

000 STORM: SYNERGISTIC CROSS-SCALE SPATIO- 001 TEMPORAL MODELING FOR WEATHER FORECASTING 002

003 **Anonymous authors**
004

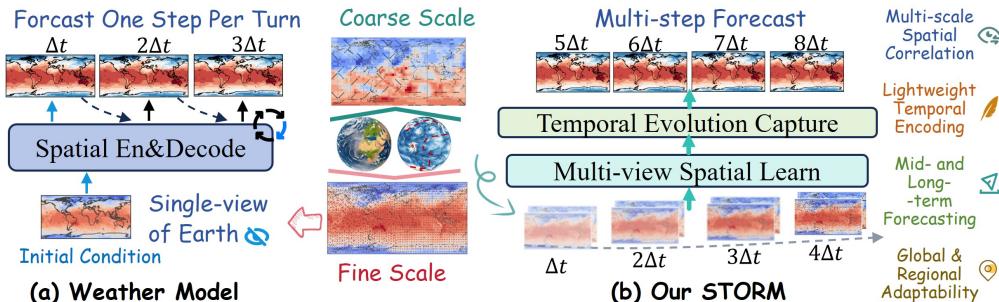
005 Paper under double-blind review
006

007 ABSTRACT 008

009 Accurate weather forecasting is crucial for climate research, disaster mitigation,
010 and societal planning. Despite recent progress with deep learning, global atmo-
011 pheric data remain uniquely challenging since weather dynamics evolve across
012 heterogeneous spatial and temporal scales ranging from planetary circulations to
013 localized phenomena. Capturing such cross-scale interactions within a unified
014 framework remains an open problem. To address this gap, we propose **STORM**, a
015 synergistic cross-scale spatio-temporal model that disentangles atmospheric var-
016 iations into multiple scales to uncover scale-specific dependencies. In addition,
017 it enables coherent forecasting across multiple resolutions, maintaining consis-
018 tent temporal evolution. Experiments on benchmark datasets demonstrate that
019 **STORM** consistently delivers superior performance across both global and regional
020 settings, as well as for short- and long-term forecasts. The code is available at
021 https://anonymous.4open.science/r/STORM_2025.
022

023 1 INTRODUCTION 024

025 Accurate weather forecasting plays a pivotal role in climate research, disaster mitigation, and support-
026 ing decision-making in agriculture, energy, and public safety (Kuligowski & Barros, 1998; Baboo &
027 Shereef, 2010; Lam et al., 2022; Gao et al., 2025). Traditional Numerical Weather Prediction (NWP)
028 systems (Bauer et al., 2015) are grounded in the numerical solution of atmospheric dynamics (Buzzi-
029 cotti et al., 2023), ensuring physical consistency across scales (Achatz et al., 2024). However, with the
030 rapid growth of observational data and the demand for high-resolution, long-horizon forecasts, NWP
031 approaches are increasingly constrained by high computational costs and difficulties in leveraging
032 data-driven knowledge at scale (Rasp et al., 2023). Deep learning (DL) has recently emerged as a
033 promising paradigm for spatio-temporal forecasting (Yu et al., 2018; Wu et al., 2019; Guo et al.,
034 2022; Wang et al., 2024a). Early efforts, such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang
035 et al., 2017), demonstrated the potential of neural architectures for regional precipitation prediction.
036 More recent large-scale weather models, such as Pangu-Weather (Bi et al., 2023), GraphCast (Lam
037 et al., 2022), and FourCastNet (Pathak et al., 2022), have achieved impressive advances in global
038 forecasting and even in predicting extreme events (Chen et al., 2023b). Despite these successes,
039 current DL-based approaches still face several critical limitations: **1 Multi-scale heterogeneity.**
040 Global atmospheric circulation evolves at coarse scales, while regional variability emerges at finer
041 scales. Balancing these dynamics within a single model remains challenging (Zhou et al., 2023).
042



043
044 Figure 1: Comparison of main stream weather forecasting model and our STORM.
045
046
047
048
049
050
051
052
053

054 **② Diverse temporal evolution.** Distinct scales exhibit different temporal dynamics, and existing
 055 models struggle to learn coherent cross-scale evolution, often leading to degraded performance in
 056 long-term forecasts (Wang et al., 2024b). **③ Weak cross-scale interaction.** Most methods process
 057 different spatial or temporal scales independently, overlooking their complementary roles and the
 058 synergistic effects across scales (Huang et al., 2024).

059 To address these challenges, we propose **STORM**, a synergistic cross-scale spatio-temporal method
 060 for accurate weather **forecasting**. As shown in Figure 1, STORM explicitly disentangles atmospheric
 061 variations across fine-to-coarse resolutions and integrates them via a cross-scale collaboration mecha-
 062 nism with temporal evolution learning. This design enables the model to capture global circulation
 063 patterns while preserving local high-frequency details, thereby enhancing both short- and long-term
 064 predictive skill. Through extensive experiments on benchmark meteorological datasets, we demon-
 065 strate that STORM achieves state-of-the-art forecasting performance. Our main contributions are
 066 summarized as follows:

- 067 • To address the challenge scale coupling in atmospheric data, we propose the first spatio-
 068 temporal modeling framework for weather forecasting. In particular, (i) it emphasizes
 069 cross-scale spatial learning to capture both unique local patterns and shared dependencies
 070 across different spatial resolutions, and (ii) it focuses on multi-step temporal evolution,
 071 rather than merely learning a single-step mapping from past to future states.
- 072 • We introduce STORM, a unified spatio-temporal framework for weather forecasting. It
 073 comprises (i) a *Hierarchical Earth Embedder* to build multi-resolution representations,
 074 (ii) a *Scale-Bridging Spatio-Temporal Encoder* to jointly model temporal evolution and
 075 spatial interactions across scales, and (iii) a *Level-Aligned Forecasting Decoder* to generate
 076 coherent multi-scale future predictions, enabling accurate decomposition, integration, and
 077 reconstruction of atmospheric dynamics.
- 078 • Extensive experiments on ERA5 datasets at multiple spatial resolutions (5.625° , 1° , and
 079 0.25°) show that STORM consistently outperforms existing baselines across both global and
 080 regional domains. The framework demonstrates superior accuracy for short-term (hours)
 081 as well as long-term (several days) forecasts, effectively capturing fine-scale local patterns,
 082 medium-scale regional structures, and large-scale planetary circulations.

083 2 RELATED WORK

085 **Global Weather Forecasting** Global weather forecasting has seen rapid progress with the adoption
 086 of deep learning models Weyn et al. (2021); Nguyen et al. (2023). FourCastNet (Pathak et al.,
 087 2022), built upon Fourier neural operators, achieves forecasts comparable to numerical methods
 088 like IFS while being orders of magnitude faster. Pangu-Weather (Bi et al., 2023), leveraging Swin
 089 Transformers with earth-specific location embeddings, surpasses NWP baselines and demonstrates
 090 strong scalability. GraphCast (Lam et al., 2022) advances further by introducing message-passing
 091 networks to efficiently capture global dependencies and improve accuracy. FuXi (Chen et al., 2023b)
 092 extends the forecasting horizon, delivering 15-day predictions at skill levels comparable to ECMWF
 093 operational systems. FengWu (Chen et al., 2023a) integrates multi information flow, enabling
 094 improved representation of different atmospheric dynamics. Despite these advances, most existing
 095 models are primarily designed to learn a mapping from the current state to the next-step state, which
 096 limits their ability to capture long-range temporal evolution and synergistic cross-scale interactions.

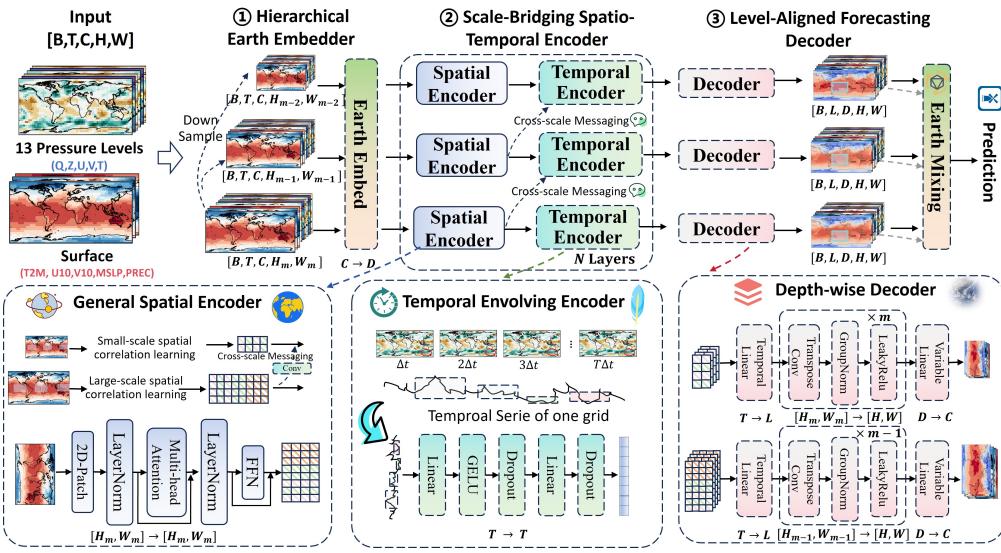
097 **Spatio-Temporal Modeling** Recent deep learning approaches for spatio-temporal modeling mainly
 098 focus on two data forms: *graph-structured* and *grid-structured* data (Liang et al., 2025). While graph-
 099 based methods have also been explored for irregular domains (Zhang et al., 2022; Wang et al., 2023;
 100 2024a), grid-based modeling remains particularly suitable for global-scale atmospheric data due to its
 101 structured nature. Early approaches such as ConvLSTM (Shi et al., 2015) and PredRNN (Wang et al.,
 102 2017) explicitly model temporal dependencies through recurrent connections, achieving promising
 103 results on precipitation nowcasting. To improve efficiency, SimVP (Gao et al., 2022a) replaces
 104 recurrent structures with pure convolutional operators, demonstrating competitive performance on
 105 benchmark sequence modeling tasks. More recently, Transformer-based architectures have been
 106 introduced, with models such as Earthformer (Gao et al., 2022b) leveraging attention mechanisms on
 107 gridded climate data to enhance long-range spatio-temporal dependencies. However, these models
 108 are primarily designed as general-purpose spatio-temporal learners and lack specialized adaptations
 109 to the unique multi-scale dynamics of weather and climate systems.

108 3 PROBLEM DEFINITION

110 In this study, we formulate weather forecasting as a multi-step spatiotemporal forecasting problem. At
 111 each time step t , the meteorological state consists of surface variables \mathbf{S}_t and atmospheric variables \mathbf{A}_t
 112 across 13 pressure levels. We concatenate them along the channel dimension to form the combined
 113 input: $\mathbf{X}_t = [\mathbf{S}_t, \mathbf{A}_t] \in \mathbb{R}^{H \times W \times C}$, where $H \times W$ is the number of spatial grid locations, and
 114 $C = C_s + C_a$ is the total number of variables, with C_s and C_a denoting the numbers of surface
 115 and atmospheric variables, respectively. Our formulation is based on a history of T steps to directly
 116 forecast the next L steps. Specifically, given historical inputs $\mathbf{X}_{t-T+1:t}$, the model predicts the future
 117 $\hat{\mathbf{X}}_{t+1:t+L} = \text{Model}(\mathbf{X}_{t-T+1:t}; \Theta)$, where Θ denotes the model parameters. To support ultra-long
 118 forecasting horizons (far beyond L), we adopt a recursive rollout strategy. After generating the first
 119 L predictions, the most recent T predicted states are fed back as inputs to produce the next block
 120 of L forecasts, and this process is repeated. This block-wise multi-step forecasting significantly
 121 alleviates the error accumulation typical of purely autoregressive one-step methods, enabling stable
 122 and accurate long-horizon predictions.

123 4 METHODS

124 As illustrated in Fig. 2, we introduce STORM, a unified framework for multi-scale spatio-temporal
 125 forecasting. The design of STORM is motivated by the intrinsic hierarchical nature of atmospheric
 126 dynamics, where large-scale circulations and small-scale local processes interact across different
 127 temporal horizons. To capture such complex dependencies, STORM consists of three key com-
 128 ponents: (i) **Hierarchical Earth Embedder** that progressively downsamples raw observations to
 129 construct multi-resolution representations, (ii) **Scale-bridging Spatio-temporal Encoder** that jointly
 130 models temporal evolution and spatial interactions while enabling information propagation from
 131 fine- to coarse-grained levels, and (iii) **Level-Aligned Forecasting Decoder** that projects multi-scale
 132 representations into future prediction through depth-specific transposed convolutions. Together, these
 133 components allow STORM to effectively decompose, bridge, and reconstruct atmospheric dynamics
 134 across scales for accurate weather forecasting.



155 Figure 2: Illustration of the multi-scale collaborative meteorological forecasting model.

158 4.1 HIERARCHICAL EARTH EMBEDDER

160 Earth observation data inherently exhibit multi-scale characteristics: coarse scales capture large-scale
 161 circulation patterns, while fine scales reflect local variations and detailed structures. To effectively
 162 leverage information across these scales, we propose the *Hierarchical Earth Embedder* for multi-scale

embedding of global meteorological features. Given input data $\mathbf{X} = [\mathbf{S}, \mathbf{A}] \in \mathbb{R}^{T \times H \times W \times C}$, where T denotes the historical length, C represents the total number of surface and atmospheric variables, and $H \times W$ defines a fine-grained global grid, the data contains rich local details but makes it challenging to directly capture coarse-scale circulation and large-scale dependencies. To address this, we adopt a progressive, layer-wise downsampling strategy for multi-scale modeling and embedding.

First, a 3×3 spatial convolution is applied to the original fine-grained input to obtain the initial embedding $\mathbf{H}_0 \in \mathbb{R}^{T \times H \times W \times D}$, where D is the hidden embedding dimension. This step allows the model to learn localized spatial representations while embedding the raw data. Subsequently, a series of strided convolutional layers with stride 2 are applied to progressively downsample the embeddings and capture increasingly coarser spatial structures:

$$\mathbf{H}_m = \text{LeakyReLU}(\text{GroupNorm}(\text{Conv2d}(\mathbf{H}_{m-1}; \text{kernel} = 3, \text{stride} = 2))), \quad (1)$$

where LeakyReLU denotes the activation function and GroupNorm normalizes feature channels to improve training stability and convergence.

The resulting multi-scale embeddings $\mathcal{H} = \{\mathbf{H}_0, \mathbf{H}_1, \mathbf{H}_2, \dots, \mathbf{H}_M\}$, where $\mathbf{H}_0 \in \mathbb{R}^{T \times \frac{H}{2^0} \times \frac{W}{2^0} \times D}$ retains fine-grained local representations and $\mathbf{H}_M \in \mathbb{R}^{T \times \frac{H}{2^M} \times \frac{W}{2^M} \times D}$ encodes coarse-scale global structures, capture multi-scale spatio-temporal features. These embeddings are then fed into the *Scale-bridging Spatio-Temporal Encoder*.

4.2 SCALE-BRIDGING SPATIO-TEMPORAL ENCODER

After obtaining the multi-scale Earth representations, we design a scale-bridging spatio-temporal encoder to jointly capture spatial dependencies, temporal dynamics, and inter-scale interactions. Unlike traditional meteorological models that often emphasize either temporal or spatial aspects in isolation, our encoder integrates both perspectives while enabling information flow across scales, which is critical for representing hierarchical atmospheric processes.

Spatial encoding. Given multi-scale features \mathcal{H} , each level is first processed by an independent spatial encoder inspired by the Vision Transformer (Dosovitskiy et al.) structure. Specifically, for the m -th scale and the n -th encoder layer, we perform 2D patch embedding, followed by multi-head self-attention and feed-forward transformations:

$$\mathbf{H}_m^{s'(n)} = \text{LayerNorm}(\text{Patch2D}(\mathbf{H}_m^{(n)})) + \text{MHA}(\text{LayerNorm}(\text{Patch2D}(\mathbf{H}_m^{(n)}))), \quad (2)$$

$$\mathbf{H}_m^{s(n)} = \text{DePatch2D}(\text{LayerNorm}(\mathbf{H}_m^{s'(n)}) + \text{FFN}(\text{LayerNorm}(\mathbf{H}_m^{s'(n)}))), \quad (3)$$

where Patch2D partitions the grid of size $\frac{H}{2^m} \times \frac{W}{2^m}$ into (P_1, P_2) patches, producing $\frac{H \times W}{P_1 \times P_2}$ tokens, and DePatch2D restores the tokenized representation back to its grid structure. This operation yields the spatial encoding $\mathbf{H}_m^{s(n)} \in \mathbb{R}^{T \times \frac{H}{2^m} \times \frac{W}{2^m} \times D}$, which captures scale-specific meteorological spatial dependencies.

Cross-scale message passing. To enhance coherence between adjacent scales, we introduce a cross-scale messaging mechanism. Information from the finer resolution is downsampled and injected into the coarser scale, facilitating hierarchical knowledge transfer:

$$\mathbf{H}_m^{(n)} = \text{CrossScaleMessaging}(\mathbf{H}_{m-1}^{s(n)}) + \mathbf{H}_m^{s(n)}. \quad (4)$$

Here, CrossScaleMessaging is implemented as a stride-2 convolution, which aligns the resolution of $\mathbf{H}_{m-1}^{s(n)}$ with $\mathbf{H}_m^{s(n)}$. This design enables the encoder to integrate localized fine-grained patterns into broader global representations, crucial for multi-scale weather forecasting.

Temporal encoding. Finally, we model the temporal evolution of the cross-scale features $\mathbf{H}_m^{c(n)}$. While self-attention could be applied across temporal tokens, the extremely high dimensionality of meteorological grids makes it computationally prohibitive. Motivated by recent findings in long-term time series forecasting, we adopt a lightweight linear temporal encoder that achieves stable temporal modeling with minimal overhead:

$$\mathbf{H}_m^{t(n)} = W_2 \times \text{GELU}(W_1 \times \mathbf{H}_m^{s(n)} + B_1) + B_2 \quad (5)$$

216 This lightweight network is used to extract temporal dependencies. Here, $W_1 \in \mathbb{R}^{T \times 2T}$ and
 217 $W_2 \in \mathbb{R}^{T \times 2T}$, enabling effective modeling of historical time steps across multiple scales with an
 218 extremely small number of parameters (fewer than 100). It efficiently captures multi-scale temporal
 219 relationships in past observations.
 220

221 4.3 LEVEL-ALIGNED FORECASTING DECODER

223 The outputs from the N -layer scale-bridging spatio-temporal encoder are subsequently fed into a
 224 level-aligned forecasting decoder to generate multi-scale forecasts of future atmospheric states. The
 225 decoder is designed to progressively reconstruct high-resolution spatio-temporal fields from the
 226 encoded representations, while ensuring that temporal forecasting and spatial upsampling remain
 227 coherent across scales. For each resolution level m , we apply an independent temporal linear layer that
 228 maps the T -step historical features into L -step future predictions. This design explicitly decouples
 229 temporal forecasting across scales, enabling each level to capture temporal dynamics consistent with
 230 its own resolution:

$$231 \mathbf{Z}_m = \text{Linear}_m(\mathbf{H}_m^{t(N)}) \in \mathbb{R}^{L \times \frac{H}{2^m} \times \frac{W}{2^m} \times D}. \quad (6)$$

232 To progressively upsample the spatial resolution, we adopt a depth-adaptive transposed convolution
 233 block. Each block doubles the resolution along both spatial dimensions, and the depth of upsampling
 234 is matched to the level index m . Thus, the m -th scale undergoes m successive upsampling layers,
 235 ensuring that coarse-scale features are refined consistently into finer spatial grids:

$$237 \mathbf{U}_m = \text{DeConv}^m(\mathbf{Z}_m) \in \mathbb{R}^{L \times H \times W \times D}. \quad (7)$$

238 This hierarchical upsampling ensures that global context encoded at coarse scales is gradually
 239 transformed into high-resolution local forecasts.
 240

241 After spatial refinement, all scales share a common variable-wise linear projection layer, which maps
 242 the hidden dimension D into the full set of meteorological variables, including both surface and
 243 atmospheric fields. This shared mapping enforces consistency across scales and guarantees that all
 244 outputs lie in the same physical variable space:

$$245 \mathbf{V}_m = \text{Linear}_{var}(\mathbf{U}_m) \in \mathbb{R}^{L \times H \times W \times C}. \quad (8)$$

247 Finally, the forecasts from all scales are integrated to form the unified prediction. Each level
 248 provides complementary information, with fine-scale forecasts capturing localized details and coarse-
 249 scale forecasts contributing global stability. In EarthMix, this integration is performed by directly
 250 summing the scale-specific representations:

$$251 \hat{\mathbf{X}} = \text{EarthMix}(\{\mathbf{V}_m\}_{m=1}^M) \in \mathbb{R}^{L \times H \times W \times C}. \quad (9)$$

253 This simple aggregation efficiently combines multi-scale information to produce the final high-
 254 resolution, multi-variable prediction.
 255

256 5 EXPERIMENTS

259 **Dataset.** We conduct experiments on the fifth generation of ECMWF Reanalysis data (ERA5) (Rasp
 260 et al., 2023). The temporal range spans from 1993 to 2021, where 1993–2017 is used for training,
 261 2018–2019 for validation, and 2020–2021 for testing. We consider both atmospheric and surface
 262 variables. The atmospheric variables include five pressure-level quantities, each with 13 pressure
 263 levels: geopotential (Z), specific humidity (Q), temperature (T), and the U and V components of
 264 wind speed. The surface variables include 10-meter wind components (U_{10M} , V_{10M}), 2-meter
 265 temperature (T_{2M}), total precipitation, and mean sea-level pressure (MSLP). To comprehensively
 266 evaluate our method, we construct three datasets at different spatial scales: **1 Global-level:** We
 267 use the preprocessed ERA5 dataset with a 5.625° spatial resolution and 6-hour temporal frequency.
 268 **2 Continental-level:** We extract ERA5 data over South America, covering the region from $56^\circ S$ to
 269 $14^\circ N$ and $81^\circ W$ to $34^\circ W$, with a 1° spatial resolution. **3 Regional-level:** We extract a subset with
 270 0.25° resolution over East Asia ($20^\circ N$ – $28^\circ N$, $110^\circ E$ – $126^\circ E$). More data and pre-processing details
 271 are available in Appendix C

270 **Metrics.** To evaluate forecasting performance, we report two widely adopted metrics in numerical
 271 weather prediction: latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation
 272 Coefficient (ACC). All predictions are first de-normalized before metric computation. Given L
 273 forecasting steps, the prediction $\hat{x}_{\ell hw}$ and ground truth $y_{\ell hw}$ at lead time ℓ and spatial grid (h, w) ,
 274 the metrics are defined as

$$275 \text{RMSE} = \frac{1}{L} \sum_{\ell=1}^L \sqrt{\frac{1}{HW} \sum_{h=1}^H \sum_{w=1}^W \alpha(h) (y_{\ell hw} - \hat{x}_{\ell hw})^2}, \text{ACC} = \frac{\sum_{\ell, h, w} \alpha(h) \tilde{y}_{\ell hw} \tilde{\hat{x}}_{\ell hw}}{\sqrt{\sum_{\ell, h, w} \alpha(h) \tilde{y}_{\ell hw}^2} \sqrt{\sum_{\ell, h, w} \alpha(h) \tilde{\hat{x}}_{\ell hw}^2}}, \quad (10)$$

279 where the latitude-dependent weight is $\alpha(h) = \cos(h) / \frac{1}{H} \sum_{h'=1}^H \cos(h')$, and $\tilde{y} = y - C$, $\tilde{\hat{x}} = \hat{x} - C$
 280 are anomalies relative to the empirical climatology $C = \frac{1}{LHW} \sum_{\ell, h, w} y_{\ell hw}$. More Details is in
 281 Appendix D.

283 **Baselines.** We benchmark our approach against a diverse set of representative baselines spanning
 284 operational weather forecasting models, spatio-temporal sequence learners, and image-based
 285 architectures. For single-step meteorological forecasting, we include **Pangu-Weather** (Bi et al.,
 286 2023), **FuXi** (Chen et al., 2023b), **FourCastNet** (FCN) (Pathak et al., 2022), and **Triton** (Wu et al.,
 287 2025), which represent state-of-the-art Transformer-based designs for data-driven numerical weather
 288 prediction. For multi-step spatio-temporal modeling, we evaluate against **SimVP** (Gao et al., 2022a),
 289 a leading video prediction framework adapted for geophysical data. Additionally, we incorporate a
 290 canonical vision backbone, **U-Net** (Ronneberger et al., 2015), to assess the performance of convolutional
 291 architectures in this setting. All baselines are re-trained on our datasets with identical variables
 292 and splits to ensure fairness of comparison. More Details can be found in Appendix E.

294 5.1 GLOBAL WEATHER FORECASTING

296 Table 1: Quantitative comparison of short-term (up to 24 hours) global weather forecasting performance.
 297 Metrics are reported as weighted RMSE and ACC, averaged over $\Delta t = \{6, 12, 18, 24\}$ hours.

Metric	RMSE \downarrow							ACC \uparrow						
Variable	STORM	Triton	Pangu	FCN	Fuxi	SimVP	UNet	STORM	Triton	Pangu	FCN	Fuxi	SimVP	UNet
T2M	0.675	0.873	1.106	1.579	1.356	1.343	2.445	0.999	0.998	0.997	0.994	0.995	0.996	0.986
U10	0.669	0.819	1.377	1.529	1.314	1.448	1.971	0.991	0.987	0.959	0.953	0.965	0.959	0.952
V10	0.713	0.868	1.483	1.658	1.381	1.556	1.867	0.984	0.976	0.924	0.910	0.940	0.923	0.915
Prec	5.4E-04	4.6E-04	8.4E-04	9.8E-04	8.7E-04	9.6E-04	1.0E-03	0.923	0.891	0.802	0.728	0.791	0.744	0.765
MSLP	71.8	93.7	215.8	217.1	170.1	185.8	257.5	0.998	0.996	0.978	0.979	0.988	0.986	0.976
U500	1.903	2.500	3.410	4.607	3.962	4.066	4.677	0.993	0.988	0.975	0.958	0.969	0.968	0.963
V500	2.055	2.597	3.709	5.021	4.160	4.380	4.999	0.983	0.974	0.942	0.899	0.934	0.926	0.914
T500	0.524	0.696	0.886	1.251	1.111	1.242	1.237	0.998	0.997	0.995	0.991	0.993	0.991	0.991
Z500	79.8	109.4	225.7	268.5	215.3	223.5	308.3	1.000	1.000	0.998	0.998	0.999	0.999	0.997
Q500	3.9E-05	5.0E-05	5.6E-05	7.3E-05	6.9E-05	7.7E-05	7.3E-05	0.976	0.962	0.949	0.918	0.926	0.909	0.924

310 **Short-term Forecasting.** We first evaluate the proposed multi-scale spatiotemporal forecasting
 311 model, STORM, on short-term global weather prediction. Specifically, we conduct 24-hour forecasts
 312 and compare our method against a range of state-of-the-art approaches, including Pangu, Fuxi, Four-
 313 CastNet, Triton, SimVP, and U-Net. The evaluation covers both surface variables (2m temperature
 314 (T2M), 10m winds (U10, V10), precipitation (PREC), and mean sea level pressure (MSLP)) as
 315 well as mid-tropospheric fields (500 hPa U/V winds, temperature (T), geopotential height (Z), and
 316 specific humidity (Q)). For each method, we report weighted RMSE and ACC averaged over the
 317 prediction horizons $\Delta t = \{6, 12, 18, 24\}$ hours. The results, summarized in Table 1, show that
 318 STORM consistently achieves the best performance across all variables. In terms of RMSE, our
 319 method surpasses even Triton, a model particularly tailored for short-term forecasting, by a significant
 320 margin, while also delivering superior ACC scores. These improvements highlight the advantage of
 321 incorporating multi-scale spatiotemporal representations, which enable the model to capture both
 322 local details and global circulation patterns effectively. Full results are available at Appendix J.

323 To further illustrate the predictive capability of our model, Figure 3 visualizes 24-hour forecasts
 324 across multiple variables. Compared with other baselines, the predictions of STORM are visually

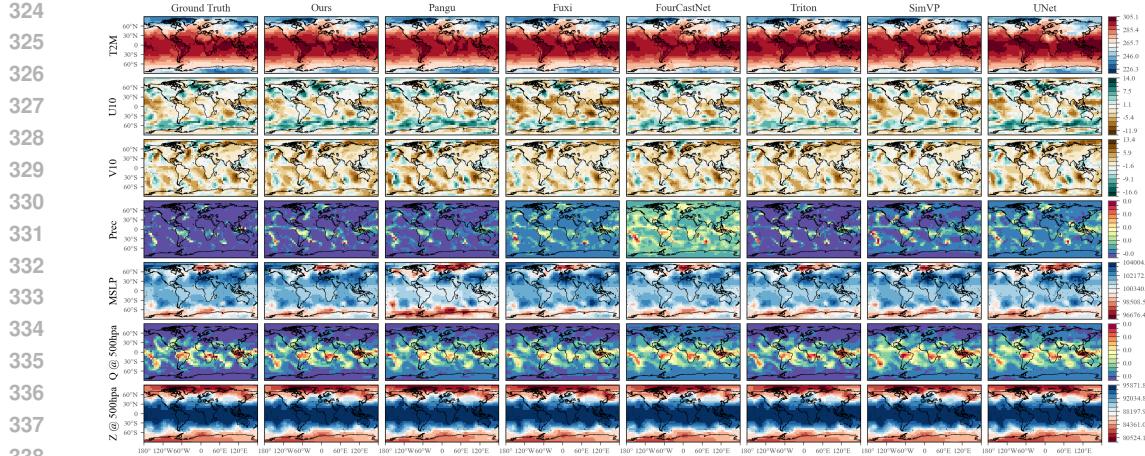


Figure 3: Visualization of 24-hour forecasts for multiple atmospheric variables.

closer to the ground-truth reanalysis, preserving fine-grained regional structures while maintaining coherent large-scale dynamics. These results confirm that our approach not only improves numerical accuracy but also produces more realistic spatial patterns in short-term global weather forecasting. The visualizations for all variables are provided in Appendix I.

Table 2: Quantitative comparison of long-term (7–10 days) global weather forecasting performance. Metrics are reported as weighted RMSE and ACC, averaged over $\Delta t = \{168, 192, 216, 240\}$ hours.

Metric	RMSE \downarrow							ACC \uparrow						
	STORM	Triton	Pangu	FCN	Fuxi	SimVP	UNet	STORM	Triton	Pangu	FCN	Fuxi	SimVP	UNet
T2M	2.596	3.386	3.633	4.181	3.500	3.168	4.477	0.984	0.965	0.955	0.971	0.969	0.976	0.937
U10	3.857	4.271	5.127	5.363	4.696	3.901	5.828	0.716	0.650	0.615	0.604	0.574	0.684	0.559
V10	4.106	4.504	5.095	5.569	4.795	4.180	6.045	0.464	0.370	0.325	0.297	0.282	0.383	0.262
Prec	1.4E-03	2.1E-03	1.8E-03	1.6E-03	1.6E-03	1.5E-03	2.3E-03	0.432	0.305	0.288	0.223	0.243	0.382	0.204
MSLP	735.4	815.6	1125.4	1041.4	950.0	784.7	1149.3	0.782	0.725	0.741	0.718	0.641	0.741	0.679
U925	6.582	8.918	10.794	9.159	10.152	8.117	12.236	0.884	0.878	0.803	0.793	0.747	0.827	0.747
V925	6.588	7.910	9.707	9.618	8.794	7.148	10.858	0.519	0.369	0.299	0.284	0.212	0.336	0.205
T925	2.797	3.718	4.308	3.879	4.513	3.565	5.331	0.966	0.937	0.931	0.938	0.912	0.945	0.902
Q925	3.3E-07	5.4E-07	4.5E-07	4.7E-07	5.5E-07	4.0E-07	6.3E-07	0.749	0.556	0.556	0.572	0.535	0.630	0.519
Z925	813.4	1049.4	1419.2	968.8	1304.1	1097.4	1537.9	0.981	0.959	0.955	0.963	0.958	0.971	0.936

Long-term Forecasting. Beyond short horizons, we further evaluate STORM on extended-range forecasting, covering 7-day, 8-day, 9-day, and 10-day predictions. Table 2 reports the average weighted RMSE and ACC across these horizons. The results show that STORM consistently outperforms all competing methods, with clear margins over strong baselines such as Pangu and FourCastNet. Even at day 10, where the forecasting task becomes extremely challenging due to error accumulation and chaotic dynamics, our model maintains significantly lower RMSE and higher ACC, demonstrating its robustness and superior long-term predictive capability. Full results are available at Appendix K. To provide further insight, Figure 4 visualizes the evolution of RMSE and ACC from day 1 to day 10 for several key variables, including U925, V925, Z925, Q925, T925, and T2M. We observe that different baseline methods tend to exhibit strengths over specific forecast horizons—for example, some achieve relatively competitive results at shorter lead times but deteriorate rapidly afterwards. In contrast, STORM consistently maintains the best accuracy across both short- and long-term horizons. This highlights the effectiveness of our multi-scale spatiotemporal design, which enables stable and reliable forecasts over a wide range of temporal scales.

5.2 REGIONAL HIGH RESOLUTION FORECASTING

To further demonstrate the scalability and robustness of our approach, we conduct forecasting experiments on higher-resolution regional subsets. Specifically, we consider two representative

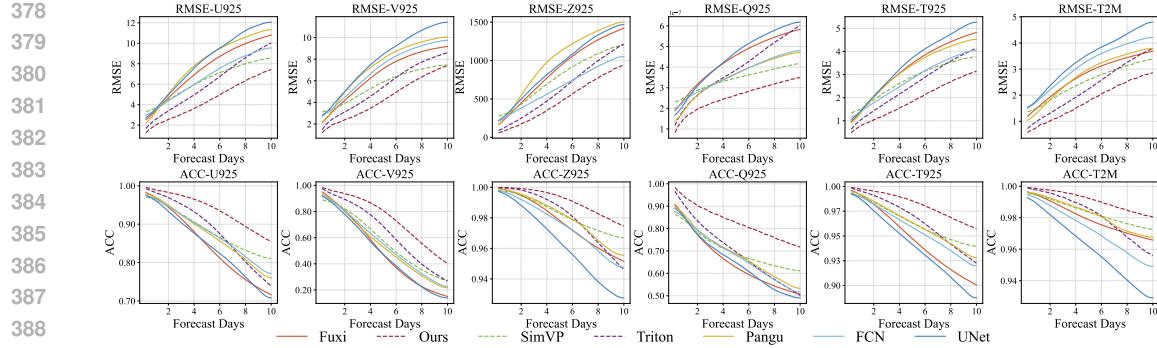
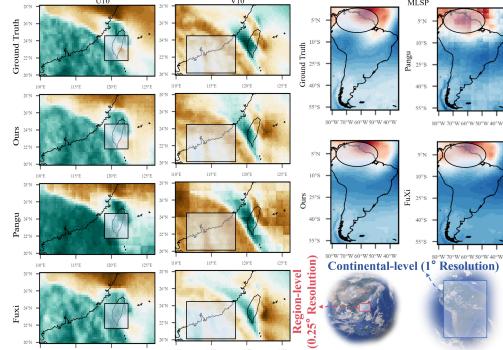


Figure 4: RMSE and ACC of U925, V925, Z925, Q925, T925, and T2M from day 1 to day 10.

cases: Continental-level: South America, spanning from 56°S to 14°N and 81°W to 34°W, at 1° resolution; Regional-level: East Asia, spanning 20°N–28°N and 110°E–126°E, at 0.25° resolution. Table 3 summarizes the RMSE and ACC across all variables for horizons of 6 hours, 1 day, 4 days, 7 days, and 10 days. We observe that STORM consistently achieves the lowest RMSE and the highest ACC at both continental and regional scales, highlighting its ability to maintain strong predictive skill under different spatial resolutions. In particular, the advantage of STORM becomes more pronounced at longer horizons, demonstrating its superiority in long-range regional forecasting. Figure 5 provides a qualitative visualization of the 10-day forecasts for selected variables in both South America and East Asia. By zooming into local details, we see that STORM captures fine-grained structures more faithfully and is visually closer to the ground truth compared to baselines. These results confirm the effectiveness of our multi-scale design in enhancing both large-scale consistency and small-scale detail preservation.

Figure 5: Visualization of 10-day forecasts over South America (1°) and East Asia (0.25°).
Table 3: Regional high-resolution forecasting results. We report averaged results for 6 hours, 1 day, 4 days, 7 days, and 10 days over South America (1° resolution) and East Asia (0.25° resolution).

Data	Methods	6Hour		1Day		4Day		7Day		10Day	
		RMSE↓	ACC↑								
Cont-SA (1°)	STORM	0.874	0.945	1.560	0.847	2.866	0.601	3.322	0.519	3.510	0.499
	Triton	0.927	0.941	1.808	0.817	3.689	0.480	4.687	0.347	5.433	0.251
	FCN	1.411	0.933	2.466	0.816	4.186	0.498	5.176	0.425	6.018	0.403
	Pangu	0.989	0.876	1.794	0.702	3.557	0.440	4.235	0.375	4.613	0.368
	Fuxi	0.913	0.941	1.677	0.830	3.253	0.547	3.632	0.500	3.797	0.466
	SimVP	0.947	0.939	1.619	0.843	3.110	0.554	3.603	0.476	3.891	0.426
	UNet	1.528	0.873	2.696	0.661	6.994	0.291	11.50	0.248	15.62	0.252
Reg-EA (0.25°)	STORM	14.53	0.980	41.71	0.920	154.6	0.627	187.8	0.548	200.9	0.524
	Triton	14.55	0.976	51.65	0.919	183.7	0.579	218.7	0.499	234.3	0.482
	FCN	33.00	0.954	98.15	0.832	256.4	0.559	297.4	0.495	315.6	0.471
	Pangu	17.35	0.963	47.31	0.895	157.5	0.625	206.2	0.543	227.5	0.511
	Fuxi	17.69	0.969	54.67	0.903	178.1	0.592	211.2	0.522	227.7	0.493
	SimVP	32.17	0.935	53.44	0.887	158.5	0.615	189.0	0.546	202.5	0.523
	UNet	22.77	0.956	63.05	0.875	195.1	0.566	241.6	0.480	261.8	0.450

432 5.3 ABLATION STUDY
433

434 To better understand the contribution of each component in STORM, we conduct an
435 ablation study by removing or modifying key modules. Specifically, we consider the fol-
436 lowing variants, ❶ w/o T: which removes the temporal evolution encoder from the en-
437 coder; ❷ w/o M: which changes the Hierarchical Earth Embedder, the Scale-Bridging Spatio-
438 Temporal Encoder, and the Level-Aligned Forecasting Decoder to replace multi-scale mod-
439 eling with single-scale modeling; ❸ w/o S: which removes the spatial encoder from the encoder.
440 Figure 6 reports the RMSE for ten key variables: T2M, U10, V10, PREC, MSLP, U500,
441 V500, T500, Q500, and Z500. The results demonstrate several important findings: (1) Every
442 module contributes significantly to the overall forecasting performance; (2) The spatial encoder (S)
443 plays a particularly critical role in improving prediction accuracy; (3) The combination
444 of multi-scale mixing and spatial encoding achieves the largest performance gains, indicating that
445 capturing both spatial dependencies and multi-scale interactions is crucial for accurate global weather
446 forecasting. These observations confirm the effectiveness of our design in modeling complex spa-
447 tiotemporal dependencies inherent in meteorological data.

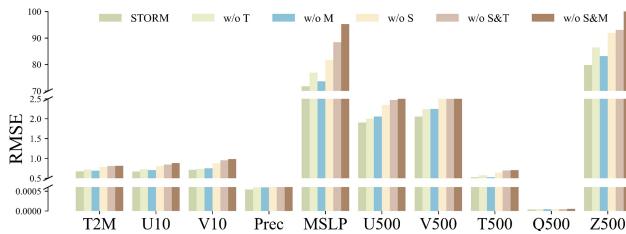


Figure 6: Ablation study results of STORM.

453 5.4 STORM ANALYSIS
454

455 We perform a multi-scale analysis of STORM to understand the contribution of different spatial
456 scales to forecasting accuracy. Figure 7(a) visualizes predictions at different scales. The finest scale
457 (scale0) captures rich local details, while the coarsest scale (scale2) better represents global
458 circulation patterns. Individually, each scale exhibits distinct prediction errors, but combining multi-
459 scale predictions results in the most accurate forecasts, demonstrating the effectiveness of multi-scale
460 integration. Figure 7(b) further analyzes the effect of the number of scales as a hyperparameter. As
461 the number of scales increases, the predictive performance improves, but the gains diminish beyond
462 three scales. Based on this analysis, we set the number of scales in STORM to three, achieving a
463 balance between local detail preservation and global structure representation.

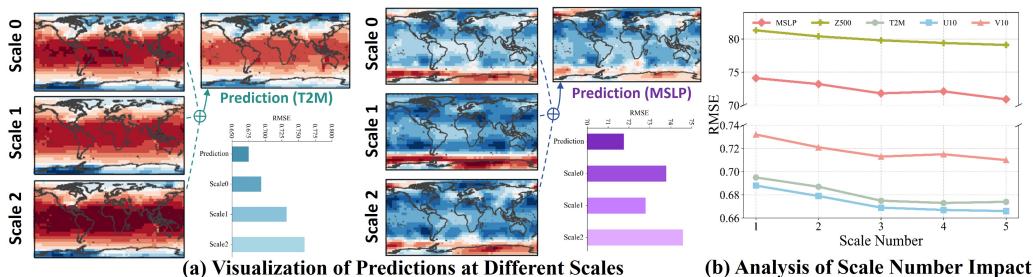


Figure 7: Visualization of multi-scale predictions and the analysis of scale number.

474 6 CONCLUSION
475

476 Despite rapid advances in deep learning for weather prediction, modeling atmospheric dynamics
477 remains challenging due to their heterogeneous spatio-temporal scales. We introduced **STORM**, a
478 unified framework with a Hierarchical Earth Embedder, a Scale-Bridging Spatio-Temporal Encoder,
479 and a Level-Aligned Forecasting Decoder to explicitly capture cross-scale dependencies. Extensive
480 experiments on ERA datasets with resolutions of 5.625° , 1° , and 0.25° show that STORM consistently
481 achieves state-of-the-art performance across global and regional settings, as well as short- and long-
482 term horizons. Our results highlight the necessity of synergistic multi-scale modeling for reliable
483 weather forecasting. Looking ahead, we envision STORM as a step toward a new generation of
484 spatio-temporal models that integrate fine-grained detail with global coherence, offering a foundation
485 for more accurate, efficient, and robust climate and Earth system prediction.

486 ETHICS STATEMENT
487488 All authors confirm compliance with the ICLR Code of Ethics. This study does not utilize human
489 participants, private information, or sensitive content. Our work relies entirely on publicly available
490 datasets and established benchmarks, with no anticipated negative social or environmental conse-
491 quences. There are no conflicts of interest or external funding sources that might influence the
492 findings.493
494 REPRODUCIBILITY STATEMENT
495496 We have taken care to ensure that our experiments can be replicated. The architecture and training
497 details of our model are fully described in Sections 4 and Appendix E. All datasets are publicly
498 accessible, and the preprocessing steps are documented in Appendix C. Furthermore, we provide
499 anonymized code and usage instructions as supplementary material to support reproducibility of our
500 results.501
502 REFERENCES
503504 Ulrich Achatz, M Joan Alexander, Erich Becker, Hye-Yeong Chun, Andreas Dörnbrack, Laura Holt,
505 Riwal Plougouen, Inna Polichtchouk, Kaoru Sato, Aditi Sheshadri, et al. Atmospheric gravity
506 waves: Processes and parameterization. *Journal of the Atmospheric Sciences*, 81(2):237–262,
507 2024.508 Santhosh Baboo and Kadar Shereef. An efficient weather forecasting system using artificial neural
509 network. *International journal of environmental science and development*, 1(4):321, 2010.510 Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
511 *Nature*, 525(7567):47–55, 2015.512 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
513 range global weather forecasting with 3d neural networks. *Nature*, 619:533–538, 2023.514 Michele Buzzicotti, Benjamin A Storer, Hemant Khatri, Stephen M Griffies, and Hussein Aluie.
515 Spatio-temporal coarse-graining decomposition of the global ocean geostrophic kinetic energy.
516 *Journal of Advances in Modeling Earth Systems*, 15(6):e2023MS003693, 2023.517 Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming Ma,
518 Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather forecast
519 beyond 10 days lead. *arXiv preprint arXiv:2304.02948*, 2023a.520 Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. Fuxi: a
521 cascade machine learning forecasting system for 15-day global weather forecast. *npj climate and*
522 *atmospheric science*, 6(1):190, 2023b.523 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
524 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
525 is worth 16x16 words: Transformers for image recognition at scale. In *International Conference*
526 *on Learning Representations*.527 Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Chen, Yibo Yan, Qingsong Wen,
528 Xuming Hu, Kun Wang, et al. Oneforecast: A universal framework for global and regional weather
529 forecasting. *arXiv preprint arXiv:2502.00338*, 2025.530 Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better video prediction.
531 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
532 3170–3180, 2022a.533 Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan Yeung.
534 Earthformer: Exploring space-time transformers for earth system forecasting. *Advances in Neural*
535 *Information Processing Systems*, 35:25390–25403, 2022b.

540 Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics
 541 and heterogeneity of spatial-temporal graph data for traffic forecasting. *IEEE Transactions on*
 542 *Knowledge and Data Engineering*, 34(11):5415–5428, 2022. doi: 10.1109/TKDE.2021.3056502.
 543

544 Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
 545 Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
 546 *Advances in Neural Information Processing Systems*, 36, 2024.

547 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 548 2014.

549 Robert Kuligowski and Ana Barros. Localized precipitation forecasts from a numerical weather
 550 prediction model using artificial neural networks. *Weather and forecasting*, 13(4):1194–1204,
 551 1998.

552 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
 553 Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. GraphCast:
 554 Learning skillful medium-range global weather forecasting. *arXiv*, 2022.

555 Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui
 556 Pan, and Gao Cong. Foundation models for spatio-temporal data science: A tutorial and survey. In
 557 *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V*.
 558 2, pp. 6063–6073, 2025.

559 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
 560 A foundation model for weather and climate. In *ICML*, 2023.

561 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 562 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 563 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 564 2019.

565 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 566 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. FourCast-
 567 Net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
 568 *arXiv*, 2022.

569 Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
 570 Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, et al. Weatherbench
 571 2: A benchmark for the next generation of data-driven global weather models. *arXiv preprint*
 572 *arXiv:2308.15560*, 2023.

573 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 574 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*.
 575 Springer, 2015.

576 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
 577 Convolutional lstm network: A machine learning approach for precipitation nowcasting. *Advances*
 578 *in neural information processing systems*, 28, 2015.

579 Binwu Wang, Yudong Zhang, Xu Wang, Pengkun Wang, Zhengyang Zhou, Lei Bai, and Yang
 580 Wang. Pattern expansion and consolidation on evolving graphs for continual traffic prediction. In
 581 *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp.
 582 2223–2232, 2023.

583 Binwu Wang, Pengkun Wang, Yudong Zhang, Xu Wang, Zhengyang Zhou, Lei Bai, and Yang Wang.
 584 Towards dynamic spatial-temporal graph learning: A decoupled perspective. In *Proceedings of the*
 585 *AAAI Conference on Artificial Intelligence*, volume 38, pp. 9089–9097, 2024a.

586 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
 587 JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In *The*
 588 *Twelfth International Conference on Learning Representations*, 2024b.

594 Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. PredRNN: Recurrent
 595 neural networks for predictive learning using spatiotemporal LSTMs. In *Advances in Neural*
 596 *Information Processing Systems*, pp. 879–888, 2017.

597 Jonathan Weyn, Dale Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal forecasting
 598 with a large ensemble of deep-learning weather prediction models. *Journal of Advances in*
 599 *Modeling Earth Systems*, 13(7), 2021.

600 Hao Wu, Yuan Gao, Ruiqi Shu, Kun Wang, Ruijian Gou, Chuhan Wu, Xinliang Liu, Juncai He,
 601 Shuhao Cao, Junfeng Fang, Xingjian Shi, Feng Tao, Qi Song, Shengxuan Ji, Yanfei Xiang, Yuze
 602 Sun, Jiahao Li, Fan Xu, Huanshuo Dong, Haixin Wang, Fan Zhang, Penghao Zhao, Xian Wu,
 603 Qingsong Wen, Deliang Chen, and Xiaomeng Huang. Advanced long-term earth system forecasting
 604 by learning the small-scale nature. *arXiv preprint arXiv:2505.19432*, 2025.

605 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
 606 spatial-temporal graph modeling. *arXiv preprint arXiv:1906.00121*, 2019.

607 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
 608 deep learning framework for traffic forecasting. In *Proceedings of the 27th International Joint*
 609 *Conference on Artificial Intelligence (IJCAI)*, 2018.

610 Yudong Zhang, Binwu Wang, Ziyang Shan, Zhengyang Zhou, and Yang Wang. Cmt-net: A mutual
 611 transition aware framework for taxicab pick-ups and drop-offs co-prediction. In *Proceedings of the*
 612 *Fifteenth ACM International Conference on Web Search and Data Mining*, pp. 1406–1414, 2022.

613 Zhengyang Zhou, Qihe Huang, Gengyu Lin, Kuo Yang, LEI BAI, and Yang Wang. GReTo: Remedyng
 614 dynamic graph topology-task discordance via target homophily. In *The Eleventh International*
 615 *Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=8duT3mi_5n.

616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648

649

650

651

652

653

654

Appendix

Table of Contents

655

A LLM Usage	14
--------------------	-----------

656

B Theoretical analysis: why multi-scale modeling helps	14
---	-----------

657

B.1 Setup and assumptions	14
-------------------------------------	----

658

B.2 Generalization bound improvement	14
--	----

659

B.3 Improved optimization speed regarding convergency	15
---	----

660

B.4 Putting pieces together: overall error and sample complexity	15
--	----

661

C More Data Details	16
----------------------------	-----------

662

D More Metric Details	17
------------------------------	-----------

663

E More Implementation Details	17
--------------------------------------	-----------

664

F Efficiency Analysis	17
------------------------------	-----------

665

G Full Sensitive Analysis	18
----------------------------------	-----------

666

H More Details of Ablation Analysis	18
--	-----------

667

I Forecast Visualization	19
---------------------------------	-----------

668

I.1 Mean Sea Level Pressure (MSLP)	19
--	----

669

I.2 Specific Humidity at 500 hPa (Q500)	20
---	----

670

I.3 Precipitation	21
-----------------------------	----

671

I.4 2-meter Temperature (T2M)	22
---	----

672

I.5 Temperature at 500 hPa (T500)	23
---	----

673

I.6 10-meter Zonal Wind (U10)	24
---	----

674

I.7 Zonal Wind at 500 hPa (U500)	25
--	----

675

I.8 10-meter Meridional Wind (V10)	26
--	----

676

I.9 Meridional Wind at 500 hPa (V500)	27
---	----

677

I.10 Geopotential Height at 500 hPa (Z500)	28
--	----

678

J Full short-term forecasting results.	29
---	-----------

679

K Full long-term forecasting results.	30
--	-----------

680

691

692

693

694

695

696

697

698

699

700

701

702 **A LLM USAGE**
703704 Following the conference guidelines regarding large language models (LLMs), we disclose that
705 LLMs were utilized solely to improve sentence clarity and grammatical correctness. All aspects of
706 conceptual development, experimental methodology, data analysis, and core manuscript content were
707 independently produced by the authors without LLM assistance
708709 **B THEORETICAL ANALYSIS: WHY MULTI-SCALE MODELING HELPS**
710711 In this section we present theoretical results that explain why a synergistic cross-scale spatio-temporal
712 architecture can outperform a single-scale counterpart in (i) statistical generalization (smaller expected
713 prediction error) and (ii) optimization speed (faster convergence). We adopt a bias–variance decom-
714 position perspective for generalization, and a condition-number / PL-type argument for optimization.
715 Proofs are sketched; full technical details follow the argument outlines below.
716717 **B.1 SETUP AND ASSUMPTIONS**
718719 Let $\mathbf{X} = \mathbb{R}^{T \times C \times H \times W}$ denote one time-slice grid and consider a target spatio-temporal mapping
720 $f^* : \mathbb{R}^{T \times C \times H \times W} \rightarrow \mathbb{R}^{L \times C \times H \times W}$ that maps T historical frames to L future frames (all variables
721 vectorized as needed). Denote by \mathcal{D} the data distribution and by $(\mathbf{X}_i, Y_i)_{i=1}^n \sim \mathcal{D}$ the training set. We
722 consider two model classes: **1 Single-scale model** $\mathcal{F}_{\text{single}}$ of effective parameter-dimension d (e.g., a
723 monolithic spatio-temporal network operating at full resolution). **2 Multi-scale model** \mathcal{F}_{ms} which
724 decomposes the prediction into M scale-specific modules with parameter-dimensions d_1, \dots, d_M (so
725 $\sum_{m=1}^M d_m = d$ or $\leq d$ depending on parameter sharing). We make standard regularity assumptions:
726**Assumption B.1** (Decomposability). *The target admits a scale decomposition*

727
$$f^* = \sum_{m=1}^M f_m^*, \quad f_m^* \in \mathcal{G}_m,$$

728
729

730 where each f_m^* captures variations at spatial scale m , and \mathcal{G}_m is the function space for scale m
731 signals (e.g., fine, medium, or coarse patterns).
732**Assumption B.2** (Model capacity allocation). *Each scale-model class \mathcal{F}_m has Rademacher
733 complexity $\mathfrak{R}_n(\mathcal{F}_m) \leq \rho_m \sqrt{\frac{d_m}{n}}$ for constants $\rho_m > 0$, while the single-scale class satisfies
734 $\mathfrak{R}_n(\mathcal{F}_{\text{single}}) \leq \rho \sqrt{\frac{d}{n}}$.*
735**Assumption B.3** (PL condition for optimization). *The empirical loss $\hat{L}(\theta)$ is L -smooth and satisfies
736 the Polyak–Łojasiewicz (PL) inequality in neighborhoods of interest: there exists $\mu > 0$ s.t.*
737

738
$$\frac{1}{2} \|\nabla \hat{L}(\theta)\|^2 \geq \mu (\hat{L}(\theta) - \hat{L}^*).$$

739
740

741 **B.2 GENERALIZATION BOUND IMPORVEMENT**
742743 We first bound the excess risk (population loss minus Bayes risk) via a bias–variance decomposition
744 and Rademacher complexity.
745**Theorem B.1** (Generalization bound imporvement). *Assume squared loss and hypotheses above.
746 Let \hat{f}_{single} and $\hat{f}_{\text{ms}} = \sum_{m=1}^M \hat{f}_m$ be ERM solutions in $\mathcal{F}_{\text{single}}$ and \mathcal{F}_{ms} respectively. Then with
747 probability at least $1 - \delta$,*

748
$$\mathcal{E}(\hat{f}_{\text{single}}) \leq \underbrace{\inf_{f \in \mathcal{F}_{\text{single}}} \|f - f^*\|^2}_{\text{approx.}} + B \rho \sqrt{\frac{d}{n}} + O\left(\sqrt{\frac{\log(1/\delta)}{n}}\right),$$

749
750

751 and
752

753
$$\mathcal{E}(\hat{f}_{\text{ms}}) \leq \underbrace{\sum_{m=1}^M \inf_{g \in \mathcal{F}_m} \|g - f_m^*\|^2}_{\text{multi-scale approx.}} + B \sum_{m=1}^M \rho_m \sqrt{\frac{d_m}{n}} + O\left(\sqrt{\frac{\log(1/\delta)}{n}}\right),$$

754
755

756 where $B > 0$ is a universal constant and \mathcal{E} denotes population mean squared error.
 757

758 *Proof sketch.* Standard decomposition: population risk = approximation error + estimation error.
 759 Estimation error is controlled by Rademacher complexity; using Assumption 2 we get the stated
 760 $\rho\sqrt{d/n}$ (single) and sum of $\rho_m\sqrt{d_m/n}$ (multi-scale). The remainder term follows from concentration
 761 (Talagrand / McDiarmid), yielding the $\sqrt{\log(1/\delta)/n}$ term. \square
 762

763 **Interpretation.** If (i) the decomposition is faithful so that each f_m^* is well-approximated by
 764 \mathcal{F}_m (small multi-scale approximation error), and (ii) the per-scale capacities d_m concentrate (e.g.
 765 $d_m \ll d$), then

$$766 \sum_{m=1}^M \sqrt{d_m} \ll \sqrt{d},$$

767 hence the multi-scale estimation term $\sum_m \rho_m \sqrt{d_m/n}$ can be substantially smaller than $\rho\sqrt{d/n}$,
 768 yielding better generalization. Concretely, if $d_m \approx d/M$ and $\rho_m \approx \rho$, then
 769

$$770 \sum_{m=1}^M \sqrt{d_m} = M \sqrt{\frac{d}{M}} = \sqrt{Md} < \sqrt{d} \quad \text{iff } M < 1,$$

771 so naive equal partition does not help; however, real atmospheric signals are *compressible*: coarse
 772 scales require tiny d_m and only few fine-scale components need larger d_m , making $\sum_m \sqrt{d_m} \ll \sqrt{d}$
 773 in practice. Thus the bound formalizes a *bias-variance tradeoff* where multi-scale modeling reduces
 774 variance without materially increasing approximation bias.
 775

776 B.3 IMPROVED OPTIMIZATION SPEED REGARDING CONVERGENCE

777 We now sketch how hierarchical (coarse-to-fine) architectures improve optimization by reducing
 778 effective condition numbers and enabling faster gradient-based convergence.

779 **Theorem B.2** (Improved optimization speed regarding convergence). *Under Assumption 3 (PL
 780 inequality and L -smoothness) consider gradient descent with step size $\eta \leq 1/L$. Let $\kappa_{\text{single}} = L/\mu$
 781 denote the condition number for the single-scale parameterization, and let κ_{ms} be the effective
 782 condition number for a multi-scale architecture that first fits coarse parameters and then refines
 783 fine parameters (blockwise parameterization). If the cross-scale coupling operator has spectral gap
 784 $\gamma \in (0, 1)$, then*

$$785 \kappa_{\text{ms}} \leq (1 - \gamma) \kappa_{\text{single}},$$

786 and gradient descent on \mathcal{F}_{ms} converges linearly as

$$787 \hat{L}(\theta_t) - \hat{L}^* \leq (1 - \eta\mu(1 - \gamma))^t (\hat{L}(\theta_0) - \hat{L}^*).$$

788 *Proof sketch.* Block-partition the parameter vector $\theta = [\theta_{\text{coarse}}, \theta_{\text{fine}}]$. The Hessian H of the empirical
 789 loss can be written in block form; coarse-to-fine structure makes the off-diagonal blocks small
 790 relative to diagonal blocks due to localization (this is the spectral gap γ). Using matrix perturbation
 791 bounds (Weyl-type inequalities) one shows the largest-to-smallest eigenvalue ratio of H is reduced by
 792 factor $(1 - \gamma)$. Under PL, GD attains linear rate with factor $1 - \eta\mu_{\text{eff}}$, where $\mu_{\text{eff}} = \mu(1 - \gamma)$. \square
 793

802 **Remarks.** The spectral-gap condition formalizes the intuition that coarse-scale variables capture
 803 low-frequency, high-energy components and are weakly coupled to many fine-scale modes; explicit
 804 coarse-to-fine parametrization reduces ill-conditioning caused by high-frequency components and
 805 thus accelerates optimization.

806 B.4 PUTTING PIECES TOGETHER: OVERALL ERROR AND SAMPLE COMPLEXITY

807 Combining generalization and optimization insights yields a unified statement.

810
 811 **Corollary B.3** (Sample-complexity advantage). *Suppose the decomposition is faithful and the*
 812 *optimizer attains an ϵ -accurate empirical minimizer in $T(\epsilon)$ iterations (GD linear convergence as*
 813 *above). Then to achieve population error $\mathcal{E} \leq \epsilon$, the multi-scale model requires*

$$814 \quad n_{\text{ms}} = \tilde{O}\left(\frac{1}{\epsilon^2} \left(\sum_{m=1}^M \rho_m \sqrt{d_m} \right)^2\right)$$

817 samples, while the single-scale model requires

$$818 \quad n_{\text{single}} = \tilde{O}\left(\frac{1}{\epsilon^2} \rho^2 d\right).$$

821 If $\sum_m \sqrt{d_m} \ll \sqrt{d}$, then $n_{\text{ms}} \ll n_{\text{single}}$.

C MORE DATA DETAILS

826 To provide a more comprehensive description of the experimental setup, we summarize the datasets
 827 used in this work in Table 4. As introduced in the main text, all datasets are derived from the ERA5
 828 reanalysis, covering the period from 1993 to 2021. Specifically, we split the data into 1993–2017
 829 for training, 2018–2019 for validation, and 2020–2021 for testing. For atmospheric variables, we
 830 include five pressure-level quantities, geopotential (Z), specific humidity (Q), temperature (T), and
 831 the U and V components of wind, each defined on 13 standard pressure levels. For surface variables,
 832 we consider 10-meter wind components (U10M, V10M), 2-meter temperature (T2M), mean sea-level
 833 pressure (MSLP), and accumulated precipitation. Note that in Global- and Continental-level settings,
 834 precipitation is additionally included compared to the original 69 ERA5 variables, while in the
 835 Regional-level dataset only near-surface variables (T2M, U10M, V10M) are used. Regarding spatial
 836 coverage, we construct three datasets with different geographical ranges and resolutions: (i) **Global-**
 837 **level**: 5.625° resolution with 6-hour temporal frequency; (ii) **Continental-level**: 1° resolution over
 838 South America (56°S – 14°N , 81°W – 34°W); and (iii) **Regional-level**: 0.25° resolution over East Asia
 839 (20°N – 28°N , 110°E – 126°E). For preprocessing, we standardize each variable using statistics (mean
 840 and standard deviation) computed from the training set only. During inference, model predictions are
 841 rescaled back (de-normalized) to the original physical units to ensure consistency with evaluation
 842 metrics. This normalization scheme improves model stability and comparability across heterogeneous
 843 variables.

844 Table 4: The data details.

845 846 TASK	847 VARIABLE 848 NAME	849 LAYERS	849 SPATIAL 850 RESOLUTION	850 TEMPORAL 851 FREQUENCY	851 LAT-LON 852 RANGE
853 GLOBAL	GEOPOTENTIAL (Z)	13	5.625°	6H	–90°S–90°N, 180°W–180°E
	SPECIFIC HUMIDITY (Q)	13	5.625°	6H	–90°S–90°N, 180°W–180°E
	TEMPERATURE (T)	13	5.625°	6H	–90°S–90°N, 180°W–180°E
	U COMPONENT OF WIND (U)	13	5.625°	6H	–90°S–90°N, 180°W–180°E
	V COMPONENT OF WIND (V)	13	5.625°	6H	–90°S–90°N, 180°W–180°E
	10M U WIND (U10)	1	5.625°	6H	–90°S–90°N, 180°W–180°E
	10M V WIND (V10)	1	5.625°	6H	–90°S–90°N, 180°W–180°E
	2M TEMPERATURE (T2M)	1	5.625°	6H	–90°S–90°N, 180°W–180°E
	MEAN SEA LEVEL PRESSURE (MSLP)	1	5.625°	6H	–90°S–90°N, 180°W–180°E
854 CONTINENTAL	TOTAL PRECIPITATION (PREC)	1	5.625°	6H	–90°S–90°N, 180°W–180°E
	GEOPOTENTIAL (Z)	13	1.0°	6H	56°S–14°N, 81°W–34°W
	SPECIFIC HUMIDITY (Q)	13	1.0°	6H	SAME AS ABOVE
	TEMPERATURE (T)	13	1.0°	6H	SAME AS ABOVE
	U COMPONENT OF WIND (U)	13	1.0°	6H	SAME AS ABOVE
	V COMPONENT OF WIND (V)	13	1.0°	6H	SAME AS ABOVE
	10M U WIND (U10)	1	1.0°	6H	SAME AS ABOVE
	10M V WIND (V10)	1	1.0°	6H	SAME AS ABOVE
	2M TEMPERATURE (T2M)	1	1.0°	6H	SAME AS ABOVE
855 REGIONAL	MEAN SEA LEVEL PRESSURE (MSLP)	1	1.0°	6H	SAME AS ABOVE
	TOTAL PRECIPITATION (PREC)	1	1.0°	6H	SAME AS ABOVE
	2M TEMPERATURE (T2M)	1	0.25°	6H	20°N–28°N, 110°E–126°E
856	10M U WIND (U10)	1	0.25°	6H	SAME AS ABOVE
	10M V WIND (V10)	1	0.25°	6H	SAME AS ABOVE

864 **D MORE METRIC DETAILS**
865

866 To evaluate forecasting skill, we follow standard practices in numerical weather prediction and report
867 latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient (ACC).
868 Before computing the metrics, model outputs are de-normalized back to physical units for consistency
869 with observations.

$$872 \text{RMSE} = \frac{1}{L} \sum_{\ell=1}^L \sqrt{\frac{1}{HW} \sum_{h=1}^H \sum_{w=1}^W \alpha(h) (y_{\ell h w} - \hat{x}_{\ell h w})^2}, \quad (11)$$

$$875 \text{ACC} = \frac{\sum_{\ell, h, w} \alpha(h) \tilde{y}_{\ell h w} \tilde{x}_{\ell h w}}{\sqrt{\sum_{\ell, h, w} \alpha(h) \tilde{y}_{\ell h w}^2} \sqrt{\sum_{\ell, h, w} \alpha(h) \tilde{x}_{\ell h w}^2}}, \quad (12)$$

879 where $\alpha(h) = \cos(h) / \left(\frac{1}{H} \sum_{h'=1}^H \cos(h') \right)$ compensates for unequal grid areas across latitudes. The
880 anomaly terms are defined as $\tilde{y}_{\ell h w} = y_{\ell h w} - C$ and $\tilde{x}_{\ell h w} = \hat{x}_{\ell h w} - C$, with $C = \frac{1}{LHW} \sum_{\ell, h, w} y_{\ell h w}$
881 representing the climatological mean.

883 RMSE reflects the average magnitude of prediction errors while accounting for the Earth’s geometry.
884 ACC instead measures the similarity between predicted and observed anomalies, emphasizing the
885 model’s ability to capture dynamical patterns rather than absolute values. Together, these two metrics
886 provide a balanced view of both error magnitude and anomaly-tracking skill.

887 **E MORE IMPLEMENTATION DETAILS**
888

890 All experiments are conducted on a server equipped with 8 NVIDIA A100 GPUs. Our implementation
891 of **STORM** is based on PyTorch 2.1.0 (Paszke et al., 2019). For optimization, we adopt the Adam
892 optimizer (Kingma, 2014) with a learning rate of 1×10^{-3} and mean squared error (L2) as the
893 training objective. Each model is trained for 100 epochs with early stopping based on the validation
894 loss. The multi-scale hierarchy is constructed with $M = 3$ levels, and the hidden dimension is fixed
895 to $D = 256$ across all experiments. The *Scale-Bridging Spatio-Temporal Encoder* is composed
896 of $N = 3$ stacked layers. To ensure fairness, all baselines are re-trained under the same data
897 preprocessing, optimization, and training protocols. The model is trained using the mean squared
898 error (MSE) loss between predicted and observed atmospheric states, which aligns with the RMSE
899 evaluation metric and encourages accurate recovery of both large-scale patterns and fine-grained
900 variations.

901 **F EFFICIENCY ANALYSIS**
902

903 As shown in Table 5, STORM delivers a substantially better efficiency–accuracy trade-off compared
904 with existing data-driven weather models. Despite having only 15.8M parameters, STORM achieves
905 the lowest inference latency (0.87s per 100 samples) and competitive FLOPs, while also attaining
906 the highest prediction accuracy (ACC = 0.984). In contrast, large-scale models such as Pangu and
907 Fuxi incur significantly higher computational and memory costs but still fall short in accuracy. These
908 results highlight that STORM’s lightweight architecture effectively preserves predictive skill while
909 enabling fast and resource-efficient forecasting.

910
911 Table 5: Efficiency comparison across representative data-driven weather models.

Metric	STORM	Pangu	FCN	Fuxi
Inference Time ↓ (Seconds / 100 Samples)	0.87	5.11	6.99	19.37
Peak GPU Memory ↓ (MB, Batch Size = 1)	729.22	408.75	265.95	2533.25
Parameters ↓ (M)	15.77	97.48	64.65	661.01
FLOPs ↓ (GFLOPs)	84.59	91.26	58.50	302.46
ACC ↑	0.984	0.952	0.933	0.950

918 G FULL SENSITIVE ANALYSIS

920
 921 **Table 5** summarizes the scaling behavior of STORM under varying branch numbers and model
 922 widths. Increasing either the branch depth or d_{model} consistently improves accuracy, with ACC rising
 923 from 0.941 (1 branch, 64 hidden units) to 0.988 (5 branches, 256–512 units), while RMSE steadily
 924 decreases. Notably, these gains come with only moderate growth in FLOPs and inference time,
 925 indicating that STORM’s multi-branch temporal encoder scales efficiently. The results highlight
 926 a clear efficiency–accuracy trend: larger branches yield stronger predictive skill without incurring
 927 prohibitive computational cost.

928 Table 6: Scaling and efficiency analysis of STORM across different branch configurations.

Branch	d_model	Total Params	Temp. Enc. Params	FLOPs	Time	Max Mem.	ACC	RMSE
1	64	0.32	2.96E-04	3.17	0.28	13.75	0.941	16.415
1	128	1.20	2.96E-04	11.04	0.30	17.44	0.951	16.323
1	256	4.59	2.96E-04	40.88	0.30	30.01	0.954	16.267
1	512	17.96	2.96E-04	156.92	0.30	82.59	0.958	16.177
2	64	0.64	5.92E-04	4.46	0.56	14.97	0.963	16.136
2	128	2.45	5.92E-04	16.00	0.56	24.43	0.966	16.115
2	256	9.59	5.92E-04	60.32	0.56	51.66	0.971	16.093
2	512	37.92	5.92E-04	233.92	0.59	164.49	0.974	15.983
3	64	1.03	8.88E-04	6.05	0.86	19.48	0.977	15.913
3	128	4.00	8.88E-04	22.16	0.85	30.35	0.981	15.854
3	256	15.77	8.88E-04	84.59	0.87	75.48	0.984	15.809
3	512	62.60	8.88E-04	330.25	0.87	257.33	0.985	15.798
4	64	1.46	1.18E-03	7.44	1.15	20.31	0.979	15.841
4	128	5.70	1.18E-03	27.61	1.16	37.27	0.983	15.813
4	256	22.54	1.18E-03	106.12	1.17	101.06	0.987	15.769
4	512	89.64	1.18E-03	415.84	1.20	360.60	0.986	15.784
5	64	1.96	1.48E-03	8.23	1.49	335.52	0.983	15.808
5	128	7.69	1.48E-03	30.62	1.52	361.66	0.984	15.796
5	256	30.49	1.48E-03	117.84	1.51	448.31	0.988	15.757
5	512	121.40	1.48E-03	462.11	1.53	908.50	0.988	15.716

947 H MORE DETAILS OF ABLATION ANALYSIS

948
 949 Tables 7 and 8 highlight the contribution of message passing and scale heterogeneity in STORM’s
 950 multi-branch architecture. First, enabling message passing consistently boosts performance across all
 951 branch counts, with ACC improvements of 0.6–1.0% and reduced RMSE, indicating more effective
 952 cross-scale information flow. Second, branches configured with different temporal scales significantly
 953 outperform those using identical scales, showing clear gains that grow with larger branch numbers.
 954 These results confirm that both cross-scale communication and scale diversity are essential for
 955 extracting complementary temporal patterns and achieving stronger predictive skill.

956 Table 7: Ablation on message passing across multi-scale branches.

Branch (Scale Numbers)	ACC (with MP)	RMSE (with MP)	ACC (without MP)	RMSE (without MP)
2	0.971	16.093	0.963	16.145
3	0.984	15.809	0.976	15.948
4	0.987	15.769	0.981	15.886
5	0.988	15.757	0.980	16.879

957 Table 8: Effect of different vs same multi-branch designs.

Scale Number	ACC (Diff Scale)	RMSE (Diff)	ACC (Same Scale)	RMSE (Same)
2	0.971	16.093	0.939	16.547
3	0.984	15.809	0.948	16.382
4	0.987	15.769	0.954	16.285
5	0.988	15.757	0.957	16.179

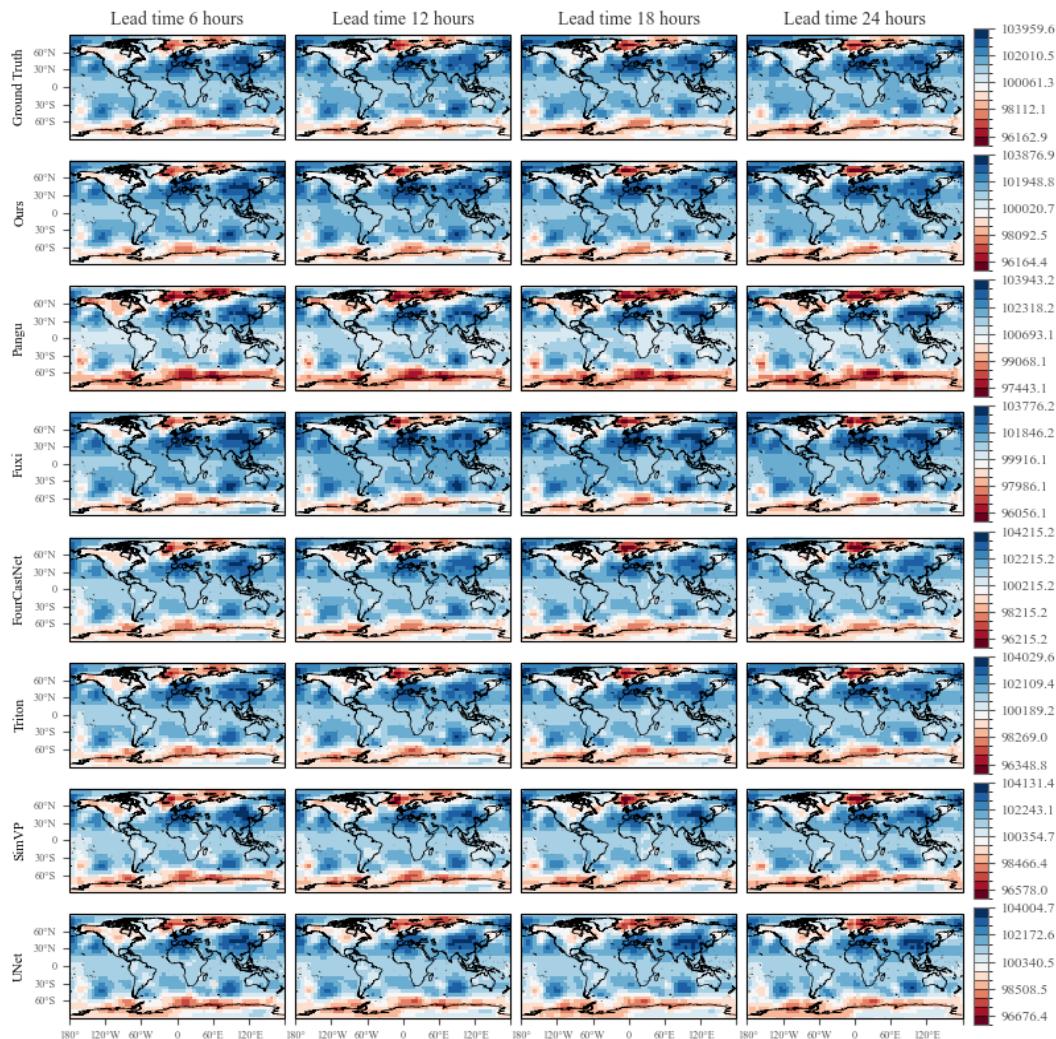
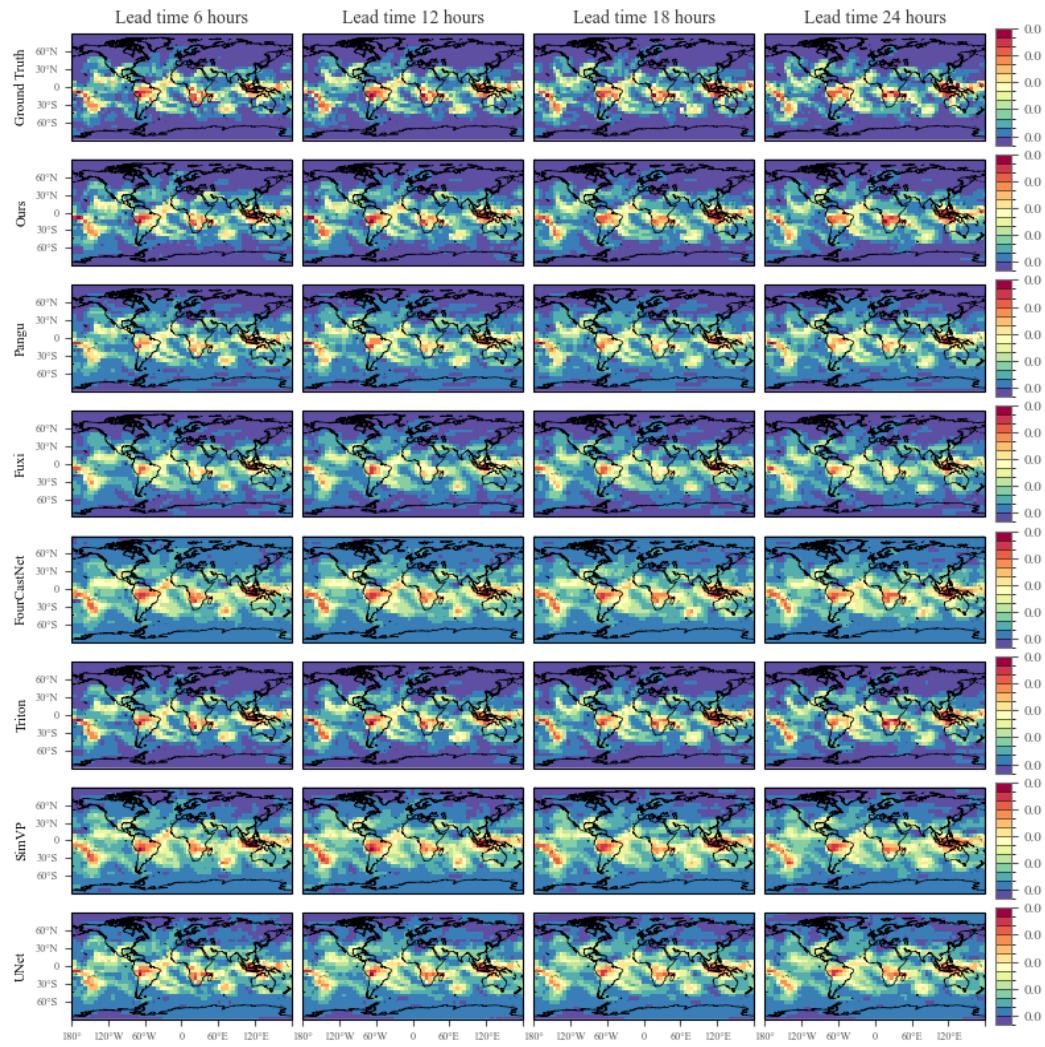
972 I FORECAST VISUALIZATION
973974 I.1 MEAN SEA LEVEL PRESSURE (MSLP)
975

Figure 8: 24-hour forecast results of different models for mean sea level pressure (MSLP).

1026
1027

I.2 SPECIFIC HUMIDITY AT 500 hPa (Q500)

1028



1061

Figure 9: 24-hour forecast results of different models for 500 hPa specific humidity (Q500).

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

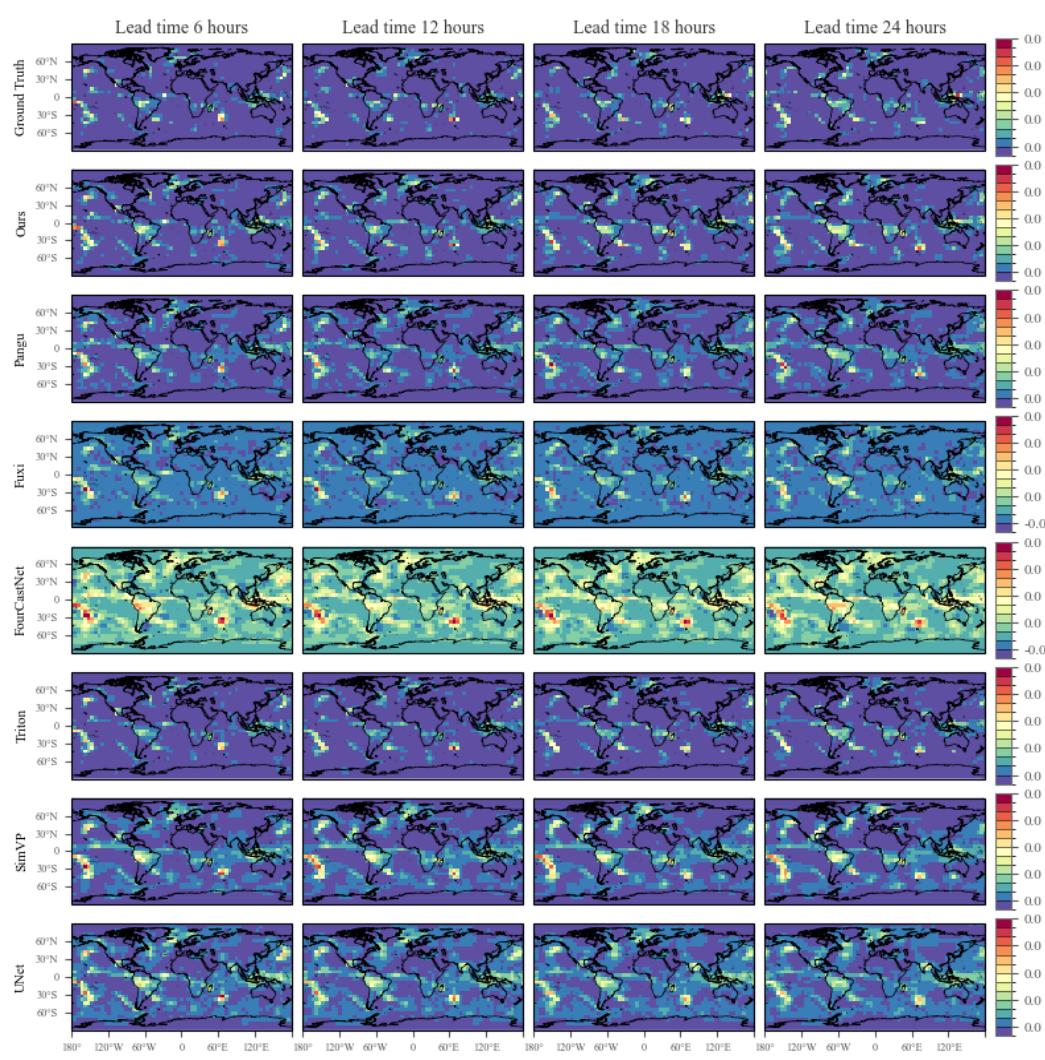
1078

1079

1080
1081

I.3 PRECIPITATION

1082



1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

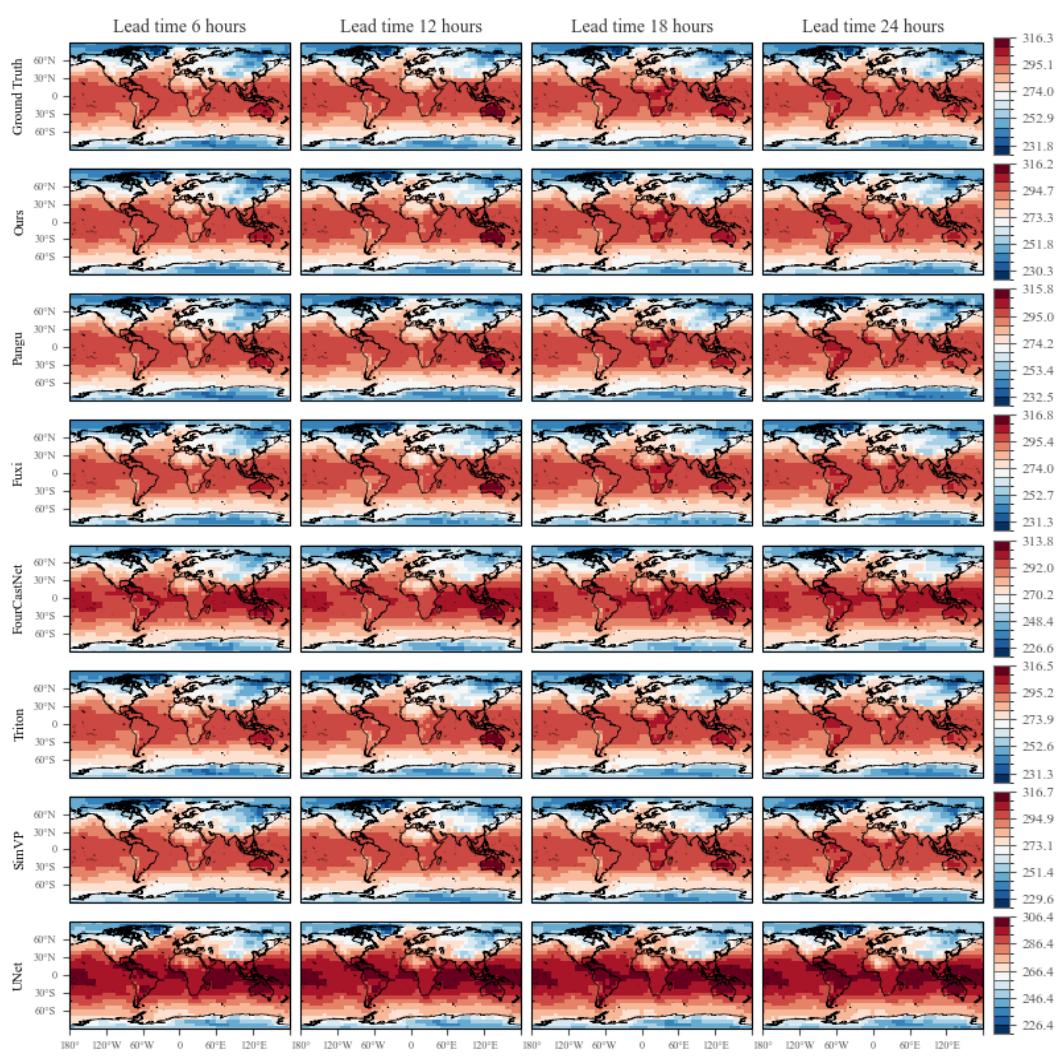
1133

Figure 10: 24-hour precipitation forecast results of different models.

1134
1135

I.4 2-METER TEMPERATURE (T2M)

1136



1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 11: 24-hour forecast results of different models for 2-meter temperature (T2M).

1188
1189

1190 I.5 TEMPERATURE AT 500 hPa (T500)

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

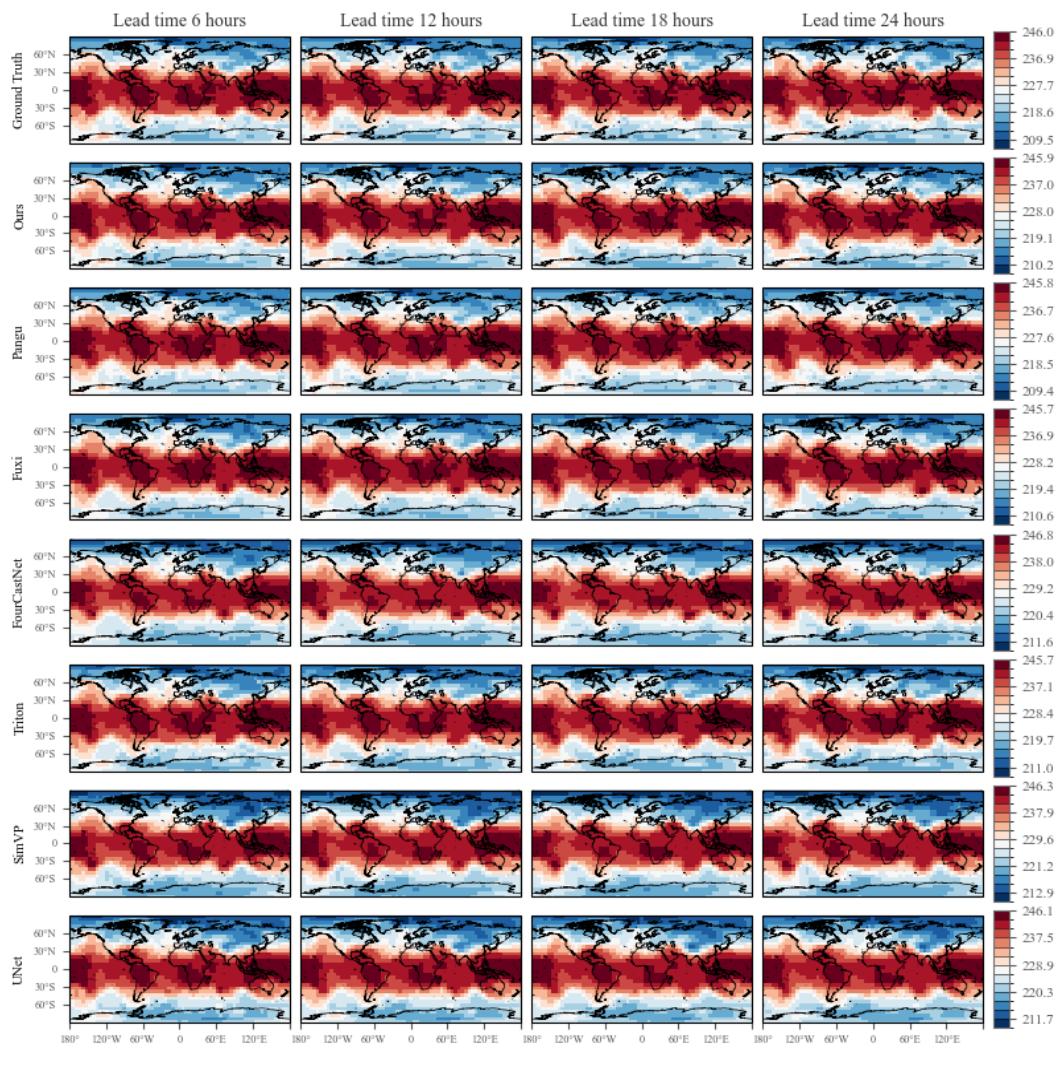
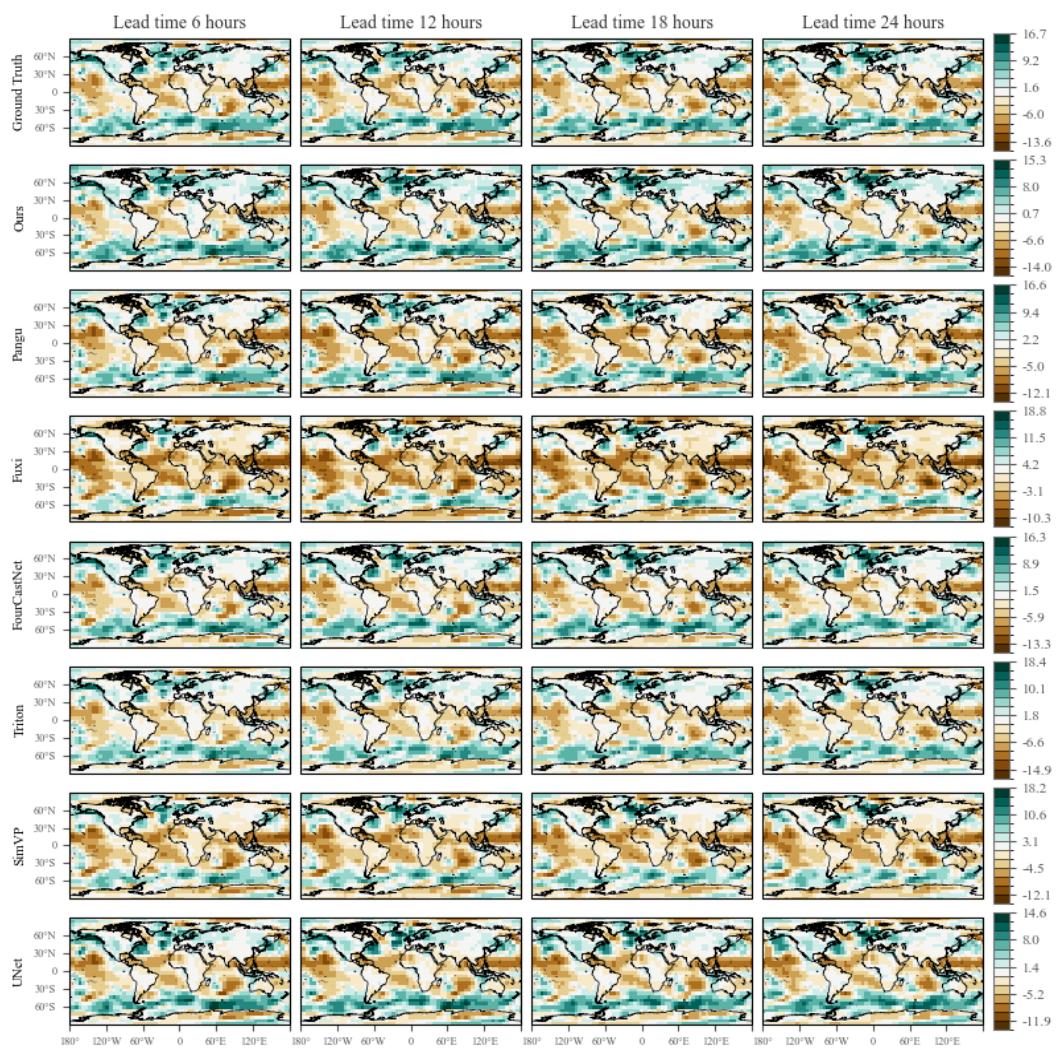


Figure 12: 24-hour forecast results of different models for 500 hPa temperature (T500).

1242
1243 I.6 10-METER ZONAL WIND (U10)

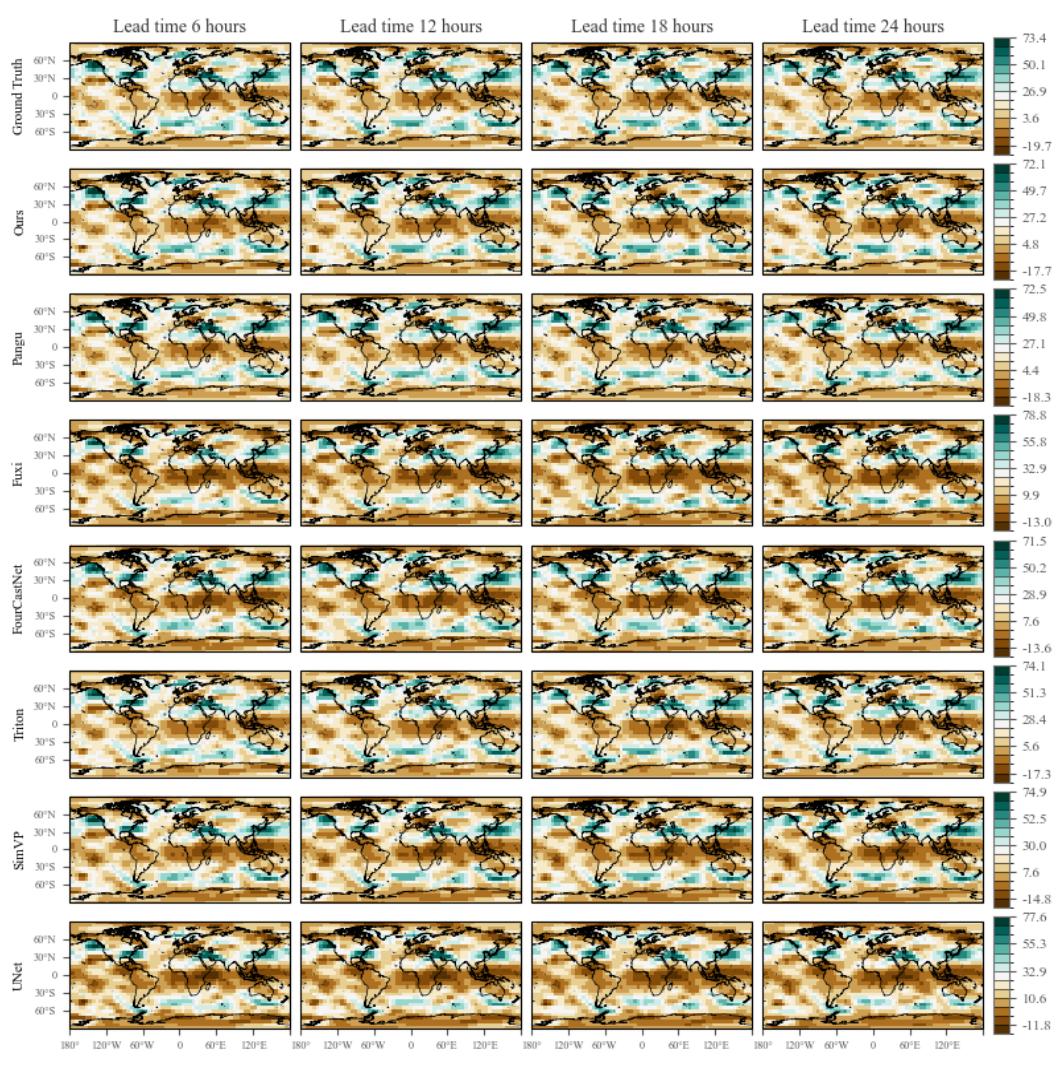
1278 Figure 13: 24-hour forecast results of different models for 10-meter zonal wind (U10).

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297

I.7 ZONAL WIND AT 500 hPa (U500)

1298



1331

Figure 14: 24-hour forecast results of different models for 500 hPa zonal wind (U500).

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

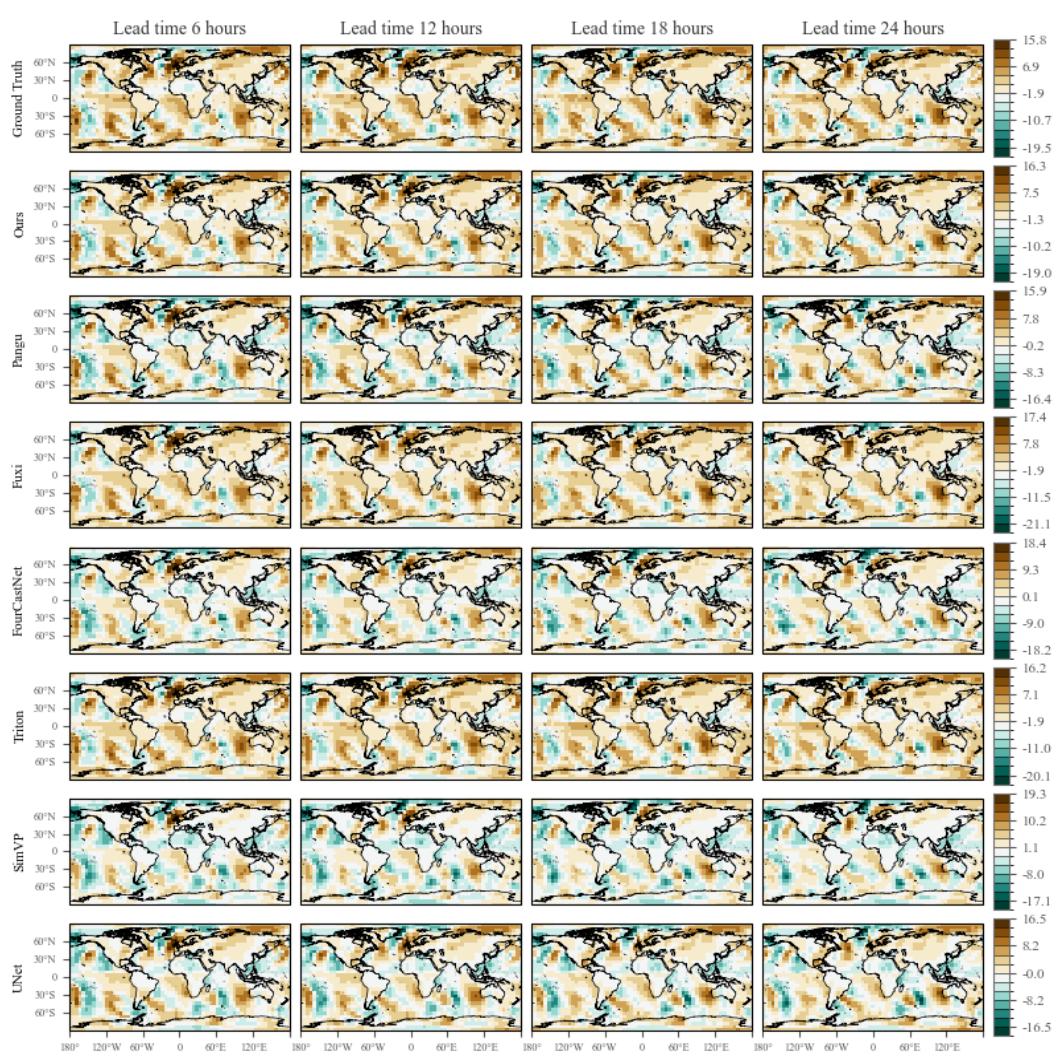
1345

1346

1347

1348

1349

1350 I.8 10-METER MERIDIONAL WIND (V10)
13511386 Figure 15: 24-hour forecast results of different models for 10-meter meridional wind (V10).
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405

I.9 MERIDIONAL WIND AT 500 hPa (V500)

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

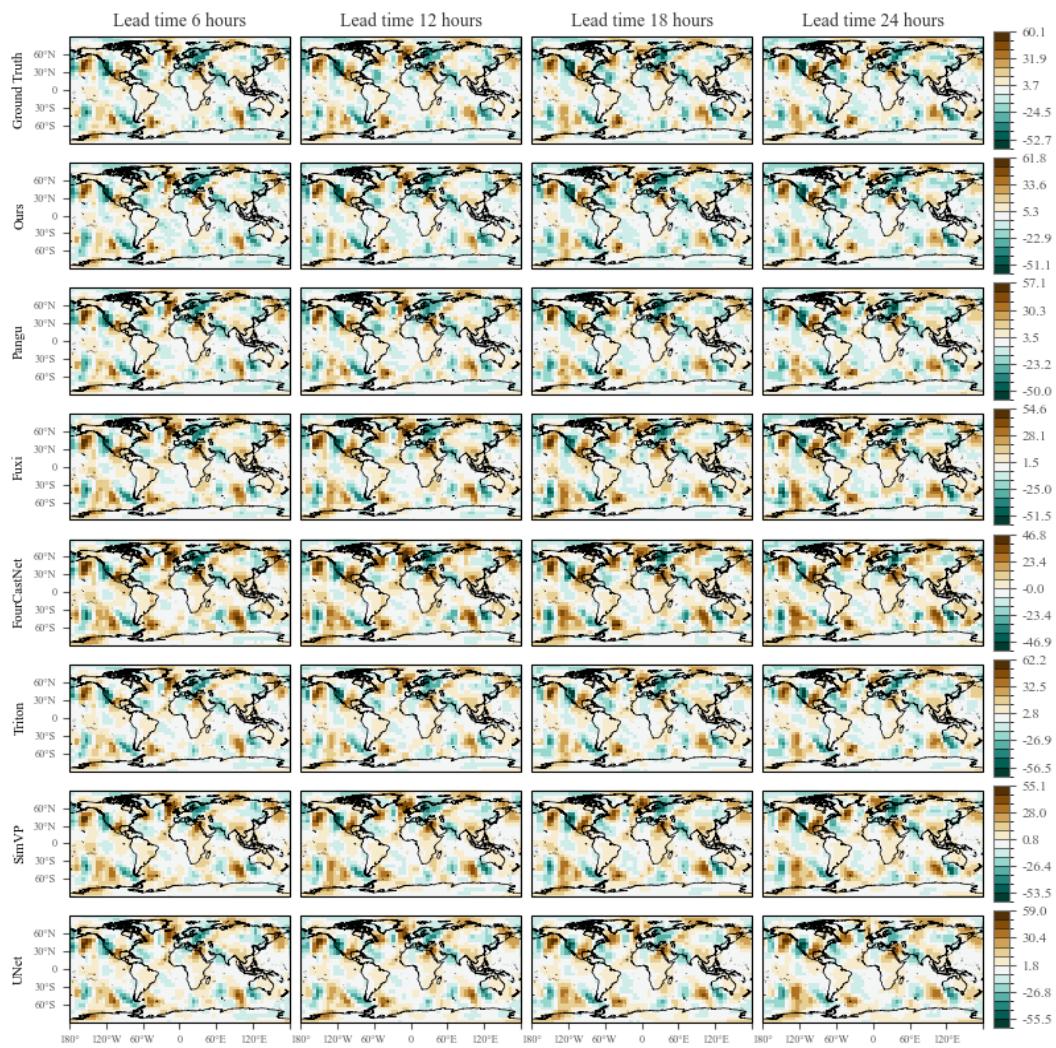


Figure 16: 24-hour forecast results of different models for 500 hPa meridional wind (V500).

1458 I.10 GEOPOTENTIAL HEIGHT AT 500 hPa (Z500)
1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

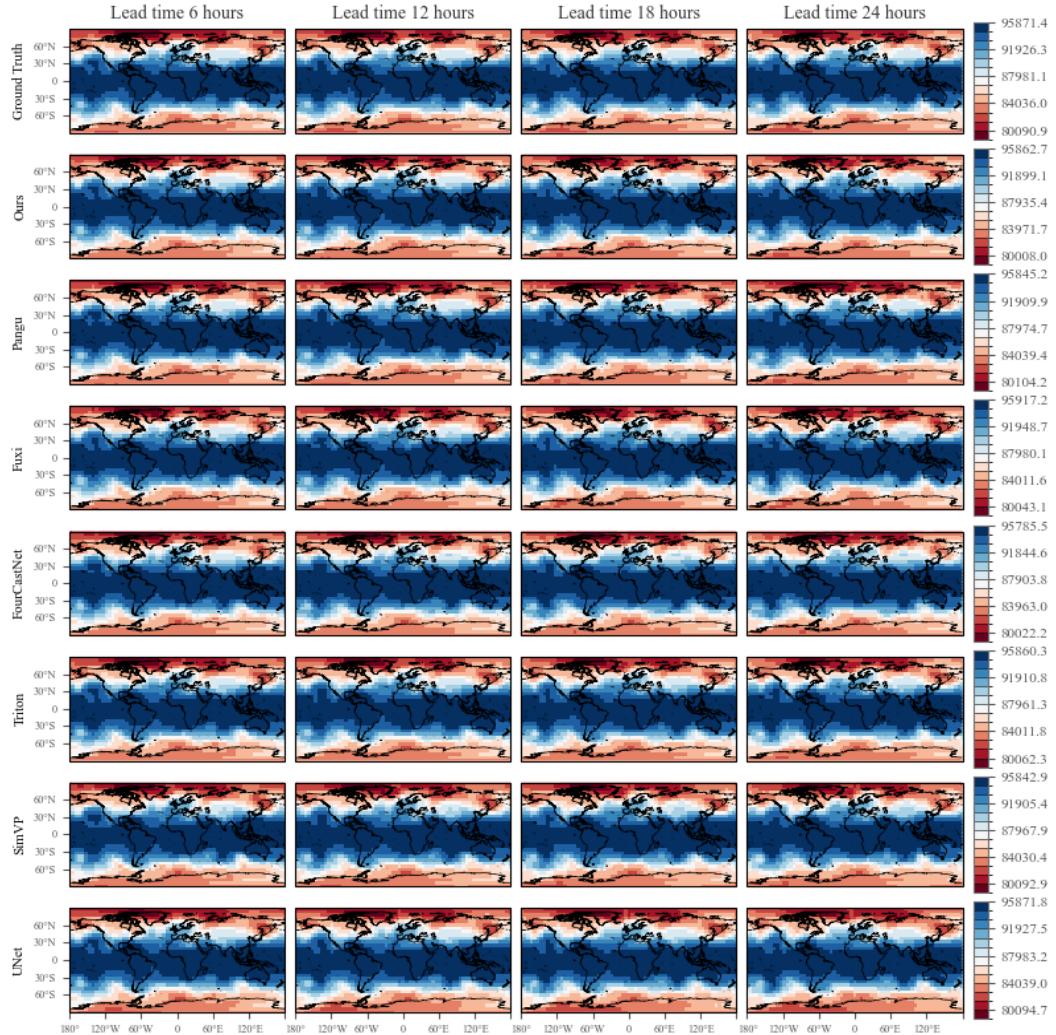
1507

1508

1509

1510

1511

1494 Figure 17: 24-hour forecast results of different models for 500 hPa geopotential height (Z500).
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **J FULL SHORT-TERM FORECASTING RESULTS.**
1513
1514
15151516 Table 9: Quantitative comparison of short-term (up to 24 hours) global weather forecasting performance.
1517

1519 Metric	Variable	Hours	RMSE						ACC							
			Ours	Triton	Pangu	FCN	Fuxi	SimVP	UNet	Ours	Triton	Pangu	FCN	Fuxi	SimVP	UNet
1521 T2M	1522	6h	0.564	0.718	0.787	1.430	1.191	1.335	1.337	0.999	0.999	0.998	0.995	0.996	0.996	0.995
		12h	0.653	0.836	1.075	1.545	1.308	1.332	2.208	0.999	0.998	0.997	0.994	0.996	0.996	0.987
		18h	0.705	0.929	1.219	1.632	1.415	1.341	2.789	0.999	0.998	0.996	0.993	0.995	0.996	0.982
		24h	0.777	1.010	1.342	1.708	1.513	1.363	3.447	0.998	0.997	0.995	0.993	0.994	0.995	0.981
1525 U10	1526	6h	0.495	0.598	0.775	1.169	0.994	1.279	0.955	0.995	0.993	0.988	0.973	0.981	0.968	0.981
		12h	0.608	0.749	1.209	1.376	1.200	1.359	1.437	0.993	0.989	0.972	0.963	0.972	0.964	0.961
		18h	0.719	0.894	1.590	1.646	1.423	1.497	2.032	0.990	0.985	0.951	0.947	0.961	0.956	0.942
		24h	0.853	1.034	1.933	1.926	1.637	1.659	3.462	0.986	0.979	0.927	0.927	0.948	0.946	0.924
1528 V10	1529	6h	0.520	0.629	0.834	1.274	1.064	1.378	1.012	0.992	0.988	0.979	0.950	0.965	0.941	0.967
		12h	0.647	0.796	1.304	1.492	1.268	1.467	1.491	0.987	0.981	0.947	0.930	0.950	0.933	0.933
		18h	0.768	0.950	1.713	1.782	1.490	1.608	1.994	0.982	0.973	0.908	0.899	0.932	0.919	0.898
		24h	0.917	1.098	2.082	2.084	1.703	1.772	2.971	0.974	0.963	0.862	0.861	0.911	0.900	0.863
1531 Prec	1532	6h	4.2E-04	4.8E-04	6.1E-04	9.2E-04	7.4E-04	9.2E-04	6.7E-04	0.955	0.941	0.906	0.763	0.856	0.768	0.885
		12h	4.9E-04	5.8E-04	7.9E-04	9.5E-04	8.2E-04	9.3E-04	8.9E-04	0.938	0.913	0.833	0.748	0.819	0.758	0.792
		18h	5.9E-04	7.0E-04	9.3E-04	1.0E-03	9.2E-04	9.7E-04	1.1E-03	0.911	0.872	0.765	0.717	0.768	0.737	0.719
		24h	6.6E-04	7.8E-04	1.0E-03	1.1E-03	1.0E-03	1.0E-03	1.4E-03	0.886	0.839	0.705	0.682	0.722	0.713	0.663
1534 MSLP	1535	6h	46.808	60.493	101.678	147.757	112.764	154.169	113.815	0.999	0.999	0.996	0.991	0.995	0.990	0.994
		12h	61.834	82.905	179.577	186.644	148.871	168.679	198.949	0.998	0.997	0.987	0.986	0.991	0.989	0.984
		18h	78.448	104.797	255.410	238.317	188.986	194.126	289.322	0.998	0.996	0.973	0.977	0.986	0.985	0.971
		24h	99.948	126.514	326.712	295.758	229.717	226.092	427.862	0.996	0.994	0.956	0.964	0.979	0.979	0.956
1538 U500	1539	6h	1.384	1.835	1.879	3.540	2.953	3.553	2.503	0.996	0.994	0.993	0.976	0.983	0.976	0.987
		12h	1.713	2.287	2.972	4.148	3.612	3.789	3.880	0.994	0.990	0.983	0.967	0.975	0.973	0.971
		18h	2.041	2.725	3.945	4.940	4.303	4.204	5.158	0.992	0.986	0.970	0.953	0.965	0.966	0.955
		24h	2.472	3.151	4.845	5.802	4.980	4.719	7.166	0.988	0.981	0.955	0.935	0.953	0.957	0.939
1541 V500	1542	6h	1.449	1.873	2.036	3.765	3.155	3.823	2.868	0.992	0.987	0.985	0.947	0.963	0.945	0.969
		12h	1.835	2.367	3.228	4.486	3.817	4.093	4.259	0.987	0.979	0.961	0.924	0.946	0.936	0.933
		18h	2.221	2.843	4.290	5.418	4.500	4.530	5.508	0.982	0.970	0.930	0.887	0.925	0.922	0.897
		24h	2.714	3.305	5.284	6.414	5.169	5.073	7.363	0.972	0.960	0.893	0.841	0.902	0.901	0.859
1544 T500	1545	6h	0.376	0.518	0.513	1.087	0.903	1.189	0.679	0.999	0.998	0.998	0.993	0.995	0.992	0.997
		12h	0.478	0.646	0.802	1.177	1.036	1.210	1.087	0.999	0.998	0.996	0.992	0.994	0.991	0.993
		18h	0.566	0.760	1.024	1.300	1.182	1.255	1.410	0.998	0.997	0.994	0.990	0.992	0.991	0.988
		24h	0.675	0.861	1.207	1.441	1.321	1.313	1.773	0.997	0.996	0.991	0.988	0.990	0.990	0.985
1548 Z500	1549	6h	51.5	68.4	102.6	189.0	142.3	186.4	131.0	1.000	1.000	1.000	0.999	0.999	0.999	0.999
		12h	66.3	93.4	184.6	223.6	185.5	200.9	233.4	1.000	1.000	0.999	0.999	0.999	0.999	0.998
		18h	86.5	122.5	267.1	289.9	238.5	231.9	348.0	1.000	1.000	0.998	0.997	0.998	0.998	0.996
		24h	114.9	153.3	348.5	371.5	294.8	274.6	520.8	1.000	0.999	0.996	0.996	0.997	0.998	0.995
1551 Q500	1552	6h	2.8E-05	3.7E-05	3.4E-05	6.5E-05	5.8E-05	7.5E-05	4.3E-05	0.988	0.979	0.983	0.936	0.949	0.914	0.972
		12h	3.7E-05	4.6E-05	5.2E-05	7.0E-05	6.5E-05	7.5E-05	6.5E-05	0.980	0.968	0.960	0.926	0.935	0.913	0.937
		18h	4.3E-05	5.4E-05	6.4E-05	7.5E-05	7.3E-05	7.7E-05	8.1E-05	0.972	0.956	0.937	0.912	0.918	0.908	0.906
		24h	4.9E-05	6.0E-05	7.4E-05	8.1E-05	8.0E-05	7.9E-05	1.0E-04	0.963	0.945	0.916	0.897	0.900	0.902	0.881

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 **K FULL LONG-TERM FORECASTING RESULTS.**

1567

1568

1569

Table 10: Quantitative comparison of long-term (7–10 days) global weather forecasting performance.

1572	Metric	RMSE						ACC								
		1573 Variable	Days	Ours	Triton	Pangu	FCN	Fuxi	SimVP	UNet	Ours	Triton	Pangu	FCN	Fuxi	SimVP
1574	T2M	7d	2.293	<u>2.934</u>	3.423	3.902	3.294	2.938	4.051	0.987	0.974	0.963	0.975	0.973	<u>0.979</u>	0.948
		8d	2.516	3.263	3.574	4.104	3.442	<u>3.100</u>	4.358	0.985	0.968	0.958	0.971	0.970	<u>0.977</u>	0.940
		9d	2.708	3.549	3.712	4.288	3.574	<u>3.248</u>	4.630	0.982	0.961	0.952	0.969	0.968	<u>0.974</u>	0.933
		10d	2.865	3.799	3.821	4.430	3.689	<u>3.384</u>	4.867	0.981	0.956	0.948	0.967	0.966	<u>0.972</u>	0.928
1577	U10	7d	3.485	3.945	4.959	5.102	4.528	<u>3.766</u>	5.507	0.769	0.700	0.663	0.645	0.608	<u>0.707</u>	0.606
		8d	3.773	4.192	5.088	5.301	4.660	<u>3.872</u>	5.753	0.730	0.662	0.627	0.614	0.582	<u>0.689</u>	0.567
		9d	3.954	4.397	5.192	5.464	4.762	<u>3.997</u>	5.953	0.697	0.631	0.597	0.588	0.561	<u>0.675</u>	0.541
		10d	4.013	4.548	5.268	5.583	4.834	<u>4.174</u>	6.099	0.670	0.606	0.572	0.568	0.544	<u>0.664</u>	0.524
1580	V10	7d	3.787	4.205	4.961	5.364	4.652	<u>3.982</u>	5.757	0.559	<u>0.451</u>	0.392	0.358	0.326	0.427	0.306
		8d	4.089	4.445	5.069	5.514	4.764	<u>4.098</u>	5.986	0.486	0.388	0.342	0.310	0.291	<u>0.391</u>	0.271
		9d	4.154	4.620	5.150	5.649	4.853	<u>4.335</u>	6.158	0.426	0.339	0.299	0.274	0.264	<u>0.366</u>	0.244
		10d	4.201	4.747	5.201	5.749	4.911	<u>4.500</u>	6.277	0.383	0.302	0.266	0.247	0.245	<u>0.349</u>	0.225
1584	Prec	7d	1.3E-03	1.9E-03	1.7E-03	1.5E-03	1.6E-03	<u>1.4E-03</u>	2.2E-03	0.492	0.354	0.329	0.259	0.271	<u>0.396</u>	0.242
		8d	1.4E-03	2.1E-03	1.8E-03	1.6E-03	1.6E-03	<u>1.5E-03</u>	2.3E-03	0.446	0.316	0.297	0.231	0.249	<u>0.384</u>	0.211
		9d	1.4E-03	2.2E-03	1.8E-03	1.6E-03	1.7E-03	<u>1.5E-03</u>	2.3E-03	0.410	0.287	0.272	0.210	0.233	<u>0.376</u>	0.190
		10d	1.4E-03	2.3E-03	1.8E-03	1.6E-03	1.7E-03	<u>1.6E-03</u>	2.4E-03	0.381	0.262	0.252	0.193	0.220	<u>0.370</u>	0.173
1587	MSLP	7d	640.6	<u>731.4</u>	1075.0	969.2	901.1	741.8	1067.9	0.835	0.779	<u>0.785</u>	0.764	0.680	0.770	0.733
		8d	713.0	795.5	1114.5	1024.9	940.6	<u>775.8</u>	1128.5	0.796	0.738	<u>0.754</u>	0.730	0.650	0.748	0.695
		9d	771.7	847.9	1145.0	1069.5	969.0	<u>801.4</u>	1181.0	0.762	0.706	0.725	0.701	0.627	<u>0.730</u>	0.660
		10d	816.2	887.7	1166.9	1101.8	989.2	<u>820.0</u>	1220.0	0.734	0.678	0.700	0.678	0.608	<u>0.716</u>	0.630
1590	U925	7d	5.661	7.696	10.090	8.300	9.408	<u>7.572</u>	11.118	0.915	0.839	0.842	0.833	0.782	<u>0.848</u>	0.796
		8d	6.320	8.590	10.607	8.936	9.972	<u>7.972</u>	12.066	0.894	0.802	0.816	0.808	0.756	<u>0.832</u>	0.763
		9d	6.911	9.354	11.050	9.477	10.426	<u>8.313</u>	12.659	0.874	0.769	0.789	0.779	0.734	<u>0.819</u>	0.730
		10d	7.436	10.031	11.430	9.921	10.803	<u>8.611</u>	13.103	0.854	0.739	0.765	0.752	0.716	<u>0.807</u>	0.699
1593	V925	7d	5.674	7.095	9.228	8.929	8.310	<u>6.765</u>	10.013	0.643	<u>0.485</u>	0.395	0.376	0.289	0.416	0.300
		8d	6.344	7.733	9.602	9.466	8.704	<u>7.061</u>	10.684	0.556	<u>0.397</u>	0.323	0.307	0.226	0.355	0.223
		9d	6.923	8.210	9.892	9.880	8.981	<u>7.294</u>	11.174	0.474	<u>0.327</u>	0.263	0.250	0.183	0.305	0.166
		10d	7.412	8.603	10.105	10.198	9.182	<u>7.473</u>	11.560	0.402	<u>0.268</u>	0.214	0.204	0.151	0.266	0.131
1597	T925	7d	2.420	<u>3.251</u>	4.015	3.496	4.163	3.333	4.872	0.975	<u>0.952</u>	0.944	0.949	0.925	0.952	0.920
		8d	2.690	3.585	4.232	3.777	4.421	<u>3.504</u>	5.204	0.969	0.942	0.935	0.942	0.916	<u>0.947</u>	0.908
		9d	2.932	3.882	4.420	4.022	4.642	<u>3.649</u>	5.523	0.963	0.932	0.926	0.934	0.908	<u>0.943</u>	0.896
		10d	3.145	4.152	4.566	4.223	4.827	<u>3.774</u>	5.724	0.957	0.922	0.917	0.926	0.901	<u>0.939</u>	0.884
1600	Z925	7d	3.0E-07	4.7E-07	4.2E-07	4.3E-07	5.2E-07	<u>3.8E-07</u>	5.8E-07	0.782	0.611	0.607	0.620	0.567	<u>0.653</u>	0.565
		8d	3.2E-07	5.2E-07	4.4E-07	4.6E-07	5.5E-07	<u>3.9E-07</u>	6.3E-07	0.760	0.573	0.571	0.586	0.544	<u>0.637</u>	0.524
		9d	3.3E-07	5.6E-07	4.6E-07	4.8E-07	5.7E-07	<u>4.1E-07</u>	6.6E-07	0.738	0.537	0.537	0.554	0.524	<u>0.622</u>	0.504
		10d	3.5E-07	6.0E-07	4.8E-07	5.0E-07	5.8E-07	<u>4.2E-07</u>	6.8E-07	0.717	0.502	0.509	0.527	0.506	<u>0.609</u>	0.482
1603	Q925	7d	673.038	871.088	1311.785	<u>836.431</u>	1172.687	989.917	1394.336	0.987	0.973	0.966	0.973	0.966	<u>0.975</u>	0.947
		8d	773.302	999.146	1391.247	<u>928.037</u>	1270.395	1067.484	1499.221	0.983	0.964	0.958	0.965	0.960	<u>0.972</u>	0.938
		9d	863.541	1113.102	1459.822	<u>1017.677</u>	1351.076	1135.576	1591.308	0.979	0.955	0.951	0.958	0.956	<u>0.969</u>	0.931
		10d	943.733	1214.456	1513.909	<u>1093.027</u>	1422.259	1196.480	1666.658	0.975	0.946	0.946	0.954	0.951	<u>0.966</u>	0.926

1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619