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ABSTRACT

With the rapid advancement of large language models (LLMs), the diversity of
multi-LLM tasks and the variability in their pricing structures have become increas-
ingly important, as costs can vary greatly between different LLMs. To tackle these
challenges, we introduce the C2MAB-V, a Cost-effective Combinatorial Multi-
armed Bandit with Versatile reward models for optimal LLM selection and usage.
This online model differs from traditional static approaches or those reliant on
a single LLM without cost consideration. With multiple LLMs deployed on a
scheduling cloud and a local server dedicated to handling user queries, C2MAB-
V facilitates the selection of multiple LLMs over a combinatorial search space,
specifically tailored for various collaborative task types with different reward mod-
els. Based on our designed online feedback mechanism and confidence bound
technique, C2MAB-V can effectively address the multi-LLM selection challenge
by managing the exploration-exploitation trade-off across different models, while
also balancing cost and reward for diverse tasks. The NP-hard integer linear
programming problem for selecting multiple LLMs with trade-off dilemmas is
addressed by: i) decomposing the integer problem into a relaxed form by the local
server, ii) utilizing a discretization rounding scheme that provides optimal LLM
combinations by the scheduling cloud, and iii) continual online updates based on
feedback. Theoretically, we prove that C2MAB-V offers strict guarantees over ver-
satile reward models, matching state-of-the-art results for regret and violations in
some degenerate cases. Empirically, we show that C2MAB-V effectively balances
performance and cost-efficiency with nine LLMs for three application scenarios.

1 INTRODUCTION

In the digital era of today, large language models (LLMs) such as ChatGPT lead innovations in
computational linguistics and cognitive processing Tian et al. (2023). The emergence of numerous
high-performance LLMs has sparked significant interest in the challenge of model selection Foster
et al. (2019); Wang et al. (2023). Typically, current schemes for selecting LLMs often rely on
identifying the best-performing model in a static setting, such as selecting the LLM that achieves the
lowest perplexity score Salazar et al. (2019); Peng et al. (2023). However, the diverse capabilities
of various LLMs present an opportunity to adopt a task-specific selection approach, where different
LLMs have their own strengths and weaknesses, e.g., Investlm Yang et al. (2023) is specifically
designed for the financial sector and may better suit queries related to investments. Moreover, the
limitations of static selection methods become more pronounced due to factors like “generation
diversity”, where a less expensive LLM may perform better in certain scenarios Chen et al. (2023), and
“data drift”, which refers to changes in the characteristics of answers generated in real-time compared
to those of training data Bhardwaj et al. (2022). Consequently, beyond large-scale pre-training
methods, these issues highlight the need for an “online” approach to optimize decision-making
in selecting the “appropriate” LLMs, which leverage continuous feedback to adapt to the varying
performance levels of models and diverse application needs through ongoing user interaction.

Furthermore, scenarios combining multiple LLMs (or agents) to complete tasks have commonly
emerged, moving beyond using a single LLM. Platforms like Poe (2024) have spearheaded func-
tionalities that integrate several bots within a single chat session. Liu et al. (2023c) introduces a
dynamic LLM-agent network through dynamic interaction architecture and intelligent agent team
optimization. Hong et al. (2023) proposes a meta-programming framework that enhances the col-
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laboration of multiple LLMs. Gupta et al. (2024) explores the implementation of LLM cascades
for generative tasks. However, previous works have not considered optimizations tailored to the
characteristics of different tasks, which may feature different forms of rewards. Below, we present
three streamlined collaborative combinations of LLMs for different tasks: 1. For user experience
enhancement, multiple LLMs may be deployed to ensure satisfactory outcomes. 2. In educational
tutoring, subject-specific LLMs operate in parallel, with failures in one not severely impacting others.
3. In project development, LLMs manage different sub-modules, where any module’s failure could
jeopardize the entire project. These three examples underscore the importance of combining multiple
suitable LLMs based on the specific “task structure”.

Additionally, it is crucial to recognize that the emergence of LLMs with diverse performance levels
introduces varying costs in practical use, an important factor neglected in existing research. The
operating expenses for LLMs are high; for example, it is estimated that running ChatGPT costs over
$700,000 daily, and deploying GPT-4 for customer service could cost a small business upwards of
$21,000 per month Chen et al. (2023). This implies the necessity of incorporating cost considerations
into the selection and utilization strategies for LLMs.

Based on the discussions above, we introduce the Cost-effective Combinatorial Multi-armed Bandit
with Versatile reward models (C2MAB-V), designed to synergize the integration of diverse LLMs
across different task types. C2MAB-V manages the dual challenges of selecting LLMs that both
achieve high performance and meet cost constraints. Additionally, C2MAB-V adapts to various multi-
LLM collaborative tasks by utilizing a “combinatorial model selection strategy” which extends beyond
traditional single-model limitations by encompassing a broad spectrum of LLM candidates. Finally,
to address the NP-hard complexities of combinatorial LLM selection under cost considerations, we
transform the initial problem into a continuous form. This process is executed on the local server,
which is required to handle user queries. Meanwhile, our discretization method, which guarantees
precise evaluation of LLM performance post-relaxation, is implemented on the scheduling cloud
where multiple LLMs are deployed. This two-tiered approach can accommodate both the limited
resources of the local server and strategically mitigate the scheduling cloud’s workload. We emphasize
that this paper focuses on a fully online learning approach that operates without initial information
and relies solely on user feedback with robust interpretation. Our method is designed to complement,
not compete with, current approaches that utilize GPU resources for offline training, where offline
training can streamline the search space and enhance the convergence speed of online learning.

In summary, our contributions are as follows.

Novel Multi-LLM Selection Formulation. We introduce a novel formulation of the cost-effective
multi-LLM selection, designed for tasks requiring collaboration among multiple LLMs with versatile
reward structures. This formulation emphasizes the essential balance between exploring new models
and exploiting proven effective models, while adhering to long-term cost budget considerations and
securing high rewards across diverse multi-LLM tasks.

Unique Online Algorithmic Framework. We developed the C2MAB-V framework for online
multi-LLM selection, managing diverse collaborative LLM tasks and performance variability due to
generation diversity and data drift. Our approach utilizes a “combinatorial bandit selection strategy”
with a cost-conscious versatile reward structure. Based on a natural local-cloud architecture, the local
server, with its limited resources, simplifies the selection process and alleviates the computational
load on the scheduling cloud. The cloud coordinates and selects LLMs based on continualized
feedback data from the local server, which also gathers user feedback to enhance LLM evaluations.

In-Depth Regret and Violation Analysis. We conduct a thorough theoretical analysis of our
online C2MAB-V framework, covering three distinct reward models. This analysis addresses the
trade-offs between reward and violation, and between exploration and exploitation. We identify
common properties across different reward models and employ “martingale construction techniques”
to examine the stochastic properties of our model under varying collaborative tasks. Notably, our
results on regret and violation analysis match the state-of-the-art results in several degenerate cases.

Comprehensive Empirical Validation. Our C2MAB-V framework has been empirically validated
with superior performance outcomes across evaluations involving nine distinct LLMs. These tests
consistently confirm C2MAB-V’s capacity to adaptively navigate the trade-off dilemmas, resulting
in amplified rewards or decreased costs. Moreover, detailed analysis from exploratory experiments
provides deeper insights into the strategic design and utilization of the multi-LLM approach.
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2 RELATED WORK AND MOTIVATION

2.1 RELATED WORK

Combinatorial Multi-Armed Bandit. The field of online learning problems under the multi-armed
bandit (MAB) model has been extensively studied. The MAB model was first introduced by the
seminal work Robbins (1952) and has been expanded upon by many other researchers ( Liu et al.
(2021c); Slivkins et al. (2019); Liu et al. (2023a)). Traditional MAB models focus on selecting a single
arm per trial; however, the more complex scenario of combinatorial MAB (CMAB) involves selecting
multiple arms simultaneously. The stochastic CMAB has received much attention recently Chen
et al. (2016); Kveton et al. (2015b); Wang & Chen (2017); Merlis & Mannor (2019; 2020). Initial
research on stochastic CMAB is spearheaded by Gai et al. (2012), with subsequent improvements in
regret bounds offered by Kveton et al. (2015c); Combes et al. (2015). Later on, Chen et al. (2016);
Wang & Chen (2017) considers probabilistic feedback to extend the feedback model. Recently, Liu
et al. (2022) proposes the variance-adaptive algorithm BCUCB-T. Liu et al. (2023a) incorporates the
contextual information in CUCB. Our research builds on the CMAB settings but diverges significantly
by addressing more complicated trade-off issues. Furthermore, to address various cooperative task
types, we explore three different combinatorial reward formulations within versatile reward models.
Please refer to the additional literature in Appendix A.2, and the unique challenges in Appendix A.3.

Multi-LLM Combination. The combination of multiple LLM models for enhanced performance
has received considerable attention, aimed at bolstering output quality Kim et al. (2023). Techniques
such as “knowledge distillation” Hinton et al. (2015); Sanh et al. (2019) facilitate the training of
compact models to mimic the behavior of larger and more complex models, thus optimizing resource
utilization. Meanwhile, “ensemble learning” Hokamp et al. (2020); Huy et al. (2022) leverages the
collective predictions of independently trained models for superior results. Nonetheless, the prevalent
practice of withholding model internals from commercial LLM, such as OpenAI (2023), restricts
knowledge distillation by obscuring the “teacher” model, which can decrease the replication efficacy
of the “student” model. Concurrently, ensemble learning faces increased financial and procedural
burdens due to the necessity of amalgamating various model outputs, a task complicated by the
absence of open-source models. Madaan et al. (2023); Ding et al. (2024); Chen et al. (2023) primarily
address one of the scenarios we have outlined, i.e., selecting a single LLM that best satisfies the user
from multiple options. Moreover, these approaches do not incorporate user feedback. Our approach
distinctively accounts for the online aspects of model selection, the diversity of multi-LLM task types,
and the associated costs, setting it apart from previous methods.

2.2 MOTIVATION

We introduce the rationale behind our cost-effective combinatorial LLM online selection strategy.

Limitations of Single and Static Model Policy. Table 1 presents the commercial costs of various
LLMs Chen et al. (2023). Economically, it may not be viable for businesses or government entities
to consistently choose the most expensive option, such as GPT-4, for all applications. Therefore, a
careful assessment of the trade-offs between cost and performance (termed as ‘reward’) is essential,
as it allows for more strategic budget management across various tasks.

Table 1: Cost comparison of various LLMs based on 10 million output tokens from Chen et al. (2023).

LLM ChatGPT GPT-3 GPT-4 ForeFrontAI J1-Large J1-Jumbo
Cost ($) 2 20 60 5.8 30 250
LLM Xlarge GPT-Neox GPT-J GPT-Curie FAIRSEQ J1-Grande

Cost ($) 10 35 5 2 15 80

Moreover, we evaluate the performance of various LLM, including GPT-4, GPT-3.5, Claude 1.2,
Claude 2, Forefront OpenAI (2023); Forefront-AI (2023); Claude (2023), using the mathematics
dataset Saxton et al. (2019) and SciQ dataset Welbl et al. (2017), which cover multiple topics including
physics, chemistry, and biology. As shown in Fig. 1, comparing these LLMs across three randomly
selected scenarios with problem sets (each containing 200 samples) reveals the inherent limitations of
relying on a single LLM. This measurement highlights the limitations of advanced models like GPT-4
in various contexts, emphasizing the phenomena of “generation diversity” mentioned in Section 1
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Figure 1: Accuracy of different LLMs across
varied problem samples.
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Figure 2: Simple example of combinatorial
LLMs in a cascading form.

and the necessity of continual online learning to select the “appropriate” LLMs for different queries.
Moreover, challenges like “distribution shift” Prudencio et al. (2023) and the “Matthew effect” Gao
et al. (2023) can cause deviations in the performance of models presumed optimal in the offline
settings. Subsequently, the adoption of an online learning framework becomes essential, with ongoing
interaction utilized to refine LLM selection.

Benefits of Combinatorial LLMs. We select the multi-LLM collaboration task on ensuring user
experience while minimizing costs as an example. As shown in Fig. 2, ForeFrontAI is the first option.
If its response’s accuracy matches the right choice question label from the datasets Welbl et al. (2017),
the query is routed to GPT-3.5. For further refinement, GPT-4 is invoked. This combination of multi-
LLMs in a cascading form is compared with the exclusive use of GPT-4 for identical queries. Cost
evaluation, based on the statistical data of Chen et al. (2023), reveals that such combinatorial LLMs
incurs only 60.1% of the expenses associated with relying solely on GPT-4. Accuracy assessments
further highlight the merits of the combinatorial approach, achieving an accuracy of 0.824 on the
dataset, surpassing the 0.732 accuracy obtained by using GPT-4 alone. Consequently, the strategy of
using combinatorial LLMs demonstrates a promising and compelling alternative.

3 PROBLEM FORMULATION

In this section, we introduce our online framework of a cost-effective combinatorial bandit for
multi-LLM selection with versatile reward models, namely, C2MAB-V (Please refer to Fig. 3 for
details). A summary of the main symbols is provided in Appendix A.1.

Local-Cloud Architecture. Given the large number of parameters and significant storage overhead of
LLMs, a typical approach, if not opting for a streamlined but less capable version of LLMs, involves
deploying multiple LLMs on a resource-abundant scheduling cloud. When responding to user queries,
the local server first handles the requests and synchronizes communication with the cloud to initiate
tasks (for discussions on asynchronous handling, see Appendix E.3). Subsequently, user feedback
is stored on the local server.1 While the scheduling cloud serves multiple local servers, for ease of
presentation, we focus on describing the relationship between a single local server and the cloud.

Combinatorial LLM Instance. The scheduling cloud orchestrates multiple independent LLMs, to
effectively fulfill requests from the local server. Let K = {1, . . . ,K} represent the set of all LLMs,
where each index k ∈ K corresponds to a specific LLM (i.e., base arm), comprising a total of K LLMs.
The system operates in a time-slotted manner, delineated by discrete intervals T = {1, 2, 3, . . . , T}.
During each round t ∈ T , the cloud coordinates and selects a subset St of the available LLMs from
K. This selection process, termed an “action”, adapts dynamically based on real-time constraints and
availability, with the cardinality |St| ≤ K indicating the number of LLMs selected. Let S represent
the set of all possible combinations of actions.2 For example, high-demand workloads may cause
GPT-4 to reach its usage limit, temporarily preventing its selection. Let N = maxS∈S |S|, denoting
the maximum number of LLMs that can be simultaneously active.

Online Learning Protocol. A combinatorial LLM instance involves the sequential interaction
between the local server, the scheduling cloud, and user queries within our local-cloud architecture.

1Feedback can include both direct user input and data from techniques that quantify user behavior or
responses, as well as preference simulators Dwaracherla et al. (2024). Regardless of the methods, we refer to all
these collectively as “feedback” for simplicity.

2Action St is actually a set. Similarly to previous CMAB works, we also do not use script font here.
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The local server processes user activity and feedback, particularly focusing on the users’ performance
feedback regarding the utilized LLMs. This process involves locally recording and updating the
performance evaluations of the LLM. Then, the local server will transmit these information to the
scheduling cloud. The scheduling cloud undertakes the new coordination and selection of an action
St (i.e., selecting a subset of LLMs for service) after receiving the newly updated information from
the local server. Such performance evaluations, termed as rewards, could, for instance, be based
on the ROUGE-2 score for automatic summarization tasks Lin (2004), and are represented by a
random variable vector Xt = (Xt,1, . . . , Xt,|St|). For simplification, we posit that Xt ∈ [0, 1]|St|.
Furthermore, for each LLM k ∈ K included in the action St, its associated cost yt,k is observable at
round t. A detailed definition of this cost will be provided later.

Note that we demonstrate a fully online learning process here without any prior information for a clear
description. In real-world scenarios, online learning can often be accelerated by incorporating offline
pre-training. For example, for mathematical queries, narrowing the action space by offering fine-
tuned LLMs for specific mathematical tasks, rather than selecting from a broad set, can significantly
streamline the online selection process.

Versatile Reward Models. Let µ = (µ1, ..., µK) represent the “initially unknown” mean vector
of outcomes for each LLM with µk = E[Xt,k]. We consider versatile reward models for different
combinations of LLMs in multi-LLM tasks below.
• Any Win Combination (AWC): r(S;µ) =

(
1−

∏
k∈S(1− µk)

)
. As illustrated in Fig. 2, this

reward model is designed to safeguard user experience by selecting multiple LLMs to generate
answers, with success defined as any LLM’s answer satisfying the user. This reward model aims to
maximize user satisfaction by providing a range of possible solutions.

• Sum Up Combination (SUC): r(S;µ) =
∑

k∈S µk. In this setup, domain-specific LLMs inde-
pendently tackle tasks in parallel. Each LLM earns rewards for correctly answering questions in its
field. This reward model aims to speed up task completion and reduces the workload on each LLM,
enhancing overall task effectiveness.

• All In Combination (AIC): r(S;µ) =
∏

k∈S µk. This reward model is exemplified in devel-
opment tasks, where each LLM is responsible for developing sub-modules simultaneously. The
key aspect of this reward model is that the failure of any LLM leads to the failure of the entire
development task, thus ensuring the success of the whole collaborative work.

For more discussions (e.g., specify LLMs under the SUC and AIC reward models), please refer to
Appendix C.1. Compared to previous works Ding et al. (2024); Chen et al. (2023); Madaan et al.
(2023); Zhu et al. (2023), which primarily focus on selecting a single LLM to satisfy the user, our
versatile reward model accounts for the diversity of tasks, addressing scenarios where multi-LLMs
collaborate to complete tasks, besides the distinction being our focus on an online learning setting.

Partial LLM Feedback. In the process of selecting and querying LLM in action St, not all LLMs
may actually be queried in the muti-LLM tasks. Consequently, the local server often only observes
outcomes from a subset of the selected LLMs. Formally, the local server observes feedback from the
LLM subset Ft in action St, where the subset’s cardinality is denoted as Ft. If all LLMs in St are
queried, then Ft = |St|, which is worst-case scenario under the AWC reward model.

Statistically-Based Cost Model. Drawing inspiration from Alibabacloud-Opensearch (2024), which
charges based on statistical computational resource utilization (with 1 CU supporting an average of
10 interactions), Awan-LLM (2024), which offers unlimited token pricing without the consideration
of token limits, and JD-Cloud-Yanxi-AI (2024), which bills based on exclusive resource groups, we
propose a statistically-based cost model. Specifically, for any query q from a set Q, LLM k ∈ K
processes the query using a deterministic number of input tokens, link (q), and generates a random
number of output tokens, denoted as lout

k (q) ∼ Dout
k (q), representing the probabilistic nature of LLMs

Xie et al. (2021); Dalal & Misra (2024). Given a distribution Dq over Q, a user selects a query
qt ∼ Dq in each round, and the cost for LLM k is yt,k = (link (qt) + lout

k (qt))Ck, where Ck is the cost
per token. The goal is to estimate the unknown expected cost ck = E[yt,k].

Budget Violation Consideration. The total cost of executing action St on the utilized LLM
subset Ft, selected by the scheduling cloud at round t, is given by

∑
k∈Ft

yt,k. Furthermore, there
is a predetermined budget guarantee threshold ρ > 0 exists for the combinatorial set of LLM,
requiring the cumulative cost of the selected action to remain below this threshold ρ for the long
term. This mechanism allows organizations, including enterprises and governmental bodies, to
manage LLM usage efficiently and align with budgetary constraints. To assess compliance with this

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

budgetary constraint, the concept of constraint violation Cai et al. (2022) is introduced as follows,
with [x]+ := max(x, 0):

V (T ) =

[
1

T

T∑
t=1

∑
k∈Ft

yt,k − ρ

]+
, (1)

Although it is conceivable to occasionally exceed this cost constraint during the online learning
process, significant overruns are not permissible, thus necessitating the violation metric. A violation
rate decreasing as Õ (T−γ) signifies effective constraint adherence, indicating that V (T ) diminishes
at this rate, where γ > 0 illustrates the rate of reduction in violations with T Chen et al. (2018).

α-Approximate Regret. The performance of an online learning algorithm A is evaluated by its
“regret”, which is the discrepancy between the expected cumulative reward of consistently choosing the
optimal action S∗

t ≜ argmaxS∈S r(S;µ) at each round t, with S representing the set of all viable
actions, and the expected cumulative reward resulting from the actions selected by algorithm A. The
challenge, however, lies in the computational difficulty of determining the exact S∗

t , even when µ is
known, as this can be NP-hard Hochba (1997). Thus, following Li et al. (2016); Wang & Chen (2017);
Liu et al. (2022; 2023a), we presume that algorithm A utilizes an offline α-approximation oracle. This
oracle, upon receiving a mean vector µ, outputs an action S that guarantees r(S;µ) ≥ α · r(S∗

t ;µ).
With the α-approximation oracle, the α-approximate regret over T rounds is defined as:

R(T ) = E
[∑T

t=1 (α · r(S∗
t ;µ)− r(St;µ))

]
, (2)

where the expectation accounts for the randomness in outcomes X1, ...,XT , and algorithm A itself.

Goal of Multi-LLM Selection. The performance of an online algorithm A is critically evaluated
through both violation and regret metrics, as defined in Eq. (1) and Eq. (2), respectively. A
diminishing regret implies an increasingly oracle-like performance by algorithm A, indicative of its
efficiency in selecting optimal LLM combinations. Conversely, a reduction in violation highlights
improved compliance with predefined cost constraints over time. The dual objectives for algorithm A
involve simultaneously minimizing regret and violation under different reward models.3

4 ALGORITHM DESIGN

Different
LLMs 

Scheduling
Center

Discretize data;
Coordinate LLMs

Decide combination
of LLMs
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Relax LLM selection issue;
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Queries

Users

Feedback?

Yes

Update
LLM 

performance 
evaluation 

Enquire LLMs

Combination
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Stop
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Returned 
Results
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Figure 3: Design of C2MAB-V workflow, with detailed
process descriptions provided on the left main text.

We present the design of the online C2MAB-
V framework, as depicted in Algorithm 1.
Our method addresses the challenge of es-
timating unknown rewards and costs asso-
ciated with using corresponding LLMs. As
shown in Fig. 3, given the NP-hardness
complexity of selecting a combination of
LLMs under cost constraints, we transform
the original integer problem into a contin-
uous space. Utilizing the limited resources
of a local server, we solve this relaxed opti-
mization problem, which can also ease the
computational load on the scheduling cloud
when supporting multiple local-server query requests. A scheduling cloud with multiple LLMs
coordinates and selects based on continuous data transmitted from the local server. Meanwhile, the
local server collects user feedback to enhance the online evaluations of LLMs. Additionally, the
cloud does not have access to the original sensitive user data, enhancing future privacy protection
prospects. Next, we describe the processes undertaken by the local server and the scheduling cloud.

4.1 PROCEDURES BY LOCAL SERVER

Confidence Bound for Reward and Cost. To avoid the limitations of a greedy LLM selection
strategy, i.e., argmaxk∈K µ̂t,k with µ̂t,k denoting the empirical estimate of the true mean of LLM k,
which might result in the risk of overlooking superior LLM options, we implement the confidence
bound (CB) method Lattimore & Szepesvári (2020); Liu et al. (2022). This “optimistic” strategy

3Without loss of generality, we assume µk, ck ∈ [0, 1] for all k ∈ K.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Online Update of C2MAB-V with Feedback

Input: Set of all LLMs K, cost constraint ρ, probability parameter δ ∈ (0, 1].
1: Initialize: ∀k ∈ K, µ̂1,k = 0, ĉ1,k = 0, T1,µk

= 0,T1,ck = 0.
2: for t = 1, 2, · · · , T do
3: Predict reward of k-th LLM µ̄t,k = min{µ̂t,k + αµρt,µk

, 1} based on “optimistic” strategy;
4: Estimate cost of k-th LLM

¯
ct,k = max{ĉt,k − αcρt,ck , 0} based on “pessimistic” strategy;

5: Utilize the greedy algorithm to solve the relaxed constrained optimization problem in Eq. (3);
6: Obtain LLM action St by discretization rounding (Algorithm 2 or Algorithm 3);
7: Observe the corresponding reward of LLMs and the cost of LLMs in for k ∈ Ft ;
8: Update µ̂t,k , ĉt,k ∀k ∈ K according to Eq. (6).
9: end for

promotes exploration among various LLM alternatives, thereby reducing the likelihood of consistently
choosing sub-optimal options without considering potentially better LLMs. We define the confidence

radius of CB as ρt,µk
=
√
ln
(
2π2Kt3

3δ

)
/2Tt,µk

, which quantifies the exploration potential for the
reward of LLM k at round t, with δ in the range (0, 1]. The term Tt,µk

represents the number of
times LLM k has been selected in action St. Accordingly, the adjusted reward prediction for LLM
k is defined as µ̄t,k = min{µ̂t,k + αµρt,µk

, 1}, with αµ denoted as a positive control parameter.
Furthermore, we take into account the cost associated with each LLM. In light of the uncertainty
introduced by complex queries, we adopt a cautious approach based on “pessimistic” strategy to
ensure adherence to the cost budget. Specifically, the adjusted cost estimate for LLM k at round t,

¯
ct,k, is determined by

¯
ct,k = max{ĉt,k −αcρt,ck , 0}. Here, ĉt,k is the empirical cost, αc is a positive

adjustment parameter, and confidence radiu ρt,ck =
√
ln
(
2π2Kt3

3δ

)
/2Tt,ck , with Tt,ck denoting the

count of LLM k selection up to round t. Using this CB approach, we have the following lemma.
Lemma 1. For each round t and LLM k ∈ K, define Nµ as the event where |µ̂t,k − µk| < ρt,µk

,
and Nc as |ĉt,k − ck| < ρt,ck . Then, the probability of Nµ,Nc occurring is at least 1 − δ/2, i.e.,
Pr{Nµ} ≥ 1− δ/2, Pr{Nc} ≥ 1− δ/2.

Please refer to Appendix D.1 for the proof. Lemma 1 underscores the high-probability events wherein
the empirical estimates for both reward and cost closely align with their true means of LLMs.

Relaxation Strategy for LLM Combination Selection. To mitigate the computational hardness
of the LLM selection problem, the local server adopts a relaxed strategy while also ensuring that
original sensitive user information is not transmitted to the scheduling cloud. Specifically, let indicator
variable IS = {z1, z2, · · · , zK} ∈ {0, 1}K denote the selection status of LLM in K, where zk = 1
indicates LLM k is selected, and zk = 0 otherwise. zk ∈ IS is regarded as a continuous variable
z̃k ∈ [0, 1], with Z̃ = {z̃1, z̃2, · · · , z̃K}. We then introduce the three different relaxation strategies.

• Any Win Combination (AWC): Treating r(S;µ) =
(
1−

∏
k∈S(1− µk)

)
as a submodu-

lar function, we apply its multi-linear extension to accommodate the relaxed problem form:
r̃
(
Z̃, µ̄

)
=
∑

S⊆K
∏

k∈S z̃k
∏

k/∈S(1−z̃k), ensuring convexity across any direction I{i}−I{j} for

distinct i, j ∈ K Calinescu et al. (2007). The closed form, r̃
(
Z̃, µ̄

)
=
(
1−

∏
k∈K(1− µ̄kz̃k)

)
,

of this extension leads to the following relaxed optimization problem:

{max

(
1−

∏
k∈K

(1− µ̄kz̃k)

)
:
∑
k∈K

z̃k ≤ N,
∑
k∈K

ct,kz̃k ≤ ρ, 0 ≤ z̃k ≤ 1,∀k ∈ K}. (3)

The common greedy algorithms, apt for such constrained continuous problems, can efficiently select
z̃k values that optimize 1− µ̄kz̃k within constraints Boyd & Vandenberghe (2004). Subsequently,
this optimization problem can be easily and effectively solved.

• Sum Up Combination (SUC): For r(S;µ) =
∑

k∈S µk, we choose the relaxed reward function
to be r̃(Z̃, µ̄) =

∑
k∈K µ̄kz̃k and the relaxed constraint optimization problem is:

{max
∑
k∈K

µ̄kz̃k :
∑
k∈K

z̃k = N,
∑
k∈K

ct,kz̃k ≤ ρ, 0 ≤ z̃k ≤ 1,∀k ∈ K}. (4)

For such relaxed linear programming, it can be easily solved in polynomial time Chan (2018).
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• All In Combination (AIC): Since the reward function r(S;µ) =
∏

k∈S µk is the conjunctive
reward function and the feasible actions are S2 = {S ⊆ K : |S| = N}, we select the relaxed
function to be r̃(Z̃, µ̄) =

∏
k∈K µ̄k

z̃k , with the following optimization problem:

max{
∏
k∈K

µ̄k
z̃k :

∑
k∈K

z̃k = N,
∑
k∈K

ct,kz̃k ≤ ρ, 0 ≤ z̃k ≤ 1,∀k ∈ K}. (5)

The optimal solution in Eq. (5) is equivalent to solving the logarithmic linear programming
argmax{

∑
k∈K z̃k ln µ̄k :

∑
k∈K z̃k = N,

∑
k∈K ct,kz̃k ≤ ρ, 0 ≤ z̃k ≤ 1} by taking ln r(S; µ̄)

as our objective, thus making the optimization problem more tractable.

The commonalities in the above three types of reward forms are in Appendix C.2. We will further de-
scribe the selection of multiple LLMs based on the continuous variable Z̃t = {z̃t,1, z̃t,2, · · · , z̃t,K} ∈
[0, 1]K at round t in Section 4.2 on Procedures by Scheduling Cloud.

Online Update for Combinatorial LLMs. In contrast to traditional offline approaches that use
relaxation methods to address constrained optimization problems Gandhi et al. (2006); Chekuri et al.
(2009), our strategy enables the local server to dynamically adapt LLM performance estimations for
both reward and cost, leveraging continual feedback from the combinatorial LLM selection process.

Specifically, the partial combinatorial feedback model is employed to enhance reward prediction and
cost estimation based on the LLM in the chosen actions, which are updated as follows:

µ̂t+1,k =
Tt,µk

µ̂t,k +Xt,k

Tt+1,µk

, ĉt+1,k =
Tt,ck ĉt,k + yt,k

Tt+1,ck

, k ∈ Ft. (6)

Note that for an action St, the local server only monitors the performance of the LLMs that are
actually used in St, as not all LLMs are utilized for every type of task. For example, in the case of an
AWC task type, if one LLM provides a satisfactory answer, the remaining LLMs are not utilized. In
the AWC scenario, we use a conservative approach by ensuring that the budget threshold is met even
if all selected LLMs St are used, representing a “cautious” economic strategy.

4.2 PROCEDURES BY SCHEDULING CLOUD

Discretization Rounding for LLM Selection. In our architecture, the scheduling cloud can commu-
nicate with each local server, while the local servers do not directly communicate with each other.
As described in Section 3, our focus is on elucidating the one-to-one relationship between a local
server and the cloud. With fully original user data stored locally, the local server sends the relaxed
continuous data Z̃t to the scheduling cloud, which then coordinates various LLMs and selects a new
action in response to requests. Inspired by the works of Chekuri et al. (2009); Gandhi et al. (2006), the
synchronized cloud employs specialized discretization rounding algorithms based on reward models
to convert the relaxed continuous data back into discrete form. By discretizing Z̃t, the scheduling
cloud identifies a feasible set of LLMs St to schedule and select for the current round t (line 6 in
Algorithm 1). The corresponding algorithms are tailored solutions for our versatile reward model
and represent a significant effort to find suitable methods for our specific setup. However, since the
design of these algorithms is not our core contribution, details are provided in Appendix B. Note that
discretization rounding can reduce the complexity of LLM combination selection, as detailed in the
computational efficiency comparison with direct discrete constrained optimization in Appendix E.3.

5 PERFORMANCE ANALYSIS

We conduct a comprehensive analysis on regret in Eq. (2), and violation in Eq. (1) of C2MAB-V. Due
to the page limit, the proof and analysis of the instance-dependent bound are provided in Appendix D.

To state the analysis, we firstly give some definitions. Let ot,S represent the probability that all
LLMs within a selected action S are observed at round t, and r∗ = maxS∈S r(S;µ) ≤ NL be the
maximum reward for the L-Lipschitz reward function r(S;µ).4 Following Kveton et al. (2015a);
Li et al. (2016), we define o∗ = mint∈T ,S∈S ot,S as the minimum observation probability across all

4All three reward functions satisfy 1-Lipschitz continuity, allowing a more general extension to the L-
Lipschitz case (see Appendix C.2).
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feasible combinations of LLM selection, within the context of partial feedback mechanisms. For the
AWC scenario, as previously discussed, a subset may be chosen from multiple available options for
an action St. In such cases, we provide the violation upper bound under the worst-case scenario,
where each LLM in action St fails to satisfy the user until the last one, i.e., St = Ft for all t ∈ T .
Theorem 1 (Regret Bound). With δ = 1/T in the confidence radius, the α-approximate regret for
the multi-LLM selection problem is bounded as follows, with probability at least 1− 1/T :

R(T ) ≤ 2L

o∗

√
2NKT ln

(
2π2KT

3

)
+ (K + 1) r∗. (7)

Remark 1. The C2MAB-V framework extends the capabilities of existing CMAB models by incor-
porating long-term cost considerations, which is typically not present in previous works Chen et al.
(2016); Kveton et al. (2015c;b;a). Comparing with the linear CMAB model in Kveton et al. (2015c)
which focuses on full rather than partial feedback, by setting L = 1 and o∗ = 1, our regret bound
aligns with theirs, adhering to the lower bound Ω(

√
NKT ) in Kveton et al. (2015c), up to a

√
lnT

factor. The comparability of our regret bound with other CMAB frameworks primarily stems from the
efficient management of uncertainty in parameter estimation. A unique difference in our approach,
however, is the implementation of a discretization process for the relaxed NP-hard problem. Despite
this, due to our efforts on the shared attributes of different reward functions (which is not an easy
task), the regret of C2MAB-V maintains the same order as those observed in other CMAB studies.
Theorem 2 (Violation Bound). With δ = 1/T in the confidence radius, the constraint violation under
the worst case is bounded as follows, with probability at least 1− 1/T :

V (T ) ≤
√
NK/T

(
2

√
2 ln

(
2π2KT

3

)
+
√
NK/T

)
. (8)

Remark 2. Our analysis reveals that the violation decreases at a rate of Õ(
√

K
T ). As T grows

large, V (T ) approaches zero, suggesting an eventual elimination of violation. Furthermore, the
overall violation is shown to be Õ(

√
KT ), which is comparable to the order of regret. An interesting

comparison arises with the work of Takemori et al. (2020), which studies non-linear submodular
rewards and linear costs within the context of knapsack constraints, specifically focusing on scenarios
with known and fixed costs. This contrasts with our exploration of scenarios characterized by
unknown stochastic costs. Despite the inherent challenges posed by unknown costs, our framework
manages to attain an Õ(

√
T ) approximate regret with an approximation ratio of α1 = 1− 1

e ≈ 0.632

under knapsack constraints. In contrast, the method from Takemori et al. (2020) achieves an Õ(
√
T )

approximate regret with a lower approximation ratio α2 ≤ 0.5. Thus, our approach secures a regret
improvement of at least (α1 − α2)T ≥ 0.132T . Compared to Sankararaman & Slivkins (2018),
which focuses on addressing constraints, our work expands to include non-linear rewards.

6 PERFORMANCE EVALUATION

Experiment Settings. We evaluate the three multi-LLM reward models (AWC, SUC, AIC) to
represent different task types using the SciQ dataset Welbl et al. (2017) across nine LLMs: ChatGPT-
3.5, ERNIE 3.5, ChatGPT-4, ChatGLM2, Llama 2-7B, Llama 2-13B, Llama 2-70B, Mixtral-8x7B,
and Claude 2 OpenAI (2023); Claude (2023); Mistral-AI (2024); Baidu (2024); Ollama (2023).5
Costs are determined based on the official pricing. Results are averaged over 10 seeds with a 95%
confidence interval; for more setting details, refer to Appendix E.1. The maximum number N is set
uniformly to 4, according to the size of the LLM set. Budget threshold ρ is 0.45 for AWC, 0.5 for
SUC, and 0.3 for AIC, according to reward models and official LLM pricing. More experiments (e.g.,
varying budget threshold, impacts of maximum number, comparison to scenarios without relaxation,
and evaluating results on more public datasets) are available in Appendix E.

Comparison Benchmarks. Comparisons include consistently utilizing the expensive ChatGPT-4
OpenAI (2023) and the cheap ChatGLM2 OpenAI (2023), the online CMAB algorithm CUCB, Wang

5Our evaluation focuses exclusively on online learning from continuous feedback, incorporating offline
pre-training, requiring offline training or GPU resources, or addressing cold-start issues. Studies, such as Zhang
et al. (2020), on accelerating online learning to overcome cold-start challenges, can be seamlessly integrated.
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Figure 4: Reward/violation ratio of three task types with nine different LLMs.

& Chen (2017); Liu et al. (2021c), which ignores constraints, Thompson Sampling, a mainstream
probabilistic Bayesian online learning approach, Lattimore & Szepesvári (2020) and ϵ-Greedy Auer
et al. (2002), which alternates between using empirical means and selecting uniformly based on the
adaptive ϵt = min{1, 2

√
K√
t
} (Here, works of Sankararaman & Slivkins (2018); Takemori et al. (2020)

are not compared due to being restricted to fixed costs or linear reward). The robustness of C2MAB-V
is validated by varying the parameters αµ, αc with values of (0.3, 0.05), (1, 0.05), (0.3, 0.01), and (1,
0.01), referred to as (a), (b), (c), (d). Although the setting in Ding et al. (2024); Chen et al. (2023);
Madaan et al. (2023); Zhu et al. (2023) totally differs from our online learning setting, we also
pre-learned a fixed combination of multi-LLMs offline, which we applied to online queries. This
enables to explore how online learning based on feedback can complement the adjustment of LLM
selections in the offline domain. The results are provided in Appendix E.3 due to space constraints.

Performance Metric. To balance both reward and cost considerations, we assess performance using
a reward/violation ratio, defined as the average per-round reward divided by the average per-round
violation, i.e.,

∑t
τ=1 r(Sτ ,µ)/t∑t

τ=1 V (τ)/t
, with higher ratios indicating superior performance. More extended

experimental results with the varying budget threshold and a greater emphasis on performance, along
with detailed results for individual reward and violation, are provided in Appendix E.2.

Evaluation Results. The performance of the reward/ violation ratio is illustrated in Fig. 4. ChatGLM2
is excluded since its rewards are significantly low, below 0.18, 0.10, and 0.0001 in the AWC, SUC,
AIC models, despite no violations. In the AWC model (Fig. 4(a)), C2MAB-V consistently outperforms
other algorithms in all four parameter settings, achieving the highest reward/violation ratio. This
underscores C2MAB-V’s superior ability to balance rewards against violations. Our algorithms
converge in fewer than 1,000 rounds, significantly faster than the ϵ-greedy algorithm, which requires
nearly 10,000 rounds, even without incorporating offline information and relying entirely on online
learning from scratch. The patterns observed for the SUC and AIC models (Fig. 4(b) and Fig. 4(c))
mirror those of the AWC model, further showing the robustness of C2MAB-V across different settings.
When randomly evaluating C2MAB-V(c), it improves by at least 64.72% over ϵ-Greedy, performs
3.9× better than Thompson Sampling, 4×that of CUCB, and 6× that of Always using ChatGPT-4
across three tasks. In summary, C2MAB-V maintains the highest reward/violation ratio under different
(αµ, αc) for the ablation study on multi-LLM tasks aligning with our theoretical analysis.

7 CONCLUSION

In this paper, we introduce C2MAB-V, a cost-effective combinatorial online model with a versatile re-
ward structure, designed to efficiently select multiple LLMs based on specific task requirements while
adhering to budget constraints. C2MAB-V incorporates continual online feedback, and transform the
NP-hard multi-LLM selection problem into a manageable relaxed form, with specified discretization
rounding schemes designed to coordinate LLMs within a local-cloud architecture. Theoretical analy-
sis of C2MAB-V provides novel and robust guarantees for the efficacy of the framework, including
sublinear regret and a rapidly decreasing violation. Moreover, empirical evaluations with nine LLMs
demonstrate C2MAB-V’s capability to balance performance with cost efficiency across three distinct
types of collaborative multi-LLM tasks.

Looking ahead, there are several compelling directions for future research. For example, further
development could focus on enhancing privacy protection and improving communication between
multiple local servers within our local-cloud architecture. Additionally, incorporating contextual
combinatorial multi-armed bandit approaches could more effectively capture user preferences.
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A CONTENT SUPPLEMENT

A.1 SUMMARY OF MAIN SYMBOLS

Table 2: Summary of the main symbols.

Symbol Description
K Set of all LLMs, where k indexes an LLM
T Set of discrete time intervals or rounds
St Set of LLMs selected at round t, i.e., an action
S Set of all possible combinations of LLM actions
N Maximum number of LLMs active simultaneously
Xt,k Reward associated with LLM k at round t
yt,k Cost associated with LLM k at round t
µk Unknown expected performance reward for LLM k
ck Unknown expected cost for LLM k
Dq Distribution over queries
link (q) Number of input tokens by LLM k for query q
lout
k (q) Random number of output tokens by LLM k for query q
Ck Cost per token for LLM k

Dout
k (q) Distribution of output tokens for LLM k given query q
Q Set of all queries
Ft Subset of LLMs from which feedback is observed at round t
Ft Cardinality of the subset Ft

V (T ) Total budget violation over T rounds
R(T ) Total regret over T rounds
ρ Budget guarantee threshold
δ Probability parameter

µ̂t,k Empirical estimate of the mean reward for LLM k at round t
ĉt,k Empirical estimate of the cost for LLM k at round t
αµ Control parameter for adjusting the reward confidence bound
αc Control parameter for adjusting the cost confidence bound
ρt,µk

Confidence radius for the reward of LLM k at round t
ρt,ck Confidence radius for the cost of LLM k at round t
Tt,µk

Count of selections of LLM k concerning the reward up to round t
σ(·) Discretization rounding procedure for LLM Selection
Tt,ck Count of selections of LLM k concerning the cost up to round t
z̃k Continuous variable representing the selection status of LLM k

Z̃ Vector of z̃k for all LLMs
ot,S Probability all LLMs within action S are observed at round t
r∗ Maximum reward for the L-Lipschitz reward function
o∗ Minimum observation probability across all LLM combinations
L Lipschitz constant for the reward function

A.2 MORE LITERATURE ON BANDIT WITH KNAPSACK CONSTRAINTS

Another line of research considers resource consumption and budget constraints in stochastic
MAB/CMAB settings, with prominent examples including bandits with budgets Ding et al. (2013);
Wu et al. (2015); Xia et al. (2016) and bandits with knapsacks (BwK) Badanidiyuru et al. (2013);
Sankararaman & Slivkins (2018); Agrawal & Devanur (2019). In these studies, optimal stopping
time is relevant because the learning process halts when resources are exhausted. Our problem differs
in that our model’s long-term constraint does not enforce such limitations, allowing the arm selection
process to continue indefinitely. Among BwK studies, Sankararaman & Slivkins (2018) is most
closely related to our work, as their proposed algorithm also employs a high-level combination of
UCB/LCB, linear programming, and randomized rounding. However, their algorithm is limited
to the linear CMAB setting with linear rewards and semi-bandit feedback. In the linear case, our
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Table 3: Summary of the related constrained-effective MAB works.

Algorithm Combinatorial Arms? Non-linear Reward? Unknown Stochastic Cost? Cost Constraint Partial Feedback?∗
POND, Liu et al. (2020) × × ✓ Long term NA

OptPess-LP, Liu et al. (2021a) × × ✓ Long term NA
Pessimistic-Optimistic, Liu et al. (2021b) × × ✓ Long term NA

BwK† and its variants, Badanidiyuru et al. (2013); Agrawal & Devanur (2019) × × ✓ BwK† NA
CUCB-CRA, Zuo & Joe-Wong (2021) ✓ ✓ × NA ×

CUCB-T and its variants, Chen et al. (2016); Li et al. (2016); Wang & Chen (2017) ✓ ✓ × NA ✓
SemiBwK-RRS, Sankararaman & Slivkins (2018) ✓ × ✓ BwK† ×

Constrained UCB, Chen et al. (2018) ✓ × × Long term ×
AFSM-UCB, Takemori et al. (2020) ✓ ✓ × Per round‡ ×

CA-CUCB, ours ✓ ✓ ✓ Long term ✓
† BwK means the bandit with knapsacks; ∗ Partial feedback can cover applications with partially observed arms, e.g., cascading bandits; ‡ Per round means the action satisfies the cost constraint in each round;

algorithm can encompass their approach by utilizing a linear relaxation function and a dependent
rounding procedure under the SUC reward model. A key technical distinction between Sankararaman
& Slivkins (2018) and our work is that we do not rely on the specific negative correlation property of
randomized rounding (RR) for regret or violation analysis. Without assuming a negative correlation,
our proof technique is more general, providing greater flexibility in choosing relaxation functions
and rounding procedures for a broad class of non-linear reward functions.

A.3 TACKLING NEW CHALLENGES IN COMBINATORIAL BANDITS

The key innovation of our approach lies in its formulation of constraint-effective combinatorial
multi-armed bandits, a new variant of combinatorial semi-bandits. While previous CMAB research
has made significant progress in minimizing regret, many existing approaches overlook the critical
aspect of cost constraints, often allowing for excessive violations. Our work directly addresses
this gap by adopting a constraint-effective perspective, where we aim to minimize both regret
and constraint violation simultaneously. Specifically, our approach combines traditional regret
minimization techniques with the novel challenge of managing cost constraints effectively.

A distinguishing feature of our work is the way we tackle the constrained optimization problem.
Traditional methods typically treat the constraint as a discrete optimization problem, which is often
NP-hard and computationally inefficient. Direct solutions to this problem tend to yield suboptimal
approximation ratios. In contrast, we propose a relaxation and rounding (RR) technique, which
transforms the problem into a continuous optimization problem. This transformation not only
improves approximation guarantees but also offers better time complexity compared to traditional
methods. However, implementing RR techniques in an online setting presents new challenges, as
RR methods were originally designed for offline optimization problems. The flexibility in choosing
relaxation functions and rounding procedures complicates the guarantee of low regret and low
violation in the online case. To overcome this challenge, we propose a detailed analysis that identifies
the conditions under which the RR approach can effectively perform in online scenarios. This involves
establishing a connection between regret and over-estimation terms, which can be bounded using
standard CMAB analysis. Additionally, we introduce a novel martingale construction technique
that allows us to bound long-term violations of the constraints, a critical aspect in addressing online
combinatorial optimization problems.

Furthermore, our approach handles non-linear reward functions and partial feedback, which are essen-
tial for addressing real-world LLM task scenarios. These challenges have not been comprehensively
tackled in existing CMAB works.

B DISCRETIZATION ROUNDING ALGORITHMS

For the AWC reward, as detailed in Algorithm 2, the scheduling cloud initiates the process by setting
up a vector v and identifying K sets {B1, · · · ,BK} (line 1). Following this initialization, Algorithm
2 enters an iterative phase where it fine-tunes the composition of the sets B1 and B2, aiming to keep
the evolving solution within acceptable bounds while also seeking to optimize the reward (lines 3-9).
Subsequent steps involve refining B1 by excluding all elements found in set G, and updating Ai+1 to
reflect the current state of B1 (line 10), which are designed to gradually construct the final integrated
solution. Finally, Algorithm 2 designates AK as the final action of selected LLM St (line 12). The
validity of the resultant solution for LLM selection is underpinned by the lemma that follows (more
discussions are in Appendix C.1).
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Algorithm 2 Discretization Rounding for LLM Selection with AWC Reward Model

Input: Relaxed continuous data Z̃t from the local server.
1: Initialize: Find v = (v1, . . . , vK) where vk ≥ 0,

∑
k∈K vk = 1 and sets B1, · · · ,BK satisfying

z̃t,k =
∑

k∈K vkIBk
; Set A1 = B1.

2: for i = 1, . . . ,K − 1 do
3: p1 ←

∑i
j=1 vj , p2 ← vi+1, B1 ← Ai, B2 ← Bi+1;

4: if |B1| < |B2| then swap p1 and p2, B1 and B2;
5: Find a set G ⊆ B1 \B2: cardinality |G| = |B1|− |B2| and B2∪G ⊆ S , and set B2 ← B2∪G;
6: while B1 ̸= B2 do
7: Find i ∈ B1\B2 and j ∈ B2\B1 satisfying (B1\{i})∪{j} ∈ S and (B2\{j})∪{i} ∈ S;
8: Set B1 ← (B1\{i})∪{j}with probability p2/(p1+p2), otherwise B2 ← (B2\{j})∪{i};
9: end while

10: Set B1 ← B1\{i},∀i ∈ G with probability p2/(p1 + p2); Ai+1 ← B1;
11: end for
12: Return the final output AK as the combinatorial LLM action St.

Algorithm 3 Discretization Rounding for LLM Selection with SUC/AIC Reward Models

Input: Relaxed continuous data Z̃t from the local server.
1: while exists k ∈ K such that 0 < z̃t,k < 1 do
2: Identify distinct k ̸= j ∈ K, such that 0 < z̃t,k < 1, 0 < z̃t,j < 1;
3: Let p = min{1− z̃t,k, z̃t,j}, q = min{z̃t,k, 1− z̃t,j};

4: Update the pair (z̃t,k, z̃t,j)←

{
(z̃t,k + p, z̃t,j − p), with probability q

p+q ,

(z̃t,k − q, z̃t,j + q), with probability p
p+q ;

5: end while
6: Return {k ∈ K : z̃t,k = 1} as the selected LLM as the combinatorial LLM action St.

Lemma 2 (Theorem 2.1 in Chekuri et al. (2009)). For a matroidM = (K,S) with a rank function
r : 2N → Z+, the matroid polytope P (M) is defined as the convex hull of the characteristic vectors
of the independent sets S, and the base polytope B(M) as the convex hull of the characteristic
vectors of the bases B. For any two bases B1,B2 ∈ B and an element i ∈ B1\B2, there exists an
element j ∈ B2\B1 such that (B1\{i}) ∪ {j} and (B2\{j}) ∪ {i} also belong to B.

For the SUC and AIC reward, as elucidated in Algorithm 3, the process commences with the
examination of set K to identify LLM k such that their corresponding value z̃t,k lies strictly between
0 and 1 (line 1). Subsequently, Algorithm 3 progresses by identifying a pair of distinct LLM, k and j,
within K, both of which satisfy the criterion 0 < z̃t,k, z̃t,j < 1 (line 2). The core of the discretization
procedure involves computing the probabilities for adjusting the values of z̃t,k and z̃t,j . This is
achieved by determining p and q, which represent the minimum increments and decrements needed
for the adjustment, ensuring the discretization stays within bounds (line 3). With these parameters,
Algorithm 3 probabilistically updates the pair (z̃t,k, z̃t,j) to either increase z̃t,k and decrease z̃t,j ,
or vice versa, thus balancing the overall distribution (line 4). Finally, Algorithm 3 concludes by
assembling the set St comprised of all k ∈ K for which z̃t,k = 1, marking them as the selected
LLM for the given timestep (line 6). This discrete selection process, grounded in the probabilistic
adjustments of the z̃ values, systematically refines the selection of LLM.

One fundamental aspect of the reward r(S;µ) is its demonstration of the “diminishing marginal”
property. Specifically, when a new LLM k ∈ K is added into action Sj with a relatively larger set
size, the resultant increase in reward is less than or equal to the increase observed when the same
LLM k is added to a smaller set Si, given Si ⊆ Sj ⊆ S, i, j ∈ T . This behavior exemplifies a
submodular function, formally expressed as follows:

r(Si ∪ {k};µ)− r(Si;µ) ≥ r(Sj ∪ {k};µ)− r(Sj ;µ). (9)

By applying the common greedy algorithm to solve the maximization of submodular function problem,
we have the following lemma:
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Lemma 3 (Theorem 1 in Sun et al. (2023)). The problem of maximizing a submodular function can
be efficiently solved by a greedy algorithm, achieving an approximate ratio of α = (1− 1/e) relative
to the theoretical optimum.

This lemma indicates a significant efficiency in approximating the optimal solution of the submodular
reward function r(S;µ). Attentive readers will recognize that the previously discussed three different
reward functions (AWC, SUC, and AIC reward) are actually special cases of submodular functions,
all with monotonicity and Lipschitz coninuity condition satisfied. However, we focus on designing
and discussing different algorithmic components that offer better performance guarantees with α = 1
for SUC and AIC, rather than merely categorizing them as submodular functions.

C CONSTRAINT AND REWARD ANALYSIS

C.1 DISCUSSIONS ON CONSTRAINT TYPE AND EXTENDED TASK TYPE

In the context of C2MAB-V, we define ground base arms as K = {1, ...,K} and denote S as
combinatorially feasible sets, structured by specific combinatorial frameworks. A set S is linearizable
if its convex hull forms a polytope in RK , meaning we can describe it using a finite number of
linear constraints in RK , with S representing the integral solutions. Matroids represent a prominent
category of linearizable combinatorial sets, characterized by:

• Containment of the empty set: ∅ ∈ S.
• Downward closure: For any S ∈ S and S′ ⊂ S, it follows that S′ ∈ S.
• Exchange property: For S, S′ ∈ S with |S′| > |S|, there exists an k ∈ S′ \ S such that
S ∪ {i} ∈ S.

For any S ∈ S, the rank function rank(S) is defined as the maximal size of independent subsets
in S, and IS indicates a vector in {0, 1}K representing the membership of elements in S. The
polytope induced by S , denoted as P (S), is defined as the convex hull of these characteristic vectors,
encapsulating the feasible integral solutions for S.

The base of a matroid, B, consists of independent sets of maximum size N , and the base polytope,
B(S), is the intersection of P (S) with a hyperplane defined by

∑
k∈K z̃k = N . Examples of

matroids include:

1. Cardinality-constrained subsets: Where S = {S ⊆ K : |S| ≤ N}.

2. Partition matroids: Defined over disjoint subsets D1, ...,DM of K with cardinality con-
straints d1, ..., dM .

3. Spanning trees: For a graph G = (V,K), S includes all subsets of K that form a tree
covering all vertices in V .

For each matroid type, the corresponding polytope P (S) is detailed by a linear program, reflecting
its combinatorial structure and constraints.

Attentive readers may have noticed that our main text’s discussion of three different types of tasks
involving LLM collaboration, namely the AWC, SUC, and AIC rewards, as well as their corresponding
constraints, fundamentally relates to concepts associated with matroids and their bases constrained
by cardinality. To facilitate better understanding, we have organized this information as follows:

Matroids and Their Bases Subject to Cardinality Constraints. For a given fixed N , a subset
S ⊂ K can belong to S either if |S| ≤ N or |S| = N . The former is considered in the AWC
application to guarantee user satisfaction and experience, where each feasible action selects at most
N LLMs. The latter case is used in settings of SUC on independently tackling tasks and AIC on
developing a whole project, where exactly N LLMs are selected.

The corresponding induced polytopes P (S) can be described by a vector Z̃ ∈ RK that adheres to the
following linear programs:
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1. For subsets with size at most N (Inclusive Matroids):∑
k∈K

z̃k ≤ N, (10)

z̃k ∈ [0, 1], for∀ k ∈ K. (11)

2. For subsets with size exactly N (Base Matroids):∑
k∈K

z̃k = N, (12)

z̃k ∈ [0, 1], for∀ k ∈ K. (13)

This structure clarifies the types of constraints applied to different combination of multiple LLMs for
different task types.

However, the generalization of our framework design extends beyond this; it is also applicable to
other types of settings. To illustrate this, consider a specific analytical example that employs Partition
matroids as the foundational structure. Suppose we have a collection of disjoint subsets D1, . . . ,DM

of K, withM = {1, 2, ...,M}. This can be interpreted as further domain-specific divisions within a
complete set of LLMs,K, such as dedicating groups of non-overlapping LLMs specialized in different
subjects like mathematics and physics, or each LLM being responsible for a specific submodule
within a large project. Additionally, the constraints can be expanded further; for example, each
submodule may have different budget requirements. Formally, this involves M cardinality constraints
d1, . . . , dM . A subset S ⊂ K belongs to S if and only if |S ∩ Di| ≤ di for some fixed N , where
S = {S ⊆ K : |S ∩ Di| ≤ di, i ∈ M}. This combinatorial feasible set S can model products that
belong to mutually exclusive categories.

The corresponding induced polytope P (S) can be described by Z̃ ∈ RK that follows the linear
program: ∑

i∈Dj

z̃k ≤ dj , ∀ j ∈M

z̃k ∈ [0, 1], for ∀ k ∈ K.

For instance, utilizing the constraints outlined above, combined with the AIC reward structure, we can
easily apply our model to coordinate tasks like a development project where each LLM is responsible
for different non-overlapping modules. This allows for online selection of an optimal combination of
multiple LLMs tailored to the specific needs of the project. Alternatively, by combining partition
matroids and SUC reward, it is possible to address a unified teaching task with different LLMs
focusing on independent but complementary academic disciplines. Thus, within the S framework,
based on our defined reward structure and various types of constraints, we can effectively handle a
wide range of collaborative tasks among multiple LLMs.

Based on the above analysis, regarding extended tasks, such as identifying the set of LLMs to
be deployed, are addressed, the strategy lacks specificity on which LLM should be assigned to a
particular task (as in the SUC case) or which LLM should handle a given sub-module (as in the AIC
case). This issue can be mitigated by transitioning from cardinality-constrained subsets to partition
matroids. Specifically, a smaller and more suitable subset of LLMs can be preselected for specific
query tasks. For example, in mathematical problems, the selection space for LLMs could be restricted
to those fine-tuned for mathematical queries, rather than choosing from the full set of LLMs. This
targeted selection not only reduces the search space but also accelerates the online learning process
by avoiding the misallocation of resources.

Alternatively, the selection process can rely entirely on online learning through match bandit. The
match bandit problem, a variant of the maximum weight matching problem, is modeled as a bipartite
graph G = (Q,K,E), where Q represents query tasks, K represents LLMs, and E represents
weighted edges denoting the probability of assigning a query task q to an LLM k. The Combinatorial
MAB proposed in our paper can naturally be transformed into this bipartite graph structure based on
.Liu et al. (2023b); Chen et al. (2016).
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C.2 EXPLORATION ON ATTRIBUTES OF REWARD FUNCTIONS

Next, we examine the common attributes of the three defined reward functions. All three correspond-
ing constraint optimization problems (defined in Eq. (3), Eq. (4), and Eq. (5)) are linear programming
(LP) models with K variables. The optimal solutions for these models, i.e., α = 1− e for the AWC
reward and α = 1 for the SUC and AIC rewards, can be determined in polynomial time Vaidya
(1989); Calinescu et al. (2007); Iyer et al. (2014).

Next, we define the discretization procedure σ used in Algorithm 2 and Algorithm 3 as St = σ(Z̃t),
where IS∗

t
represents the feasible solutions of the optimization problem. The indicator variable

IS = {z1, z2, · · · , zK} ∈ {0, 1}K denotes the selection status of LLMs in the set K. Referencing
Theorem 1.1 in Chekuri et al. (2009) for Algorithm 2 and Properties P1 and P2 in Gandhi et al. (2006)
for Algorithm 3, it is established that ES∼σ(Z̃t)

[IS ] = Z̃t for any S ∼ σ(Z̃t) within the feasible set
S. Consequently, we can conclude that:

r (S,µ) =


(
1−

∏
k∈S(1− µk)

)
= r̃ (IS ,µ) , AWC reward,∑

k∈S µk = r̃ (IS ,µ) , SUC reward,∏
k∈S µk = r̃ (IS ,µ) , AIC reward.

(14)

Following Eq. (14), we can then deduce that r (S∗
t , µ̄t) = r̃

(
IS∗

t
, µ̄t

)
.

Finally, we establish a relationship between the actual reward function and its relaxed counterpart by
demonstrating the inequality E [r̃ (ISt

,µ)] ≥ r̃(Z̃t,µ).

❶ For the AWC reward, the proof can be streamlined as follows: Based on Algorithm 2, the process
transitions from an initial continuous solution Z̃ to a final integral solution Xs = IS over s steps,
resulting in the sequence (X1, ...,Xs), where X1 = Z̃ and Xs = IS . Utilizing Lemma B.1 and
Lemma 4.1 from Chekuri et al. (2009), at any round t, we can represent Xt as a weighted sum of
indicator functions for bases, Xt =

∑k
l=1 plIBl

, where Bl represents the bases. The state transition
to Xt+1 is modeled as follows:

Xt+1 =

{
Xt + p2(I{i} − I{j}), with probability p1

p1+p2
,

Xt − p1(I{i} − I{j}), with probability p2

p1+p2
.

Defining a = Xt and ϑ = I{i} − I{j}, we let h(p) = r̃(Xt + pϑ,µ). The expected value of r̃ at
t+ 1 given Xt is then

E[r̃(Xt+1,µ)|Xt] =
p1

p1 + p2
r̃(Xt + p2ϑ,µ) +

p2
p1 + p2

r̃(Xt − p1ϑ,µ),

which simplifies to p1

p1+p2
h(p2) + (1 − p1

p1+p2
)h(−p1). Due to the convexity of h, this is at least

h(0) = r̃(Xt,µ). Applying this inequality recursively from t = 1 to s− 1 via the tower rule, we
conclude that E[r̃(Xs,µ)] ≥ r̃(X1,µ) = r̃(Z̃,µ), thereby satisfying E [r̃ (ISt ,µ)] ≥ r̃(Z̃t,µ).

❷ For the SUC reward, recall that indicator variable IS = {z1, z2, · · · , zK} ∈ RK , with zk = 1

indicating LLM k selected, and zk = 0 otherwise, and z̃k ∈ [0, 1] is a continuous variable , with Z̃ =
{z̃1, z̃2, · · · , z̃K}. On the basis of Eq. (14), it holds that ES∼σ(Z̃)[r̃(IS ,µ)] =

∑
k∈K E[zk]µk =∑

k∈K z̃kµk = r̃(Z̃,µ). This fulfills that E [r̃ (ISt
,µ)] ≥ r̃(Z̃t,µ).

❸ For the AIC reward, consider the vector Z := (z1, . . . , zK) ∈ RK , where r̃(Z,µ) =
exp

(∑
k∈K zk lnµk

)
is demonstrated to be a convex function with respect to Z. This is evidenced

by the Hessian matrix of r̃(Z,µ), denoted as Hr̃(Z) ∈ RK × RK . The entries of Hr̃(Z) are given
by Hr̃(Z)i,j = lnµi lnµj r̃(Z,µ). The Hessian can be expressed as Hr̃(Z) = r̃(Z,µ)WW T ,
where W is the column vector W := (lnµ1, . . . , lnµK). Consequently, Hr̃(Z) is positive semi-
definite because for any vector x ∈ RK , we have xTHr̃(Z)x = r̃(Z,µ)(W Tx)2 ≥ 0, given that
r̃(Z,µ) ≥ 0 and (W Tx)2 ≥ 0. Applying Jensen’s inequality and acknowledging that EZ [zk] = z̃k
as per Eq. (14), it follows that EZ [exp

(∑
k∈K zk lnµk

)
] ≥ exp

(∑
k∈K EZ [zk] lnµk

)
= r̃(Z̃,µ),

thereby ensuring that E [r̃ (ISt
,µ)] ≥ r̃(Z̃t,µ).

In addition to the above observations, it is crucial to evaluate the sensitivity of the reward functions
with respect to the input parameter µ. This sensitivity is commonly measured using the concept of
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“Lipschitz continuity”, which ensures that small changes in µ result in proportionally small changes
in the reward function.

Lipschitz continuity. A reward function r(S;µ) is said to be L-Lipschitz continuous with respect to
µ if, for any µ,µ′ ∈ [0, 1]K and any action S, it satisfies: |r(S;µ)−r(S;µ′)| ≤ L

∑
k∈S |µk−µ′

k|.
For the reward models AIC, SUC, and AWC, we observe that all are 1-Lipschitz continuous.

AIC: |r(S;µ)−r(S;µ′)| =|
∏

k∈S µk−
∏

k∈S µ′
k| =

∣∣∣∑K
k=1

((∏k−1
j=1 µj

)
(µk − µ′

k)
(∏K

j=k+1 µj

))∣∣∣≤∑K
k=1

∣∣∣((∏k−1
j=1 µ

′
j

)
(µk − µ′

k)
(∏K

j=k+1 µj

))∣∣∣ ≤∑K
k=1 |µk − µ′

k| .

SUC: |r(S;µ)− r(S;µ′)| = |
∑

k∈S µk −
∑

k∈S µ′
k| ≤

∑K
k=1 |µk − µ′

k|.

AWC: |r(S;µ)−r(S;µ′)| = |
∏

k∈S(1−µk))−
∏

k∈S(1−µk)
′)|, which follows the same derivation

as AIC by substituting λ = µ.

D PROOF APPENDIX

D.1 PROOF OF LEMMA 1

Proof. We aim to establish a bound for the probability given by:

Pr{¬Kµ} = Pr

∃t ∈ T , k ∈ K, |µ̂t,k − µk| ≥

√
ln( 2π

2Kt3

3δ )

2Tt,µk


which can be expressed as follows:

≤
K∑

k=1

T∑
t=1

t∑
s=1

Pr

|µ̂t,k − µk| ≥

√
ln( 2π

2Kt3

3δ )

2Tt,µk

, Tt,µk
= s


≤

K∑
k=1

T∑
t=1

t∑
s=1

3δ

π2K

1

t3

≤ δ

2
.

The initial inequality employs the union bound over the indices k, t, and s. The subsequent inequality
leverages the Chernoff-Hoeffding inequality (see Lemma 5) when Ts,µk

= s and µ̂t,k = 1
s

∑s
j=1 µ

j
k

is the sample mean of s independent and identically distributed random variables µ1
k, . . . , µ

s
k, each

representing the j-th observation of index k. The final inequality is justified by the series sum∑∞
k=1

1
k2 = π2

6 .

Analogously, for the probability concerning ¬Kc, we derive:

Pr{¬Kc} = Pr

∃t ∈ T , k ∈ K, |ĉt,k − ck| ≥

√
ln( 2π

2Kt3

3δ )

2Tt,ck


≤

K∑
k=1

T∑
t=1

t∑
s=1

Pr

|ĉt,k − ck| ≥

√
ln( 2π

2Kt3

3δ )

2Tt,ck

, Tt,ck = s


≤

K∑
k=1

T∑
t=1

t∑
s=1

3δ

π2K

1

t3

≤ δ

2
.

Through consideration of the complementary events, we ascertain that the events Kµ and Kc each
occur with a probability of at least 1− δ

2 , respectively.
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D.2 COMPREHENSIVE PROOF OF THEOREM 1

General regret proof analysis

The proof of Theorem 1 is structured into three pivotal segments. Initially, it focuses on transforming
the total regret into over-estimation regret (Step 1: Reduce to the over-estimation regret). Subse-
quently, it addresses the conversion of partially observed actions to fully observed ones, leveraging
the Lipschitz condition to dissect the regret associated with an action into the regrets of its constituent
base arms (Step 2: Deal with the partial observation and apply the L-Lipschitz condition). The
final segment synthesizes these elements through meticulous mathematical manipulations (Step 3:
Derivation to get the final regret bound).

We begin with a sketch of the proof to enhance comprehension. From Lemma 1, for every round t ∈ T
and LLM k ∈ K, the inequality |µ̂t,k − µk| <

√
ln
(
2π2Kt3

3δ

)
/2Tt,µk

is satisfied with probability at
least 1− δ/2. By setting δ = 1/T , we can assert with high probability that µk ≤ µ̂t,k+ρµ,t,k = µ̄t,k

and ck ≥ ĉt,k − ρc,t,k =
¯
ct,k.

Given the monotonicity property of reward function r(S;µ) and r (S∗
t , µ̄t) = r̃

(
IS∗

t
, µ̄t

)
, we derive

the following inequality:

R(T ) ≤ E [αr (S∗
t , µ̄t)− r (St,µ)] ≤ E

[
r̃
(
Z̃t, µ̄t

)
− r (St,µ)

]
. (15)

Substituting E [E [r̃ (ISt
, µ̄t)]] = E [r̃ (ISt

, µ̄t)] = E [R (St, µ̄t)] into Eq. (15), we obtain:

R(T ) ≤ E
[
r̃
(
Z̃t, µ̄t

)
− E [r̃ (ISt

, µ̄t)]
]

︸ ︷︷ ︸
regret (a)

+E [r (St, µ̄t)− r (St,µ)]︸ ︷︷ ︸
regret (b)

.
(16)

Regret (a) arises from the relaxation and discretization, which is no greater than zero due to the
inequality E [r̃ (ISt

, µ̄t)]≥ r̃
(
Z̃t, µ̄t

)
. Regret (b) is a result of the overestimating of rewards.

Following the analysis idea in Wang & Chen (2017) to bound this over-estimation regret, the
observation probability o∗ is used to derive:

E [r (St, µ̄t)− r (St,µ)]

≤ 1

o∗
E

[
T∑

t=1

r (St, µ̄t)− r (St,µ) I {Ft = |St|}

]

≤ L

o∗
E

[
T∑

t=1

∑
k∈Ft

|µ̄t,k − µt,k|

]

≤ L

o∗
E

[
T∑

t=1

∑
k∈Ft

2ρt,µk

]
.

By synthesizing the bounds of regret components (a) and (b), we can establish an upper bound for the
regret.

We proceed with a comprehensive proof. This detailed analysis is predicated on the concurrent
occurrence of both Kµ and Kc events, with probability at least 1 − δ (by Lemma 1). In scenarios
where Kµ and Kc fail to occur, the expected additional regret is bounded by r∗δT .

Step 1: Reduce to the over-estimation regret

We begin by recalling the definition of the optimal action S∗
t ≜ argmaxS∈S r(S;µt) for each

round t, where S encompasses all feasible actions. And Z̃t is the α-approximate solution of
{max r̃(Z̃, µ̄) : Z̃ ∈ P (S),

∑
k∈K ct,kz̃k ≤ ρ}, where P (S) is defined as the convex hull induced

by S:

P (S) := conv{IS : S ∈ S} = {Z̃ ∈ RK : z̃k ∈ [0, 1],
∑
k∈S

z̃k ≤ rank(S), for ∀k ∈ K,∀S ⊆ K}.
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Denote the discretization procedure σ for Algorithm 2 and Algorithm 3 as St = σ(Z̃t). The feasible
solution St = σ(Z̃t) guarantees r(S;µ) ≥ α · r(S∗;µ). Under high probability events Kµ and Kc,
the constraints µk ≤ µ̂t,k + ρt,µk

= µ̄t,k and ck ≥ ĉt,k − ρt,ck = ct,k are satisfied. We first apply
the monotonicity of the reward function and the property of the multi-linear extension to reduce the
total regret to the over-estimation regret,

E[(αr(S∗
t ,µ)− r(St,µ))]

≤ E[(αr(S∗
t , µ̄t)− r(St,µ))] (17)

≤ E[(r̃(Z̃t, µ̄t)− r(St,µ))] (18)

= E[(r̃(Z̃t, µ̄t)− ESt∼σ(Z̃t)
[r̃(ISt

, µ̄t)])︸ ︷︷ ︸
regret (a)

+(r(St, µ̄t)− r(St,µ)︸ ︷︷ ︸
regret (b)

)] (19)

≤ E[r(St, µ̄t)− r(St,µ)︸ ︷︷ ︸
Over-estimation regret

] (20)

Here, Eq. (17) exploits the action reward function’s monotonicity, while Eq. (18) is due to the
equivalency of r(S∗

t , µ̄t) and r̃(IS∗
t
, µ̄t) for any feasible action S ∈ S , i.e., r(S∗

t , µ̄t) = r̃(IS∗
t
, µ̄t).

Recall that IS∗
t
= {z1, z2, · · · , zK} ∈ {0, 1}K denotes one feasible solution for the optimal selection

status of base arms in K at round t of the following three relaxed continuous optimization problems:

1. Any Win Combination (AWC):

max r̃(Z̃, µ̄) =

(
1−

∏
k∈K

(1− µ̄k
¯̃zk)

)
s.t.
∑
k∈K

z̃k ≤ N,∑
k∈K

ct,kz̃k ≤ ρ,

0 ≤ z̃k ≤ 1,∀k ∈ K,

where r̃
(
Z̃, µ̄

)
=
(
1−

∏
k∈K(1− µ̄kz̃k)

)
is the closed form of the multi-linear extension

r̃
(
Z̃, µ̄

)
=
∑

S⊆K
∏

k∈S z̃k
∏

k/∈S(1− z̃k).

2. Sum Up Combination (SUC):

max r̃(Z̃, µ̄) =
∑
k∈K

µ̄kz̃k

s.t.
∑
k∈K

z̃k = N,∑
k∈K

ct,kz̃k ≤ ρ,

0 ≤ z̃k ≤ 1,∀k ∈ K.

3. All In Combination (AIC):

max r̃(Z̃, µ̄) =
∏
k∈K

µ̄k
z̃k

s.t.
∑
k∈K

z̃k = N,∑
k∈K

ct,kz̃k ≤ ρ,

0 ≤ z̃k ≤ 1,∀k ∈ K,

whose optimal solution is equivalent to solving the LP program argmax{
∑

k∈K z̃k ln µ̄k :∑
k∈K z̃k = N,

∑
k∈K ct,kz̃k ≤ ρ, 0 ≤ z̃k ≤ 1} by taking ln r(S;µ) as our objective.
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Here, Z̃ = {z̃1, z̃2, · · · , z̃K} represents the selected probability for each base arm, with z̃k ∈ [0, 1]
reflecting the probability of selecting the k-th base arm.

Moreover, Eq. (19) is because E[ESt∼σ(Z̃t)
[r̃(ISt , µ̄t)]] = E[r̃(ISt , µ̄t)] = E[r(St, µ̄t)] (St ∼

σ(Z̃t) denotes selecting St from Algorithm 2 and Algorithm 3), and Eq. (20) holds because of the
convex-preserving property: E [r̃ (ISt , µ̄t)]≥ r̃

(
Z̃t, µ̄t

)
. Here we can see paralleling approaches in

Kveton et al. (2015c;b); Wang & Chen (2017) that bounds the over-estimation regret E[r(St, µ̄t)−
r(St,µ)]. We will follow the idea in Wang & Chen (2017) but a more simplified proof to deal with
this over-estimation regret.

Step 2: Deal with the partial observation and apply the L-Lipschitz condition

Define the over-estimation regret for C2MAB-V at round t as ¯reg(St, µ̄t) = r(St, µ̄t) −
r(St,µ), where St denotes the action and µ̄t represents the upper confidence bound (UCB)
value of base arms at round t. The history of C2MAB-V prior to selecting action St, de-
noted as Ht, encompasses the sequence of actions and observations up to round t − 1, ex-
pressed as Ht = ((S1,F1,µ1,F1

, c1,S1
), . . . , (St−1,Ft−1,µt−1,Ft−1

, ct−1,St−1
)). Here, µt,Ft

=

(µt,St,1
, ...,µt,St,Ft

) and ct,St
= (ct,St,1

, ..., ct,St,|St|
) detail the partial observed rewards and full

costs of LLM for the tth action, respectively.

Introduce Ωt as the random seed influencing the discretization procedure σ from Algorithm 2 and
Algorithm 3 at round t, ensuring that St = σ(Z̃t) is deterministic given Ωt and Z̃t. The notation
E[·|Ht,Ωt] specifies the conditional expectation given the historical contextHt and the random seed
Ωt.

Our analysis proceeds under the premise that all base arms (i.e., LLM) in the selected set St are
observed, yielding the expected regret at round t, conditioned on historyHt and random seed Ωt, as
follows:

E[ ¯reg(St, µ̄t)|Ht,Ωt] (21)

= E
[

¯reg(St, µ̄t)E
[

1

ot,St

I{Ft = |St|}|St

]
|Ht,Ωt

]
(22)

= E
[

¯reg(St, µ̄t)
1

ot,St

I{Ft = |St|}|Ht,Ωt

]
(23)

≤ 1

o∗
E[ ¯reg(St, µ̄t)I{Ft = |St|}|Ht,Ωt] (24)

where Eq. (22) utilizes the fact that, with St determined, ot,St
represents the probability of observing

Ft = |St|, Eq. (23) simplifies the expression by considering the conditions whereHt and Ωt are fixed,
thus fixing St. And the last inequality in Eq. (24) emerges from defining o∗ = mint∈T ,S∈S ot,S
as the minimum observation probability, highlighting the analysis within the framework of partial
feedback mechanisms and its implications for LLM selections.
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Integrating the results from Eq. (2), Eq. (20), and Eq. (24), the expected cumulative regret R(T ) can
be expressed and bounded as follows:

R(T ) = E

[
T∑

t=1

E[E[r(St, µ̄t)− r(St,µ)]|Ht,Ωt]

]

≤ E

[
T∑

t=1

E[ ¯reg(St, µ̄t)|Ht,Ωt]

]
(25)

≤ 1

o∗
E

[
E[

T∑
t=1

¯reg(St, µ̄t)I{Ft = |St|}|Ht,Ωt]

]
(26)

=
1

o∗
E

[
T∑

t=1

r(St, µ̄t)− r(St,µ)I{Ft = |St|}

]
(27)

≤ L

o∗
E

[
T∑

t=1

Ft∑
k=1

|µ̄t,St,k
− µt,St,k

|

]
(28)

≤ L

o∗
E

 T∑
t=1

Ft∑
k=1

2

√
ln( 2π

2Kt3

3δ )

2Tt,µk

 , k ∈ St (29)

=
L

o∗
E

 K∑
k=1

TT+1,µk∑
s=1

√
2 ln( 2π

2KT 3

3δ )

s

 (30)

where Eq. (25) follows from Eq. (20), Eq. (26) is due to Eq. (24), Eq. (27) is by the tower rule of
expectation (E[X] = E[E[X|Y ]] for two random variables Z̃ and Y ) and the definition ¯reg(St, µ̄t),
Eq. (28) leverages the L-Lipschitz continuity of r(S;µ), Eq. (29) employs the bound 0 ≤ µ̄t,k −
µt,k ≤ 2ρt,µk

k ∈ St, given event Kµ, Eq. (30) accounts for the observation counter Tt,µk
increasing

by one whenever the weight of base arm k is observed.

Step 3: Derivation to get the final regret bound

To get the final regret bound, we proceed with the following mathematical derivation:

R(T ) ≤ L

o∗
E

 K∑
k=1

TT+1,µk∑
s=1

√
2
ln( 2π

2KT 3

3δ )

s


≤ L

o∗
E

 K∑
k=1

∫ TT+1,µk

s=0

√
2 ln( 2π

2KT 3

3δ )

s
ds

 (31)

=
2L

o∗
E

[
K∑

k=1

√
TT+1,µk

2 ln(
2π2KT 3

3δ
)

]

≤ 2L

o∗
E


√√√√2K

K∑
k=1

TT+1,µk
ln(

2π2KT 3

3δ
)

 (32)

≤ 2L

o∗

√
2NKT ln(

2π2KT 3

3δ
), (33)

where Eq. (31) approximates the discrete sum with an integral for a smoother upper bound, Eq. (32)
applies the Cauchy-Schwarz inequality to transition from the sum of square roots to the square root
of a sum, and Eq. (33) recognizes that the total number of times base arms are observed is bounded
by NT , considering N as the maximum selection size, i.e.,

∑K
k=1

∑K
k=1 TT+1,µk

≤ NT .

The proof concludes by acknowledging that the initial K rounds contribute at most r∗K to the regret,
combined with the bound established in Eq. (33) and setting δ = 1/T for the regret analysis.
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D.3 COMPREHENSIVE PROOF OF THEOREM 2

General violation proof analysis

To prove the violation bound, we focus on the scenario where event Kc occurs with a probability of
at least 1− δ/2 (by Lemma 1), specifically:

Pr{¬Kc} = Pr

∃t ∈ T , k ∈ K, |ĉt,k − ck| ≥

√
ln( 2π

2Kt3

3δ )

2Tt,ck

 ≤ δ

2
.

Given the occurrence ofKc, it follows that 0 ≤ ck−ct,k ≤ 2ρt,ck . From Algorithm 2 and Algorithm 3,
we know that ρ ≥

∑
k∈K ct,kz̃t,k = ct · Z̃t, where ct := {ct,1, ct,2, . . . , ct,K}, and we also denote

ct := {ct,1, ct,2, . . . , ct,K}. This setup allows us to estimate the per-round violation as follows:

V (T ) ≤

∣∣∣∣∣ 1T
T∑

t=1

∑
k∈St

yt,k − ρ

∣∣∣∣∣ (34)

≤ 1

T

∣∣∣∣∣
T∑

t=1

(∑
k∈St

yt,k − ct · Z̃t

)∣∣∣∣∣ (35)

≤ 1

T

( ∣∣∣∣∣
T∑

t=1

(∑
k∈St

yt,k −
∑
k∈St

ck

)∣∣∣∣∣︸ ︷︷ ︸
violation (a)

+

∣∣∣∣∣
T∑

t=1

(∑
k∈St

ck −
∑
k∈St

ct,k

)∣∣∣∣∣︸ ︷︷ ︸
violation (b)

(36)

+

∣∣∣∣∣
T∑

t=1

(∑
k∈St

ct,k − ct · Z̃t

)∣∣∣∣∣︸ ︷︷ ︸
violation (c)

)
(37)

where Eq. (34) originates from the violation definition, Eq. (35) leverages the inequality ρ ≥ ct · Z̃t

illustrated above, and Eq. (37) utilizes the inequality |a+ b+ c| ≤ |a|+ |b|+ |c| for separation of
terms.

Similarly, we begin with a sketch of the proof to enhance comprehension. For every round t ∈ T and

LLM k ∈ K, the event |ĉt,k − ck| <
√
ln
(
2π2Kt3

3δ

)
/2Tc,t,k occurs with probability at least 1− δ/2,

from Lemma 1, thus resulting in ck ≥ ĉt,k − ρc,t,k =
¯
yt,k via setting δ = 1− 1/T . From Eq. (3), we

have that ρ ≥
∑

k∈K¯
ct,kz̃t,k, ∀t ∈ T . Then V (T ) =

[
1
T

∑T
t=1

∑
k∈St

yt,k − ρ
]+

is bounded by:

V (T ) ≤ 1

T

( ∣∣∣∣∣
T∑

t=1

∑
k∈St

(yt,k − ck)

∣∣∣∣∣︸ ︷︷ ︸
violation (a)

+

∣∣∣∣∣
T∑

t=1

∑
k∈St

(ck − ct,k)

∣∣∣∣∣︸ ︷︷ ︸
violation (b)

+

∣∣∣∣∣
T∑

t=1

∑
k∈St

(ct,k − ct,kz̃t,k)

∣∣∣∣∣︸ ︷︷ ︸
violation (c)

)
.

(38)

By constructing martingale sequences and applying Azuma-Hoeffding inequality, we can bound
violation (a) by

(
N
√
2T ln(8T )

)
with probability at least 1 − 1/4T . Similarly, violation (c) is

bounded by
(
N
√
2T ln(8T )

)
with probability at least 1 − 1/4T . With ck ≥ ĉt,k − ρc,t,k =

¯
ct,k

satisfied at least 1− 1/2T probability, violation (b) is bounded by 4
√
2NKT ln

(
2π2KT

3

)
. Utilizing

the union bounds, we get the desired results in Eq. (8).

Next, we individually bound violations (a), (b), and (c) to further quantify the violation and finally
use the union bounds for violation (a), (b), (c) with the initialization process that causes at most NK
violation to prove the desired terms in Eq. (8).

Step 1: Bound violation (a)
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To address violation (a), we introduce a series of random variables {Y1, Y2, . . . , YT }, construct-
ing a martingale sequence relative to the historical data of C2MAB-V, denoted Ht. The his-
tory Ht encompasses the sequence of actions and observed outcomes up to round t − 1, en-
capsulating both the actions taken and the corresponding observed rewards and full costs. For-
mally, Ht includes tuples ((S1,F1,µ1,F1

, c1,S1
), . . . , (St−1,Ft−1,µt−1,Ft−1

, ct−1,St−1
)), where

µt,Ft
= (µt,St,1

, ...,µt,St,Ft
) and ct,St

= (ct,St,1
, ..., ct,St,|St|

), representing the observed rewards
and costs, respectively, for the action set St.

The martingale is recursively defined starting with Y 0 = 0, and for each round t = 1, . . . , T ,

Y t − Y t−1 =
∑
k∈St

yt,k −
∑
k∈St

ck (39)

where µt = Y t − Y t−1 denotes the change in the martingale value from round t − 1 to t. Given
the construction of µt, we assert that E[µt|Ht] = 0 and the absolute change |µt| is bounded
by the maximum size of the action set, denoted as N , i.e., |µt| ≤ N . Therefore, applying the
Azuma-Hoeffding inequality (Lemma 6), we derive that∣∣∣∣∣

T∑
t=1

(∑
k∈St

yt,k −
∑
k∈St

ck

)∣∣∣∣∣ ≤
√
2N2T ln

8

δ
(40)

holds with a probability of at least 1− δ/4. This step bounds the expected deviation arising from the
selection of actions and their associated costs.

Step 2: Bound violation (b)

In addressing violation (b), we focus on the scenario where event Kc occurs, which holds with a
probability of at least 1− δ/2. Under this condition, we estimate the cumulative difference between
the actual costs ck and their lower confidence bounds ct,k for all actions in St across all rounds t.
The bound is derived as follows:∣∣∣∣∣

T∑
t=1

(∑
k∈St

ck −
∑
i∈St

ct,k

)∣∣∣∣∣ ≤
T∑

t=1

∑
k∈St

2

√
ln( 2π

2Kt3

3δ )

2T c,t,i
(41)

=

K∑
k=1

TT+1,ck∑
s=1

√
2 ln( 2π

2KT 3

3δ )

s
(42)

≤
K∑

k=1

∫ TT+1,ck

s=0

√
2 ln( 2π

2KT 3

3δ )

2s
ds (43)

= 2

K∑
k=1

√
TT+1,ck2 ln(

2π2KT 3

3δ
)

≤ 2

√√√√2K

K∑
k=1

TT+1,ck ln(
2π2KT 3

3δ
) (44)

≤ 2

√
2NKT ln(

2π2KT 3

3δ
) (45)

where Eq. (41) utilizes the confidence interval for cost estimation under eventKc, i.e., 0 ≤ ck−ct,k ≤
2ρt,ck , Eq. (42) rearranges the summation to account for the total observations of cost ck for each
action based on the fact that the counter Tt,ck increase by 1 if and only if base arm k’s cost has been
observed, Eq. (43) replaces the summation with an integral to provide an upper bound, given the
increasing sequence of 1√

s
, the final two inequalities, Eq. (44) and Eq. (45), apply the Cauchy-Schwarz

inequality and the total number of selections to conclude the bound
∑K

k=1

∑K
k=1 TT+1,ck ≤ NT .

This derivation quantifies the discrepancy between the actual costs and their estimated lower bounds
over all rounds.
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Step 3: Bound violation (c)

Similar to how we prove violation (a), we will define a series of random variables
{Y1, . . . , YT } to form a martingale with respect to history of C2MAB-V Ht, defined as Ht =
((S1,F1,µ1,F1

, c1,F1
), . . . , (St−1,Ft−1,µt−1,Ft−1

, ct−1,Ft−1
)) to encompasses the sequence of

actions and observations up to round t−1, before choosing the action St which includes the first t−1
actions and first t−1 partial observed rewards and full costs, where µt,Ft

= (µt,St,1
, ...,µt,St,Ft

) and
ct,St

= (ct,St,1
, ..., ct,St,Ft

). The martingale sequence is defined recursively starting with Y 0 = 0.
For each round t = 1, . . . , T , the incremental change is given by:

Y t − Y t−1 =
∑
k∈St

ct,k − ct · Z̃t, (46)

where µt = Y t − Y t−1 denotes the change in the martingale value from round t− 1 to t. Recall
that the discretization procedure σ is denoted for Algorithm 2 and Algorithm 3 as St = σ(Z̃t) and
N = maxS∈S |S|. Given that E[µt|Ht] = 0 follows from the expectation ESt∼σ(Z̃t)

[ISt ] = Z̃t and
and the bound |µt| ≤ N . Therefore, we can apply the Azuma-Hoeffding inequality (Lemma 6) to
obtain: ∣∣∣∣∣

T∑
t=1

(∑
k∈St

ct,k − ct · Z̃t

)∣∣∣∣∣ ≤
√
2K2T ln

8

δ
(47)

with probability at least 1− δ/4.

Employing the union bound across violations (a), (b), and (c), and accounting for the initial setup
contributing a maximum of KN to the violation, we affirm the desired bounds as specified in Eq. (8)
with a collective probability of at least 1 − δ. The proof concludes by setting δ = 1/T for the
violation analysis.

D.4 INSTANCE-DEPENDENT REGRET BOUND

Our instance-independent regret reduction holds in expectation, where the action-dependent term
is effectively smoothed out by averaging. However, we now require a regret reduction that holds
even without relying on this expectation. To achieve this, we introduce a new condition and derive an
instance-dependent bound accordingly. Before proceeding, we define several gap-related terms. Con-
sider a performance distribution Pµ and its expectation performance vector µ. For each action S, let
the gap ∆S = max{0, αr(S∗,µ)−r(S,µ)}. For each arm k ∈ K, let ∆k

min=minS∈S:∆S>0,k∈S ∆S

and we define ∆min = mink∈K ∆min.

Condition 1 (Sampling Quality Condition). For any relaxed solution Z̃ ∈ RK of the LLM combina-
tion and any performance vector µ, we say that the sampling quality condition is satisfied if, for any
sampled action S ∼ σ(Z̃), the inequality r(S,µ) + γ ≥ r̃(Z̃,µ), where γ ≤ ∆min.

Intuitively, this condition means that the reward of any sampled action is no worse than the relaxed
reward by at most γ, which places a lower bound on the quality of the sampling procedure in each
round, rather than just in expectation.

Instead of considering the instantaneous regret r̄(St,µ) = αf(S∗,µ)− f(St,µ) = ∆St
, we use a

surrogate regret ∆′
St

defined as follows: ∆′
St

= ∆St
+ r(St, µ̄t)− r̃(Z̃t, µ̄t) ≥ ∆St

− γ ≥ 0 . On
one hand, using the relation E [r̃ (ISt

,µ)] ≥ r̃(Z̃t,µ) from Appendix C.2, we have

E[ ¯reg(St,µt)] ≤ E[∆′
St
]. (48)

Thus, if we can bound the right-hand side, we also bound the left-hand side. On the other hand,
using the similar poof of Step 1 in Appendix D.2, which reduces to over-estimation regret, we obtain
r̃(Z̃t, µ̄t) ≥ αr(S∗,µ). Consequently, we have

∆′
St
≤ r(St, µ̄t)− r(St,µ) ≤

∑
k∈St

2L

√
ln( 2π

2Kt3

3δ )

2Tt,µk

. (49)
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Importantly, this bound holds both with and without taking the expectation, meaning it retains its
instance-dependence even without smoothing.

We denote the history of C2MAB-V prior to selecting action St by Ht, which includes all
actions and observations up to round t − 1. Specifically, Ht = ((S1,F1,µ1,F1

, c1,S1), . . . ,
(St−1,Ft−1,µt−1,Ft−1

, ct−1,St−1
)), where µt,Ft

= (µt,St,1
, ...,µt,St,Ft

) and ct,St
=

(ct,St,1 , ..., ct,St,|St|
) represent the partially observed rewards and full costs of the LLM for the

tth action, respectively. Let Ωt represent the random seed that affects the discretization procedure
σ used in Algorithm 2 and Algorithm 3 at round t. The notation E[·|Ht,Ωt] specifies the condi-
tional expectation given the historical context Ht and the random seed Ωt. Define the set St as

St = {∆′
St
≤
∑

k∈St
2L

√
ln( 2π2Kt3

3δ )

2Tt,µk
,∆′

St
> 0, Ft = |St|}.

Next, we use the Lipschitz condition along with the partial observation probability to bound the
regret:

¯reg(T ) = E

[
T∑

t=1

E[ ¯reg(St,µt)|Ht,Ωt]

]

≤ E

[
T∑

t=1

E[∆′
St
|Ht,Ωt]

]
(50)

≤ 1

o∗
E

[
E[

T∑
t=1

∆′
St
I{Ft = |St|}|Ht,Ωt]

]
(51)

=
1

o∗
E

[
T∑

t=1

E
[
∆′

St
I{Ft = |St|}|Ht

]]

≤ 1

o∗
E

[
T∑

t=1

E
[
∆′

St
I{St}|Ht

]]
(52)

where Eq. (50) follows from Eq. (48), Eq. (51) follows from the partial observation argument in Step
2 of Appendix D.2, Eq. (52) follows from the application of Eq. (49).

Finally, we can find similar counterparts of St and Eq. (52) in Appendix A.3 of Kveton et al. (2015c),
leading to an instance-dependent regret bound with δ = 1/T :

R(T ) ≤ O

(
L2N

o∗

∑
k∈K

1

∆k
min − γ

log T + r∗(K + 1)

)
(53)

D.5 TECHNICAL INEQUALITIES

We finally introduce some well-known fundamental results without proofs that serve as pivotal tools
in probability theory and statistical inference, particularly in the realms of concentration inequalities
and martingale sequences.

Lemma 4 (Subgaussian random variables). Suppose that random variables X is σ-subgaussian, X1

and X2 are independent and σ1 and σ2-subgaussian, respectively, then

1. For any ε > 0, Pr [X ≥ ε] ≤ exp
(
− ε2

2σ2

)
.

2. X1 +X2 is
√
σ2
1 + σ2

2-subgaussian.

Lemma 5 (Chernoff-Hoeffding inequality Dubhashi & Panconesi (2009).). Let Y1, ..., Yn be inde-
pendent and identically distributed (i.e., i.i.d.) random variables with common support [0, 1] and
mean µ. Let Z = Y1 + ...+ Yn. Then for any ϵ > 0,

Pr{|Z − nµ| ≥ ϵ} ≤ 2e−
2ϵ2

n .
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Prompts
Please answer the following multiple-choice
questions. Give options directly.

Answers
Sure, just let me know the questions and
options, and I'll provide the answers in the
format you specified.

Question: Who proposed the theory of evolution by
natural selection?
Options:
1. Linnaeus 2. Shaw
3. Scopes 4. Darwin

Question: Each specific polypeptide has a unique
linear sequence of which acids?
Options:
1. Fatty 2. Lactic
3. Hydrochloric 4. Amino

Question: Who proposed the theory of
evolution by natural selection?
Answer: 4. Darwin

Question: Each specific polypeptide has a
unique linear sequence of which acids?
Answer: 4. amino

Question: What is an area of land called that is
wet for all or part of the year?
Answer: 4. wetland

Question: Surface waters are heated by the
radiation from?
Answer: 4. the sun

LLM
Question: What is an area of land called that is wet
for all or part of the year?
Options:
1. Plains 2. Grassland
3. Tundra 4. Wetland

Question: Surface waters are heated by the radiation
from?
Options:
1. Decomposition 2. The moon
3. Gamma rays 4. The sun

Biology

Chemistry

Geography

Physics

Figure 5: Sample conversation with LLM on biology, chemistry, geography, and physics.

Lemma 6 (Azuma-Hoeffding inequality Azuma (1967).). Let {zk : i = 0, 1, 2, . . . , n} be a martin-
gale and |Yk − Yk−1| ≤ ck for k ∈ [n] almost surely, then for any ϵ > 0

Pr{|Yn − Y0| ≥ ϵ} ≤ 2e
− ϵ2

2
∑n

i=1
c2
k .

E MORE EXPERIMENTS

E.1 EXPERIMENTAL DETAILS

Consistent with Section 6, we conduct all experiments on a device equipped with an Intel Core
i5-13600KF CPU @ 3.50GHz and 32 GB of memory. Gurobi, a powerful mathematical optimization
solver that supports various programming models, is utilized to solve relaxed constraint optimization
problems, employing version 11.0.1 Gurobi-Optimization (2024). Fig. 5 depicts a sample interaction
involving large language models (LLMs) across various scientific disciplines—Biology, Chemistry,
Geography, and Physics—utilizing the SciQ dataset Welbl et al. (2017). Table 4 lists the LLMs
used in the experiments (refer to Section 6), detailing each model’s name with parameters, cost per
1,000 tokens in USD, and size in gigabytes. The models range from smaller configurations, such
as ChatGLM2-6B-32K, to larger ones like Llama 2-70B. Considering the variability in generating
answers when using LLMs, as well as potential non-responses, we specify reward allocations based
on different LLM return scenarios in addition to comparisons with the SciQ dataset’s labels. If the
question is answered accurately and adheres to the prescribed prompt format, the reward is set at
0.5. In the event of an incorrect response, no reward is granted. However, if factors such as network
congestion or potential issues with the LLM result in an empty response, a reward of 0.1 is allocated.
Should the response adhere to the format guidelines yet fail to meet the specified requirements, a
reward of 0.3 is assigned. We simulate user feedback for each round using the public SciQ dataset
to function as a binary feedback Shuster et al. (2022), and our algorithm learns the performance
of LLMs based on this feedback. Our entire framework is built on the popular bandit framework
Lattimore & Szepesvári (2020), which continuously updates and adjusts decisions based on a steady
stream of data (i.e., user feedback) to address the classic exploration-exploitation dilemma regarding
LLM performance and cost.

E.2 RESPECTIVE RESULTS FOR REWARD AND VIOLATION

Per-round Reward and Violation. Fig. 6 and Fig. 7 display the experimental rewards and violations
for three different task types. In Fig. 6, C2MAB-V consistently outperforms or matches the ϵ-Greedy
baseline in terms of rewards per round. The parameters on αµ and αc used are (0.3, 0.05), (1,
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Table 4: List of utilized large language models in Section 6, associated cost per usage.

LLM_ID Model Name (with Parameters) Cost (USD/1k tokens) Size (GB)
1 ChatGLM2-6B-32K OpenAI (2023) 0.005 12.5
2 ChatGPT-3.5 OpenAI (2023) 0.02 /
3 Claude 2 Claude (2023) 0.08 /
4 ERNIE 3.5-8K Baidu (2024) 0.015 /
5 Llama 2-7B Ollama (2023) 0.005 12.6
6 Llama 2-13B Ollama (2023) 0.008 24.3
7 Llama 2-70B Ollama (2023) 0.05 128.3
8 Mixtral-8x7B-Instruct Mistral-AI (2024) 0.05 93.37
9 ChatGPT-4 OpenAI (2023) 0.12 /
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Figure 6: Reward of three task types with nine different LLMs.

0.05), (0.3, 0.01), and (1, 0.01), respectively denoted as (a), (b), (c), and (d). Adjusting the values
of αµ and αc consistently results in higher rewards for C2MAB-V settings. These settings also
significantly reduce violations per round compared to the ϵ-Greedy approach. Although the CUCB
algorithm achieves the highest per-round rewards, it does so completely ignoring cost constraints,
leading to a per-round violation rate at least four times higher than that of C2MAB-V, as shown in
Fig. 7. This figure also indicates that C2MAB-V’s violations are lower than those of the ϵ-Greedy
baseline, highlighting its ability to effectively manage constraints. Additionally, since Thompson
Sampling relies on Bayesian updates, which can be highly variable, this method may lack stability
and potentially cause severe oscillations, as observed in scenarios like the AIC task.

Additionally, as shown in Fig. 6(c), we can observe a convergence trend in the rewards of C2MAB-V.
This trend suggests that the initial actions selected might have had higher rewards but also higher
violations. Over time, the cost-aware online learning strategy adjusts by slightly reducing rewards to
achieve greater cost savings, demonstrating its effectiveness in managing long-term constraints.

Varying Budget Threshold. We then examine the influence of the budget threshold ρ. As depicted
in Fig. 8, the optimal action of combinatorial LLMs varies with the change in the budget threshold
ρ. This variation in both arm and action selection space results in fluctuations in reward and
violation. Furthermore, it is evident that across different values of ρ, our proposed C2MAB-V with
αµ = 1, αc = 0.01 consistently outperforms the benchmarks CUCB and ϵ-Greedy by at least 356.0%
and 55.7% improvment, highlighting the robustness of our algorithm.

Performance-Driven Scenarios. Our study explores a range of trade-offs, extending beyond the
typical exploration-exploitation dichotomy to include cost and reward considerations. Given the
anticipated reduction in costs over time with the development of LLMs, our analysis focuses on
scenarios that have a generous budget and prioritize performance. In such performance-driven
scenarios, our theoretical analysis suggests setting the cost exploration parameter αc higher to
better emphasize performance outcomes, which means exploring enough to have good empirical
performance. Consequently, we adjust both αµ and αc as follows: Performance-driven1 with
(αµ, αc) = (0.3, 1), Performance-driven2 with (αµ, αc) = (1, 1), Cost-driven1 with (αµ, αc) =
(0.3, 0.01), and Cost-driven2 with (αµ, αc) = (1, 0.01). As shown in Fig. 9, the performance-driven
types of C2MAB-V yield higher rewards, whereas the cost-driven types exhibit fewer cost violations.
The preferable approach varies, depending on the specific needs and constraints of the task at hand.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Vi
ol

at
io

n

C2MAB-V(a)
C2MAB-V(b)
C2MAB-V(c)
C2MAB-V(d)

-Greedy
CUCB
Thompson Sampling
ChatGPT-4

(a) AWC

0 2000 4000 6000 8000 10000
Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Vi
ol

at
io

n

C2MAB-V(a)
C2MAB-V(b)
C2MAB-V(c)
C2MAB-V(d)

-Greedy
CUCB
Thompson Sampling
ChatGPT-4

(b) SUC

0 2000 4000 6000 8000 10000
Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Vi
ol

at
io

n

C2MAB-V(a)
C2MAB-V(b)
C2MAB-V(c)
C2MAB-V(d)

-Greedy
CUCB
Thompson Sampling
ChatGPT-4

(c) AIC

Figure 7: Violation of three task types with nine different LLMs.
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Figure 8: Reward/violation ratio for three task types across different budget thresholds ρ.

E.3 IN-DEPTH ANALYSIS OF EXPLORATORY RESULTS

Impacts of Maximum Number of LLMs. To investigate how the maximum number of selectable
LLMs, denoted as N , impacts performance, we present the reward/violation ratio for different N
values after T = 3, 000 rounds in Fig. 10. Recognizing that different task types should not adhere to
a universal budget threshold, we specifically use AWC as an example to underscore the influence of
N , while keeping the budget threshold constant. It is important to note that as N changes, the optimal
combination of LLMs, i.e., the optimal action, also changes. Under the same budget threshold ρ,
increasing N expands the selection space, adding complexity and thus affecting the efficiency of all
algorithms. However, we observe that with an increase in N , C2MAB-V consistently outperforms
both the CUCB and ϵ-Greedy baselines.

Comparison of Computational Efficiency on Relaxation. C2MAB-V-Direct is an adjusted version
that finds the best feasible solution by directly solving the discrete constrained optimization Eq. (54)
via enumeration, rather than using relaxation techniques:

max 1−
∏

k∈K (1− µ̄kzk) ,
∑

k∈K ct,kzk ≤ ρ, zk ∈ {0, 1},∀k ∈ K,
max

∑
k∈K µ̄kzk,

∑
k∈K ct,kzk ≤ ρ, zk ∈ {0, 1},∀k ∈ K,

max
∏

k∈K µ̄k
zk ,

∑
k∈K ct,kzk ≤ ρ, zk ∈ {0, 1},∀k ∈ K.

(54)

The objective of this study is to compare the computational efficiency between C2MAB-V, and
C2MAB-V-Direct, which directly solves the constrained integer optimization problem without this
approach. As illustrated in Fig. 11, using the AwC reward function as an example, the comparison of
reward and violation shows that C2MAB-V-Direct almost completely avoids violations, while the
reward for C2MAB-V at four different parameter pair settings (αµ, αc) ((0.3, 0.05) = (a), (1, 0.05) =
(b), (0.3, 0.01) = (c), and (1, 0.01) = (d)) is higher than that of C2MAB-V-Direct.

Table 5: Comparison of runtime between C2MAB-V and C2MAB-V-Direct methods.

Runtime (s) C2MAB-V C2MAB-V-Direct
AWC 221.78 1464.33
SUC 267.20 16890.91
AIC 283.06 17320.47
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Figure 9: Analysis of reward and violation metrics across two task-driven variants of C2MAB-V.
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Figure 10: Impact of varying the maximum number N on performance metrics over 3000 rounds.

Next, we compare the runtime of the two methods. Due to response latency fluctuations when directly
invoking the LLM, which may be influenced by network conditions or query tokens (with observed
delays ranging from 1 ms to 4 s), we employ a synthetic setting to focus solely on the comparative
analysis of algorithmic runtime. The specifics are as follows: For each arm k, we independently
simulate µi and ck from a uniform distribution U [0, 1]. All tasks are recorded over 10,000 rounds.
Regarding parameter settings: in the AWC reward, K = 16, N = 8, and ρ = 2.5; in the SUC reward,
K = 25, N = 8, and ρ = 1.4; and in the AIC reward, K = 25, N = 8, and ρ = 1.6.

As shown in Table 5, the computational efficiency of C2MAB-V-Direct is significantly lower than that
of C2MAB-V. Specifically, C2MAB-V is at least 6 times faster across three different reward scenarios.
Due to our relaxation and discretization design, the time complexity of C2MAB-V is polynomial,
whereas C2MAB-V-Direct likely requires exponential time for the constrained integer problem,
particularly when the search space is large. Nevertheless, for scenarios requiring stricter adherence
to constraints, C2MAB-V-Direct remains a viable option. In summary, in practical applications,
C2MAB-V and C2MAB-V-Direct each serve distinct purposes, offering targeted choices between
computational efficiency and strict constraint compliance.

Enhancing LLM Selection: From Two-Tier to Multi-Tier. We further demonstrate the benefits of
transitioning from a traditional “two-tier” to a more complex “multi-tier” LLM selection strategy
in online settings. In the simpler two-tier system, selections are limited to just two levels of LLM
engagement, which might not adequately address the diverse range of queries typically encountered
in dynamic environments. By adopting a multi-tier strategy, our system can more precisely match the
complexity and specificity of incoming queries with an appropriate level of computational resources
and LLM expertise. The ratio comparison is not displayed in Fig. 12, as the denominator may be zero.
Fig. 12 underscores the necessity and effectiveness of our advanced multi-tier strategy in enhancing
response quality and system adaptability in real-time online interactions.

Necessity of Online Learning for LLM Selection. As discussed in Section 6, our approach
emphasizes online learning methodologies that incorporate continuous feedback. To highlight the
significance of ongoing online adjustments in LLM selection, we present a comparison. Initially,
we pre-learned a fixed combination of multiple LLMs offline, which was then utilized to manage
online queries. As illustrated in Fig. 13, our feedback-driven adjustments significantly enhance
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Figure 11: Comparison of reward and violation between C2MAB-V and C2MAB-V-Direct.
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Figure 12: Comparison with a “two-tier LLM selection strategy”, which only considers one larger
and one smaller LLM, against a multi-tier approach under the AWC task type.

the effectiveness of pre-set LLM selections. By comparing our method with purely offline-learned,
cascaded combinations of multi-LLMs for the AWC task type, we demonstrate the essential role of
continuous online adaptations in optimizing LLM selection for real-time queries.

Exploring Asynchronous Local-Cloud Architecture. Recall the flow of the C2MAB-V algorithm:
Based on our online learning-based multi-LLM selection algorithm C2MAB-V, multiple LLMs are
coordinated and selected through a scheduling cloud. When new user data feedback is received,
the local server adjusts the performance evaluation of the corresponding LLMs and notifies the
scheduling cloud to update the multi-LLM selection strategy.

In the main text, we primarily demonstrate a synchronized local-cloud setting. However, in practice,
the local server may not receive user feedback every round, and local-cloud communication may not
be entirely synchronous. Therefore, we explore an asynchronous local-cloud architecture with a batch
size. Specifically, when the batch size B is reached, the local server sends new relaxed continuous
data to the scheduling cloud after storing B pieces of user feedback. This prompts the cloud to
re-coordinate multiple LLMs and adjust the multi-model selection strategy. Until then, the previous
multi-LLM selection strategy remains in use. We investigate the changes in reward and violation
for batch sizes of 10, 50, 100, and 200. As shown in Fig. 14, the largest batch size of 200 exhibits
relatively lower rewards and higher violations, which is intuitive. However, there is no significant
difference in the reward and violation values of C2MAB-V under different batch sizes. This indicates
that the choice of batch size may not critically impact the overall performance within the tested range
for our proposed C2MAB-V algorithm.

E.4 EXPANDED EVALUATION ACROSS DIVERSE DATASETS

We extended our empirical evaluation to include multiple publicly available datasets, incorporating
the newly released LLaMA 3 model. The parameter K is fixed at 4, with ρ consistently set to 0.4.
Table 6 compares the performance of various algorithms on three datasets—PIQA, OpenBookQA,
and MMLU—using the AWC reward model. Detailed descriptions of these datasets are provided in
Tables 7, 8, and 9, highlighting their focus on physical commonsense reasoning, multi-step reasoning
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Figure 13: Comparison with “offline-learned fixed sets of multi-LLM cascaded combinations” for
“online queries” under the AWC task type.
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Figure 14: Comparison on asynchronous local-cloud architecture.

with commonsense knowledge, and broad domain knowledge assessment, respectively. The evaluation
uses three key metrics: Reward, Violation, and Ratio. Notably, the proposed C2MAB-V algorithm
outperforms others across all datasets, achieving the highest ratio and demonstrating a superior
balance between performance and cost constraints. Table 10 further analyzes algorithm performance
across distinct task types within the MMLU dataset: AWC, AIC, and SUC. Unlike the cross-dataset
comparison, this analysis underscores task-specific variations and adaptability. C2MAB-V not only
maintains the highest ratio but also exhibits consistent performance across diverse tasks, reinforcing
its robustness and versatility.

F OTHER APPLICATION EXAMPLES OF THE FRAMEWORK

In this section, we explore three representative applications that fit within our framework and
summarize the results in Table 11, providing comparisons with existing works.

Dynamic Assortment: In this problem Sankararaman & Slivkins (2018), an agent selects N products
from K available options over T rounds to maximize total sales, subject to a cost constraint. Each
product k has an unknown probability µi of being purchased and an expected resource consumption
ck. The average resource consumption over T rounds must remain below a threshold ρ. For this
application, the goal is to maximize the total reward, making it suitable for the SUC reward model.

Network Routing: In this scenario Kveton et al. (2015b), an agent selects a path in a network with
K routers to maximize the probability of successful packet delivery. Each router k has an unknown
uptime probability µk and incurs a random cost with an expected value ck. The agent observes
whether the packet is delivered and the costs of the chosen routers, aiming to keep the average
cost below ρ over T rounds. For this application, if any router in the selected path fails, the entire
connection fails, making it suitable for the AIC reward model.

Movie Recommendations: In this setting Kveton et al. (2015a), an agent (e.g., Netflix) recommends
a list of up to N movies from K options over T rounds. Each movie k has an unknown probability
µk of being found attractive and incurs a random royalty cost with an expected value ck. Users
sequentially scan the list and click on the first attractive movie, which generates a reward. The agent
aims to maximize the click probability while keeping the average cost below ρ. For this application,
users stop browsing as soon as they find a satisfactory movie, making it suitable for the AWC reward
model.
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Table 6: Comparison on different datasets on AWC reward model.

Dataset PIQA Bisk et al. (2020) OpenBookQAMihaylov et al. (2018) MMLU
Reward Violation Ratio Reward Violation Ratio Reward Violation Ratio

ϵ-Greedy 0.9878 0.040 24.60 0.9977 0.041 24.33 0.9926 0.040 24.71
Thompson Sampling 0.9696 0.2083 5.151 0.9917 0.1961 5.697 0.9681 0.1737 6.104

CUCB 0.9804 0.2554 3.839 0.9949 0.2566 3.877 0.9739 0.2566 3.796

C2MAB-V 0.9960 0.0140 75.00 0.9999 0.0096 104.22 0.9980 0.0122 82.09

Table 7: Description of PIQA Bisk et al. (2020).

Physical commonsense knowledge is a major challenge on the road to true AI-completeness,
including robots that interact with the world and understand natural language. PIQA focuses
on everyday situations with a preference for atypical solutions. The dataset is inspired by
instructables.com, which provides users with instructions on how to build, craft, bake, or
manipulate objects using everyday materials.

Table 8: Description of OpenBookQA Mihaylov et al. (2018).

OpenBookQA aims to promote research in advanced question-answering, probing a deeper
understanding of both the topic (with salient facts summarized as an open book, also provided
with the dataset) and the language it is expressed in. In particular, it contains questions that
require multi-step reasoning, use of additional common and commonsense knowledge, and
rich text comprehension. OpenBookQA is a new kind of question-answering dataset modeled
after open book exams for assessing human understanding of a subject.

Table 9: Description of MMLU Hendrycks et al. (2021).

This is a massive multitask test consisting of multiple-choice questions from various branches
of knowledge. The test spans subjects in the humanities, social sciences, hard sciences,
and other areas that are important for some people to learn. This covers 57 tasks including
elementary mathematics, US history, computer science, law, and more. To attain high accuracy
on this test, models must possess extensive world knowledge and problem solving ability.

Table 10: Different task types on the MMLU dataset Hendrycks et al. (2021).

Task AWC AIC SUC
Reward Violation Ratio Reward Violation Ratio Reward Violation Ratio

ϵ-Greedy 0.9926 0.040 24.71 0.2242 0.047 4.748 1.435 0.0475 30.22
Thompson Sampling 0.9681 0.1737 6.104 0.3322 0.2346 1.416 0.9158 0.0186 60.82

CUCB 0.9739 0.2566 3.796 0.3297 0.1792 10.89 1.546 0.2709 5.811

C2MAB-V 0.9980 0.0122 82.09 0.3189 0.01347 24.13 1.525 0.01260 121.9

Table 11: Summary of other applications examples with reward Models and approximation guarantees.

Application Reward Function Offline Oracle Approximation
Dynamic Assortments SUC 0-1 Knapsack Chan (2018) α = 1− 1/K
Dynamic Assortments SUC Our Method α = 1

Network Routing AIC 0-1 Knapsack Chan (2018) α = 1− 1/K
Network Routing AIC Our Method α = 1

Movie Recommendations AWC Submodular Maximization Takemori et al. (2020) α = 1
4(1+ε) , ε > 0

Movie Recommendations AWC Our Method α = 1− 1/e
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