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ABSTRACT

Accurate weather forecasting is crucial for climate research, disaster mitigation,
and societal planning. Despite recent progress with deep learning, global atmo-
spheric data remain uniquely challenging since weather dynamics evolve across
heterogeneous spatial and temporal scales ranging from planetary circulations to
localized phenomena. Capturing such cross-scale interactions within a unified
framework remains an open problem. To address this gap, we propose STORM, a
synergistic cross-scale spatio-temporal model that disentangles atmospheric vari-
ations into multiple scales to uncover scale-specific dependencies. In addition,
it enables coherent forecasting across multiple resolutions, maintaining consis-
tent temporal evolution. Experiments on benchmark datasets demonstrate that
STORM consistently delivers superior performance across both global and regional
settings, as well as for short- and long-term forecasts. The code is available at

1 INTRODUCTION

Accurate weather forecasting plays a pivotal role in climate research, disaster mitigation, and support-
ing decision-making in agriculture, energy, and public safety (Kuligowski & Barros, 1998; Baboo &
Shereef, 2010; Lam et al., 2022; Gao et al., 2025). Traditional Numerical Weather Prediction (NWP)
systems (Bauer et al., 2015) are grounded in the numerical solution of atmospheric dynamics (Buzzi-
cotti et al., 2023), ensuring physical consistency across scales (Achatz et al., 2024). However, with the
rapid growth of observational data and the demand for high-resolution, long-horizon forecasts, NWP
approaches are increasingly constrained by high computational costs and difficulties in leveraging
data-driven knowledge at scale (Rasp et al., 2023). Deep learning (DL) has recently emerged as a
promising paradigm for spatio-temporal forecasting (Yu et al., 2018; Wu et al., 2019; Guo et al.,
2022; Wang et al., 2024a). Early efforts, such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang
et al., 2017), demonstrated the potential of neural architectures for regional precipitation prediction.
More recent large-scale weather models, such as Pangu-Weather (Bi et al., 2023), GraphCast (Lam
et al., 2022), and FourCastNet (Pathak et al., 2022), have achieved impressive advances in global
forecasting and even in predicting extreme events (Chen et al., 2023b). Despite these successes,
current DL-based approaches still face several critical limitations: @ Multi-scale heterogeneity.
Global atmospheric circulation evolves at coarse scales, while regional variability emerges at finer
scales. Balancing these dynamics within a single model remains challenging (Zhou et al., 2023).

Forcast One Step Per Turn  Coarse Scale Multi-step Forecast Multi-scale
At 20t 3At _gar . Shafial &
- Ligh‘rweigPllT
~< T
; l Encoding
[ Spatial En&Decode 'j Mid and
Y — Long- <.
'3?-, Single-view <,L——J 7 = | 1 Forefgging
- of Earth& o3 . S
Initial Condition ; = At T DAL 3At 4At Global &
Fine Scale Regional )
(a) Weather Model (b) Our STORM Adaptability

Figure 1: Comparison of main stream weather forecasting model and our STORM.
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0 Diverse temporal evolution. Distinct scales exhibit different temporal dynamics, and existing
models struggle to learn coherent cross-scale evolution, often leading to degraded performance in
long-term forecasts (Wang et al., 2024b). ® Weak cross-scale interaction. Most methods process
different spatial or temporal scales independently, overlooking their complementary roles and the
synergistic effects across scales (Huang et al., 2024).

To address these challenges, we propose STORM, a synergistic cross-scale spatio-temporal method
for accurate weather forecasting. As shown in Figure 1, STORM explicitly disentangles atmospheric
variations across fine-to-coarse resolutions and integrates them via a cross-scale collaboration mecha-
nism with temporal evolution learning. This design enables the model to capture global circulation
patterns while preserving local high-frequency details, thereby enhancing both short- and long-term
predictive skill. Through extensive experiments on benchmark meteorological datasets, we demon-
strate that STORM achieves state-of-the-art forecasting performance. Our main contributions are
summarized as follows:

» To address the challenge scale coupling in atmospheric data, we propose the first spatio-
temporal modeling framework for weather forecasting. In particular, (i) it emphasizes
cross-scale spatial learning to capture both unique local patterns and shared dependencies
across different spatial resolutions, and (ii) it focuses on multi-step temporal evolution,
rather than merely learning a single-step mapping from past to future states.

* We introduce STORM, a unified spatio-temporal framework for weather forecasting. It
comprises (i) a Hierarchical Earth Embedder to build multi-resolution representations,
(i1) a Scale-Bridging Spatio-Temporal Encoder to jointly model temporal evolution and
spatial interactions across scales, and (iii) a Level-Aligned Forecasting Decoder to generate
coherent multi-scale future predictions, enabling accurate decomposition, integration, and
reconstruction of atmospheric dynamics.

» Extensive experiments on ERAS datasets at multiple spatial resolutions (5.625°, 1°, and
0.25°) show that STORM consistently outperforms existing baselines across both global and
regional domains. The framework demonstrates superior accuracy for short-term (hours)
as well as long-term (several days) forecasts, effectively capturing fine-scale local patterns,
medium-scale regional structures, and large-scale planetary circulations.

2 RELATED WORK

Global Weather Forecasting Global weather forecasting has seen rapid progress with the adoption
of deep learning models Weyn et al. (2021); Nguyen et al. (2023). FourCastNet (Pathak et al.,
2022), built upon Fourier neural operators, achieves forecasts comparable to numerical methods
like IFS while being orders of magnitude faster . Pangu-Weather (Bi et al., 2023), leveraging Swin
Transformers with earth-specific location embeddings, surpasses NWP baselines and demonstrates
strong scalability. GraphCast (Lam et al., 2022) advances further by introducing message-passing
networks to efficiently capture global dependencies and improve accuracy. FuXi (Chen et al., 2023b)
extends the forecasting horizon, delivering 15-day predictions at skill levels comparable to ECMWF
operational systems. FengWu (Chen et al., 2023a) integrates multi information flow, enabling
improved representation of different atmospheric dynamics. Despite these advances, most existing
models are primarily designed to learn a mapping from the current state to the next-step state, which
limits their ability to capture long-range temporal evolution and synergistic cross-scale interactions.

Spatio-Temporal Modeling Recent deep learning approaches for spatio-temporal modeling mainly
focus on two data forms: graph-structured and grid-structured data (Liang et al., 2025). While graph-
based methods have also been explored for irregular domains (Zhang et al., 2022; Wang et al., 2023;
2024a), grid-based modeling remains particularly suitable for global-scale atmospheric data due to its
structured nature. Early approaches such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang et al.,
2017) explicitly model temporal dependencies through recurrent connections, achieving promising
results on precipitation nowcasting. To improve efficiency, SimVP (Gao et al., 2022a) replaces
recurrent structures with pure convolutional operators, demonstrating competitive performance on
benchmark sequence modeling tasks . More recently, Transformer-based architectures have been
introduced, with models such as Earthformer (Gao et al., 2022b) leveraging attention mechanisms on
gridded climate data to enhance long-range spatio-temporal dependencies. However, these models
are primarily designed as general-purpose spatio-temporal learners and lack specialized adaptations
to the unique multi-scale dynamics of weather and climate systems.
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3  PROBLEM DEFINITION

In this study, we formulate weather forecasting as a multi-step spatiotemporal forecasting problem. At
each time step ¢, the meteorological state consists of surface variables S; and atmospheric variables A
across 13 pressure levels. We concatenate them along the channel dimension to form the combined
input: X; = [Sy, Ay] € REXWXC where H x W is the number of spatial grid locations, and
C = Cs + C,, is the total number of variables, with C; and C,, denoting the numbers of surface
and atmospheric variables, respectively. Our formulation is based on a history of 7" steps to directly
forecast the next L steps. Specifically, given historical inputs X;_71.¢, the model predicts the future
XH 144+ = Model(X;_741.¢; ©), where © denotes the model parameters. To support ultra-long
forecasting horizons (far beyond L), we adopt a recursive rollout strategy. After generating the first
L predictions, the most recent 1" predicted states are fed back as inputs to produce the next block
of L forecasts, and this process is repeated. This block-wise multi-step forecasting significantly
alleviates the error accumulation typical of purely autoregressive one-step methods, enabling stable
and accurate long-horizon predictions.

4 METHODS

As illustrated in Fig. 2, we introduce STORM, a unified framework for multi-scale spatio-temporal
forecasting. The design of STORM is motivated by the intrinsic hierarchical nature of atmospheric
dynamics, where large-scale circulations and small-scale local processes interact across different
temporal horizons. To capture such complex dependencies, STORM consists of three key com-
ponents: (i) Hierarchical Earth Embedder that progressively downsamples raw observations to
construct multi-resolution representations, (ii) Scale-bridging Spatio-temporal Encoder that jointly
models temporal evolution and spatial interactions while enabling information propagation from
fine- to coarse-grained levels, and (iii) Level-Aligned Forecasting Decoder that projects multi-scale
representations into future prediction through depth-specific transposed convolutions. Together, these
components allow STORM to effectively decompose, bridge, and reconstruct atmospheric dynamics
across scales for accurate weather forecasting.
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Figure 2: Illustration of the multi-scale collaborative meteorological forecasting model.

4.1 HIERARCHICAL EARTH EMBEDDER

Earth observation data inherently exhibit multi-scale characteristics: coarse scales capture large-scale
circulation patterns, while fine scales reflect local variations and detailed structures. To effectively
leverage information across these scales, we propose the Hierarchical Earth Embedder for multi-scale
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embedding of global meteorological features. Given input data X = [S, A] € RT*HxWXC where
T denotes the historical length, C' represents the total number of surface and atmospheric variables,
and H x W defines a fine-grained global grid, the data contains rich local details but makes it
challenging to directly capture coarse-scale circulation and large-scale dependencies. To address this,
we adopt a progressive, layer-wise downsampling strategy for multi-scale modeling and embedding.

First, a 3 x 3 spatial convolution is applied to the original fine-grained input to obtain the initial
embedding Hy € RT*XH>XWXD ‘yhere D is the hidden embedding dimension. This step allows the
model to learn localized spatial representations while embedding the raw data. Subsequently, a series
of strided convolutional layers with stride 2 are applied to progressively downsample the embeddings
and capture increasingly coarser spatial structures:

H,,, = LeakyReLU(GroupNorm(Conv2d(H,,_1;kernel = 3, stride = 2)))), e))

where LeakyReLU denotes the activation function and GroupNorm normalizes feature channels to
improve training stability and convergence.

The resulting multi-scale embeddings H = {Ho, H;,Hy, ..., Hj/}, where Hy € R™™ 30 %50 XD

. . . TxH x W D
retains fine-grained local representations and Hj; € R ™23 33 X~ encodes coarse-scale global

structures, capture multi-scale spatio-temporal features. These embeddings are then fed into the
Scale-bridging Spatio-Temporal Encoder.

4.2 SCALE-BRIDGING SPATIO-TEMPORAL ENCODER

After obtaining the multi-scale Earth representations, we design a scale-bridging spatio-temporal
encoder to jointly capture spatial dependencies, temporal dynamics, and inter-scale interactions.
Unlike traditional meteorological models that often emphasize either temporal or spatial aspects in
isolation, our encoder integrates both perspectives while enabling information flow across scales,
which is critical for representing hierarchical atmospheric processes.

Spatial encoding. Given multi-scale features #, each level is first processed by an independent
spatial encoder inspired by the Vision Transformer (Dosovitskiy et al.) structure. Specifically, for
the m-th scale and the n-th encoder layer, we perform 2D patch embedding, followed by multi-head
self-attention and feed-forward transformations:

H? (™) = LayerNorm(Patch2D(H(")) + MHA (LayerNorm(Patch2D(H("))), )

H*(™) = DePatch2D (LayerNorm(Hi;(")) + FFN(LayerNorm(Hi,;(")))), 3)

where Patch2D partitions the grid of size £ x g% into (Py, P,) patches, producing g i% tokens,

and DePatch2D restores the tokenized representation back to its grid structure. This operation yields
the spatial encoding Hf,(L") € RT*zm X3m XD which captures scale-specific meteorological spatial
dependencies.

Cross-scale message passing. To enhance coherence between adjacent scales, we introduce a
cross-scale messaging mechanism. Information from the finer resolution is downsampled and injected
into the coarser scale, facilitating hierarchical knowledge transfer:

He™) = CrossScaleMessaging(H:ﬁ)l) +H™), (€))

Here, CrossScaleMessaging is implemented as a stride-2 convolution, which aligns the resolution of

Hf,@l with nyg"). This design enables the encoder to integrate localized fine-grained patterns into

broader global representations, crucial for multi-scale weather forecasting.

Temporal encoding. Finally, we model the temporal evolution of the cross-scale features Hf?g").

While self-attention could be applied across temporal tokens, the extremely high dimensionality of
meteorological grids makes it computationally prohibitive. Motivated by recent findings in long-term
time series forecasting, we adopt a lightweight linear temporal encoder that achieves stable temporal
modeling with minimal overhead:

H!" = W, x GELU(W; x H:"™ + By) + B, 5)

m m
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This lightweight network is used to extract temporal dependencies. Here, W; € RT*2T and
Wy € RT*2T | enabling effective modeling of historical time steps across multiple scales with an
extremely small number of parameters (fewer than 100). It efficiently captures multi-scale temporal
relationships in past observations.

4.3 LEVEL-ALIGNED FORECASTING DECODER

The outputs from the N-layer scale-bridging spatio-temporal encoder are subsequently fed into a
level-aligned forecasting decoder to generate multi-scale forecasts of future atmospheric states. The
decoder is designed to progressively reconstruct high-resolution spatio-temporal fields from the
encoded representations, while ensuring that temporal forecasting and spatial upsampling remain
coherent across scales. For each resolution level m, we apply an independent temporal linear layer that
maps the T'-step historical features into L-step future predictions. This design explicitly decouples
temporal forecasting across scales, enabling each level to capture temporal dynamics consistent with
its own resolution:

Z,, = Linear,, (H!N)) g RLX 37 X 2 <D ©6)

To progressively upsample the spatial resolution, we adopt a depth-adaptive transposed convolution
block. Each block doubles the resolution along both spatial dimensions, and the depth of upsampling
is matched to the level index m. Thus, the m-th scale undergoes m successive upsampling layers,
ensuring that coarse-scale features are refined consistently into finer spatial grids:

U,, = DeConv™(Z,,) € REXHXWXD, (7)

This hierarchical upsampling ensures that global context encoded at coarse scales is gradually
transformed into high-resolution local forecasts.

After spatial refinement, all scales share a common variable-wise linear projection layer, which maps
the hidden dimension D into the full set of meteorological variables, including both surface and
atmospheric fields. This shared mapping enforces consistency across scales and guarantees that all
outputs lie in the same physical variable space:

V., = Linear,q, (U,,) € REXHXWxC, ®)

Finally, the forecasts from all scales are integrated to form the unified prediction. Each level
provides complementary information, with fine-scale forecasts capturing localized details and coarse-
scale forecasts contributing global stability. In EarthMix, this integration is performed by directly
summing the scale-specific representations:

X = BarthMix ({V,,,}M_,) € REXHxWxC, 9)

This simple aggregation efficiently combines multi-scale information to produce the final high-
resolution, multi-variable prediction.

5 EXPERIMENTS

Dataset. We conduct experiments on the fifth generation of ECMWF Reanalysis data (ERAS) (Rasp
et al., 2023). The temporal range spans from 1993 to 2021, where 1993-2017 is used for training,
2018-2019 for validation, and 2020-2021 for testing. We consider both atmospheric and surface
variables. The atmospheric variables include five pressure-level quantities, each with 13 pressure
levels: geopotential (Z), specific humidity (Q), temperature (T), and the U and V components of
wind speed. The surface variables include 10-meter wind components (U10M, V10M), 2-meter
temperature (T2M), total precipitation, and mean sea-level pressure (MSLP). To comprehensively
evaluate our method, we construct three datasets at different spatial scales: @ Global-level: We
use the preprocessed ERAS dataset with a 5.625° spatial resolution and 6-hour temporal frequency.
0 Continental-level: We extract ERAS data over South America, covering the region from 56°S to
14°N and 81°W to 34°W, with a 1° spatial resolution. ® Regional-level: We extract a subset with
0.25° resolution over East Asia (20°N-28°N, 110°E-126°E). More data and pre-processsing details
are available in Appendix C
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Metrics. To evaluate forecasting performance, we report two widely adopted metrics in numerical
weather prediction: latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation
Coefficient (ACC). All predictions are first de-normalized before metric computation. Given L
forecasting steps, the prediction Zp,,, and ground truth yyp,,, at lead time ¢ and spatial grid (h, w),
the metrics are defined as

w ~ X
1 1 . > hw @(R) enw Tonw
RMSE = i3 Z aw Z Z a(h) (Yenw — Zenw)?, ACC = Lk, _
1 h=1w=1 \/Zz,h,w a(h) Uiha \/Zé,h,w a(h) 23,
(10

L
=

where the latitude-dependent weight is al(h) = cos(h) /% 25:1 cos(W'),and j = y—C, 2 = &—C
are anomalies relative to the empirical climatology C' = ﬁ > ¢ hw Yehw- More Details is in
Appendix D.

Baselines. We benchmark our approach against a diverse set of representative baselines span-
ning operational weather forecasting models, spatio-temporal sequence learners, and image-based
architectures. For single-step meteorological forecasting, we include Pangu-Weather (Bi et al.,
2023), FuXi (Chen et al., 2023b), FourCastNet (FCN) (Pathak et al., 2022), and Triton (Wu et al.,
2025), which represent state-of-the-art Transformer-based designs for data-driven numerical weather
prediction. For multi-step spatio-temporal modeling, we evaluate against SImVP (Gao et al., 2022a),
a leading video prediction framework adapted for geophysical data. Additionally, we incorporate a
canonical vision backbone, U-Net (Ronneberger et al., 2015), to assess the performance of convolu-
tional architectures in this setting. All baselines are re-trained on our datasets with identical variables
and splits to ensure fairness of comparison. More Details can be found in Appendix E.

5.1 GLOBAL WEATHER FORECASTING

Table 1: Quantitative comparison of short-term (up to 24 hours) global weather forecasting perfor-
mance. Metrics are reported as weighted RMSE and ACC, averaged over At = {6, 12, 18,24} hours.

Metric | RMSE| | ACC?t
Variable| STORM Triton Pangu FCN  Fuxi SimVP UNet |STORM Triton Pangu FCN Fuxi SimVP UNet

T2M | 0.675 0.873 1.106 1.579 1356 1.343 2445 | 0.999 0.998 0.997 0.994 0.995 0.996 0.986
Ul0 | 0.669 0819 1377 1529 1314 1448 1971 | 0.991 0.987 0.959 0.953 0.965 0.959 0.952
V10 | 0.713 0868 1483 1.658 1.381 1.556 1.867 | 0.984 00976 0.924 0.910 0.940 0.923 0.915
Prec |5.4E-04 6.4E-04 8.4E-04 9.8E-04 8.7E-04 9.6E-04 1.0E-03| 0.923 0.891 0.802 0.728 0.791 0.744 0.765
MSLP | 71.8 93.7 2158 217.1 170.1 185.8 257.5 | 0.998 0.996 0.978 0.979 0.988 0.986 0.976
U500 | 1.903 2.500 3.410 4.607 3962 4.066 4.677 | 0.993 0.988 0.975 0.958 0.969 0.968 0.963
V500 | 2.055 2597 3709 5.021 4.160 4380 4.999 | 0983 0.974 0.942 0.899 0.934 0.926 0.914
T500 | 0.524 0.696 0.886 1.251 1.111 1.242 1.237 | 0.998 0.997 0.995 0.991 0.993 0.991 0.991
7500 79.8 1094 2257 268.5 2153 2235 308.3 | 1.000 1.000 0.998 0.998 0.999 0.999 0.997
Q500 |3.9E-05 5.0E-05 5.6E-05 7.3E-05 6.9E-05 7.7E-05 7.3E-05| 0.976 0.962 0.949 0.918 0.926 0.909 0.924

Short-term Forecasting. We first evaluate the proposed multi-scale spatiotemporal forecasting
model, STORM, on short-term global weather prediction. Specifically, we conduct 24-hour forecasts
and compare our method against a range of state-of-the-art approaches, including Pangu, Fuxi, Four-
CastNet, Triton, SimVP, and U-Net. The evaluation covers both surface variables (2m temperature
(T2M), 10m winds (U10, V10), precipitation (PREC), and mean sea level pressure (MSLP)) as
well as mid-tropospheric fields (500 hPa U/V winds, temperature (T), geopotential height (Z), and
specific humidity (Q)). For each method, we report weighted RMSE and ACC averaged over the
prediction horizons At = {6,12,18,24} hours. The results, summarized in Table 1, show that
STORM consistently achieves the best performance across all variables. In terms of RMSE, our
method surpasses even Triton, a model particularly tailored for short-term forecasting, by a significant
margin, while also delivering superior ACC scores. These improvements highlight the advantage of
incorporating multi-scale spatiotemporal representations, which enable the model to capture both
local details and global circulation patterns effectively. Full results are available at Appendix J.

To further illustrate the predictive capability of our model, Figure 3 visualizes 24-hour forecasts
across multiple variables. Compared with other baselines, the predictions of STORM are visually
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Figure 3: Visualization of 24-hour forecasts for multiple atmospheric variables.

closer to the ground-truth reanalysis, preserving fine-grained regional structures while maintaining
coherent large-scale dynamics. These results confirm that our approach not only improves numerical
accuracy but also produces more realistic spatial patterns in short-term global weather forecasting.
The visualizations for all variables are provided in Appendix I.

Table 2: Quantitative comparison of long-term (7—10 days) global weather forecasting performance.
Metrics are reported as weighted RMSE and ACC, averaged over At = {168, 192,216,240} hours.

Metric | RMSE| ACCYT
Variable\STORM Triton Pangu FCN  Fuxi SimVP UNet STORM Triton Pangu FCN Fuxi SimVP UNet

T2M | 2596 3386 3.633 4.181 3500 3.168 4.477 0.984 0.965 0.955 0.971 0.969 0.976 0.937
Ul0 | 3.857 4271 5.127 5363 4.696 3901 5828 0.716 0.650 0.615 0.604 0.574 0.684 0.559
V10 | 4106 4.504 5.095 5569 4795 4.180 6.045 0.464 0.370 0.325 0.297 0.282 0.383 0.262
Prec |1.4E-03 2.1E-03 1.8E-03 1.6E-03 1.6E-03 1.5E-03 2.3E-03 0.432 0.305 0.288 0.223 0.243 0.382 0.204

MSLP | 7354 8156 11254 1041.4 950.0 7847 1149.3 0.782 0.725 0.741 0.718 0.641 0.741 0.679
U925 | 6.582 8918 10.794 9.159 10.152 8.117 12236 0.884 0.787 0.803 0.793 0.747 0.827 0.747
V925 | 6.588 7910 9.707 9.618 8.794 7.148 10.858 0.519 0.369 0.299 0.284 0.212 0.336 0.205
T925 | 2797 3.718 4308 3.879 4.513 3565 5331 0.966 0.937 0.931 0.938 0.912 0.945 0.902
Q925 |3.3E-07 5.4E-07 4.5E-07 4.7E-07 5.5E-07 4.0E-07 6.3E-07 0.749 0.556 0.556 0.572 0.535 0.630 0.519

7925 | 8134 10494 14192 968.8 1304.1 10974 15379 0.981 0.959 0.955 0.963 0.958 0.971 0.936

Long-term Forecasting. Beyond short horizons, we further evaluate STORM on extended-range
forecasting, covering 7-day, 8-day, 9-day, and 10-day predictions. Table 2 reports the average
weighted RMSE and ACC across these horizons. The results show that STORM consistently
outperforms all competing methods, with clear margins over strong baselines such as Pangu and
FourCastNet. Even at day 10, where the forecasting task becomes extremely challenging due to error
accumulation and chaotic dynamics, our model maintains significantly lower RMSE and higher ACC,
demonstrating its robustness and superior long-term predictive capability. Full results are available at
Appendix K. To provide further insight, Figure 4 visualizes the evolution of RMSE and ACC from
day 1 to day 10 for several key variables, includingiU925,v925, 2925, 0925, T925, and T2M. We
observe that different baseline methods tend to exhibit strengths over specific forecast horizons—for
example, some achieve relatively competitive results at shorter lead times but deteriorate rapidly
afterwards. In contrast, STORM consistently maintains the best accuracy across both short- and
long-term horizons. This highlights the effectiveness of our multi-scale spatiotemporal design, which
enables stable and reliable forecasts over a wide range of temporal scales.

5.2 REGIONAL HIGH RESOLUTION FORECASTING

To further demonstrate the scalability and robustness of our approach, we conduct forecasting
experiments on higher-resolution regional subsets. Specifically, we consider two representative
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Figure 4: RMSE and ACC of U925,V925,2925,0925, T925, and T2M from day 1 to day 10.

cases: Continental-level: South America, spanning from 56°S to 14°N and 81°W to 34°W, at 1°
resolution; Regional-level: East Asia, spanning 20°N-28°N and 110°E-126°E, at 0.25° resolution.
Table 3 summarizes the RMSE and ACC across ;

all variables for horizons of 6 hours, 1 day, 4
days, 7 days, and 10 days. We observe that
STORM consistently achieves the lowest RMSE
and the highest ACC at both continental and re-
gional scales, highlighting its ability to maintain
strong predictive skill under different spatial res-
olutions. In particular, the advantage of STORM
becomes more pronounced at longer horizons,  :
demonstrating its superiority in long-range re-
gional forecasting. Figure 5 provides a qualita-

tive visualization of the 10-day forecasts for se- £
lected variables in both South America and East
Asia. By zooming into local details, we see that ) o
STORM captures fine-grained structures more Figure 5: V?suallgatlon of 10—d§1y forecoasts over
faithfully and is visually closer to the ground South America (1°) and East Asia (0.25°).

truth compared to baselines. These results confirm the effectiveness of our multi-scale design in
enhancing both large-scale consistency and small-scale detail preservation.

Table 3: Regional high-resolution forecasting results. We report averaged results for 6 hours, 1 day, 4
days, 7 days, and 10 days over South America (1° resolution) and East Asia (0.25° resolution).

6Hour 1Day 4Day TDay 10Day
RMSE| ACC?|RMSE| ACCt|RMSE| ACCT|RMSE| ACCt|RMSE| ACC?t

STORM| 0.874 0.945| 1.560 0.847| 2.866 0.601| 3.322 0.519| 3.510 0.499
Triton | 0.927 0.941| 1.808 0.817| 3.689 0.480| 4.687 0.347| 5433 0.251
FCN | 1411 0.933] 2.466 0.816| 4.186 0.498| 5.176 0.425| 6.018 0.403
Cont-SA (1°) | Pangu | 0.989 0.876| 1.794 0.702| 3.557 0.440| 4.235 0.375| 4.613 0.368
Fuxi 0913 0.941| 1.677 0.830| 3.253 0.547| 3.632 0.500| 3.797 0.466
SimVP | 0947 0.939| 1.619 0.843| 3.110 0.554| 3.603 0.476| 3.891 0.426
UNet | 1.528 0.873| 2.696 0.661| 6.994 0.291| 11.50 0.248| 15.62 0.252

STORM | 14.53 0.980| 41.71 0.920| 154.6 0.627| 187.8 0.548| 200.9 0.524
Triton | 14.55 0.976| 51.65 0.919| 183.7 0.579| 218.7 0.499| 2343 0.482
FCN | 33.00 0.954| 98.15 0.832| 256.4 0.559| 297.4 0.495| 315.6 0471
Reg-EA (0.25°)| Pangu | 17.35 0.963| 47.31 0.895| 157.5 0.625| 206.2 0.543| 227.5 0.511
Fuxi 17.69 0.969| 54.67 0.903| 178.1 0.592| 211.2 0.522| 227.7 0.493
SimVP | 32.17 0.935| 53.44 0.887| 1585 0.615| 189.0 0.546| 202.5 0.523
UNet | 22.77 0.956| 63.05 0.875| 195.1 0.566| 241.6 0.480| 261.8 0.450

Data Methods
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5.3 ABLATION STUDY

To better understand the contribution of each component in STORM, we conduct an ab-
lation study by removing or modifying key modules. Specifically, we consider the fol-
lowing variants, @ w/o T: which removes the temporal evolution encoder from the en-
coder; ® w/o M: which changes the Hierarchical Earth Embedder, the Scale-Bridging Spatio-
Temporal Encoder, and the Level-Aligned Forecasting Decoder to replace multi-scale model-
ing with single-scale modeling; ® w/o S: which removes the spatial encoder from the encoder.
Figllre 6 rePOI'tS the RMSE for ten 100 STORM WioT wio M Wo'S WoS&T — mEE wo S&M
key variables: T2M, U10,V10, PREC, o

MSLP, U500, V500, T500, Q500, ““

and 2500. The results demonstrate #

several important findings: (1) Every
module contributes significantly tothe & 1 B}

overall forecasting performance; (2) oo TIT T I TITHT I I
The spatial encoder (S) plays a partic- "™ ©\ ylo Vio Prec MSLP USO0 V500 T500 0300 2500
ularly critical role in improving pre-

diction accuracy; (3) The combination Figure 6: Ablation study results of STORM.

of multi-scale mixing and spatial encoding achieves the largest performance gains, indicating that
capturing both spatial dependencies and multi-scale interactions is crucial for accurate global weather
forecasting. These observations confirm the effectiveness of our design in modeling complex spa-
tiotemporal dependencies inherent in meteorological data.

5.4 STORM ANALYSIS

We perform a multi-scale analysis of STORM to understand the contribution of different spatial
scales to forecasting accuracy. Figure 7(a) visualizes predictions at different scales. The finest scale
(scale0) captures rich local details, while the coarsest scale (scale?2) better represents global
circulation patterns. Individually, each scale exhibits distinct prediction errors, but combining multi-
scale predictions results in the most accurate forecasts, demonstrating the effectiveness of multi-scale
integration. Figure 7(b) further analyzes the effect of the number of scales as a hyperparameter. As
the number of scales increases, the predictive performance improves, but the gains diminish beyond
three scales. Based on this analysis, we set the number of scales in STORM to three, achieving a
balance between local detail preservation and global structure representation.

MSLP 7500 ™ ulo vio

751

: 2
20.747
072

0.701

0.681

0.66

1 5

3
Scale Number

(a) Visualization of Predictions at Different Scales (b) Analysis of Scale Number Impact

Figure 7: Visualization of multi-scale predictions and the analysis of scale number.

6 CONCLUSION

Despite rapid advances in deep learning for weather prediction, modeling atmospheric dynamics
remains challenging due to their heterogeneous spatio-temporal scales. We introduced STORM, a
unified framework with a Hierarchical Earth Embedder, a Scale-Bridging Spatio-Temporal Encoder,
and a Level-Aligned Forecasting Decoder to explicitly capture cross-scale dependencies. Extensive
experiments on ERA datasets with resolutions of 5.625°, 1°, and 0.25° show that STORM consistently
achieves state-of-the-art performance across global and regional settings, as well as short- and long-
term horizons. Our results highlight the necessity of synergistic multi-scale modeling for reliable
weather forecasting. Looking ahead, we envision STORM as a step toward a new generation of
spatio-temporal models that integrate fine-grained detail with global coherence, offering a foundation
for more accurate, efficient, and robust climate and Earth system prediction.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors confirm compliance with the ICLR Code of Ethics. This study does not utilize human
participants, private information, or sensitive content. Our work relies entirely on publicly available
datasets and established benchmarks, with no anticipated negative social or environmental conse-
quences. There are no conflicts of interest or external funding sources that might influence the
findings.

REPRODUCIBILITY STATEMENT

We have taken care to ensure that our experiments can be replicated. The architecture and training
details of our model are fully described in Sections 4 and Appendix E. All datasets are publicly
accessible, and the preprocessing steps are documented in Appendix C. Furthermore, we provide
anonymized code and usage instructions as supplementary material to support reproducibility of our
results.

REFERENCES

Ulrich Achatz, M Joan Alexander, Erich Becker, Hye-Yeong Chun, Andreas Dornbrack, Laura Holt,
Riwal Plougonven, Inna Polichtchouk, Kaoru Sato, Aditi Sheshadri, et al. Atmospheric gravity
waves: Processes and parameterization. Journal of the Atmospheric Sciences, 81(2):237-262,
2024.

Santhosh Baboo and Kadar Shereef. An efficient weather forecasting system using artificial neural
network. International journal of environmental science and development, 1(4):321, 2010.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47-55, 2015.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619:533-538, 2023.

Michele Buzzicotti, Benjamin A Storer, Hemant Khatri, Stephen M Griffies, and Hussein Aluie.
Spatio-temporal coarse-graining decomposition of the global ocean geostrophic kinetic energy.
Journal of Advances in Modeling Earth Systems, 15(6):¢2023MS003693, 2023.

Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming Ma,
Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather forecast
beyond 10 days lead. arXiv preprint arXiv:2304.02948, 2023a.

Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. Fuxi: a
cascade machine learning forecasting system for 15-day global weather forecast. npj climate and
atmospheric science, 6(1):190, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations.

Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Chen, Yibo Yan, Qingsong Wen,
Xuming Hu, Kun Wang, et al. Oneforecast: A universal framework for global and regional weather
forecasting. arXiv preprint arXiv:2502.00338, 2025.

Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better video prediction.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
3170-3180, 2022a.

Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan Yeung.
Earthformer: Exploring space-time transformers for earth system forecasting. Advances in Neural
Information Processing Systems, 35:25390-25403, 2022b.

10



Under review as a conference paper at ICLR 2026

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics
and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on
Knowledge and Data Engineering, 34(11):5415-5428, 2022. doi: 10.1109/TKDE.2021.3056502.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Robert Kuligowski and Ana Barros. Localized precipitation forecasts from a numerical weather
prediction model using artificial neural networks. Weather and forecasting, 13(4):1194-1204,
1998.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexan-
der Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. GraphCast:
Learning skillful medium-range global weather forecasting. arXiv, 2022.

Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui
Pan, and Gao Cong. Foundation models for spatio-temporal data science: A tutorial and survey. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.
2, pp. 6063-6073, 2025.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. In ICML, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. FourCast-
Net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv, 2022.

Stephan Rasp, Stephan Hoyer, Alexander Merose, lan Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, et al. Weatherbench
2: A benchmark for the next generation of data-driven global weather models. arXiv preprint
arXiv:2308.15560, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI).
Springer, 2015.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional Istm network: A machine learning approach for precipitation nowcasting. Advances
in neural information processing systems, 28, 2015.

Binwu Wang, Yudong Zhang, Xu Wang, Pengkun Wang, Zhengyang Zhou, Lei Bai, and Yang
Wang. Pattern expansion and consolidation on evolving graphs for continual traffic prediction. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
2223-2232,2023.

Binwu Wang, Pengkun Wang, Yudong Zhang, Xu Wang, Zhengyang Zhou, Lei Bai, and Yang Wang.
Towards dynamic spatial-temporal graph learning: A decoupled perspective. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 9089-9097, 2024a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and

JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024b.

11



Under review as a conference paper at ICLR 2026

Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. PredRNN: Recurrent
neural networks for predictive learning using spatiotemporal LSTMs. In Advances in Neural
Information Processing Systems, pp. 879-888, 2017.

Jonathan Weyn, Dale Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal forecasting
with a large ensemble of deep-learning weather prediction models. Journal of Advances in
Modeling Earth Systems, 13(7), 2021.

Hao Wu, Yuan Gao, Ruiqi Shu, Kun Wang, Ruijian Gou, Chuhan Wu, Xinliang Liu, Juncai He,
Shuhao Cao, Junfeng Fang, Xingjian Shi, Feng Tao, Qi Song, Shengxuan Ji, Yanfei Xiang, Yuze
Sun, Jiahao Li, Fan Xu, Huanshuo Dong, Haixin Wang, Fan Zhang, Penghao Zhao, Xian Wu,
Qingsong Wen, Deliang Chen, and Xiaomeng Huang. Advanced long-term earth system forecasting
by learning the small-scale nature. arXiv preprint arXiv:2505.19432, 2025.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121, 2019.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), 2018.

Yudong Zhang, Binwu Wang, Ziyang Shan, Zhengyang Zhou, and Yang Wang. Cmt-net: A mutual
transition aware framework for taxicab pick-ups and drop-offs co-prediction. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1406-1414, 2022.

Zhengyang Zhou, Qihe Huang, Gengyu Lin, Kuo Yang, LEI BAI and Yang Wang. GReto: Remedying
dynamic graph topology-task discordance via target homophily. In The Eleventh International
Conference on Learning Representations, 2023. URL

12


https://openreview.net/forum?id=8duT3mi_5n
https://openreview.net/forum?id=8duT3mi_5n

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A LLM Usage 14
B Theoretical analysis: why multi-scale modeling helps 14
B.1 Setup and assumptions . . . . . . . ... oL L e e e e e 14
B.2 Generalization bound imporvement . . . . . . . ... ..o 14
B.3 Improved optimization speed regarding convergency . . . ... .. ... ... 15
B.4 Putting pieces together: overall error and sample complexity . . . .. ... .. 15
C More Data Details 16
D More Metric Details 17
E More Implementation Details 17
F Efficiency Analysis 17
G Full Sensitive Analysis 18
H More Details of Ablation Analysis 18
I Forecast Visualization 19
I.1  Mean Sea Level Pressure (MSLP) . . . . .. ... ... ... ... ...... 19
.2 Specific Humidity at 500 hPa (Q500) . . . . ... ... .. ... ....... 20
[.3  Precipitation . . . . . . . . . . e e e e e e 21
4  2-meter Temperature (T2M) . . . . . . . . .. v i i it 22
.5  Temperature at 500 hPa (T500) . . . . . . . ... . o .. 23
1.6 10-meter Zonal Wind (U10) . . . . . . . . . . . . . . . . ... 24
1.7  Zonal Wind at 500 hPa (U500) . . . . . . . . . . . . . .. .. ... ... 25
.8  10-meter Meridional Wind (V10) . . . . . . . . . . . . .. .. ... ...... 26
1.9  Meridional Wind at 500 hPa (V500) . . . .. ... ... ... .. ....... 27
.10 Geopotential Height at 500 hPa (Z500) . . . . . .. .. ... .. .. ...... 28
J  Full short-term forecasting results. 29
K Full long-term forecasting results. 30

13



Under review as a conference paper at ICLR 2026

A LLM USAGE

Following the conference guidelines regarding large language models (LLMs), we disclose that
LLMs were utilized solely to improve sentence clarity and grammatical correctness. All aspects of
conceptual development, experimental methodology, data analysis, and core manuscript content were
independently produced by the authors without LLM assistance

B THEORETICAL ANALYSIS: WHY MULTI-SCALE MODELING HELPS

In this section we present theoretical results that explain why a synergistic cross-scale spatio-temporal
architecture can outperform a single-scale counterpart in (i) statistical generalization (smaller expected
prediction error) and (ii) optimization speed (faster convergence). We adopt a bias—variance decom-
position perspective for generalization, and a condition-number / PL-type argument for optimization.
Proofs are sketched; full technical details follow the argument outlines below.

B.1 SETUP AND ASSUMPTIONS

Let X = RTXCXHXW denote one time-slice grid and consider a target spatio-temporal mapping
fr o RTXOXHXW _ RLXCXHXW that maps T historical frames to L future frames (all variables
vectorized as needed). Denote by D the data distribution and by (X;, Y;)?_; ~ D the training set. We
consider two model classes:@® Single-scale model F;,q1. of effective parameter-dimension d (e.g., a
monolithic spatio-temporal network operating at full resolution). & Multi-scale model F.,,s which

decomposes the prediction into M scale-specific modules with parameter-dimensions dy, . .., ds (so
Zﬁf 1 dm = d or < d depending on parameter sharing). We make standard regularity assumptions:

Assumption B.1 (Decomposability). The target admits a scale decomposition

M
=Y e €Gm,
m=1

where each [}, captures variations at spatial scale m, and G, is the function space for scale m
signals (e.g., fine, medium, or coarse patterns).

Assumption B.2 (Model capacity allocation). Each scale-model class F,, has Rademacher

complexity Ry, (Fm) < pma/ d;l”‘ for constants p,, > 0, while the single-scale class satisfies

SRn (]:single) S P\/g

Assumption B.3 (PL condition for optimization). The empirical loss ﬁ(&) is L-smooth and satisfies
the Polyak—tLojasiewicz (PL) inequality in neighborhoods of interest: there exists . > 0 s.t.

LIVEOI? > n(L0) - 1),

B.2 GENERALIZATION BOUND IMPORVEMENT

We first bound the excess risk (population loss minus Bayes risk) via a bias—variance decomposition
and Rademacher complexity.

Theorem B.1 (Generahzatlon bound imporvement). Assume squared loss and hypotheses above.

Let fq,ngle and fmq = Zm 1 fm be ERM solutions in Fsingle and Fms respectively. Then with
probability at least 1 — 6,

F d log(1/6
E(fungie) < _in ||ff*||2+Bp\/;+O< Og(n/)>

single

approx.

M M
Efu) < inf llo— £ ||2+szmﬁ+o< lg(;/‘”>

m:l m=1

and

multi-scale approx.
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where B > 0 is a universal constant and £ denotes population mean squared error.

Proof sketch. Standard decomposition: population risk = approximation error + estimation error.
Estimation error is controlled by Rademacher complexity; using Assumption 2 we get the stated

p+/d/n (single) and sum of p,, \/d;, /n (multi-scale). The remainder term follows from concentration
(Talagrand / McDiarmid), yielding the 1/log(1/d)/n term. O

Interpretation. If (i) the decomposition is faithful so that each f}, is well-approximated by
Fm (small multi-scale approximation error), and (ii) the per-scale capacities d,,, concentrate (e.g.
d,, < d), then

M
> Vi <V,
m=1

hence the multi-scale estimation term » . pm+/dym /1 can be substantially smaller than p+/d/n,
yielding better generalization. Concretely, if d,, ~ d/M and p,, = p, then

M
> Vem :M,/% =VMd<Vd iff M <1,
m=1

so naive equal partition does not help; however, real atmospheric signals are compressible: coarse
scales require tiny d,,, and only few fine-scale components need larger d,,,, making Y /d,, < Vd
in practice. Thus the bound formalizes a bias-variance tradeoff where multi-scale modeling reduces
variance without materially increasing approximation bias.

B.3 IMPROVED OPTIMIZATION SPEED REGARDING CONVERGENCY

We now sketch how hierarchical (coarse-to-fine) architectures improve optimization by reducing
effective condition numbers and enabling faster gradient-based convergence.

Theorem B.2 (Improved optimization speed regarding convergency). Under Assumption 3 (PL
inequality and L-smoothness) consider gradient descent with step size n < 1/L. Let Kgingle = L/t
denote the condition number for the single-scale parameterization, and let r.,s be the effective
condition number for a multi-scale architecture that first fits coarse parameters and then refines
fine parameters (blockwise parameterization). If the cross-scale coupling operator has spectral gap
v € (0,1), then

Kms S (1 - 'Y) Rsingle

and gradient descent on Fy,s converges linearly as

L(6) — L% < (1 — (1 — )" (L(8o) — L7).

Proof sketch. Block-partition the parameter vector 8 = [Ocoarse, Ofine]- The Hessian H of the empiri-
cal loss can be written in block form; coarse-to-fine structure makes the off-diagonal blocks small
relative to diagonal blocks due to localization (this is the spectral gap 7). Using matrix perturbation
bounds (Weyl-type inequalities) one shows the largest-to-smallest eigenvalue ratio of H is reduced by
factor (1 — ). Under PL, GD attains linear rate with factor 1 — nueg, where peg = p(1 —v). O

Remarks. The spectral-gap condition formalizes the intuition that coarse-scale variables capture
low-frequency, high-energy components and are weakly coupled to many fine-scale modes; explicit
coarse-to-fine parametrization reduces ill-conditioning caused by high-frequency components and
thus accelerates optimization.

B.4 PUTTING PIECES TOGETHER: OVERALL ERROR AND SAMPLE COMPLEXITY

Combining generalization and optimization insights yields a unified statement.

15



Under review as a conference paper at ICLR 2026

Corollary B.3 (Sample-complexity advantage). Suppose the decomposition is faithful and the
optimizer attains an e-accurate empirical minimizer in T (€) iterations (GD linear convergence as
above). Then to achieve population error £ < €, the multi-scale model requires

1, M 2
m=1
samples, while the single-scale model requires
~r 1
Nsingle = O(;pzd) .
IS, Vdm < Vd, then nys < Ningle-

C MORE DATA DETAILS

To provide a more comprehensive description of the experimental setup, we summarize the datasets
used in this work in Table 4. As introduced in the main text, all datasets are derived from the ERAS
reanalysis, covering the period from 1993 to 2021. Specifically, we split the data into 1993-2017
for training, 2018-2019 for validation, and 20202021 for testing. For atmospheric variables, we
include five pressure-level quantities, geopotential (Z), specific humidity (Q), temperature (T), and
the U and V components of wind, each defined on 13 standard pressure levels. For surface variables,
we consider 10-meter wind components (U10M, V10M), 2-meter temperature (T2M), mean sea-level
pressure (MSLP), and accumulated precipitation. Note that in Global- and Continental-level settings,
precipitation is additionally included compared to the original 69 ERAS variables, while in the
Regional-level dataset only near-surface variables (T2M, U10M, V10M) are used. Regarding spatial
coverage, we construct three datasets with different geographical ranges and resolutions: (i) Global-
level: 5.625° resolution with 6-hour temporal frequency; (ii) Continental-level: 1° resolution over
South America (56°S—14°N, 81°W-34°W); and (iii) Regional-level: 0.25° resolution over East Asia
(20°N-28°N, 110°E-126°E). For preprocessing, we standardize each variable using statistics (mean
and standard deviation) computed from the training set only. During inference, model predictions are
rescaled back (de-normalized) to the original physical units to ensure consistency with evaluation
metrics. This normalization scheme improves model stability and comparability across heterogeneous
variables.

Table 4: The data details.

TASK VARIABLE LAYERS SPATIAL TEMPORAL LAT-LON
NAME RESOLUTION FREQUENCY RANGE
GEOPOTENTIAL (Z) 13 5.625° 6H —90°S—90°N, 180°W-180°E
SPECIFIC HUMIDITY (Q) 13 5.625° 6H —90°S—90°N, 180°W-180°E
TEMPERATURE (T) 13 5.625° 6H —90°S-90°N, 180°W-180°E
U COMPONENT OF WIND (U) 13 5.625° 6H —90°S-90°N, 180°W-180°E
GLOBAL V COMPONENT OF WIND (V) 13 5.625° 6H —90°S-90°N, 180°W-180°E
10M U WIND (U10) 1 5.625° 6H —90°S-90°N, 180°W-180°E
10M V WIND (V10) 1 5.625° 6H —90°S-90°N, 180°W-180°E
2M TEMPERATURE (T2M) 1 5.625° 6H —90°S-90°N, 180°W-180°E
MEAN SEA LEVEL PRESSURE (MSLP) 1 5.625° 6H —90°S-90°N, 180°W-180°E
TOTAL PRECIPITATION (PREC) 1 5.625° 6H —90°S-90°N, 180°W-180°E
GEOPOTENTIAL (Z) 13 1.0° 6H 56°S-14°N, 81°W-34°W
SPECIFIC HUMIDITY (Q) 13 1.0° 6H SAME AS ABOVE
TEMPERATURE (T) 13 1.0° 6H SAME AS ABOVE
U COMPONENT OF WIND (U) 13 1.0° 6H SAME AS ABOVE
V COMPONENT OF WIND (V) 13 1.0° 6H SAME AS ABOVE
CONTINENTAL 10M U WIND (U10) 1 1.0° 6H SAME AS ABOVE
10M V WIND (V10) 1 1.0° 6H SAME AS ABOVE
2M TEMPERATURE (T2M) 1 1.0° 6H SAME AS ABOVE
MEAN SEA LEVEL PRESSURE (MSLP) 1 1.0° 6H SAME AS ABOVE
TOTAL PRECIPITATION (PREC) 1 1.0° 6H SAME AS ABOVE
2M TEMPERATURE (T2M) 1 0.25° 6H 20°N-28°N, 110°E-126°E
REGIONAL 10M U WIND (U10) 1 0.25° 6H SAME AS ABOVE
10M V WIND (V10) 1 0.25° 6H SAME AS ABOVE
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D MORE METRIC DETAILS

To evaluate forecasting skill, we follow standard practices in numerical weather prediction and report
latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient (ACC).
Before computing the metrics, model outputs are de-normalized back to physical units for consistency
with observations.

| & L AW
RMSE:ZZ sza(h) (Yehw — Tenw), (11)

. 12)

where a(h) = cos(h) / (L S°7_, cos(R’)) compensates for unequal grid areas across latitudes. The

anomaly terms are defined as ¢ = Yonyw — C and Tohw = Zonw — C, with C' = ﬁ Yt how Ythw
representing the climatological mean.

RMSE reflects the average magnitude of prediction errors while accounting for the Earth’s geometry.
ACC instead measures the similarity between predicted and observed anomalies, emphasizing the
model’s ability to capture dynamical patterns rather than absolute values. Together, these two metrics
provide a balanced view of both error magnitude and anomaly-tracking skill.

E MORE IMPLEMENTATION DETAILS

All experiments are conducted on a server equipped with 8 NVIDIA A100 GPUs . Our implementation
of STORM is based on PyTorch 2.1.0 (Paszke et al., 2019). For optimization, we adopt the Adam
optimizer (Kingma, 2014) with a learning rate of 1 x 10~3 and mean squared error (L2) as the
training objective. Each model is trained for 100 epochs with early stopping based on the validation
loss. The multi-scale hierarchy is constructed with M = 3 levels, and the hidden dimension is fixed
to D = 256 across all experiments. The Scale-Bridging Spatio-Temporal Encoder is composed
of N = 3 stacked layers. To ensure fairness, all baselines are re-trained under the same data
preprocessing, optimization, and training protocols. The model is trained using the mean squared
error (MSE) loss between predicted and observed atmospheric states, which aligns with the RMSE
evaluation metric and encourages accurate recovery of both large-scale patterns and fine-grained
variations.

F EFFICIENCY ANALYSIS

As shown in Table 5, STORM delivers a substantially better efficiency—accuracy trade-off compared
with existing data-driven weather models. Despite having only 15.8M parameters, STORM achieves
the lowest inference latency (0.87s per 100 samples) and competitive FLOPs, while also attaining
the highest prediction accuracy (ACC = 0.984). In contrast, large-scale models such as Pangu and
Fuxi incur significantly higher computational and memory costs but still fall short in accuracy. These
results highlight that STORM’s lightweight architecture effectively preserves predictive skill while
enabling fast and resource-efficient forecasting.

Table 5: Efficiency comparison across representative data-driven weather models.

Metric | STORM | Pangu | FCN | Fuxi

Inference Time | (Seconds / 100 Samples) 0.87 5.11 6.99 19.37
Peak GPU Memory | (MB, Batch Size=1) | 729.22 | 408.75 | 265.95 | 2533.25
Parameters | (M) 15.77 97.48 64.65 661.01

FLOPs | (GFLOPs) 84.59 91.26 | 58.50 | 302.46

ACC 1 0.984 0.952 | 0.933 0.950
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G FULL SENSITIVE ANALYSIS

Table 5 summarizes the scaling behavior of STORM under varying branch numbers and model
widths. Increasing either the branch depth or dy04e1 consistently improves accuracy, with ACC rising
from 0.941 (1 branch, 64 hidden units) to 0.988 (5 branches, 256—512 units), while RMSE steadily
decreases. Notably, these gains come with only moderate growth in FLOPs and inference time,
indicating that STORM’s multi-branch temporal encoder scales efficiently. The results highlight
a clear efficiency—accuracy trend: larger branches yield stronger predictive skill without incurring
prohibitive computational cost.

Table 6: Scaling and efficiency analysis of STORM across different branch configurations.

Branch |d_model| Total Params | Temp. Enc. Params | FLOPs| Time | Max Mem.| ACC |RMSE

1 64 0.32 2.96E-04 3.17 10.28 13.75 ]0.941|16.415
1 128 1.20 2.96E-04 11.04 | 0.30 17.44 10.951|16.323
1 256 4.59 2.96E-04 40.88 |0.30 30.01 |0.954|16.267
1 512 17.96 2.96E-04 156.92 | 0.30 82.59 |0.958/|16.177
2 64 0.64 5.92E-04 4.46 |0.56 1497 ]0.963|16.136
2 128 2.45 5.92E-04 16.00 | 0.56 2443 10.966|16.115
2 256 9.59 5.92E-04 60.32 | 0.56 51.66 [0.971]16.093
2 512 37.92 5.92E-04 233.92|0.59 | 164.49 (0.974|15.983
3 64 1.03 8.88E-04 6.05 |0.86 19.48 10.977|15.913
3 128 4.00 8.88E-04 22.16 | 0.85 30.35 |0.981|15.854
3 256 15.77 8.88E-04 84.59 | 0.87 75.48 10.984]15.809
3 512 62.60 8.88E-04 330.2510.87 | 257.33 |0.985|15.798
4 64 1.46 1.18E-03 7.44 | 1.15 20.31 [0.979]15.841
4 128 5.70 1.18E-03 27.61 | 1.16 37.27 |0.983|15.813
4 256 22.54 1.18E-03 106.12 | 1.17 | 101.06 |0.987|15.769
4 512 89.64 1.18E-03 415.84|1.20 | 360.60 |0.986|15.784
5 64 1.96 1.48E-03 823 | 1.49| 33552 [0.983|15.808
5 128 7.69 1.48E-03 30.62 | 1.52| 361.66 [0.984|15.796
5 256 30.49 1.48E-03 117.84 | 1.51 | 44831 [0.988|15.757
5 512 121.40 1.48E-03 462.11|1.53 | 908.50 |0.988|15.716

H MORE DETAILS OF ABLATION ANALYSIS

Tables 7 and 8 highlight the contribution of message passing and scale heterogeneity in STORM’s
multi-branch architecture. First, enabling message passing consistently boosts performance across all
branch counts, with ACC improvements of 0.6—1.0% and reduced RMSE, indicating more effective
cross-scale information flow. Second, branches configured with different temporal scales significantly
outperform those using identical scales, showing clear gains that grow with larger branch numbers.
These results confirm that both cross-scale communication and scale diversity are essential for
extracting complementary temporal patterns and achieving stronger predictive skill.

Table 7: Ablation on message passing across multi-scale branches.

Branch (Scale Numbers)| ACC (with MP) RMSE (with MP)| ACC (without MP) RMSE (without MP)

2 0.971 16.093 0.963 16.145
3 0.984 15.809 0.976 15.948
4 0.987 15.769 0.981 15.886
5 0.988 15.757 0.980 16.879

Table 8: Effect of different vs same multi-branch designs.

Scale Number \ ACC (Diff Scale) RMSE (Diff) \ ACC (Same Scale) RMSE (Same)

2 0.971 16.093 0.939 16.547
3 0.984 15.809 0.948 16.382
4 0.987 15.769 0.954 16.285
5 0.988 15.757 0.957 16.179
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I FORECAST VISUALIZATION

I.1 MEAN SEA LEVEL PRESSURE (MSLP)
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Figure 8: 24-hour forecast results of different models for mean sea level pressure (MSLP).
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1.2 SPECIFIC HUMIDITY AT 500 HPA (Q500)
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Figure 9: 24-hour forecast results of different models for 500 hPa specific humidity (Q500).
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1.3 PRECIPITATION
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Figure 10: 24-hour precipitation forecast results of different models.
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1.4 2-METER TEMPERATURE (T2M)
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Figure 11: 24-hour forecast results of different models for 2-meter temperature (T2M).
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1.5 TEMPERATURE AT 500 HPA (T500)
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Figure 12: 24-hour forecast results of different models for 500 hPa temperature (T500).
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1.6 10-METER ZONAL WIND (U10)
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Figure 13: 24-hour forecast results of different models for 10-meter zonal wind (U10).
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1.7 ZONAL WIND AT 500 HPA (U500)
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Figure 14: 24-hour forecast results of different models for 500 hPa zonal wind (U500).
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1.8 10-METER MERIDIONAL WIND (V10)
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Figure 15: 24-hour forecast results of different models for 10-meter meridional wind (V10).
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1.9 MERIDIONAL WIND AT 500 HPA (V500)
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Figure 16: 24-hour forecast results of different models for 500 hPa meridional wind (V500).
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1.10 GEOPOTENTIAL HEIGHT AT 500 HPA (Z500)
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Figure 17: 24-hour forecast results of different models for 500 hPa geopotential height (Z500).

28



Under review as a conference paper at ICLR 2026

J  FULL SHORT-TERM FORECASTING RESULTS.

Table 9: Quantitative comparison of short-term (up to 24 hours) global weather forecasting perfor-
mance.

Metric RMSE ACC
Variable‘Hours‘ Ours Triton Pangu FCN Fuxi SimVP UNet |Ours Triton Pangu FCN Fuxi SimVP UNet

6h | 0.564 0.718 0.787 1430 1.191 1.335 1.337 [0.999 0.999 0.998 0.995 0.996 0.996 0.995
TOM 12h | 0.653 0.836 1.075 1.545 1308 1.332 2.208 |0.999 0.998 0.997 0.994 0.996 0.996 0.987
18h | 0.705 0929 1.219 1.632 1415 1341 2.789 |0.999 0.998 0.996 0.993 0.995 0.996 0.982
24h | 0.777 1.010 1.342 1.708 1.513 1363 3.447 [0.998 0.997 0.995 0.993 0.994 0.995 0.981
6h 0.495 0598 0.775 1.169 0994 1.279 0.955 |0.995 0.993 0.988 0.973 0.981 0.968 0.981
Ul1o 12h | 0.608 0.749 1209 1376 1200 1.359 1.437 [0.993 0.989 0.972 0.963 0.972 0.964 0.961
18h | 0.719 0.894 1.590 1.646 1423 1.497 2.032 |0.990 0.985 0.951 0.947 0.961 0.956 0.942
24h | 0.853 1.034 1933 1926 1.637 1.659 3.462 [0.986 0.979 0.927 0.927 0.948 0.946 0.924
6h | 0.520 0.629 0834 1274 1.064 1378 1.012 |0.992 0.988 0.979 0.950 0.965 0.941 0.967
V10 12h | 0.647 0.796 1304 1492 1268 1.467 1.491 [0.987 0.981 0.947 0.930 0.950 0.933 0.933
18h | 0.768 0950 1.713 1.782 1490 1.608 1.994 |0.982 0.973 0.908 0.899 0.932 0.919 0.898
24h | 0917 1.098 2.082 2.084 1.703 1.772 2971 |0.974 0.963 0.862 0.861 0.911 0.900 0.863
6h |4.2E-04 4.8E-04 6.1E-04 9.2E-04 7.4E-04 9.2E-04 6.7E-04|0.955 0.941 0.906 0.763 0.856 0.768 0.885
Prec 12h |4.9E-04 5.8E-04 7.9E-04 9.5E-04 8.2E-04 9.3E-04 8.9E-04|0.938 0.913 0.833 0.748 0.819 0.758 0.792
18h |5.9E-04 7.0E-04 9.3E-04 1.0E-03 9.2E-04 9.7E-04 1.1E-03|0.911 0.872 0.765 0.717 0.768 0.737 0.719
24h |6.6E-04 7.8E-04 1.0E-03 1.1E-03 1.0E-03 1.0E-03 1.4E-03/0.886 0.839 0.705 0.682 0.722 0.713 0.663
6h | 46.808 60.493 101.678 147.757 112.764 154.169 113.815[0.999 0.999 0.996 0.991 0.995 0.990 0.994
MSLP 12h | 61.834 82.905 179.577 186.644 148.871 168.679 198.949/0.998 0.997 0.987 0.986 0.991 0.989 0.984
18h | 78.448 104.797 255.410 238.317 188.986 194.126 289.322{0.998 0.996 0.973 0.977 0.986 0.985 0.971
24h | 99.948 126.514 326.712 295.758 229.717 226.092 427.862|0.996 0.994 0.956 0.964 0.979 0.979 0.956
6h 1.384 1.835 1.879 3.540 2953 3553 2.503 |0.996 0.994 0.993 0.976 0.983 0.976 0.987
U500 12h | 1.713 2287 2972 4.148 3.612 3.789 3.880 {0.994 0.990 0.983 0.967 0.975 0.973 0.971
18h | 2.041 2725 3.945 4940 4303 4204 5.158 |0.992 0.986 0.970 0.953 0.965 0.966 0.955
24h | 2472 3.151 4845 5802 4980 4.719 7.166 [0.988 0.981 0.955 0.935 0.953 0.957 0.939
6h 1.449 1873 2.036 3.765 3.155 3.823 2.868 |0.992 0.987 0.985 0.947 0.963 0.945 0.969
V500 12h | 1.835 2367 3.228 4.486 3.817 4.093 4.259 |0.987 0.979 0.961 0.924 0.946 0.936 0.933
18h | 2.221 2.843 4290 5418 4.500 4.530 5.508 [0.982 0.970 0.930 0.887 0.925 0.922 0.897
24h | 2.714 3305 5284 6414 5169 5.073 7.363 [0.972 0.960 0.893 0.841 0.902 0.901 0.859
6h | 0376 0.518 0.513 1.087 0903 1.189 0.679 [0.999 0.998 0.998 0.993 0.995 0.992 0.997
T500 12h | 0.478 0.646 0.802 1.177 1.036 1.210 1.087 |0.999 0.998 0.996 0.992 0.994 0.991 0.993
18h | 0.566 0.760 1.024 1.300 1.182 1.255 1.410 {0.998 0.997 0.994 0.990 0.992 0.991 0.988
24h | 0.675 0.861 1.207 1.441 1321 1313 1.773 [0.997 0.996 0.991 0.988 0.990 0.990 0.985
6h 51.5 684 102.6 189.0 1423 1864 131.0 [1.000 1.000 1.000 0.999 0.999 0.999 0.999
7500 12h | 66.3 934 184.6 2236 1855 2009 2334 [1.000 1.000 0.999 0.999 0.999 0.999 0.998
18h | 86.5 1225 267.1 2899 2385 231.9 348.0 |1.000 1.000 0.998 0.997 0.998 0.998 0.996
24h | 1149 1533 3485 3715 2948 2746 520.8 [1.000 0.999 0.996 0.996 0.997 0.998 0.995
6h |2.8E-05 3.7E-05 3.4E-05 6.5E-05 5.8E-05 7.5E-05 4.3E-05[0.988 0.979 0.983 0.936 0.949 0.914 0.972
Q500 12h |3.7E-05 4.6E-05 5.2E-05 7.0E-05 6.5E-05 7.5E-05 6.5E-05{0.980 0.968 0.960 0.926 0.935 0.913 0.937
18h |4.3E-05 5.4E-05 6.4E-05 7.5E-05 7.3E-05 7.7E-05 8.1E-05|0.972 0.956 0.937 0.912 0.918 0.908 0.906
24h |4.9E-05 6.0E-05 7.4E-05 8.1E-05 8.0E-05 7.9E-05 1.0E-04{0.963 0.945 0.916 0.897 0.900 0.902 0.881

29



Under review as a conference paper at ICLR 2026

K FULL LONG-TERM FORECASTING RESULTS.

Table 10: Quantitative comparison of long-term (7—10 days) global weather forecasting performance.

Metric RMSE ACC

Variable‘Days Ours Triton Pangu FCN Fuxi SimVP  UNet ‘Ours Triton Pangu FCN Fuxi SimVP UNet
7d 2293 2934 3.423 3.902 3.294 2.938 4.051 [0.987 0.974 0.963 0.975 0.973 0.979 0.948

ToM 8d 2516 3.263 3.574 4.104 3.442 3.100 4.358 10.985 0.968 0.958 0.971 0.970 0.977 0.940
9d 2708  3.549 3.712 4.288 3.574 3.248 4.630 [0.982 0.961 0.952 0.969 0.968 0.974 0.933

10d  2.865  3.799 3.821 4.430 3.689 3.384 4.867 [0.981 0.956 0.948 0.967 0.966 0.972 0.928

7d 3485 3.945 4.959 5.102 4.528 3.766 5.507 10.769 0.700 0.663 0.645 0.608 0.707 0.606

Ul0 8d  3.773 4192 5.088 5.301 4.660 3.872 5.753 10.730 0.662 0.627 0.614 0.582 0.689 0.567
9d 3954 4397 5.192 5.464 4.762 3.997 5.953 10.697 0.631 0.597 0.588 0.561 0.675 0.541

10d  4.013 4.548 5.268 5.583 4.834 4.174 6.099 [0.670 0.606 0.572 0.568 0.544 0.664 0.524

7d 3787  4.205 4.961 5.364 4.652 3.982 5.757 0.559 0.451 0.392 0.358 0.326 0.427 0.306

V10 8d  4.089 4.445 5.069 5.514 4.764 4.098 5.986 |0.486 0.3838 0.342 0.310 0.291 0.391 0.271
9d 4.154 4.620 5.150 5.649 4.853 4.335 6.158 0.426 0.339 0.299 0.274 0.264 0.366 0.244

10d 4201  4.747 5.201 5.749 4911 4.500 6.277 0.383 0.302 0.266 0.247 0.245 0.349 0.225

7d 1.3E-03 1.9E-03 1.7E-03 1.5E-03 1.6E-03 1.4E-03 2.2E-03 |0.492 0.354 0.329 0.259 0.271 0.396 0.242

Prec 8d 1.4E-03 2.1E-03 1.8E-03 1.6E-03 1.6E-03 1.5E-03 2.3E-03 |0.446 0.316 0.297 0.231 0.249 0.384 0.211
9d 1.4E-03 2.2E-03 1.8E-03 1.6E-03 1.7E-03 1.5E-03 2.3E-03 |0.410 0.287 0.272 0.210 0.233 0.376 0.190

10d 1.4E-03 23E-03 1.8E-03 1.6E-03 1.7E-03 1.6E-03 2.4E-03 |0.381 0.262 0.252 0.193 0.220 0.370 0.173

7d  640.6 7314 10750  969.2 901.1 741.8  1067.9 |0.835 0.779 0.785 0.764 0.680 0.770 0.733

MSLP 8d  713.0 7955 11145 10249  940.6 775.8  1128.5 0.796 0.738 0.754 0.730 0.650 0.748 0.695
9d 7717 8479 11450 1069.5  969.0 801.4  1181.0 |0.762 0.706 0.725 0.701 0.627 0.730 0.660

10d 8162 887.7 11669 1101.8  989.2 820.0  1220.0 |0.734 0.678 0.700 0.678 0.608 0.716 0.630

7d  5.661 7.696 10.090  8.300 9.408 7.572  11.118 |0.915 0.839 0.842 0.833 0.782 0.848 0.796

U925 8d  6.320 8590 10.607  8.936 9.972 7.972  12.066 |0.894 0.802 0.816 0.808 0.756 0.832 0.763
od 6911 9354 11.050 9.477 10426 8313  12.659 |0.874 0.769 0.789 0.779 0.734 0.819 0.730

10d 7.436 10.031 11.430 9.921 10.803  8.611 13.103 |0.854 0.739 0.765 0.752 0.716 0.807 0.699

7d  5.674  7.095 9.228 8.929 8.310 6.765  10.013 |0.643 0.485 0.395 0.376 0.289 0.416 0.300

V925 8d 6.344 7.733 9.602 9.466 8.704 7.061  10.684 |0.556 0.397 0.323 0.307 0.226 0.355 0.223
9d 6923 8210 9.892 9.830 8.981 7.294  11.174 |0.474 0.327 0.263 0.250 0.183 0.305 0.166

10d 7.412 8.603 10.105 10.198  9.182 7473 11.560 |0.402 0.268 0.214 0.204 0.151 0.266 0.131

7d 2420 3.251 4.015 3.496 4.163 3.333 4.872 [0.975 0.952 0.944 0.949 0.925 0.952 0.920

T925 8d  2.690 3.585 4232 3777 4421 3.504 5.204 0.969 0.942 0.935 0.942 0.916 0.947 0.908
9d 2932 3.832 4.420 4.022 4.642 3.649 5.523 10.963 0.932 0.926 0.934 0.908 0.943 0.896

10d  3.145 4.152 4.566 4223 4.827 3.774 5.724 10.957 0.922 0.917 0.926 0.901 0.939 0.884

7d 3.0E-07 4.7E-07 4.2E-07 4.3E-07 5.2E-07 3.8E-07 5.8E-07 |0.782 0.611 0.607 0.620 0.567 0.653 0.565

7925 8d 3.2E-07 5.2E-07 4.4E-07 4.6E-07 5.5E-07 3.9E-07 6.3E-07 |0.760 0.573 0.571 0.586 0.544 0.637 0.524
9d 3.3E-07 5.6E-07 4.6E-07 4.8E-07 5.7E-07 4.1E-07 6.6E-07 |0.738 0.537 0.537 0.554 0.524 0.622 0.504

10d 3.5E-07 6.0E-07 4.8E-07 5.0E-07 5.8E-07 4.2E-07 6.8E-07 [0.717 0.502 0.509 0.527 0.506 0.609 0.482

7d 673.038 871.088 1311.785 836.431 1172.687 989.917 1394.336|0.987 0.973 0.966 0.973 0.966 0.975 0.947

Q925 8d 773.302 999.146 1391.247 928.037 1270.395 1067.484 1499.221[0.983 0.964 0.958 0.965 0.960 0.972 0.938
9d 863.541 1113.102 1459.822 1017.677 1351.076 1135.576 1591.308|0.979 0.955 0.951 0.958 0.956 0.969 0.931

10d 943.733 1214.456 1513.909 1093.027 1422.259 1196.480 1666.658(0.975 0.946 0.946 0.954 0.951 0.966 0.926
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