., 2020), and SynFlow (Tanaka et al.,
2020) are selected, which locates sparse subnetworks at random initialization via certain salience criterion; (5)
dynamic sparse training (DST). We choose the top-performing algorithm, RigL (Evci et al., 2020; Liu et al.,
2021b), which starts from a random sparse network and encourages the connectivity to evolve dynamically
based on a grow-and-prune strategy. All results and analyses about RigL are referred to Appendix A2.2.

Implementation details. Experiments are conducted on CIFAR-10 (C10), CIFAR-100 (C100) (Krizhevsky
& Hinton, 2009), and ImageNet (IMG) (Deng et al., 2009). For a fair comparison, we follow the standard
implementations and hyperparameters in (Renda et al., 2020) for OMP, LTH, RP, and PI experiments, as
shown in Table 1. All RigL experiments follow the recent SOTA training configurations (Liu et al., 2021b).
More details can be found in the Appendix A1.

4 What is Lost or Gained after Pruning?

In this section, we comprehensively investigate the full-dimension performance of sparse neural networks from
LTH and other pruning algorithms, including (i) generalization to distribution shifts, (ii) uncertainty and
reliability, (iii) interpretability, and (iv) geometry of loss landscapes. If a sparse subnetwork m ⊙ θ can be
trained from the random initialization and match the dense model results in aspects (i − iv), it is a LTH-PASS.
The detailed sparsity levels of LTH-PASS in our scenarios are provided in Appendix A2.4.

In summary, LTH-PASS broadly exists for diverse network architectures and datasets at 20 ∼ 99.53% sparsity.

4.1 Generalization to Distribution Shifts

The generalization ability of (sparse) neural networks is often considered equal to their training-test accuracy
gap, while the test sets are i.i.d. selected from the same underlying distribution as the training set. While sparse
neural networks can often achieve unimpaired test set accuracy, we broaden the scope of generalization ability
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Figure 3: Natural corruption robustness, i.e. mCE (↓), of diverse subnetworks with a range of sparsity from
0.00% to 99.53% on CIFAR-10-C and CIFAR-100-C datasets.
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Figure 4: Out-of-distribution (OoD) detection performance, i.e., ROC-AUC (↑), of diverse subnetworks with a
range of sparsity from 0.00% to 99.53% on CIFAR datasets. Titles are formed by in-distribution dataset / out-of
distribution dataset, architecture.

by considering manipulated or shifted data distributions. Specifically, we will examine their generalization to
natural corruptions, adversarial perturbations and out-of-distribution (OoD) data performance. The main
takeaways are summarized below.

Takeaways: ❶ With appropriate sparsity levels, e.g., 59.04% ∼ 99.53%, subnetworks from LTH enjoy better
generalization than its dense models, on (shifted) data distributions. ❷ Regardless of pruning methods,
sparse neural networks are relatively more brittle to natural corruptions, compared to the other data
distribution shifts.

Specifically, we quantify the generalization ability of network pruning in four main aspects:

• (Clean) generalization gap: 1
|Dtest|

∑
(x,y)∈Dval

δ(f(x; θ) = y) − 1
|Dtrain|

∑
(x,y)∈Dtrain

δ(f(x; θ) = y), where
f(x; θ) is the model’s output and δ(·) is the indicator function. Dtrain, Dtest, x and y denotes the training
data, testing data, input sample, and its corresponding label. Empirically, for well-trained models (i.e., ∼
zero training error), the test set accuracy is adopted to represent the generalization ability on original test
sets, which is the conventional metric to evaluate the quality of sparse neural networks.

• Natural corruption robustness: mCE = 1
|C|

∑
c∈C [

∑5
s=1 Em⊙θ

s,c )/(
∑5

s=1 Eθ
s,c)]. Following the standard setup

in Hendrycks & Dietterich (2019), we use the mean corruption error (mCE) to indicate model robustness
to different natural corruptions, where Em⊙θ

s,c and Eθ
s,c are the top-1 error of dense model θ and its sparse

subnetwork m ⊙ θ, respectively. C is the set of corruptions such as noise, blur, weather, digital process, and
each corruption type c ∈ C has five corruption severity levels (i.e., 1 ≤ s ≤ 5). Note that all corrupted samples
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are never shown in the training stage. CIFAR-10/100-C and ImageNet-C (Hendrycks & Dietterich, 2019) are
adopted in our experiments. More details are included in Appendix A1.

• Adversarial robustness: testing accuracy on adversarial perturbed images, i.e., robust accuracy. We choose
the classical adversarial attack, i.e., Fast Gradient Sign Method (FSGM) (Goodfellow et al., 2014), to generate
adversarial samples as x + ϵ × sgn(∇xL(f(x; θ), y)), where L is the empirical loss and ϵ (in our case, ϵ = 8

255 )
is the predefined magnitude of perturbations.

• Out-of-distribution (OoD) performance: ROC-AUC1 as the standard metric is utilized to gauge ob-
tained subnetworks. Since deep neural networks suffer from overconfident predictions on out-of-distribution
data (Nguyen et al., 2015; Hendrycks & Gimpel, 2016), it is valuable to investigate whether this issue will be
amplified or diminished by introduced model sparsity. Following Hendrycks & Gimpel (2016); Hendrycks
et al. (2018); Hein et al. (2019); Augustin et al. (2020), for CIFAR-10 experiments, CIFAR-100 (Krizhevsky
& Hinton, 2009) is regarded as the OoD dataset; for CIFAR-100 experiments, CIFAR-10 is selected as the
OoD dataset; for ImageNet experiments, ImageNet-O (Hendrycks et al., 2019) is the OoD dataset.

Experimental observations. We present the results of test accuracy, natural corruption robustness,
OoD performance, and adversarial robustness in Figure 2, 3, 4, and A14, respectively. Additional
results of (IMG, R50), (C10, VGG-11), and (C100, VGG-11) can be found in 10, A12, and A13, respectively.
Several consistent findings can be drawn:

① Superior sparse models? Winning tickets broadly exist with unimpaired generalization on multiple (shifted)
data distributions. Specifically, the matched or even outperformed performance can be achieved by winning
tickets at sparsity {83.22 ∼ 86.58%, 93.13% ∼ 98.20%, 94.50% ∼ 99.53%, 67.23% ∼ 83.22%, 93.13% ∼ 97.75%,
98.20% ∼ 99.08%, 59.04% ∼ 89.26%}2 on the original, corrupted, adversarial perturbed, out-of-distribution
data. We see the extreme sparsity of winning tickets alters substantially given different evaluation metrics
like natural corruption robustness, which suggests the limitation of considering the clean test set accuracy as
the only quality measurement for pruned subnetworks.

② Sensitivity metrics? In general, natural corruption robustness (mCE) is the most sensitive measure to
pruning since found winning tickets via mCE have smaller extreme sparsity. It suggests excessively pruned
models are relatively more fragile to natural corruptions, such as blur, noise, fog, etc., which coincides with
the findings in Hooker et al. (2020b).

③ Data or model dependent? Regarding to investigated generalization on various (shifted) data distributions,
on the same dataset, more overparameterized models (e.g., WR28-10 v.s. R20s) are more amenable to be
sparsified; with the same network, dataset contains more classes (e.g., C100 v.s. C10) is more intractable for
pruning. Similar observations also presented in Morcos et al. (2019a).

④ Superior pruning methods? With low sparsity levels (e.g., ≤ 48.80%), OMP appears comparable general-
ization ability to LTH, and all PI algorithms perform no better than random pruning. At higher sparsity
levels, although PI especially GraSP shows moderate advantages of generalization on the original test set and
out-of-distribution data, subnetworks from PI are similarly vulnerable to corrupted or perturbed samples as
randomly pruned models.

4.2 Calibration and Reliability

Confidence calibration uncovers the prediction uncertainties and the model reliability (Guo et al., 2017;
Quiñonero-Candela et al., 2006; DeGroot & Fienberg, 1983; Venkatesh et al., 2020). It advocates the
classification models must not only be accurate but also should reveal the true correctness likelihood (i.e.,
when the predictions are likely to be incorrect) (Guo et al., 2017), especially in safety/security-critical
scenarios like self-driving vehicles (Bojarski et al., 2016) and automated health care (Jiang et al., 2012). In
this section, we investigate whether pruning hurts or benefits confidence calibration. The main takeaways are
summarized below.

1ROC-AUC stands for the area under the receiver operating characteristic (ROC) curve, in which we adopt the prediction
confidence as the threshold.

2Results are produced by the configurations of {(C10,R20s), (C10,R18), (C10,WR28-10), (C100, R20s), (C100,R18),
(C100,WR28-10), (IMG,R50)}. Such narrative style is adopted hereinafter.
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Takeaways: ❶ Sparse networks from LTH with 48.80% ∼ 99.53% sparsity, are capable of maintaining
or enhancing both generalization and uncertainty performance, compared to dense models. ❷ In general,
uncertainty measures are more sensitive to pruning than generalization metrics.

Several classical and representative evaluation metrics (Guo et al., 2017; Venkatesh et al., 2020) are used in
our experiments:

• Expected calibration error (ECE): ECE =
∑M

m=1
|Bm|

n |acc(Bm) − conf(Bm)|, where n and |Bm| is the
number of total samples and samples in the bin Bm, respectively. ECE (Pakdaman Naeini et al., 2015)
is a widely adopted metric to approximate the difference in expectation between confidence and accuracy
(i.e., miscalibration). Specifically, it partitions predictions into M equally-spaced bins, and then calculate a
weighted average of the accuracy/confidence discrepancy in each of these bins.

• Static calibration error (SCE): SCE = 1
nC

∑C
c=1

∑M
m=1 |

∑
i∈Bm

1(yi = c) − conf(Bm)|, where C is the total
number of classes and yi denotes the label of sample i. SCE bins the predictions separately for each class
probability. Unlike ECE that only considers the highest probability, SCE (Gweon & Yu, 2019) treats all
probabilities in a multi-class regime equally. We adopt it for ImageNet experiments with 1, 000 classes.

• Negative log likelihood (NLL): NLL = −
∑

(x,y)∈Dval
log(p̂(y|x)) as another standard measure of the

calibration quality (Hastie et al., 2001; LeCun et al., 2015), is minimized in expectation if and only if the
prediction distribution p̂(Y |X) recovers the ground truth conditional distribution p(Y |X).
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Figure 5: Expected calibration error (ECE ↓) of diverse subnetworks with a range of sparsity from 0.00%
to 99.53% on CIFAR datasets. More results can be found in Figure A12 and A13.
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Figure 6: Negative log likelihood (NLL ↓) of diverse subnetworks with a range of sparsity from 0.00% to
99.53% on CIFAR datasets, which is normalized by dense networks.

8



Published in Transactions on Machine Learning Research (09/2022)

Experimental observations. Main results of expected calibration error and negative log likelihood
are presented in Figure 5 and 6. More results of (IMG, R50), (C10, VGG-11), and (C100, VGG-11) are
included in Figure 10, A12, and A13 respectively. We observe that:

① Superior sparse models? Winning tickets in terms of uncertainty metrics can be found at sparsity {89.26%,
96.48 ∼ 97.75%, 99.53%, 48.80%, 93.13%, 98.20%, 48.80% ∼ 73.09%}.

② Sensitivity metrics? Generally, ECE and NLL metrics show a similar sensitivity to pruning. While
uncertainty measures are more sensitive than generalization measures, it is within expectation since investigated
pruning algorithms are mainly designed to avoid generalization drops.

③ Superior pruning methods? At high sparsity ratios (e.g., ≥ 67.23%), RP and PI have outperformed ECE
than LTH in cases (C10/C100,R20s), yet at the price of high degraded generalization ability. Similar things
happened in exorbitantly sparsified models in cases (C100,R18/WR28-10).

4.3 Interpretability

In this section, we investigate whether and which sparse neural networks are able to maintain the inter-
pretability, compared to their dense counterpart. We assess these subnetworks from both macro and micro
views. The former quantitatively evaluates the explainability from the functional representation perspective,
with the most commonly used metrics, i.e., fidelity (Plumb et al., 2020; 2018; Ribeiro et al., 2016) and
stability (Plumb et al., 2020; Alvarez-Melis & Jaakkola, 2018; Ghorbani et al., 2019). The latter performs the
NetDissect procedure (Bau et al., 2017) for explaining neurons’ behavior by identifying compositional logical
concepts (Mu & Andreas, 2020). The main takeaways lie below.

Takeaways: ❶ Although LTH has superior generalization and uncertainty performance than other pruning
methods, it is much more difficult to be interpreted by linear explainers. ❷ When we dissect sparse neural
networks, LTH shows a significantly enhanced interpretability in terms of neuron behaviors, even compared
to its dense counterpart.

• Fidelity and stability: F = Ex∈Dval [Ex′∼Nx [(g(x′) − f(x′))2]], S = Ex∈Dval [Ex′∼Nx [∥e(x, f) − e(x′, f)∥2
2]].

Fidelity F and stability S focus on local explanations for semantic features, which attempts to predict how
the model’s output would change if the input samples were perturbed. Following the classical routines in
LIME (Ribeiro et al., 2016) to compute the metrics, we first perturb each input images x and build its
neighborhood set Nx with a size of 1, 000 samples. Then, we generate a class of interpretable functions
G := {gx ∈ G|x ∈ Dval}, where gx is a linear function obtained form a regression to the corresponding model’s
output on Nx. In the above formulation, f(·) denotes the target model we want to interpret. e(x, f), e(x′, f)
are the learned weights of linear models gx and g̃x. Both gx and g̃x are trained on Nx, while each training
sample x̂ ∈ Nx is weighted by the Hamming distance of (x̂,x) and (x̂,x′) (Ribeiro et al., 2016), respectively.
All our experiments follows the same implementation in (Plumb et al., 2020). Intuitively, F quantifies how
accurately the explainer gx models the target network f in a neighborhood Nx; S measures the degree to
which the explanation changes across points in Nx.

• Composition neurons. Following (Mu & Andreas, 2020), we consider each individual neuron fn(x) ∈ R of
the model’s output f(x) ∈ Rd2 , and its activation on concrete input images. A good explanation of neuron fn

is a description (e.g., category or property) which locates the same inputs for which fn activates. Specifically,
we search the most appropriate compositional concepts K with the largest IoU (i.e., the intersection over
union) for neuron fn, i.e., IoU(n, K) = [

∑
x 1(Mn(x) ∧ K(x))]/[

∑
x 1(Mn(x) ∨ K(x))], where Mn(x) is a

binary mask generated by thresholding the continuous neurons activation of fn(x). K consists of several
pre-defined atomic concepts Ki (1 ≤ i ≤ t, t is 3 in our experiments) from the ADE20k (Zhou et al., 2017)
and Broden (Bau et al., 2017) datasets. Each atomic concept is an image segmentation mask, and can be
combined via disjunction (OR), conjunction (AND), and negation (NOT) operations, as shown in Figure 7.
All procedures of our experiments follow the default configuration in (Bau et al., 2017; Mu & Andreas, 2020),
and models for NetDissect are (sparse) R50 trained on ImageNet.

Experimental observations. According to main results in Figure 8, 9, and 7, we summarize important
observations below. Additional experimental results are presented in Appendix A2. Figure A12 and A13
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LTH 59.04%    Unit 993   IoU: 0.1620   ((washer OR stove) OR washing machines)

Dense    Unit 993   IoU: 0.1266   ((washer OR stove) OR washing machines)

RP 59.04%    Unit 1892   IoU: 0.0940   ((washer OR stove) OR washing machines)

LTH 59.04%    Unit 1263   IoU: 0.1696   ((bathtub OR sink) OR hot tub)

Dense    Unit 1263   IoU: 0.1648   ((bathtub OR sink) OR hot tub)

RP 59.04%    Unit 488   IoU: 0.0478   ((bathtub OR sink) OR hot tub)

Sparsity: 59.04%

Figure 7: Results of composition neurons with R50 on ImageNet. (Left) Maximum IoUs (↑) of the intersection
compositional concepts (top 70) by dissecting dense (ave. IoU: 0.1034), winning tickets (ave. IoU: 0.1110), and
randomly pruned networks (ave. IoU: 0.0742) at the 59.04% sparsity. (Right) Neuron explanations for two of top IoU
concepts in the left figure’s red box. For each concept and neuron, top-5 IoU samples are presented. Green border
indicates objects are coincided with the concept. Red border means they are unrelated.
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Figure 8: Fidelity (↓) of diverse subnetworks with a range of sparsity from 0.00% to 99.53% on CIFAR.

collect the evaluation on (C10, VGG-11) and (C100, VGG-11), respectively. Figure A18 and A19 display the
extra composition neuron results of subnetworks at 67.23% sparsity. Figure A17 reports the IoU distribution
of all 2048 neurons of diverse sparse neural networks.

① Linear interpretability. On CIFAR, we can locate winning tickets with a range of sparsity from 20% to
99.53%. Meanwhile, although with an inferior generalization, RP, OMP, and PI algorithms have consistently
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Figure 9: Stability (↓) of diverse subnetworks with a range of sparsity from 0.00% to 99.53% on CIFAR.

better linear interpretability. It suggests that the critical sparse topology mined by LTH potentially offers a
more non-linear functional representation.

② Neuron behaviors. Based on NetDissect (Bau et al., 2017; Mu & Andreas, 2020) results in Figure 7
and A17, we find winning tickets (LTH) at 59.04% sparsity to achieve competitive generalization and neuron
interpretability, compared to the unpruned model. Coherently with the observations in (Mu & Andreas,
2020), when a neuron is active, the more generalizable the sparse network is, the more interpretable that
neuron is (with a large IoU). Qualitative visual results in Figure 7 also imply the winning tickets from LTH
succeed in finding more interpretable true positives than the corresponding dense model and randomly pruned
networks.

4.4 Geometry of Loss Landscapes

The geometry of loss surfaces (e.g., flatness) reflects the learned functional approximation of derived
subnetworks, which provides various insights to assess the sparse model’s generalization ability (Evci et al.,
2022) and understand its behaviors such as transferability (Liu et al., 2019a). Some other works (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017; Jiang et al., 2019) show that the loss landscapes of well-generalizing
models are relatively “flat” respect to model weights. Similarly, (Wu et al., 2020; Moosavi-Dezfooli et al.,
2019; Chen et al., 2021d) claim that a flatter adversarial loss landscape with respect to model inputs enhances
the robustness generalization. The weight/input flatness are defined as the Hessian of objective function
respect to the weight/input samples, respectively. Our main takeaways can be summarized as follows. More
details are referred to Appendix A2.2.

Takeaways: ❶ Winning tickets (LTH) with 20.00% ∼ 99.53% sparsity exist, achieving unscathed general-
ization ability, uncertainty, interpretability, and the loss landscape geometry. ❷ Besides pruning methods,
network backbones and dataset scale also play non-negligible roles in the learned loss geometry of sparse
neural networks.

4.5 Extra Experimental Investigations

ImageNet results. Figure 10 presents the evaluation results of ResNet-50 on ImageNet with a range of
sparsity from 0.00% to 93.13%, in which the PR-AUC metric stands for the area under the precision and
recall (PR) curve. We can observe that subnetworks from LTH are capable of maintaining or enhancing the
performance of all the metrics with appropriate sparsity levels (which are the LTH-PASS), e.g., 48.80% ∼ 93.13%,
in which LTH consistently outperforms both PI methods and RP.

Extra network backbone. In this section, we evaluate an additional network architecture, VGG-11 (Si-
monyan & Zisserman, 2014), beyond ResNets. Results on CIFAR-10 and CIFAR-100 are collected in
Figure A12 and A13 respectively. We observe that winning lottery tickets exist at (98.20%, 96.48%, 98.20%,
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Figure 10: Evaluation results of ResNet-50 on ImageNet, including Generalization ability (Test Accuracy,
Natural Corruption Robustness, Adversarial Robustness, Out-of-distribution Detection Performance (ROC-
AUC)), Uncertainty (ECE, NLL), Interpretability (Fidelity, Stability) and Geometric of Loss Surfaces
(Trace of Hessian Matrix).

98.20%) and (96.48%, 89.26%, 96.48%, 95.60%) sparsity levels in terms of generalization ability (test accuracy,
natural corruption robustness, adversarial robustness, out-of-distribution detection performance), (98.20%,
98.20%) and (86.58%, 94.50%) sparsity levels in terms of uncertainty (ECE, NLL), (98.20%, 98.20%) and
(91.41%, 96.48%) sparsity levels in terms of interpretability (fidelity, stability), (98.20%) and (93.13%) sparsity
levels in terms of loss surfaces’ geometric, for (C10, VGG-11) and (C100, VGG-11) respectively. Therefore,
LTH-PASS is identified in these two cases with the sparsity of 96.48% and 86.58%.

Comparison with a smaller dense network. As demonstrated in Figure 11, we observe the LTH-PASS
at the 79% sparsity outperforms the small-dense baseline with similar parameter counts, by significant
performance margins along all four evaluation dimensions. It suggests the sparsity functions as a comprehensive
regularization and influences diverse aspects of neural networks, far beyond a simple reduction of network
capacity (i.e., parameter counts).

Comparison to dynamic sparsity. From Figure 11, we observe that LTH and RigL are capable of
maintaining the generalization ability of dense networks at a sparsity level of 21%. As for the uncertainty
measurement, LTH and RigL show better performance than dense networks. On CIFAR-10 and CIFAR-100,
all sparse networks have better linear interpretability than dense networks. And with the scope of Hessian
traces for weight flatness, the subnetworks located by LTH are winning tickets on CIFAR-10 and CIFAR-100,
while RigL fails to locate the flat local minima. Overall, identifying sparse neural networks from dynamic
sparse training (e.g., RigL) is a great option for preserving generalization ability, interpretability, and
uncertainty, but not for maintaining flat geometric of learned loss surfaces.

5 Conclusion and Discussion of Broad Impact

In this paper, we perform an exhaustive screening test on the performance of various sparse neural networks,
along diverse dimensions far beyond test-set accuracy. We believe that our compelling empirical results
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Figure 11: Evaluation results of sparse neural networks at sparsity level of 79% on CIFAR-10, CIFAR-100
and ImageNet. Dense is the unpruned full model; LTH, Grasp, RigL and RP denote the sparse networks
identified by the LTH, Grasp, dynamic sparse training and random pruning, respectively. Small represents a
smaller dense network of similar parameter counts to sparse networks.

offer many in-depth insights of understanding network pruning, and endorse the wider adoption of (properly
chosen) sparse neural networks in place of dense ones. Our future works will extend the similar screening to
other model compression methods such as quantization.

We do not think this scientific research places a substantial risk of societal harm. The potential societal
impact is that, with the assistance of our comprehensive assessment, it may be possible to establish accurate,
robust, reliable, interpretable sparse networks with reduced energy and financial costs.
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