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ABSTRACT

Equivariance guarantees that a model’s predictions capture key symmetries in data.
When an image is translated or rotated, an equivariant model’s representation of
that image will translate or rotate accordingly. The success of convolutional neural
networks has historically been tied to translation equivariance directly encoded in
their architecture. The rising success of vision transformers, which have no explicit
architectural bias towards equivariance, challenges this narrative and suggests
that augmentations and training data might also play a significant role in their
performance. In order to better understand the role of equivariance in recent vision
models, we apply the Lie derivative, a method for measuring equivariance with
strong mathematical foundations and minimal hyperparameters. Using the Lie
derivative, we study the equivariance properties of hundreds of pretrained models,
spanning CNNs, transformers, and Mixer architectures. The scale of our analysis
allows us to separate the impact of architecture from other factors like model size
or training method. Surprisingly, we find that many violations of equivariance
can be linked to spatial aliasing in ubiquitous network layers, such as pointwise
non-linearities, and that as models get larger and more accurate they tend to display
more equivariance, regardless of architecture. For example, transformers can be
more equivariant than convolutional neural networks after training.

Figure 1: (Left): The Lie derivative measures the equivariance of a function under continuous
transformations, here rotation. (Center): Using the Lie derivative, we quantify how much each layer
contributes to the equivariance error of a model. Our analysis highlights surprisingly large contri-
butions from non-linearities, which affects both CNNs and ViT architectures. (Right): Translation
equivariance as measured by the Lie derivative correlates with generalization in classification models,
across convolutional and non-convolutional architectures. Although CNNs are often noted for their
intrinsic translation equivariance, ViT and Mixer models are often more translation equivariant than
CNN models after training.

1 INTRODUCTION

Symmetries allow machine learning models to generalize properties of one data point to the properties
of an entire class of data points. A model that captures translational symmetry, for example, will have

⇤Equal contribution.
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the same output for an image and a version of the same image shifted a half pixel to the left or right.
If a classification model produces dramatically different predictions as a result of translation by half a
pixel or rotation by a few degrees it is likely misaligned with physical reality. Equivariance provides
a formal notion of consistency under transformation. A function is equivariant if symmetries in the
input space are preserved in the output space.

Baking equivariance into models through architecture design has led to breakthrough performance
across many data modalities, including images (Cohen & Welling, 2016; Veeling et al., 2018), proteins
(Jumper et al., 2021) and atom force fields (Batzner et al., 2022; Frey et al., 2022). In computer
vision, translation equivariance has historically been regarded as a particularly compelling property
of convolutional neural networks (CNNs) (LeCun et al., 1995). Imposing equivariance restricts
the size of the hypothesis space, reducing the complexity of the learning problem and improving
generalization (Goodfellow et al., 2016).

In most neural networks classifiers, however, true equivariance has been challenging to achieve,
and many works have shown that model outputs can change dramatically for small changes in the
input space (Azulay & Weiss, 2018; Engstrom et al., 2018; Vasconcelos et al., 2021; Ribeiro &
Schön, 2021). Several authors have significantly improved the equivariance properties of CNNs with
architectural changes inspired by careful signal processing (Zhang, 2019; Karras et al., 2021), but
non-architectural mechanisms for encouraging equivariance, such as data augmentations, continue to
be necessary for good generalization performance (Wightman et al., 2021).

The increased prominence of non-convolutional architectures, such as vision transformers (ViTs) and
mixer models, simultaneously demonstrates that explicitly encoding architectural biases for equivari-
ance is not necessary for good generalization in image classification, as ViT models perform on-par
with or better than their convolutional counterparts with sufficient data and well-chosen augmentations
(Dosovitskiy et al., 2020; Tolstikhin et al., 2021). Given the success of large flexible architectures and
data augmentations, it is unclear what clear practical advantages are provided by explicit architectural
constraints over learning equivariances from the data and augmentations. Resolving these questions
systemically requires a unified equivariance metric and large-scale evaluation.

In what follows, we introduce the Lie derivative as a tool for measuring the equivariance of neural
networks under continuous transformations. The local equivariance error (LEE), constructed with
the Lie derivative, makes it possible to compare equivariance across models and to analyze the
contribution of each layer of a model to its overall equivariance. Using LEE, we conduct a large-scale
analysis of hundreds of image classification models. The breadth of this study allows us to uncover a
novel connection between equivariance and model generalization, and the surprising result that ViTs
are often more equivariant than their convolutional counterparts after training. To explain this result,
we use the layer-wise decomposition of LEE to demonstrate how common building block layers
shared across ViTs and CNNs, such as pointwise non-linearities, frequently give rise to aliasing and
violations of equivariance.

We make our code publicly available at https://github.com/ngruver/lie-deriv.

2 BACKGROUND

Groups and equivariance Equivariance provides a formal notion of consistency under transforma-
tion. A function f : V1 ! V2 is equivariant to transformations from a symmetry group G if applying
the symmetry to the input of f is the same as applying it to the output

8g 2 G : f(⇢1(g)x) = ⇢2(g)f(x), (1)

where ⇢(g) is the representation of the group element, which is a linear map V ! V .

The most common example of equivariance in deep learning is the translation equivariance of
convolutional layers: if we translate the input image by an integer number of pixels in x and y,
the output is also translated by the same amount, ignoring the regions close to the boundary of the
image. Here x 2 V1 = V2 is an image and the representation ⇢1 = ⇢2 expresses translations of the
image. The translation invariance of certain neural networks is also an expression of the equivariance
property, but where the output vector space V2 has the trivial ⇢2(g) = I representation, such that
model outputs are unaffected by translations of the inputs. Equivariance is therefore a much richer
framework, in which we can reason about representations at the input and the output of a function.
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Continuous signals The inputs to classification models are discrete images sampled from a contin-
uous reality. Although discrete representations are necessary for computers, the goal of classification
models should be learning functions that generalize in the real world. It is therefore useful to consider
an image as a function h : R2 ! R3 rather than a discrete set of pixel values and broaden the
symmetry groups we might consider, such as translations of an image by vector b 2 R2, rather than
an integer number of pixels.

Fourier analysis is a powerful tool for understanding the relationship between continuous signals and
discrete samples by way of frequency decompositions. Any M ⇥ M image, h(x), can be constructed
from its frequency components, Hnm, using a 2d Fourier series, h(x) = 1

2⇡

P
n,m Hnme2⇡ix·[n,m]

where x 2 [0, 1]2 and n, m 2 [-M/2, -M/2 + 1, ..., M/2], the bandlimit defined by the image size.

Aliasing Aliasing occurs when sampling at a limited frequency fs, for example the size of an
image in pixels, causes high frequency content (above the Nyquist frequency fs/2) to be converted
into spurious low frequency content. Content with frequency n is observed as a lower frequency
contribution at frequency

Alias(n) =

⇢
n mod fs if (n mod fs) < fs/2
(n mod fs) � fs if (n mod fs) > fs/2

�
. (2)

If a discretely sampled signal such as an image is assumed to have no frequency content higher than
fs, then the continuous signal can be uniquely reconstructed using the Fourier series and have a
consistent continuous representation. But if the signal contains higher frequency content which gets
aliased down by the sampling, then there is an ambiguity and exact reconstruction is not possible.

Aliasing and equivariance Aliasing is critically important to our study because it breaks equiv-
ariance to continuous transformations like translation and rotation. When a continuous image is
translated its Fourier components pick up a phase:

h(x) 7! h(x � b) =) Hnm 7! Hnme�2⇡ib·[n,m].

However, when an aliased signal is translated, the aliasing operation A introduces a scaling factor:

Hnm 7! Hnme�2⇡i(b0Alias(n)+b1Alias(m))

In other words, aliasing causes a translation by the wrong amount: the frequency component Hnm

will effectively be translated by [(Alias(n)/n)b0, (Alias(m)/m)b1] which may point in a different
direction than b, and potentially even the opposite direction. Applying shifts to an aliased image will
yield the correct shifts for true frequencies less than the Nyquist but incorrect shifts for frequencies
higher than the Nyquist. Other continuous transformations, like rotation, create similar asymmetries.

Many common operations in CNNs can lead to aliasing in subtle ways, breaking equivariance in
turn. Zhang (2019), for example, demonstrates that downsampling layers causes CNNs to have
inconsistent outputs for translated images. The underlying cause of the invariance is aliasing, which
occurs when downsampling alters the high frequency content of the network activations. The M ⇥M
activations at a given layer of a convolutional network have spatial Nyquist frequencies fs = M/2.
Downsampling halves the size of the activations and corresponding Nyquist frequencies. The result
is aliasing of all nonzero content with n 2 [M/4, M/2]. To prevent this aliasing, Zhang (2019) uses
a local low pass filter (Blur-Pool) to directly remove the problematic frequency regions from the
spectrum.

Figure 2: Non-linearities generate new
high-frequency harmonics.

While studying generative image models, Karras et al.
(2021) unearth a similar phenomenon in the pointwise
nonlinearities of CNNs. Imagine an image at a single
frequency h(x) = sin(2⇡x · [n, m]). Applying a nonlin-
ear transformation to h creates new high frequencies in
the Fourier series, as illustrated in Figure 2. These high
frequencies may fall outside of the bandlimit, leading to
aliasing. To counteract this effect, Karras et al. (2021)
opt for smoother non-linearities and perform upsampling
before calculating the activations.
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3 RELATED WORK

While many papers propose architectural changes to improve the equivariance of CNNs (Zhang,
2019; Karras et al., 2021; Weiler & Cesa, 2019), others focus purely on measuring and understanding
how equivariance can emerge through learning from the training data (Lenc & Vedaldi, 2015).
Olah et al. (2020), for example, studies learned equivariance in CNNs using model inversions
techniques. While they uncover several fascinating properties, such as rotation equivariance that
emerges naturally without architectural priors, their method is limited by requiring manual inspection
of neuron activations. Most relevant to our work, Bouchacourt et al. (2021) measure equivariance in
CNNs and ViTs by sampling group transformations. Parallel to our findings, they conclude that data
and data augmentation play a larger role than architecture in the ultimate equivariance of a model.
Because their study is limited to just a single ResNet and ViT architecture, however, they do not
uncover the broader relationship between equivariance and generalization that we show here.

Many papers introduce consistency metrics based on sampling group transformations (Zhang, 2019;
Karras et al., 2021; Bouchacourt et al., 2021), but most come with significant drawbacks. When
translations are sampled with an integer number of pixels (Zhang, 2019; Bouchacourt et al., 2021),
aliasing effects will be completely overlooked. As a remedy, (Karras et al., 2021) propose a subpixel
translation equivariance metric (EQ-Tfrac) that appropriately captures aliasing effects. While this
metric is a major improvement, it requires many design decisions not required by LEE, which has
relatively few hyperparameters and seamlessly breaks down equivariance across layers. Relative to
these other approaches, LEE offers a unifying perspective, with significant theoretical and practical
benefits.

4 MEASURING LOCAL EQUIVARIANCE ERROR WITH LIE DERIVATIVES

Lie Derivatives The Lie derivative gives a general way of evaluating the degree to which a function
f violates a symmetry. To define the Lie derivative, we first consider how a symmetry group element
can transform a function by rearranging Equation 1:

⇢21(g)[f ](x) = ⇢2(g)�1f(⇢1(g)x) .

The resulting linear operator, ⇢21(g)[·], acts on the vector space of functions, and ⇢21(g)[f ] = f if the
function is equivariant. Every continuous symmetry group (Lie group), G, has a corresponding vector
space (Lie algebra) g = Span({Xi}d

i=1), with basis elements Xi that can be interpreted as vector
fields Rn ! Rn. For images, these vector fields encode infinitesimal transformations R2 ! R2 over
the domain of continuous image signals f : R2 ! Rk. One can represent group elements g 2 G
(which lie in the connected component of the identity) as the flow along a particular vector field
�t

Y , where Y =
P

i aiXi is a linear combination of basis elements. The flow �t
Y (x0) of a point x0

along a vector field Y by value t is defined as the solution to the ODE dx
dt = Y (x) at time t with

initial value x0. The flow �t
Y smoothly parameterizes the group elements by t so that the operator

⇢21(�t
Y )[·] connects changes in the space of group elements to changes in symmetry behavior of a

function.

The Lie derivative of the function f is the derivative of the operator ⇢21(g) at g = Identity = �0

along a particular vector field Y ,

LY (f) = lim
t!0

1

t
(⇢21(�

t
Y )[f ] � f) =

d

dt

����
t=0

⇢21(�
t
Y )[f ]. (3)

Intuitively, the Lie derivative measures the sensitivity of a function to infinitesimal symmetry trans-
formations. This local definition of equivariance error is related to the typical global notion of
equivariance error. As we derive in Appendix B.1, if 8i = 1, ..., d : LXi(f) = 0 (and the exponential
map is surjective) then 8g 2 G : f(⇢1(g)x) = ⇢2(g)f(x) and for all x in the domain, and vice
versa. In practice, the Lie derivative is only a proxy for strict global equivariance. We note global
equivariance includes radical transformations like translation by 75% of an image, which is not
necessarily desirable. In section 6 we show that our local formulation of the Lie derivative can capture
the effects of many practically relevant transformations.

The Lie derivative of a function with multiple outputs will also have multiple outputs, so if we want
to summarize the equivariance error with a single number, we can compute the norm of the Lie
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1 import torch.nn.functional as F
2 from torch.autograd.functional import jvp
3

4 def rotate(imgs, theta):
5 """ Rotate images by angle theta and interpolate"""
6 m = [[torch.cos(theta), torch.sin(theta), 0],
7 [-torch.sin(theta), torch.cos(theta), 0]]
8 m = torch.tensor(m)[None].expand(imgs.shape[0], -1, -1)
9 return F.grid_sample(imgs, F.affine_grid(m, imgs.size(), True))

10

11 def rotation_lie_deriv(model,imgs):
12 """ Lie deriv. of model w.r.t. rotation, can be scalar/image"""
13 def rotated_model(theta):
14 z = model(rotate(imgs,theta))
15 img_like = (len(z.shape) == 4) # more complex for ViT/Mixer
16 return rotate(z,-theta) if img_like else z
17 return jvp(rotated_model, torch.zeros(1,requires_grad=True))[-1]
18

19 def e_lee(model,imgs):
20 """ Expected equiv. error (E[|Lf|^2]/d_out) w.r.t. rotation"""
21 return rotation_lie_deriv(model, imgs).pow(2).mean()

Figure 3: Lie derivatives can be computed using automatic differentiation. We show how a Lie
derivative for continuous rotations can be implemented in PyTorch Paszke et al. (2019). The
implementation in our experiments differs slightly, for computational efficiency and in order to pass
second-order gradients through grid_sample.

derivative scaled by the size of the output. Taking the average of the Lie derivative over the data
distribution, we define the Local Equivariance Error (LEE),

LEE(f) = Ex⇠DkLXf(x)k2/dim(V2). (4)

We provide a python implementation of the Lie derivative calculation for rotations in Figure 3 as an
example.

Layerwise Decomposition of Lie Derivative Unlike alternative equivariance metrics, the Lie
derivative decomposes naturally over the layers of a neural network. This modularity results naturally
from the Lie derivative satisfying the chain rule. As we show in Appendix A.2, the Lie derivative of
the composition of two functions h : V1 ! V2 and f : V2 ! V3 satisfies

LX(f � h)(x) = (LXf)(h(x)) + df |h(x)(LXh)(x), (5)

where df |h(x) is the Jacobian of f at h(x) which we will abbreviate as df . Note that this decomposition
captures the fact that intermediate layers of the network may transform in their own way:

f(h(x)) 7!⇢31(g)[f � g](x) = ⇢3(g)�1f(⇢2(g)⇢2(g)�1h(⇢1(g)x)) = ⇢32(g)[f ] � ⇢21(g)[h](x)

and the Lie derivatives split up accordingly.

Applying this property to an entire model as a composition of layers NN(x) = fN :1(x) :=
fN (fN�1(...(f1(x)))), we can identify the contribution that each layer fi makes to the equivariance
error of the whole. Unrolling Equation 5, we have

LX(NN) =
NX

i=1

dfN :i+1LXfi. (6)

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the equivariance
error for each layer multiplied by the degree to which that error is attenuated or magnified by the other
layers (as measured by the Jacobian). We evaluate the norm of each of the contributions dfN :i+1LXfi

to the (vector) equivariance error LX(NN) which we compute using autograd and stochastic trace
estimation as we describe in Appendix A.3. Importantly, the sum of norms may differ from the norm
of the sum, but this analysis allows us to identify patterns across layers and pinpoint operations that
contribute most to equivariance error.
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Figure 3: Lie derivatives can be computed using automatic differentiation. We show how a Lie
derivative for continuous rotations can be implemented in PyTorch (Paszke et al., 2019). The
implementation in our experiments differs slightly, for computational efficiency and to pass second-
order gradients through grid_sample.

derivative scaled by the size of the output. Taking the average of the Lie derivative over the data
distribution, we define Local Equivariance Error (LEE),

LEE(f) = Ex⇠DkLXf(x)k2/dim(V2). (4)

We provide a Python implementation of the Lie derivative calculation for rotations in Figure 3 as
an example. Mathematically, LEE also has an appealing connection to consistency regularization
(Athiwaratkun et al., 2018), which we discuss in Appendix C.1.

Layerwise Decomposition of Lie Derivative Unlike alternative equivariance metrics, the Lie
derivative decomposes naturally over the layers of a neural network, since it satisfies the chain rule.
As we show in Appendix B.2, the Lie derivative of the composition of two functions h : V1 ! V2

and f : V2 ! V3 satisfies

LX(f � h)(x) = (LXf)(h(x)) + df |h(x)(LXh)(x), (5)

where df |h(x) is the Jacobian of f at h(x) which we will abbreviate as df . Note that this decomposition
captures the fact that intermediate layers of the network may transform in their own way:
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Applying this property to an entire model as a composition of layers NN(x) = fN :1(x) :=
fN (fN�1(...(f1(x)))), we can identify the contribution that each layer fi makes to the equivariance
error of the whole. Unrolling Equation 5, we have

LX(NN) =
NX

i=1

dfN :i+1LXfi. (6)

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the equivariance
error for each layer multiplied by the degree to which that error is attenuated or magnified by the other
layers (as measured by the Jacobian). We evaluate the norm of each of the contributions dfN :i+1LXfi

to the (vector) equivariance error LX(NN) which we compute using autograd and stochastic trace
estimation, as we describe in Appendix B.3. Importantly, the sum of norms may differ from the norm
of the sum, but this analysis allows us to identify patterns across layers and pinpoint operations that
contribute most to equivariance error.
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Figure 4: Contributions to equivariance shown cumulatively by layer, in the order the layers occur
in the network. Left: Convolutional architectures. In all the CNNs, much of the equivariance error
comes from downsampling and non-linearities. Middle-Left: Non-convolutional architectures. The
initial patch embedding, a strided convolution, is the largest contributor for the ViTs and Mixers.
The rest of the error is distributed uniformly across other nonlinear operations. Middle-Right:
ResNet-50 across different transformations as a percentage. Despite being designed for translation
equivariance, the fraction of equivariance error produced by each layer is almost identical for other
affine transformations, suggesting that aliasing is the primary source of equivariance error. Right:
Comparing LEE with alternative metrics for translation equivariance. Using integer translations
misses key contributors to equivariance errors, such as activations, while using fractional translations
can lead to radically different outcomes depending on choice of normalization (N or

p
N ). LEE

captures aliasing effects and has minimal design decisions.

5 LAYERWISE EQUIVARIANCE ERROR

As described in section 3, subtle architectural details often prevent models from being perfectly
equivariant. Aliasing can result from careless downsampling or from an activation function with a
wide spectrum. In this section, we explore how the Lie derivative uncovers these types of effects
automatically, across several popular architectures. We evaluate the equivariance of pretrained models
on 100 images from the ImageNet (Deng et al., 2009) test set.

Using the layerwise analysis, we can dissect the sources of translation equivariance error in con-
volutional and non-convolutional networks as shown in Figure 4 (left) and (middle-left). For the
Vision Transformer and Mixer models, we see that the initial conversion from image to patches
produces a significant portion of the error, and the remaining error is split uniformly between the
other nonlinear layers: LayerNorm, tokenwise MLP, and self-attention. The contribution from
these nonlinear layers is seldom recognized and potentially counterintuitive, until we fully grasp the
deep connection between equivariance and aliasing. In Figure 4 (middle-right), we show that this
breakdown is strikingly similar for other image transformations like rotation, scaling, and hyperbolic
rotations, providing evidence that the cause of equivariance error is not specific to translations but is
instead a general culprit across a whole host of continuous transformations that can lead to aliasing.

We can make the relationship between aliasing and equivariance error precise by considering the
aliasing operation Alias defined in Equation 2.
Theorem 1. For translations along the vector v = [vx, vy], the aliasing operation A introduces a
translation equivariance error of

kLv(A)(h)k2 = (2⇡)2
X

n,m

H2
nm

�
v2

x(Alias(n) � n)2 + v2
y(Alias(m) � m)2

�
,

where h(x) = 1
2⇡

P
n,m Hnme2⇡ix·[n,m] is the Fourier series for the input image h.

We provide the proof in Appendix C.2. The connection between aliasing and LEE is important
because aliasing is often challenging to identify despite being ubiquitous (Zhang, 2019; Karras et al.,
2021). Aliasing in non-linear layers impacts all vision models and is thus a key factor in any fair
comparison of equivariance.

As alternative equivariance metrics exist, it is natural to wonder whether they can also be used for lay-
erwise analysis. In Figure 4 (right), we show how two equivariance metrics from Karras et al. (2021)
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Figure 5: Equivariance metrics evaluated on the ImageNet test set. Left: Non-LEE equivariance
metrics display similar trends to Figure 1, despite using larger, multi-pixel transformations. Right:
Norm of rotation and shear Lie derivatives. Across all architectures, models with strong generalization
become more equivariant to many common affine transformations. Marker size indicates model size.
Error bars show one standard error over test set images used in the equivariance calculation.

compare with LEE, highlighting notable drawbacks. (1) Integer translation equivariance completely
ignores aliasing effects, which are captured by both LEE and fractional translations. (2) Though
fractional translation metrics (EQ-Tfrac) correctly capture aliasing, comparing the equivariance of
layers with different resolutions (C ⇥ H ⇥ W ) requires an arbitrary choice of normalization. This
choice can lead to radically different outcomes in the perceived contribution of each layer and is not
required when using LEE, which decomposes across layers as described in section 4. We provide a
detailed description of the baselines in Appendix D.1.

6 TRENDS IN LEARNED EQUIVARIANCE

Methodology We evaluate the Lie derivative of many popular classification models under transfor-
mations including 2d translation, rotation, and shearing. We define continuous transformations on
images using bilinear interpolation with reflection padding. In total, we evaluate 410 classification
models, a collection comprising popular CNNs, vision transformers, and MLP-based architectures
(Wightman, 2019). Beyond diversity in architectures, there is also substantial diversity in model size,
training recipe, and the amount of data used for training or pretraining. This collection of models
therefore covers many of the relevant axes of variance one is likely to consider in designing a system
for classification. We include an exhaustive list of models in the Appendix D.3.

Equivariance across architectures As shown in Figure 1 (right), the translation equivariance error
(Lie derivative norm) is strongly correlated with the ultimate test accuracy that the model achieves.
Surprisingly, despite convolutional architectures being motivated and designed for their translation
equivariance, we find no significant difference in the equivariance achieved by convolutional architec-
tures and the equivariance of their more flexible ViT and Mixer counterparts when conditioning on
test accuracy. This trend also extends to rotation and shearing transformations, which are common
in data augmentation pipelines (Cubuk et al., 2020) (in Figure 5 (right)). Additional transformation
results included in Appendix D.5.

For comparison, we also evaluate the same set of models using two alternative equivariance metrics:
prediction consistency under discrete translation (Zhang, 2019) and expected equivariance under
group samples (Finzi et al., 2020; Hutchinson et al., 2021), which is similar in spirit to EQ-Tfrac
(Karras et al., 2021) (exact calculations in Appendix D.4). Crucially, these metrics are slightly less
local than LEE, as they evaluate equivariance under transformations of up to 10 pixels at a time. The
fact that we obtain similar trends highlights LEE’s relevance beyond subpixel transformations.

Effects of Training and Scale In section 3 we described many architectural design choices that
have been used to improve the equivariance of vision models, for example Zhang (2019)’s Blur-Pool
low-pass filter. We now investigate how equivariance error can be reduced with non-architectural
design decisions, such as increasing model size, dataset size, or training method. Surprisingly, we
show that equivariance error can often be significantly reduced without any changes in architecture.
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Figure 6: Case studies in decreasing translational equivariance error, numbered left-to-right. 1:
Blur-Pool (Zhang, 2019), an architectural change to improve equivariance, decreases the equivariance
error but by less than can be accomplished by improving the training recipe or increasing the scale
of model or dataset. 2-3: Increasing the number of parameters for a fixed model family (here ViTs
(El-Nouby et al., 2021) and EfficientNets (Tan & Le, 2019a)). 4: Increasing the training dataset size
for a ResMLP Big (Touvron et al., 2021a) model. 5: Changing the training recipe for ResNeXt-50
(Xie et al., 2017) with improved augmentations (Wightman et al., 2021) or SSL pretraining (Yalniz
et al., 2019). Error bars show one standard error over images in the Lie derivative calculation.

In Figure 6, we show slices of the data from Figure 1 along a shared axis for equivariance error. As
a point of comparison, in Figure 6 (left), we show the impact of the Blur-Pool operation discussed
above on a ResNet-50 (Zhang, 2019). In the accompanying four plots, we show the effects of
increasing model scale (for both ViTs and CNNs), increasing dataset size, and finally different
training procedures. Although Zhang (2019)’s architectural adjustment does have a noticeable effect,
factors such as dataset size, model scale, and use of modern training methods, have a much greater
impact on learned equivariance.

As a prime example, in Figure 6 (right), we show a comparison of three training strategies for
ResNeXt-50 – an architecture almost identical to ResNet-50. We use Wightman et al. (2021)’s
pretrained model to illustrate the role of an improved training recipe and Mahajan et al. (2018b)’s
semi-supervised model as an example of scaling training data. Notably, for a fixed architecture
and model size, these changes lead to decreases in equivariance error on par with architectural
interventions (BlurPool). This result is surprising when we consider that Wightman et al. (2021)’s
improved training recipe benefits significantly from Mixup (Zhang et al., 2017) and CutMix (Yun
et al., 2019), which have no obvious connection to equivariance. Similarly, Mahajan et al. (2018b)’s
semi-supervised method has no explicit incentive for equivariance.

Equivariance out of distribution From our analysis above, large models appear to learn equivari-
ances that rival architecture engineering in the classification setting. When learning equivariances
through data augmentation, however, there is no guarantee that the equivariance will generalize to
data that is far from the training distribution. Indeed, Engstrom et al. (2019) shows that carefully
chosen translations or rotations can be as devastating to model performance as adversarial examples.
We find that vision models do indeed have an equivariance gap: models are less equivariant on
test data than train, and this gap grows for OOD inputs as shown in Figure 7. Notably, however,
architectural biases do not have a strong effect on the equivariance gap, as both CNN and ViT models
have comparable gaps for OOD inputs.

Why aren’t CNNs more equivariant than ViTs? Given the deep historical connection between
CNNs and equivariance, the results in Figure 5 and Figure 7 might appear counterintuitive. ViTs,
CNNs, and Mixer have quite different inductive biases and therefore often learn very different repre-
sentations of data (Raghu et al., 2021). Despite their differences, however, all of these architectures
are fundamentally constructed from similar building blocks–such as convolutions, normalization
layers, and non-linear activations which can all contribute to aliasing and equivariance error. Given
this shared foundation, vision models with high capacity and effective training recipes are more
capable of fitting equivariances already present in augmented training data.
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Figure 7: Models are less equivariant on test data and becoming decreasingly equivariant as the
data moves away from the training manifold. As examples of data with similar distributions, we
show equivariance error on the ImageNet train and test sets as well as CIFAR-100. As examples of
out-of-distribution data, we use two medical datasets (which often use Imagenet pretraining), one for
Histology (Kather et al., 2016) and one for Retinopathy (Kaggle & EyePacs, 2015).

Model Test Error (%)
G-CNN [13] 2.28
H-NET [76] 1.69
ORN [86] 1.54

TI-Pooling [43] 1.2
Finetuned MAE 1.14
RotEqNet [51] 1.09
E(2)-CNN [73] 0.68

Table 1: Our finetuned MAE is compet-
itive with several architectures explic-
itly engineered to encode rotation in-
variance on RotMNIST, where rotation
invariance is clearly crucial to general-
ization.

Learning rotation equivariance We finally consider the
extent to which large-scale pretraining can match strong ar-
chitectural priors in a case where equivariance is obviously
desirable. We fine-tune a state-of-the-art vision transformer
model pretrained with masked autoencoding (He et al.,
2021) for 100 epochs on rotated MNIST (Weiler & Cesa,
2019) (details in Appendix D.6). This dataset, which con-
tains MNIST digits rotated uniformly between -180 and
180 degrees, is a common benchmark for papers that design
equivariant architectures. In Table 1 we show the test er-
rors for many popular architectures with strict equivariance
constrainets alongside the error for our finetuned model.
Surprisingly, the finetuned model achieves competitive test
accuracy, in this case a strong proxy for rotation invariance.
Despite having relatively weak architectural biases, trans-
formers are capable of learning and generalizing on well
on symmetric data.

7 CONCLUSION

We introduced a new metric for measuring equivariance which enables a nuanced investigation
of how architecture design and training procedures affect representations discovered by neural
networks. Using this metric we are able to pinpoint equivariance violation to individual layers,
finding that pointwise nonlinearities contribute substantially even in networks that have been designed
for equivariance. We argue that aliasing is the primary mechanism for how equivariance to continuous
transformations are broken, which we support theoretically and empirically. We use our measure to
study equivariance learned from data and augmentations, showing model scale, data scale, or training
recipe can have a greater effect on the ability to learn equivariances than architecture.

Many of these results are contrary to the conventional wisdom. For example, transformers can be
more equivariant than convolutional neural networks after training, and can learn equivariances
needed to match the performance of specially designed architectures on benchmarks like rotated
MNIST, despite a lack of explicit architectural constraints. These results suggest we can be more
judicious in deciding when explicit interventions for equivariance are required, especially in many
real world problems where we only desire approximate and local equivariances.On the other hand,
explicit constraints will continue to have immense value when exact equivariances and extrapolation
are required — such as rotation invariance for molecules. Moreover, despite the ability to learn
equivariances on training data, we find that there is an equivariance gap on test and OOD data which
persists regardless of the model class. Thus other ways of combating aliasing outside of architectural
interventions may be the path forward for improving the equivariance and invariance properties of
models.
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