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ABSTRACT

Accurate weather forecasting is crucial for climate research, disaster mitigation,
and societal planning. Despite recent progress with deep learning, global atmo-
spheric data remain uniquely challenging since weather dynamics evolve across
heterogeneous spatial and temporal scales ranging from planetary circulations to
localized phenomena. Capturing such cross-scale interactions within a unified
framework remains an open problem. To address this gap, we propose STORM, a
synergistic cross-scale spatio-temporal model that disentangles atmospheric vari-
ations into multiple scales to uncover scale-specific dependencies. In addition,
it enables coherent forecasting across multiple resolutions, maintaining consis-
tent temporal evolution. Experiments on benchmark datasets demonstrate that
STORM consistently delivers superior performance across both global and regional
settings, as well as for short- and long-term forecasts. The code is available at
https://anonymous.4open.science/r/STORM_2025.

1 INTRODUCTION

Accurate weather forecasting plays a pivotal role in climate research, disaster mitigation, and support-
ing decision-making in agriculture, energy, and public safety (Kuligowski & Barros, 1998; Baboo &
Shereef, 2010; Lam et al., 2022; Gao et al., 2025). Traditional Numerical Weather Prediction (NWP)
systems (Bauer et al., 2015) are grounded in the numerical solution of atmospheric dynamics (Buzzi-
cotti et al., 2023), ensuring physical consistency across scales (Achatz et al., 2024). However, with the
rapid growth of observational data and the demand for high-resolution, long-horizon forecasts, NWP
approaches are increasingly constrained by high computational costs and difficulties in leveraging
data-driven knowledge at scale (Rasp et al., 2023). Deep learning (DL) has recently emerged as a
promising paradigm for spatio-temporal forecasting (Yu et al., 2018; Wu et al., 2019; Guo et al.,
2022; Wang et al., 2024a). Early efforts, such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang
et al., 2017), demonstrated the potential of neural architectures for regional precipitation prediction.
More recent large-scale weather models, such as Pangu-Weather (Bi et al., 2023), GraphCast (Lam
et al., 2022), and FourCastNet (Pathak et al., 2022), have achieved impressive advances in global
forecasting and even in predicting extreme events (Chen et al., 2023b). Despite these successes,
current DL-based approaches still face several critical limitations: ❶ Multi-scale heterogeneity.
Global atmospheric circulation evolves at coarse scales, while regional variability emerges at finer
scales. Balancing these dynamics within a single model remains challenging (Zhou et al., 2023).

Figure 1: Comparison of main stream weather forecasting model and our STORM.
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❷ Diverse temporal evolution. Distinct scales exhibit different temporal dynamics, and existing
models struggle to learn coherent cross-scale evolution, often leading to degraded performance in
long-term forecasts (Wang et al., 2024b). ❸ Weak cross-scale interaction. Most methods process
different spatial or temporal scales independently, overlooking their complementary roles and the
synergistic effects across scales (Huang et al., 2024).

To address these challenges, we propose STORM, a synergistic cross-scale spatio-temporal method
for accurate weather forecasting. As shown in Figure 1, STORM explicitly disentangles atmospheric
variations across fine-to-coarse resolutions and integrates them via a cross-scale collaboration mecha-
nism with temporal evolution learning. This design enables the model to capture global circulation
patterns while preserving local high-frequency details, thereby enhancing both short- and long-term
predictive skill. Through extensive experiments on benchmark meteorological datasets, we demon-
strate that STORM achieves state-of-the-art forecasting performance. Our main contributions are
summarized as follows:

• To address the challenge scale coupling in atmospheric data, we propose the first spatio-
temporal modeling framework for weather forecasting. In particular, (i) it emphasizes
cross-scale spatial learning to capture both unique local patterns and shared dependencies
across different spatial resolutions, and (ii) it focuses on multi-step temporal evolution,
rather than merely learning a single-step mapping from past to future states.

• We introduce STORM, a unified spatio-temporal framework for weather forecasting. It
comprises (i) a Hierarchical Earth Embedder to build multi-resolution representations,
(ii) a Scale-Bridging Spatio-Temporal Encoder to jointly model temporal evolution and
spatial interactions across scales, and (iii) a Level-Aligned Forecasting Decoder to generate
coherent multi-scale future predictions, enabling accurate decomposition, integration, and
reconstruction of atmospheric dynamics.

• Extensive experiments on ERA5 datasets at multiple spatial resolutions (5.625◦, 1◦, and
0.25◦) show that STORM consistently outperforms existing baselines across both global and
regional domains. The framework demonstrates superior accuracy for short-term (hours)
as well as long-term (several days) forecasts, effectively capturing fine-scale local patterns,
medium-scale regional structures, and large-scale planetary circulations.

2 RELATED WORK

Global Weather Forecasting Global weather forecasting has seen rapid progress with the adoption
of deep learning models Weyn et al. (2021); Nguyen et al. (2023). FourCastNet (Pathak et al.,
2022), built upon Fourier neural operators, achieves forecasts comparable to numerical methods
like IFS while being orders of magnitude faster . Pangu-Weather (Bi et al., 2023), leveraging Swin
Transformers with earth-specific location embeddings, surpasses NWP baselines and demonstrates
strong scalability. GraphCast (Lam et al., 2022) advances further by introducing message-passing
networks to efficiently capture global dependencies and improve accuracy. FuXi (Chen et al., 2023b)
extends the forecasting horizon, delivering 15-day predictions at skill levels comparable to ECMWF
operational systems. FengWu (Chen et al., 2023a) integrates multi information flow, enabling
improved representation of different atmospheric dynamics. Despite these advances, most existing
models are primarily designed to learn a mapping from the current state to the next-step state, which
limits their ability to capture long-range temporal evolution and synergistic cross-scale interactions.

Spatio-Temporal Modeling Recent deep learning approaches for spatio-temporal modeling mainly
focus on two data forms: graph-structured and grid-structured data (Liang et al., 2025). While graph-
based methods have also been explored for irregular domains (Zhang et al., 2022; Wang et al., 2023;
2024a), grid-based modeling remains particularly suitable for global-scale atmospheric data due to its
structured nature. Early approaches such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang et al.,
2017) explicitly model temporal dependencies through recurrent connections, achieving promising
results on precipitation nowcasting. To improve efficiency, SimVP (Gao et al., 2022a) replaces
recurrent structures with pure convolutional operators, demonstrating competitive performance on
benchmark sequence modeling tasks . More recently, Transformer-based architectures have been
introduced, with models such as Earthformer (Gao et al., 2022b) leveraging attention mechanisms on
gridded climate data to enhance long-range spatio-temporal dependencies. However, these models
are primarily designed as general-purpose spatio-temporal learners and lack specialized adaptations
to the unique multi-scale dynamics of weather and climate systems.
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3 PROBLEM DEFINITION

In this study, we formulate weather forecasting as a multi-step spatiotemporal forecasting problem. At
each time step t, the meteorological state consists of surface variables St and atmospheric variables At

across 13 pressure levels. We concatenate them along the channel dimension to form the combined
input: Xt = [St,At] ∈ RH×W×C , where H × W is the number of spatial grid locations, and
C = Cs + Ca is the total number of variables, with Cs and Ca denoting the numbers of surface
and atmospheric variables, respectively. Our formulation is based on a history of T steps to directly
forecast the next L steps. Specifically, given historical inputs Xt−T+1:t, the model predicts the future
X̂t+1:t+L = Model(Xt−T+1:t; Θ), where Θ denotes the model parameters. To support ultra-long
forecasting horizons (far beyond L), we adopt a recursive rollout strategy. After generating the first
L predictions, the most recent T predicted states are fed back as inputs to produce the next block
of L forecasts, and this process is repeated. This block-wise multi-step forecasting significantly
alleviates the error accumulation typical of purely autoregressive one-step methods, enabling stable
and accurate long-horizon predictions.

4 METHODS

As illustrated in Fig. 2, we introduce STORM, a unified framework for multi-scale spatio-temporal
forecasting. The design of STORM is motivated by the intrinsic hierarchical nature of atmospheric
dynamics, where large-scale circulations and small-scale local processes interact across different
temporal horizons. To capture such complex dependencies, STORM consists of three key com-
ponents: (i) Hierarchical Earth Embedder that progressively downsamples raw observations to
construct multi-resolution representations, (ii) Scale-bridging Spatio-temporal Encoder that jointly
models temporal evolution and spatial interactions while enabling information propagation from
fine- to coarse-grained levels, and (iii) Level-Aligned Forecasting Decoder that projects multi-scale
representations into future prediction through depth-specific transposed convolutions. Together, these
components allow STORM to effectively decompose, bridge, and reconstruct atmospheric dynamics
across scales for accurate weather forecasting.

Figure 2: Illustration of the multi-scale collaborative meteorological forecasting model.

4.1 HIERARCHICAL EARTH EMBEDDER

Earth observation data inherently exhibit multi-scale characteristics: coarse scales capture large-scale
circulation patterns, while fine scales reflect local variations and detailed structures. To effectively
leverage information across these scales, we propose the Hierarchical Earth Embedder for multi-scale
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embedding of global meteorological features. Given input data X = [S,A] ∈ RT×H×W×C , where
T denotes the historical length, C represents the total number of surface and atmospheric variables,
and H × W defines a fine-grained global grid, the data contains rich local details but makes it
challenging to directly capture coarse-scale circulation and large-scale dependencies. To address this,
we adopt a progressive, layer-wise downsampling strategy for multi-scale modeling and embedding.

First, a 3 × 3 spatial convolution is applied to the original fine-grained input to obtain the initial
embedding H0 ∈ RT×H×W×D, where D is the hidden embedding dimension. This step allows the
model to learn localized spatial representations while embedding the raw data. Subsequently, a series
of strided convolutional layers with stride 2 are applied to progressively downsample the embeddings
and capture increasingly coarser spatial structures:

Hm = LeakyReLU(GroupNorm(Conv2d(Hm−1; kernel = 3, stride = 2)))), (1)

where LeakyReLU denotes the activation function and GroupNorm normalizes feature channels to
improve training stability and convergence.

The resulting multi-scale embeddings H = {H0,H1,H2, ...,HM}, where H0 ∈ RT× H
20

×W
20

×D

retains fine-grained local representations and HM ∈ RT× H

2M
× W

2M
×D encodes coarse-scale global

structures, capture multi-scale spatio-temporal features. These embeddings are then fed into the
Scale-bridging Spatio-Temporal Encoder.

4.2 SCALE-BRIDGING SPATIO-TEMPORAL ENCODER

After obtaining the multi-scale Earth representations, we design a scale-bridging spatio-temporal
encoder to jointly capture spatial dependencies, temporal dynamics, and inter-scale interactions.
Unlike traditional meteorological models that often emphasize either temporal or spatial aspects in
isolation, our encoder integrates both perspectives while enabling information flow across scales,
which is critical for representing hierarchical atmospheric processes.

Spatial encoding. Given multi-scale features H, each level is first processed by an independent
spatial encoder inspired by the Vision Transformer (Dosovitskiy et al.) structure. Specifically, for
the m-th scale and the n-th encoder layer, we perform 2D patch embedding, followed by multi-head
self-attention and feed-forward transformations:

Hs′(n)
m = LayerNorm(Patch2D(H(n)

m )) +MHA(LayerNorm(Patch2D(H(n)
m ))), (2)

Hs(n)
m = DePatch2D

(
LayerNorm(Hs′(n)

m ) + FFN(LayerNorm(Hs′(n)
m ))

)
, (3)

where Patch2D partitions the grid of size H
2m × W

2m into (P1, P2) patches, producing H×W
P1×P2

tokens,
and DePatch2D restores the tokenized representation back to its grid structure. This operation yields
the spatial encoding H

s(n)
m ∈ RT× H

2m × W
2m ×D, which captures scale-specific meteorological spatial

dependencies.

Cross-scale message passing. To enhance coherence between adjacent scales, we introduce a
cross-scale messaging mechanism. Information from the finer resolution is downsampled and injected
into the coarser scale, facilitating hierarchical knowledge transfer:

Hc(n)
m = CrossScaleMessaging(H

s(n)
m−1) +Hs(n)

m . (4)

Here, CrossScaleMessaging is implemented as a stride-2 convolution, which aligns the resolution of
H

s(n)
m−1 with H

s(n)
m . This design enables the encoder to integrate localized fine-grained patterns into

broader global representations, crucial for multi-scale weather forecasting.

Temporal encoding. Finally, we model the temporal evolution of the cross-scale features Hc(n)
m .

While self-attention could be applied across temporal tokens, the extremely high dimensionality of
meteorological grids makes it computationally prohibitive. Motivated by recent findings in long-term
time series forecasting, we adopt a lightweight linear temporal encoder that achieves stable temporal
modeling with minimal overhead:

Ht(n)
m = W2 ×GELU(W1 ×Hs(n)

m +B1) +B2 (5)

4
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This lightweight network is used to extract temporal dependencies. Here, W1 ∈ RT×2T and
W2 ∈ RT×2T , enabling effective modeling of historical time steps across multiple scales with an
extremely small number of parameters (fewer than 100). It efficiently captures multi-scale temporal
relationships in past observations.

4.3 LEVEL-ALIGNED FORECASTING DECODER

The outputs from the N -layer scale-bridging spatio-temporal encoder are subsequently fed into a
level-aligned forecasting decoder to generate multi-scale forecasts of future atmospheric states. The
decoder is designed to progressively reconstruct high-resolution spatio-temporal fields from the
encoded representations, while ensuring that temporal forecasting and spatial upsampling remain
coherent across scales. For each resolution level m, we apply an independent temporal linear layer that
maps the T -step historical features into L-step future predictions. This design explicitly decouples
temporal forecasting across scales, enabling each level to capture temporal dynamics consistent with
its own resolution:

Zm = Linearm(Ht(N)
m ) ∈ RL× H

2m × W
2m ×D. (6)

To progressively upsample the spatial resolution, we adopt a depth-adaptive transposed convolution
block. Each block doubles the resolution along both spatial dimensions, and the depth of upsampling
is matched to the level index m. Thus, the m-th scale undergoes m successive upsampling layers,
ensuring that coarse-scale features are refined consistently into finer spatial grids:

Um = DeConvm(Zm) ∈ RL×H×W×D. (7)

This hierarchical upsampling ensures that global context encoded at coarse scales is gradually
transformed into high-resolution local forecasts.

After spatial refinement, all scales share a common variable-wise linear projection layer, which maps
the hidden dimension D into the full set of meteorological variables, including both surface and
atmospheric fields. This shared mapping enforces consistency across scales and guarantees that all
outputs lie in the same physical variable space:

Vm = Linearvar(Um) ∈ RL×H×W×C . (8)

Finally, the forecasts from all scales are integrated to form the unified prediction. Each level
provides complementary information, with fine-scale forecasts capturing localized details and coarse-
scale forecasts contributing global stability. In EarthMix, this integration is performed by directly
summing the scale-specific representations:

X̂ = EarthMix
(
{Vm}Mm=1

)
∈ RL×H×W×C . (9)

This simple aggregation efficiently combines multi-scale information to produce the final high-
resolution, multi-variable prediction.

5 EXPERIMENTS

Dataset. We conduct experiments on the fifth generation of ECMWF Reanalysis data (ERA5) (Rasp
et al., 2023). The temporal range spans from 1993 to 2021, where 1993–2017 is used for training,
2018–2019 for validation, and 2020–2021 for testing. We consider both atmospheric and surface
variables. The atmospheric variables include five pressure-level quantities, each with 13 pressure
levels: geopotential (Z), specific humidity (Q), temperature (T), and the U and V components of
wind speed. The surface variables include 10-meter wind components (U10M, V10M), 2-meter
temperature (T2M), total precipitation, and mean sea-level pressure (MSLP). To comprehensively
evaluate our method, we construct three datasets at different spatial scales: ❶ Global-level: We
use the preprocessed ERA5 dataset with a 5.625◦ spatial resolution and 6-hour temporal frequency.
❷ Continental-level: We extract ERA5 data over South America, covering the region from 56◦S to
14◦N and 81◦W to 34◦W, with a 1◦ spatial resolution. ❸ Regional-level: We extract a subset with
0.25◦ resolution over East Asia (20◦N–28◦N, 110◦E–126◦E). More data and pre-processsing details
are available in Appendix C

5
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Metrics. To evaluate forecasting performance, we report two widely adopted metrics in numerical
weather prediction: latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation
Coefficient (ACC). All predictions are first de-normalized before metric computation. Given L
forecasting steps, the prediction x̂ℓhw and ground truth yℓhw at lead time ℓ and spatial grid (h,w),
the metrics are defined as

RMSE =
1

L

L∑
ℓ=1

√√√√ 1

HW

H∑
h=1

W∑
w=1

α(h) (yℓhw − x̂ℓhw)
2,ACC =

∑
ℓ,h,w α(h) ỹℓhw ˜̂xℓhw√∑

ℓ,h,w α(h) ỹ2
ℓhw

√∑
ℓ,h,w α(h) ˜̂x2

ℓhw

,

(10)

where the latitude-dependent weight is α(h) = cos(h)
/

1
H

∑H
h′=1 cos(h

′), and ỹ = y−C, ˜̂x = x̂−C

are anomalies relative to the empirical climatology C = 1
LHW

∑
ℓ,h,w yℓhw. More Details is in

Appendix D.

Baselines. We benchmark our approach against a diverse set of representative baselines span-
ning operational weather forecasting models, spatio-temporal sequence learners, and image-based
architectures. For single-step meteorological forecasting, we include Pangu-Weather (Bi et al.,
2023), FuXi (Chen et al., 2023b), FourCastNet (FCN) (Pathak et al., 2022), and Triton (Wu et al.,
2025), which represent state-of-the-art Transformer-based designs for data-driven numerical weather
prediction. For multi-step spatio-temporal modeling, we evaluate against SimVP (Gao et al., 2022a),
a leading video prediction framework adapted for geophysical data. Additionally, we incorporate a
canonical vision backbone, U-Net (Ronneberger et al., 2015), to assess the performance of convolu-
tional architectures in this setting. All baselines are re-trained on our datasets with identical variables
and splits to ensure fairness of comparison. More Details can be found in Appendix E.

5.1 GLOBAL WEATHER FORECASTING

Table 1: Quantitative comparison of short-term (up to 24 hours) global weather forecasting perfor-
mance. Metrics are reported as weighted RMSE and ACC, averaged over ∆t = {6, 12, 18, 24} hours.

Metric RMSE↓ ACC↑
Variable STORM Triton Pangu FCN Fuxi SimVP UNet STORM Triton Pangu FCN Fuxi SimVP UNet

T2M 0.675 0.873 1.106 1.579 1.356 1.343 2.445 0.999 0.998 0.997 0.994 0.995 0.996 0.986
U10 0.669 0.819 1.377 1.529 1.314 1.448 1.971 0.991 0.987 0.959 0.953 0.965 0.959 0.952
V10 0.713 0.868 1.483 1.658 1.381 1.556 1.867 0.984 0.976 0.924 0.910 0.940 0.923 0.915
Prec 5.4E-04 6.4E-04 8.4E-04 9.8E-04 8.7E-04 9.6E-04 1.0E-03 0.923 0.891 0.802 0.728 0.791 0.744 0.765

MSLP 71.8 93.7 215.8 217.1 170.1 185.8 257.5 0.998 0.996 0.978 0.979 0.988 0.986 0.976
U500 1.903 2.500 3.410 4.607 3.962 4.066 4.677 0.993 0.988 0.975 0.958 0.969 0.968 0.963
V500 2.055 2.597 3.709 5.021 4.160 4.380 4.999 0.983 0.974 0.942 0.899 0.934 0.926 0.914
T500 0.524 0.696 0.886 1.251 1.111 1.242 1.237 0.998 0.997 0.995 0.991 0.993 0.991 0.991
Z500 79.8 109.4 225.7 268.5 215.3 223.5 308.3 1.000 1.000 0.998 0.998 0.999 0.999 0.997
Q500 3.9E-05 5.0E-05 5.6E-05 7.3E-05 6.9E-05 7.7E-05 7.3E-05 0.976 0.962 0.949 0.918 0.926 0.909 0.924

Short-term Forecasting. We first evaluate the proposed multi-scale spatiotemporal forecasting
model, STORM, on short-term global weather prediction. Specifically, we conduct 24-hour forecasts
and compare our method against a range of state-of-the-art approaches, including Pangu, Fuxi, Four-
CastNet, Triton, SimVP, and U-Net. The evaluation covers both surface variables (2m temperature
(T2M), 10m winds (U10, V10), precipitation (PREC), and mean sea level pressure (MSLP)) as
well as mid-tropospheric fields (500 hPa U/V winds, temperature (T), geopotential height (Z), and
specific humidity (Q)). For each method, we report weighted RMSE and ACC averaged over the
prediction horizons ∆t = {6, 12, 18, 24} hours. The results, summarized in Table 1, show that
STORM consistently achieves the best performance across all variables. In terms of RMSE, our
method surpasses even Triton, a model particularly tailored for short-term forecasting, by a significant
margin, while also delivering superior ACC scores. These improvements highlight the advantage of
incorporating multi-scale spatiotemporal representations, which enable the model to capture both
local details and global circulation patterns effectively. Full results are available at Appendix J.

To further illustrate the predictive capability of our model, Figure 3 visualizes 24-hour forecasts
across multiple variables. Compared with other baselines, the predictions of STORM are visually

6
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Figure 3: Visualization of 24-hour forecasts for multiple atmospheric variables.

closer to the ground-truth reanalysis, preserving fine-grained regional structures while maintaining
coherent large-scale dynamics. These results confirm that our approach not only improves numerical
accuracy but also produces more realistic spatial patterns in short-term global weather forecasting.
The visualizations for all variables are provided in Appendix I.

Table 2: Quantitative comparison of long-term (7–10 days) global weather forecasting performance.
Metrics are reported as weighted RMSE and ACC, averaged over ∆t = {168, 192, 216, 240} hours.

Metric RMSE↓ ACC↑
Variable STORM Triton Pangu FCN Fuxi SimVP UNet STORM Triton Pangu FCN Fuxi SimVP UNet

T2M 2.596 3.386 3.633 4.181 3.500 3.168 4.477 0.984 0.965 0.955 0.971 0.969 0.976 0.937
U10 3.857 4.271 5.127 5.363 4.696 3.901 5.828 0.716 0.650 0.615 0.604 0.574 0.684 0.559
V10 4.106 4.504 5.095 5.569 4.795 4.180 6.045 0.464 0.370 0.325 0.297 0.282 0.383 0.262
Prec 1.4E-03 2.1E-03 1.8E-03 1.6E-03 1.6E-03 1.5E-03 2.3E-03 0.432 0.305 0.288 0.223 0.243 0.382 0.204

MSLP 735.4 815.6 1125.4 1041.4 950.0 784.7 1149.3 0.782 0.725 0.741 0.718 0.641 0.741 0.679
U925 6.582 8.918 10.794 9.159 10.152 8.117 12.236 0.884 0.787 0.803 0.793 0.747 0.827 0.747
V925 6.588 7.910 9.707 9.618 8.794 7.148 10.858 0.519 0.369 0.299 0.284 0.212 0.336 0.205
T925 2.797 3.718 4.308 3.879 4.513 3.565 5.331 0.966 0.937 0.931 0.938 0.912 0.945 0.902
Q925 3.3E-07 5.4E-07 4.5E-07 4.7E-07 5.5E-07 4.0E-07 6.3E-07 0.749 0.556 0.556 0.572 0.535 0.630 0.519
Z925 813.4 1049.4 1419.2 968.8 1304.1 1097.4 1537.9 0.981 0.959 0.955 0.963 0.958 0.971 0.936

Long-term Forecasting. Beyond short horizons, we further evaluate STORM on extended-range
forecasting, covering 7-day, 8-day, 9-day, and 10-day predictions. Table 2 reports the average
weighted RMSE and ACC across these horizons. The results show that STORM consistently
outperforms all competing methods, with clear margins over strong baselines such as Pangu and
FourCastNet. Even at day 10, where the forecasting task becomes extremely challenging due to error
accumulation and chaotic dynamics, our model maintains significantly lower RMSE and higher ACC,
demonstrating its robustness and superior long-term predictive capability. Full results are available at
Appendix K. To provide further insight, Figure 4 visualizes the evolution of RMSE and ACC from
day 1 to day 10 for several key variables, includingU925, V925, Z925, Q925, T925, and T2M. We
observe that different baseline methods tend to exhibit strengths over specific forecast horizons—for
example, some achieve relatively competitive results at shorter lead times but deteriorate rapidly
afterwards. In contrast, STORM consistently maintains the best accuracy across both short- and
long-term horizons. This highlights the effectiveness of our multi-scale spatiotemporal design, which
enables stable and reliable forecasts over a wide range of temporal scales.

5.2 REGIONAL HIGH RESOLUTION FORECASTING

To further demonstrate the scalability and robustness of our approach, we conduct forecasting
experiments on higher-resolution regional subsets. Specifically, we consider two representative

7
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Figure 4: RMSE and ACC of U925, V925, Z925, Q925, T925, and T2M from day 1 to day 10.

cases: Continental-level: South America, spanning from 56◦S to 14◦N and 81◦W to 34◦W, at 1◦
resolution; Regional-level: East Asia, spanning 20◦N–28◦N and 110◦E–126◦E, at 0.25◦ resolution.

Figure 5: Visualization of 10-day forecasts over
South America (1◦) and East Asia (0.25◦).

Table 3 summarizes the RMSE and ACC across
all variables for horizons of 6 hours, 1 day, 4
days, 7 days, and 10 days. We observe that
STORM consistently achieves the lowest RMSE
and the highest ACC at both continental and re-
gional scales, highlighting its ability to maintain
strong predictive skill under different spatial res-
olutions. In particular, the advantage of STORM
becomes more pronounced at longer horizons,
demonstrating its superiority in long-range re-
gional forecasting. Figure 5 provides a qualita-
tive visualization of the 10-day forecasts for se-
lected variables in both South America and East
Asia. By zooming into local details, we see that
STORM captures fine-grained structures more
faithfully and is visually closer to the ground
truth compared to baselines. These results confirm the effectiveness of our multi-scale design in
enhancing both large-scale consistency and small-scale detail preservation.

Table 3: Regional high-resolution forecasting results. We report averaged results for 6 hours, 1 day, 4
days, 7 days, and 10 days over South America (1◦ resolution) and East Asia (0.25◦ resolution).

6Hour 1Day 4Day 7Day 10DayData Methods RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑ RMSE↓ ACC↑
STORM 0.874 0.945 1.560 0.847 2.866 0.601 3.322 0.519 3.510 0.499
Triton 0.927 0.941 1.808 0.817 3.689 0.480 4.687 0.347 5.433 0.251
FCN 1.411 0.933 2.466 0.816 4.186 0.498 5.176 0.425 6.018 0.403

Pangu 0.989 0.876 1.794 0.702 3.557 0.440 4.235 0.375 4.613 0.368
Fuxi 0.913 0.941 1.677 0.830 3.253 0.547 3.632 0.500 3.797 0.466

SimVP 0.947 0.939 1.619 0.843 3.110 0.554 3.603 0.476 3.891 0.426

Cont-SA (1◦)

UNet 1.528 0.873 2.696 0.661 6.994 0.291 11.50 0.248 15.62 0.252
STORM 14.53 0.980 41.71 0.920 154.6 0.627 187.8 0.548 200.9 0.524
Triton 14.55 0.976 51.65 0.919 183.7 0.579 218.7 0.499 234.3 0.482
FCN 33.00 0.954 98.15 0.832 256.4 0.559 297.4 0.495 315.6 0.471

Pangu 17.35 0.963 47.31 0.895 157.5 0.625 206.2 0.543 227.5 0.511
Fuxi 17.69 0.969 54.67 0.903 178.1 0.592 211.2 0.522 227.7 0.493

SimVP 32.17 0.935 53.44 0.887 158.5 0.615 189.0 0.546 202.5 0.523

Reg-EA (0.25◦)

UNet 22.77 0.956 63.05 0.875 195.1 0.566 241.6 0.480 261.8 0.450
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5.3 ABLATION STUDY

To better understand the contribution of each component in STORM, we conduct an ab-
lation study by removing or modifying key modules. Specifically, we consider the fol-
lowing variants, ❶ w/o T: which removes the temporal evolution encoder from the en-
coder; ❷ w/o M: which changes the Hierarchical Earth Embedder, the Scale-Bridging Spatio-
Temporal Encoder, and the Level-Aligned Forecasting Decoder to replace multi-scale model-
ing with single-scale modeling; ❸ w/o S: which removes the spatial encoder from the encoder.

Figure 6: Ablation study results of STORM.

Figure 6 reports the RMSE for ten
key variables: T2M, U10, V10, PREC,
MSLP, U500, V500, T500, Q500,
and Z500. The results demonstrate
several important findings: (1) Every
module contributes significantly to the
overall forecasting performance; (2)
The spatial encoder (S) plays a partic-
ularly critical role in improving pre-
diction accuracy; (3) The combination
of multi-scale mixing and spatial encoding achieves the largest performance gains, indicating that
capturing both spatial dependencies and multi-scale interactions is crucial for accurate global weather
forecasting. These observations confirm the effectiveness of our design in modeling complex spa-
tiotemporal dependencies inherent in meteorological data.

5.4 STORM ANALYSIS

We perform a multi-scale analysis of STORM to understand the contribution of different spatial
scales to forecasting accuracy. Figure 7(a) visualizes predictions at different scales. The finest scale
(scale0) captures rich local details, while the coarsest scale (scale2) better represents global
circulation patterns. Individually, each scale exhibits distinct prediction errors, but combining multi-
scale predictions results in the most accurate forecasts, demonstrating the effectiveness of multi-scale
integration. Figure 7(b) further analyzes the effect of the number of scales as a hyperparameter. As
the number of scales increases, the predictive performance improves, but the gains diminish beyond
three scales. Based on this analysis, we set the number of scales in STORM to three, achieving a
balance between local detail preservation and global structure representation.

Figure 7: Visualization of multi-scale predictions and the analysis of scale number.

6 CONCLUSION

Despite rapid advances in deep learning for weather prediction, modeling atmospheric dynamics
remains challenging due to their heterogeneous spatio-temporal scales. We introduced STORM, a
unified framework with a Hierarchical Earth Embedder, a Scale-Bridging Spatio-Temporal Encoder,
and a Level-Aligned Forecasting Decoder to explicitly capture cross-scale dependencies. Extensive
experiments on ERA datasets with resolutions of 5.625◦, 1◦, and 0.25◦ show that STORM consistently
achieves state-of-the-art performance across global and regional settings, as well as short- and long-
term horizons. Our results highlight the necessity of synergistic multi-scale modeling for reliable
weather forecasting. Looking ahead, we envision STORM as a step toward a new generation of
spatio-temporal models that integrate fine-grained detail with global coherence, offering a foundation
for more accurate, efficient, and robust climate and Earth system prediction.

9
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A LLM USAGE

Following the conference guidelines regarding large language models (LLMs), we disclose that
LLMs were utilized solely to improve sentence clarity and grammatical correctness. All aspects of
conceptual development, experimental methodology, data analysis, and core manuscript content were
independently produced by the authors without LLM assistance

B THEORETICAL ANALYSIS: WHY MULTI-SCALE MODELING HELPS

In this section we present theoretical results that explain why a synergistic cross-scale spatio-temporal
architecture can outperform a single-scale counterpart in (i) statistical generalization (smaller expected
prediction error) and (ii) optimization speed (faster convergence). We adopt a bias–variance decom-
position perspective for generalization, and a condition-number / PL-type argument for optimization.
Proofs are sketched; full technical details follow the argument outlines below.

B.1 SETUP AND ASSUMPTIONS

Let X = RT×C×H×W denote one time-slice grid and consider a target spatio-temporal mapping
f⋆ : RT×C×H×W → RL×C×H×W that maps T historical frames to L future frames (all variables
vectorized as needed). Denote by D the data distribution and by (Xi, Yi)

n
i=1 ∼ D the training set. We

consider two model classes:❶ Single-scale model Fsingle of effective parameter-dimension d (e.g., a
monolithic spatio-temporal network operating at full resolution). ❷ Multi-scale model Fms which
decomposes the prediction into M scale-specific modules with parameter-dimensions d1, . . . , dM (so∑M

m=1 dm = d or ≤ d depending on parameter sharing). We make standard regularity assumptions:
Assumption B.1 (Decomposability). The target admits a scale decomposition

f⋆ =

M∑
m=1

f⋆
m, f⋆

m ∈ Gm,

where each f⋆
m captures variations at spatial scale m, and Gm is the function space for scale m

signals (e.g., fine, medium, or coarse patterns).
Assumption B.2 (Model capacity allocation). Each scale-model class Fm has Rademacher

complexity Rn(Fm) ≤ ρm

√
dm

n for constants ρm > 0, while the single-scale class satisfies

Rn(Fsingle) ≤ ρ
√

d
n .

Assumption B.3 (PL condition for optimization). The empirical loss L̂(θ) is L-smooth and satisfies
the Polyak–Łojasiewicz (PL) inequality in neighborhoods of interest: there exists µ > 0 s.t.

1

2
∥∇L̂(θ)∥2 ≥ µ

(
L̂(θ)− L̂⋆

)
.

B.2 GENERALIZATION BOUND IMPORVEMENT

We first bound the excess risk (population loss minus Bayes risk) via a bias–variance decomposition
and Rademacher complexity.
Theorem B.1 (Generalization bound imporvement). Assume squared loss and hypotheses above.
Let f̂single and f̂ms =

∑M
m=1 f̂m be ERM solutions in Fsingle and Fms respectively. Then with

probability at least 1− δ,

E(f̂single) ≤ inf
f∈Fsingle

∥f − f⋆∥2︸ ︷︷ ︸
approx.

+B ρ

√
d

n
+O

(√
log(1/δ)

n

)
,

and

E(f̂ms) ≤
M∑

m=1

inf
g∈Fm

∥g − f⋆
m∥2︸ ︷︷ ︸

multi-scale approx.

+B

M∑
m=1

ρm

√
dm
n

+O

(√
log(1/δ)

n

)
,
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where B > 0 is a universal constant and E denotes population mean squared error.

Proof sketch. Standard decomposition: population risk = approximation error + estimation error.
Estimation error is controlled by Rademacher complexity; using Assumption 2 we get the stated
ρ
√
d/n (single) and sum of ρm

√
dm/n (multi-scale). The remainder term follows from concentration

(Talagrand / McDiarmid), yielding the
√

log(1/δ)/n term.

Interpretation. If (i) the decomposition is faithful so that each f⋆
m is well-approximated by

Fm (small multi-scale approximation error), and (ii) the per-scale capacities dm concentrate (e.g.
dm ≪ d), then

M∑
m=1

√
dm ≪

√
d,

hence the multi-scale estimation term
∑

m ρm
√
dm/n can be substantially smaller than ρ

√
d/n,

yielding better generalization. Concretely, if dm ≈ d/M and ρm ≈ ρ, then

M∑
m=1

√
dm = M

√
d

M
=

√
Md <

√
d iff M < 1,

so naive equal partition does not help; however, real atmospheric signals are compressible: coarse
scales require tiny dm and only few fine-scale components need larger dm, making

∑
m

√
dm ≪

√
d

in practice. Thus the bound formalizes a bias-variance tradeoff where multi-scale modeling reduces
variance without materially increasing approximation bias.

B.3 IMPROVED OPTIMIZATION SPEED REGARDING CONVERGENCY

We now sketch how hierarchical (coarse-to-fine) architectures improve optimization by reducing
effective condition numbers and enabling faster gradient-based convergence.

Theorem B.2 (Improved optimization speed regarding convergency). Under Assumption 3 (PL
inequality and L-smoothness) consider gradient descent with step size η ≤ 1/L. Let κsingle = L/µ
denote the condition number for the single-scale parameterization, and let κms be the effective
condition number for a multi-scale architecture that first fits coarse parameters and then refines
fine parameters (blockwise parameterization). If the cross-scale coupling operator has spectral gap
γ ∈ (0, 1), then

κms ≤ (1− γ)κsingle,

and gradient descent on Fms converges linearly as

L̂(θt)− L̂⋆ ≤
(
1− ηµ(1− γ)

)t(
L̂(θ0)− L̂⋆

)
.

Proof sketch. Block-partition the parameter vector θ = [θcoarse, θfine]. The Hessian H of the empiri-
cal loss can be written in block form; coarse-to-fine structure makes the off-diagonal blocks small
relative to diagonal blocks due to localization (this is the spectral gap γ). Using matrix perturbation
bounds (Weyl-type inequalities) one shows the largest-to-smallest eigenvalue ratio of H is reduced by
factor (1− γ). Under PL, GD attains linear rate with factor 1− ηµeff , where µeff = µ(1− γ).

Remarks. The spectral-gap condition formalizes the intuition that coarse-scale variables capture
low-frequency, high-energy components and are weakly coupled to many fine-scale modes; explicit
coarse-to-fine parametrization reduces ill-conditioning caused by high-frequency components and
thus accelerates optimization.

B.4 PUTTING PIECES TOGETHER: OVERALL ERROR AND SAMPLE COMPLEXITY

Combining generalization and optimization insights yields a unified statement.
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Corollary B.3 (Sample-complexity advantage). Suppose the decomposition is faithful and the
optimizer attains an ϵ-accurate empirical minimizer in T (ϵ) iterations (GD linear convergence as
above). Then to achieve population error E ≤ ε, the multi-scale model requires

nms = Õ
( 1

ε2

( M∑
m=1

ρm
√
dm

)2)
samples, while the single-scale model requires

nsingle = Õ
( 1

ε2
ρ2d
)
.

If
∑

m

√
dm ≪

√
d, then nms ≪ nsingle.

C MORE DATA DETAILS

To provide a more comprehensive description of the experimental setup, we summarize the datasets
used in this work in Table 4. As introduced in the main text, all datasets are derived from the ERA5
reanalysis, covering the period from 1993 to 2021. Specifically, we split the data into 1993–2017
for training, 2018–2019 for validation, and 2020–2021 for testing. For atmospheric variables, we
include five pressure-level quantities, geopotential (Z), specific humidity (Q), temperature (T), and
the U and V components of wind, each defined on 13 standard pressure levels. For surface variables,
we consider 10-meter wind components (U10M, V10M), 2-meter temperature (T2M), mean sea-level
pressure (MSLP), and accumulated precipitation. Note that in Global- and Continental-level settings,
precipitation is additionally included compared to the original 69 ERA5 variables, while in the
Regional-level dataset only near-surface variables (T2M, U10M, V10M) are used. Regarding spatial
coverage, we construct three datasets with different geographical ranges and resolutions: (i) Global-
level: 5.625◦ resolution with 6-hour temporal frequency; (ii) Continental-level: 1◦ resolution over
South America (56◦S–14◦N, 81◦W–34◦W); and (iii) Regional-level: 0.25◦ resolution over East Asia
(20◦N–28◦N, 110◦E–126◦E). For preprocessing, we standardize each variable using statistics (mean
and standard deviation) computed from the training set only. During inference, model predictions are
rescaled back (de-normalized) to the original physical units to ensure consistency with evaluation
metrics. This normalization scheme improves model stability and comparability across heterogeneous
variables.

Table 4: The data details.

TASK
VARIABLE

NAME
LAYERS

SPATIAL
RESOLUTION

TEMPORAL
FREQUENCY

LAT-LON
RANGE

GLOBAL

GEOPOTENTIAL (Z) 13 5.625° 6H −90◦S–90◦N, 180◦W–180◦E
SPECIFIC HUMIDITY (Q) 13 5.625° 6H −90◦S–90◦N, 180◦W–180◦E

TEMPERATURE (T) 13 5.625° 6H −90◦S–90◦N, 180◦W–180◦E
U COMPONENT OF WIND (U) 13 5.625° 6H −90◦S–90◦N, 180◦W–180◦E
V COMPONENT OF WIND (V) 13 5.625° 6H −90◦S–90◦N, 180◦W–180◦E

10M U WIND (U10) 1 5.625° 6H −90◦S–90◦N, 180◦W–180◦E
10M V WIND (V10) 1 5.625° 6H −90◦S–90◦N, 180◦W–180◦E

2M TEMPERATURE (T2M) 1 5.625° 6H −90◦S–90◦N, 180◦W–180◦E
MEAN SEA LEVEL PRESSURE (MSLP) 1 5.625° 6H −90◦S–90◦N, 180◦W–180◦E

TOTAL PRECIPITATION (PREC) 1 5.625° 6H −90◦S–90◦N, 180◦W–180◦E

CONTINENTAL

GEOPOTENTIAL (Z) 13 1.0° 6H 56◦S–14◦N, 81◦W–34◦W
SPECIFIC HUMIDITY (Q) 13 1.0° 6H SAME AS ABOVE

TEMPERATURE (T) 13 1.0° 6H SAME AS ABOVE
U COMPONENT OF WIND (U) 13 1.0° 6H SAME AS ABOVE
V COMPONENT OF WIND (V) 13 1.0° 6H SAME AS ABOVE

10M U WIND (U10) 1 1.0° 6H SAME AS ABOVE
10M V WIND (V10) 1 1.0° 6H SAME AS ABOVE

2M TEMPERATURE (T2M) 1 1.0° 6H SAME AS ABOVE
MEAN SEA LEVEL PRESSURE (MSLP) 1 1.0° 6H SAME AS ABOVE

TOTAL PRECIPITATION (PREC) 1 1.0° 6H SAME AS ABOVE

REGIONAL
2M TEMPERATURE (T2M) 1 0.25° 6H 20◦N–28◦N, 110◦E–126◦E

10M U WIND (U10) 1 0.25° 6H SAME AS ABOVE
10M V WIND (V10) 1 0.25° 6H SAME AS ABOVE
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D MORE METRIC DETAILS

To evaluate forecasting skill, we follow standard practices in numerical weather prediction and report
latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient (ACC).
Before computing the metrics, model outputs are de-normalized back to physical units for consistency
with observations.

RMSE =
1

L

L∑
ℓ=1

√√√√ 1

HW

H∑
h=1

W∑
w=1

α(h) (yℓhw − x̂ℓhw)
2, (11)

ACC =

∑
ℓ,h,w α(h) ỹℓhw ˜̂xℓhw√∑

ℓ,h,w α(h) ỹ2
ℓhw

√∑
ℓ,h,w α(h) ˜̂x2

ℓhw

, (12)

where α(h) = cos(h)
/(

1
H

∑H
h′=1 cos(h

′)
)

compensates for unequal grid areas across latitudes. The

anomaly terms are defined as ỹℓhw = yℓhw−C and ˜̂xℓhw = x̂ℓhw−C, with C = 1
LHW

∑
ℓ,h,w yℓhw

representing the climatological mean.

RMSE reflects the average magnitude of prediction errors while accounting for the Earth’s geometry.
ACC instead measures the similarity between predicted and observed anomalies, emphasizing the
model’s ability to capture dynamical patterns rather than absolute values. Together, these two metrics
provide a balanced view of both error magnitude and anomaly-tracking skill.

E MORE IMPLEMENTATION DETAILS

All experiments are conducted on a server equipped with 8 NVIDIA A100 GPUs . Our implementation
of STORM is based on PyTorch 2.1.0 (Paszke et al., 2019). For optimization, we adopt the Adam
optimizer (Kingma, 2014) with a learning rate of 1 × 10−3 and mean squared error (L2) as the
training objective. Each model is trained for 100 epochs with early stopping based on the validation
loss. The multi-scale hierarchy is constructed with M = 3 levels, and the hidden dimension is fixed
to D = 256 across all experiments. The Scale-Bridging Spatio-Temporal Encoder is composed
of N = 3 stacked layers. To ensure fairness, all baselines are re-trained under the same data
preprocessing, optimization, and training protocols. The model is trained using the mean squared
error (MSE) loss between predicted and observed atmospheric states, which aligns with the RMSE
evaluation metric and encourages accurate recovery of both large-scale patterns and fine-grained
variations.

F EFFICIENCY ANALYSIS

As shown in Table 5, STORM delivers a substantially better efficiency–accuracy trade-off compared
with existing data-driven weather models. Despite having only 15.8M parameters, STORM achieves
the lowest inference latency (0.87s per 100 samples) and competitive FLOPs, while also attaining
the highest prediction accuracy (ACC = 0.984). In contrast, large-scale models such as Pangu and
Fuxi incur significantly higher computational and memory costs but still fall short in accuracy. These
results highlight that STORM’s lightweight architecture effectively preserves predictive skill while
enabling fast and resource-efficient forecasting.

Table 5: Efficiency comparison across representative data-driven weather models.

Metric STORM Pangu FCN Fuxi
Inference Time ↓ (Seconds / 100 Samples) 0.87 5.11 6.99 19.37

Peak GPU Memory ↓ (MB, Batch Size = 1) 729.22 408.75 265.95 2533.25
Parameters ↓ (M) 15.77 97.48 64.65 661.01

FLOPs ↓ (GFLOPs) 84.59 91.26 58.50 302.46
ACC ↑ 0.984 0.952 0.933 0.950
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G FULL SENSITIVE ANALYSIS

Table 5 summarizes the scaling behavior of STORM under varying branch numbers and model
widths. Increasing either the branch depth or dmodel consistently improves accuracy, with ACC rising
from 0.941 (1 branch, 64 hidden units) to 0.988 (5 branches, 256–512 units), while RMSE steadily
decreases. Notably, these gains come with only moderate growth in FLOPs and inference time,
indicating that STORM’s multi-branch temporal encoder scales efficiently. The results highlight
a clear efficiency–accuracy trend: larger branches yield stronger predictive skill without incurring
prohibitive computational cost.

Table 6: Scaling and efficiency analysis of STORM across different branch configurations.

Branch d model Total Params Temp. Enc. Params FLOPs Time Max Mem. ACC RMSE
1 64 0.32 2.96E-04 3.17 0.28 13.75 0.941 16.415
1 128 1.20 2.96E-04 11.04 0.30 17.44 0.951 16.323
1 256 4.59 2.96E-04 40.88 0.30 30.01 0.954 16.267
1 512 17.96 2.96E-04 156.92 0.30 82.59 0.958 16.177
2 64 0.64 5.92E-04 4.46 0.56 14.97 0.963 16.136
2 128 2.45 5.92E-04 16.00 0.56 24.43 0.966 16.115
2 256 9.59 5.92E-04 60.32 0.56 51.66 0.971 16.093
2 512 37.92 5.92E-04 233.92 0.59 164.49 0.974 15.983
3 64 1.03 8.88E-04 6.05 0.86 19.48 0.977 15.913
3 128 4.00 8.88E-04 22.16 0.85 30.35 0.981 15.854
3 256 15.77 8.88E-04 84.59 0.87 75.48 0.984 15.809
3 512 62.60 8.88E-04 330.25 0.87 257.33 0.985 15.798
4 64 1.46 1.18E-03 7.44 1.15 20.31 0.979 15.841
4 128 5.70 1.18E-03 27.61 1.16 37.27 0.983 15.813
4 256 22.54 1.18E-03 106.12 1.17 101.06 0.987 15.769
4 512 89.64 1.18E-03 415.84 1.20 360.60 0.986 15.784
5 64 1.96 1.48E-03 8.23 1.49 335.52 0.983 15.808
5 128 7.69 1.48E-03 30.62 1.52 361.66 0.984 15.796
5 256 30.49 1.48E-03 117.84 1.51 448.31 0.988 15.757
5 512 121.40 1.48E-03 462.11 1.53 908.50 0.988 15.716

H MORE DETAILS OF ABLATION ANALYSIS

Tables 7 and 8 highlight the contribution of message passing and scale heterogeneity in STORM’s
multi-branch architecture. First, enabling message passing consistently boosts performance across all
branch counts, with ACC improvements of 0.6–1.0% and reduced RMSE, indicating more effective
cross-scale information flow. Second, branches configured with different temporal scales significantly
outperform those using identical scales, showing clear gains that grow with larger branch numbers.
These results confirm that both cross-scale communication and scale diversity are essential for
extracting complementary temporal patterns and achieving stronger predictive skill.

Table 7: Ablation on message passing across multi-scale branches.

Branch (Scale Numbers) ACC (with MP) RMSE (with MP) ACC (without MP) RMSE (without MP)
2 0.971 16.093 0.963 16.145
3 0.984 15.809 0.976 15.948
4 0.987 15.769 0.981 15.886
5 0.988 15.757 0.980 16.879

Table 8: Effect of different vs same multi-branch designs.

Scale Number ACC (Diff Scale) RMSE (Diff) ACC (Same Scale) RMSE (Same)
2 0.971 16.093 0.939 16.547
3 0.984 15.809 0.948 16.382
4 0.987 15.769 0.954 16.285
5 0.988 15.757 0.957 16.179
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I FORECAST VISUALIZATION

I.1 MEAN SEA LEVEL PRESSURE (MSLP)

Figure 8: 24-hour forecast results of different models for mean sea level pressure (MSLP).
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I.2 SPECIFIC HUMIDITY AT 500 HPA (Q500)

Figure 9: 24-hour forecast results of different models for 500 hPa specific humidity (Q500).
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I.3 PRECIPITATION

Figure 10: 24-hour precipitation forecast results of different models.
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I.4 2-METER TEMPERATURE (T2M)

Figure 11: 24-hour forecast results of different models for 2-meter temperature (T2M).
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I.5 TEMPERATURE AT 500 HPA (T500)

Figure 12: 24-hour forecast results of different models for 500 hPa temperature (T500).
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I.6 10-METER ZONAL WIND (U10)

Figure 13: 24-hour forecast results of different models for 10-meter zonal wind (U10).
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I.7 ZONAL WIND AT 500 HPA (U500)

Figure 14: 24-hour forecast results of different models for 500 hPa zonal wind (U500).
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I.8 10-METER MERIDIONAL WIND (V10)

Figure 15: 24-hour forecast results of different models for 10-meter meridional wind (V10).
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I.9 MERIDIONAL WIND AT 500 HPA (V500)

Figure 16: 24-hour forecast results of different models for 500 hPa meridional wind (V500).
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I.10 GEOPOTENTIAL HEIGHT AT 500 HPA (Z500)

Figure 17: 24-hour forecast results of different models for 500 hPa geopotential height (Z500).
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J FULL SHORT-TERM FORECASTING RESULTS.

.

Table 9: Quantitative comparison of short-term (up to 24 hours) global weather forecasting perfor-
mance.

Metric RMSE ACC

Variable Hours Ours Triton Pangu FCN Fuxi SimVP UNet Ours Triton Pangu FCN Fuxi SimVP UNet

6h 0.564 0.718 0.787 1.430 1.191 1.335 1.337 0.999 0.999 0.998 0.995 0.996 0.996 0.995
12h 0.653 0.836 1.075 1.545 1.308 1.332 2.208 0.999 0.998 0.997 0.994 0.996 0.996 0.987
18h 0.705 0.929 1.219 1.632 1.415 1.341 2.789 0.999 0.998 0.996 0.993 0.995 0.996 0.982

T2M

24h 0.777 1.010 1.342 1.708 1.513 1.363 3.447 0.998 0.997 0.995 0.993 0.994 0.995 0.981
6h 0.495 0.598 0.775 1.169 0.994 1.279 0.955 0.995 0.993 0.988 0.973 0.981 0.968 0.981
12h 0.608 0.749 1.209 1.376 1.200 1.359 1.437 0.993 0.989 0.972 0.963 0.972 0.964 0.961
18h 0.719 0.894 1.590 1.646 1.423 1.497 2.032 0.990 0.985 0.951 0.947 0.961 0.956 0.942

U10

24h 0.853 1.034 1.933 1.926 1.637 1.659 3.462 0.986 0.979 0.927 0.927 0.948 0.946 0.924
6h 0.520 0.629 0.834 1.274 1.064 1.378 1.012 0.992 0.988 0.979 0.950 0.965 0.941 0.967
12h 0.647 0.796 1.304 1.492 1.268 1.467 1.491 0.987 0.981 0.947 0.930 0.950 0.933 0.933
18h 0.768 0.950 1.713 1.782 1.490 1.608 1.994 0.982 0.973 0.908 0.899 0.932 0.919 0.898

V10

24h 0.917 1.098 2.082 2.084 1.703 1.772 2.971 0.974 0.963 0.862 0.861 0.911 0.900 0.863
6h 4.2E-04 4.8E-04 6.1E-04 9.2E-04 7.4E-04 9.2E-04 6.7E-04 0.955 0.941 0.906 0.763 0.856 0.768 0.885
12h 4.9E-04 5.8E-04 7.9E-04 9.5E-04 8.2E-04 9.3E-04 8.9E-04 0.938 0.913 0.833 0.748 0.819 0.758 0.792
18h 5.9E-04 7.0E-04 9.3E-04 1.0E-03 9.2E-04 9.7E-04 1.1E-03 0.911 0.872 0.765 0.717 0.768 0.737 0.719

Prec

24h 6.6E-04 7.8E-04 1.0E-03 1.1E-03 1.0E-03 1.0E-03 1.4E-03 0.886 0.839 0.705 0.682 0.722 0.713 0.663
6h 46.808 60.493 101.678 147.757 112.764 154.169 113.815 0.999 0.999 0.996 0.991 0.995 0.990 0.994
12h 61.834 82.905 179.577 186.644 148.871 168.679 198.949 0.998 0.997 0.987 0.986 0.991 0.989 0.984
18h 78.448 104.797 255.410 238.317 188.986 194.126 289.322 0.998 0.996 0.973 0.977 0.986 0.985 0.971

MSLP

24h 99.948 126.514 326.712 295.758 229.717 226.092 427.862 0.996 0.994 0.956 0.964 0.979 0.979 0.956
6h 1.384 1.835 1.879 3.540 2.953 3.553 2.503 0.996 0.994 0.993 0.976 0.983 0.976 0.987
12h 1.713 2.287 2.972 4.148 3.612 3.789 3.880 0.994 0.990 0.983 0.967 0.975 0.973 0.971
18h 2.041 2.725 3.945 4.940 4.303 4.204 5.158 0.992 0.986 0.970 0.953 0.965 0.966 0.955

U500

24h 2.472 3.151 4.845 5.802 4.980 4.719 7.166 0.988 0.981 0.955 0.935 0.953 0.957 0.939
6h 1.449 1.873 2.036 3.765 3.155 3.823 2.868 0.992 0.987 0.985 0.947 0.963 0.945 0.969
12h 1.835 2.367 3.228 4.486 3.817 4.093 4.259 0.987 0.979 0.961 0.924 0.946 0.936 0.933
18h 2.221 2.843 4.290 5.418 4.500 4.530 5.508 0.982 0.970 0.930 0.887 0.925 0.922 0.897

V500

24h 2.714 3.305 5.284 6.414 5.169 5.073 7.363 0.972 0.960 0.893 0.841 0.902 0.901 0.859
6h 0.376 0.518 0.513 1.087 0.903 1.189 0.679 0.999 0.998 0.998 0.993 0.995 0.992 0.997
12h 0.478 0.646 0.802 1.177 1.036 1.210 1.087 0.999 0.998 0.996 0.992 0.994 0.991 0.993
18h 0.566 0.760 1.024 1.300 1.182 1.255 1.410 0.998 0.997 0.994 0.990 0.992 0.991 0.988

T500

24h 0.675 0.861 1.207 1.441 1.321 1.313 1.773 0.997 0.996 0.991 0.988 0.990 0.990 0.985
6h 51.5 68.4 102.6 189.0 142.3 186.4 131.0 1.000 1.000 1.000 0.999 0.999 0.999 0.999
12h 66.3 93.4 184.6 223.6 185.5 200.9 233.4 1.000 1.000 0.999 0.999 0.999 0.999 0.998
18h 86.5 122.5 267.1 289.9 238.5 231.9 348.0 1.000 1.000 0.998 0.997 0.998 0.998 0.996

Z500

24h 114.9 153.3 348.5 371.5 294.8 274.6 520.8 1.000 0.999 0.996 0.996 0.997 0.998 0.995
6h 2.8E-05 3.7E-05 3.4E-05 6.5E-05 5.8E-05 7.5E-05 4.3E-05 0.988 0.979 0.983 0.936 0.949 0.914 0.972
12h 3.7E-05 4.6E-05 5.2E-05 7.0E-05 6.5E-05 7.5E-05 6.5E-05 0.980 0.968 0.960 0.926 0.935 0.913 0.937
18h 4.3E-05 5.4E-05 6.4E-05 7.5E-05 7.3E-05 7.7E-05 8.1E-05 0.972 0.956 0.937 0.912 0.918 0.908 0.906

Q500

24h 4.9E-05 6.0E-05 7.4E-05 8.1E-05 8.0E-05 7.9E-05 1.0E-04 0.963 0.945 0.916 0.897 0.900 0.902 0.881
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Table 10: Quantitative comparison of long-term (7–10 days) global weather forecasting performance.

Metric RMSE ACC

Variable Days Ours Triton Pangu FCN Fuxi SimVP UNet Ours Triton Pangu FCN Fuxi SimVP UNet

7d 2.293 2.934 3.423 3.902 3.294 2.938 4.051 0.987 0.974 0.963 0.975 0.973 0.979 0.948
8d 2.516 3.263 3.574 4.104 3.442 3.100 4.358 0.985 0.968 0.958 0.971 0.970 0.977 0.940
9d 2.708 3.549 3.712 4.288 3.574 3.248 4.630 0.982 0.961 0.952 0.969 0.968 0.974 0.933

T2M

10d 2.865 3.799 3.821 4.430 3.689 3.384 4.867 0.981 0.956 0.948 0.967 0.966 0.972 0.928
7d 3.485 3.945 4.959 5.102 4.528 3.766 5.507 0.769 0.700 0.663 0.645 0.608 0.707 0.606
8d 3.773 4.192 5.088 5.301 4.660 3.872 5.753 0.730 0.662 0.627 0.614 0.582 0.689 0.567
9d 3.954 4.397 5.192 5.464 4.762 3.997 5.953 0.697 0.631 0.597 0.588 0.561 0.675 0.541

U10

10d 4.013 4.548 5.268 5.583 4.834 4.174 6.099 0.670 0.606 0.572 0.568 0.544 0.664 0.524
7d 3.787 4.205 4.961 5.364 4.652 3.982 5.757 0.559 0.451 0.392 0.358 0.326 0.427 0.306
8d 4.089 4.445 5.069 5.514 4.764 4.098 5.986 0.486 0.388 0.342 0.310 0.291 0.391 0.271
9d 4.154 4.620 5.150 5.649 4.853 4.335 6.158 0.426 0.339 0.299 0.274 0.264 0.366 0.244

V10

10d 4.201 4.747 5.201 5.749 4.911 4.500 6.277 0.383 0.302 0.266 0.247 0.245 0.349 0.225
7d 1.3E-03 1.9E-03 1.7E-03 1.5E-03 1.6E-03 1.4E-03 2.2E-03 0.492 0.354 0.329 0.259 0.271 0.396 0.242
8d 1.4E-03 2.1E-03 1.8E-03 1.6E-03 1.6E-03 1.5E-03 2.3E-03 0.446 0.316 0.297 0.231 0.249 0.384 0.211
9d 1.4E-03 2.2E-03 1.8E-03 1.6E-03 1.7E-03 1.5E-03 2.3E-03 0.410 0.287 0.272 0.210 0.233 0.376 0.190

Prec

10d 1.4E-03 2.3E-03 1.8E-03 1.6E-03 1.7E-03 1.6E-03 2.4E-03 0.381 0.262 0.252 0.193 0.220 0.370 0.173
7d 640.6 731.4 1075.0 969.2 901.1 741.8 1067.9 0.835 0.779 0.785 0.764 0.680 0.770 0.733
8d 713.0 795.5 1114.5 1024.9 940.6 775.8 1128.5 0.796 0.738 0.754 0.730 0.650 0.748 0.695
9d 771.7 847.9 1145.0 1069.5 969.0 801.4 1181.0 0.762 0.706 0.725 0.701 0.627 0.730 0.660

MSLP

10d 816.2 887.7 1166.9 1101.8 989.2 820.0 1220.0 0.734 0.678 0.700 0.678 0.608 0.716 0.630
7d 5.661 7.696 10.090 8.300 9.408 7.572 11.118 0.915 0.839 0.842 0.833 0.782 0.848 0.796
8d 6.320 8.590 10.607 8.936 9.972 7.972 12.066 0.894 0.802 0.816 0.808 0.756 0.832 0.763
9d 6.911 9.354 11.050 9.477 10.426 8.313 12.659 0.874 0.769 0.789 0.779 0.734 0.819 0.730

U925

10d 7.436 10.031 11.430 9.921 10.803 8.611 13.103 0.854 0.739 0.765 0.752 0.716 0.807 0.699
7d 5.674 7.095 9.228 8.929 8.310 6.765 10.013 0.643 0.485 0.395 0.376 0.289 0.416 0.300
8d 6.344 7.733 9.602 9.466 8.704 7.061 10.684 0.556 0.397 0.323 0.307 0.226 0.355 0.223
9d 6.923 8.210 9.892 9.880 8.981 7.294 11.174 0.474 0.327 0.263 0.250 0.183 0.305 0.166

V925

10d 7.412 8.603 10.105 10.198 9.182 7.473 11.560 0.402 0.268 0.214 0.204 0.151 0.266 0.131
7d 2.420 3.251 4.015 3.496 4.163 3.333 4.872 0.975 0.952 0.944 0.949 0.925 0.952 0.920
8d 2.690 3.585 4.232 3.777 4.421 3.504 5.204 0.969 0.942 0.935 0.942 0.916 0.947 0.908
9d 2.932 3.882 4.420 4.022 4.642 3.649 5.523 0.963 0.932 0.926 0.934 0.908 0.943 0.896

T925

10d 3.145 4.152 4.566 4.223 4.827 3.774 5.724 0.957 0.922 0.917 0.926 0.901 0.939 0.884
7d 3.0E-07 4.7E-07 4.2E-07 4.3E-07 5.2E-07 3.8E-07 5.8E-07 0.782 0.611 0.607 0.620 0.567 0.653 0.565
8d 3.2E-07 5.2E-07 4.4E-07 4.6E-07 5.5E-07 3.9E-07 6.3E-07 0.760 0.573 0.571 0.586 0.544 0.637 0.524
9d 3.3E-07 5.6E-07 4.6E-07 4.8E-07 5.7E-07 4.1E-07 6.6E-07 0.738 0.537 0.537 0.554 0.524 0.622 0.504

Z925

10d 3.5E-07 6.0E-07 4.8E-07 5.0E-07 5.8E-07 4.2E-07 6.8E-07 0.717 0.502 0.509 0.527 0.506 0.609 0.482
7d 673.038 871.088 1311.785 836.431 1172.687 989.917 1394.336 0.987 0.973 0.966 0.973 0.966 0.975 0.947
8d 773.302 999.146 1391.247 928.037 1270.395 1067.484 1499.221 0.983 0.964 0.958 0.965 0.960 0.972 0.938
9d 863.541 1113.102 1459.822 1017.677 1351.076 1135.576 1591.308 0.979 0.955 0.951 0.958 0.956 0.969 0.931

Q925

10d 943.733 1214.456 1513.909 1093.027 1422.259 1196.480 1666.658 0.975 0.946 0.946 0.954 0.951 0.966 0.926
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