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ABSTRACT

Although deep reinforcement learning (DRL) has many success stories, the large-
scale deployment of policies learned through these advanced techniques in safety-
critical scenarios is hindered by their lack of formal guarantees. Variational Markov
Decision Processes (VAE-MDPs) are discrete latent space models that provide
a reliable framework for distilling formally verifiable controllers from any RL
policy. While the related guarantees address relevant practical aspects such as
the satisfaction of performance and safety properties, the VAE approach suffers
from several learning flaws (posterior collapse, slow learning speed, poor dynamics
estimates), primarily due to the absence of abstraction and representation guarantees
to support latent optimization. We introduce the Wasserstein auto-encoded MDP
(WAE-MDP), a latent space model that fixes those issues by minimizing a penalized
form of the optimal transport between the behaviors of the agent executing the
original policy and the distilled policy, for which the formal guarantees apply. Our
approach yields bisimulation guarantees while learning the distilled policy, allowing
concrete optimization of the abstraction and representation model quality. Our
experiments show that, besides distilling policies up to 10 times faster, the latent
model quality is indeed better in general. Moreover, we present experiments from
a simple time-to-failure verification algorithm on the latent space. The fact that our
approach enables such simple verification techniques highlights its applicability.

1 INTRODUCTION

Reinforcement learning (RL) is emerging as a solution of choice to address challenging real-word
scenarios such as epidemic mitigation and prevention strategies (Libin et al.| [2020), multi-energy
management (Ceusters et al., 2021}, or effective canal control (Ren et al.,|2021). RL enables learning
high performance controllers by introducing general nonlinear function approximators (such as neural
networks) to scale with high-dimensional and continuous state-action spaces. This introduction,
termed deep-RL, causes the loss of the conventional convergence guarantees of RL (Tsitsiklis| [1994)
as well as those obtained in some continuous settings (Nowel [1994)), and hinders their wide roll-out
in critical settings. This work enables the formal verification of any such policies, learned by agents
interacting with unknown, continuous environments modeled as Markov decision processes (MDPs).
Specifically, we learn a discrete representation of the state-action space of the MDP, which yield both
a (smaller, explicit) latent space model and a distilled version of the RL policy, that are tractable
for model checking (Baier & Katoen| |2008). The latter are supported by bisimulation guarantees:
intuitively, the agent behaves similarly in the original and latent models. The strength of our approach
is not simply that we verify that the RL agent meets a predefined set of specifications, but rather
provide an abstract model on which the user can reason and check any desired agent property.

Variational MDPs (VAE-MDPs, Delgrange et al.[2022) offer a valuable framework for doing so.
The distillation is provided with PAC-verifiable bisimulation bounds guaranteeing that the agent
behaves similarly (i) in the original and latent model (abstraction quality); (ii) from all original states
embedded to the same discrete state (representation quality). Whilst the bounds offer a confidence
metric that enables the verification of performance and safety properties, VAE-MDPs suffer from
several learning flaws. First, training a VAE-MDP relies on variational proxies to the bisimulation
bounds, meaning there is no learning guarantee on the quality of the latent model via its optimization.
Second, variational autoencoders (VAEs) (Kingma & Welling, [2014; |[Hoffman et al.,|2013) are known
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to suffer fromposterior collapsde.g.] Alemi et al. 2018) resulting in a deterministic mapping to a
unique latent state in VAE-MDPs. Most of the training process focuses on handling this phenomenon
and setting up the stage for the concrete distillation and abstraction, nally taking place in a second
training phase. This requires extra regularizers, setting up annealing schemes and learning phases,
and de ning prioritized replay buffers to store transitions. Distillation through VAE-MDPs is thus a
meticulous task, requiring a large step budget and tuning many hyperparameters.

Building uponWassersteimutoencoders (Tolstikhin et dl., 2018) instead of VAES, we introduce
Wasserstein auto-encoded MD¥AE-MDPs), which overcome those limitations. Our WAE relies

on theoptimal transport(OT) from trace distributions resulting from the execution of the RL policy

in the real environment to that reconstructed from the latent model operating under the distilled
policy. In contrast to VAEs which rely on variational proxies, we derive a novel objective that directly
incorporate the bisimulation bounds. Furthermore, while VAEs learn stochastic mappings to the latent
space which need be determinized or even entirely reconstructed from data at the deployment time to
obtain the guarantees, our WAE has no such requirements, andhletira necessary components to
obtain the guarantees during learningnd does not require such post-processing operations.

Those theoretical claims are re ected in our experiments: policies are distilled1(ntitmes faster
through WAE- than VAE-MDPs and provide better abstraction quality and performance in general,
without the need for setting up annealing schemes and training phases, nor prioritized buffer and
extra regularizer. Our distilled policies are able to recover (and sometimes even outperform) the
original policy performance, highlighting the representation quality offered by our new framework:
the distillation is able to remove some non-robustness of the input RL policy. Finally, we formally
veri ed time-to-failureproperties (e.gl, Pnu&li 1977) to emphasize the applicability of our approach.

Other Related Work. Complementary works approach safe RL via formal methods (Junges et al.,
2016; Alshiekh et all, 2018; Jansen et [al., 2020; Simdo et al., 2021), aimed at formally ensuring
safetyduring RL, all of which require providing an abstract model of the safety aspects of the
environment. They also include the work of Alamdari et[al. (2020), applying synthesis and model
checking on policies distilled from RL, without quality guarantees. Other frameworks share our
goal of verifying deep-RL policies$ (Bacci & Parkeér, 2020; Carr et al., 2020) but rely on a known
environment model, among other assumptions (e.g., deterministic or discrete environment). Finally,
DeepSyntt{Hasanbeig et al., 2021) allows learning a formal model from execution traces, with the
different purpose of guiding the agent towards sparse and non-Markovian rewards.

On the latent space training side, WWAES (Zhang et/ al., 2019) reuse OT as latent regularizer
discrepancy (in Gaussian closed form), whereas we derive two regularizers involving OT. These two
are, in contrast, optimized via the dual formulation of Wasserstein, @&agsertein-GANGArjovsky

et all,2017). Similarly t&/Q-VAES(van den Oord et al., 2017) ahatent Bernoulli AEgFajtl et al.,

2020), our latent space model learns discrete spaces via deterministic encoders, but relies on a smooth
approximation instead of using the straight-through gradient estimator.

Works onrepresentation learninfpr RL (Gelada et al., 2019; Castro et al., 2021; Zhang et al., 2021,
Zang et al., 2022) consider bisimulation metrics to optimize the representation quality, and aim at
learning (continuous) representations which capture bisimulation, so that two states close in the
representation are guaranteed to provide close and relevant information to optimize the performance of
the controller. In particular, as in our wolReepMDPYGelada et al., 2019) are learned by optimizing

local lossesby assuming a deterministic MDP and without veri able con dence measurement.

2 BACKGROUND

In the following, we write pX gfor the set of measures over (complete, separable metric s§ace)

Markov decision processegMDPs) are tuples! x S;A;P;R;"; AP ;s ywhereS is a set of
states A, a set ofactions P: S A N pSq a probability transition functiorthat maps the
current state and action todéstributionover the next state® : S A N R, areward function
*: S N 22" | alabeling functionover a set of atomic propositiods® ; ands, P S, theinitial
state If |JA] 1, M is a fully stochastic process calledviarkov chain(MC). We writeM ¢ for
the MDP obtained when replacing the initial statehdbfby s P S. An agent interacting iM
producedrajectories i.e., sequences of states and actionsx s, ;a.r ywheres, s and
st 1 Pp |st;aiqfort  T. The set of in nite trajectories ol is Traj . We assumd@P and
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(a) Execution of the latent policy inthe  (b) Parallel execution of the original RL policyin the original
original and latent MDPs, and local losses. and latent MDPs, local losses, and steady-state regularizer.

Figure 1: Latent ows: arrows represent (stochastic) mappings, the original (resp. latent) state-action
space is spread along the blue (resp. green) area, and distances are depicted in red. Distitling
via ow (b) by minimizing W  allows closing the gap between ows (a) and (b).

labels being respectively one-hot and binary encoded. GivenAP , we writes 0 T if sis labeled
with T,i.e.,”psg XT H ,andsfu T fors e T. We refer to MDPs with continuous state or
action spaces antinuous MDPsIn that case, we assun$eandA are complete separable metric
spaces equipped with a Borelalgebra, and *pT gis Borel-measurable for arly,, AP .

Policies and stationary distributions. A (memoryless) policy : S N pAq prescribes which
action to choose at each step of the interaction. The set of memoryless polidlessof . The
MDPM and P induce an MOVl  with unique probability measum@ on the Borel -algebra
over measurable subsets, Traj (Puterman, 1994). We drop the superscript when the context is
clear. Dene 'pst|sq PMspts,s ;@ | St S'ugas the distribution giving the probability of
being in each state &fl 5 aftert stepsB ,, S is abottom strongly connected compon@SCC) of

M if (i) B is a maximal subset satisfyingps!| sq i 0for anys;s'PB and somé ¥ 0, and (ii)

Ea p|sqPPB |s;ag 1foralls PS. The unique stationary distribution Bfis P pBg We
write s; a for samplings from thenafrom . An MDPM isergodicif forall P ,the
state space d¥l consists of a unique aperiodic BSCC with  limgg 'p |sqforallsPS.

Value objectives.Given P | thevalueof a states P S is the expected value of a random variable
obtained by running from s. For a discount factor P 10; 1s, we consider the following objectives.
(i) Discounted returnwe writeV psq  EM s ? o 'Rpsi;aq for the expected discounted
rewards accumulated along trajectories. The typical goal of an RL agent is to learn a paliat
maximizesV s, qthrough interactions with the (unknown) MDP; (ReachabilityletC; T ,, AP,

the (constrained) reachabilitgvent isCUT t s,5;8,, |[DPN;@ ;s 0 C*sip Tu,

Traj . We writeV' psq  EM= ' 1, . a,,yp fOr thediscounted probability of satisfying

' CUT, wheret is the length of the shortest trajectory pre x that allows satisfyingntuitively,

this denotes the discounted return of remaining in a region of the MDP where states are labeled with
C, until visiting for the rst time a goal statelabeled withT, and the return is the binary reward
signal capturing this evengafetyw.r.t. failure state€ can be expressed as the safety-constrained
reachability to a destinatioh through CUT. Notice thatv' psq PY =g qwhen 1

Latent MDP. Given the original (continuous, pO@iby unknown) enviggnment mbtieklatent
space modas another (smaller, explicit) MDM®I S;A;P;R;; AP ;5 with state-action space
linked to thgyoriginappne via state and actiembedding functions : S N Sand :S AN A.
%refer 5; M as alatent space modef M andM as itslatent MDP. Our goal is to learn
- by optimizing arequivalence criterioetween the two models. We assume thats a
metric onS, and write  for the set of policies ok andV - for the values of running P inM .

Remarkl (Latent ow). The latent policy” can be seen as a policylih (cf. Fig. 1a): states passed to
~are rstembedded with to the latent space, then the actions produced ase executed via in the
original environment. Les PS, we writea ~p |sqfor “p | psqq then the reward and next state

are respectively given bRps;aq  Rps; p psgaggandst Pp |s;ag Pp |s; p psgagq
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Local lossesallow quantifying the distance between the original and latent reward/transition functions
in the local settingi.e., under a given state-action distributioP S A :

Lr _E Rps;aqg Rp mgaq; Lp _E D Pp |s;agPp | psgaq

where Pp |s;aqis the distribution of drawing' Pp |s;aqthen embedding® pslg and
D is a discrepancy measure. Fig la depicts the losses when states and actions are drawn from a
stationary distribution - resulting from running" P in M . In this work, we focus on the case
whereD is theWasserstein dlstande, given two distributiond?; Q over a measurable sit
equped with a metrid, Wy is the solution of theptimal transport(OT) fromP to Q, i.e., the
minimum cost of changin@ into Q (Villani, 2009): WqpP;Qq inf p p.oqExy dEXYG

pP; Qgbeing the set of altouplingsof P andQ. TheKantorovich dualityyields Wy pP; Qq
suprpr, Ex pfXq Ex o fpygwhereF is the set of 1-Lipschiz functions. Local losses are
related to a well-establishdmbhavioralequivalence between transition systems, cdfisimulation

Bisimulation. A bisimulationB onM is a behavioral equivalence between states, P S so that,

s;Bsy iff (i) Ppl | s;;ag  Ppl | sp;aq (i) "psig  ps20 and (i) Rpsy;aqg  Rpsg;aqfor

each actiora P A and (Borel measurable) equivalence cl@sB S{B. Properties of bisimulation
include trajectory and value equivalence (Larsen & Skou, 1989; Givan et al., 2003). Requirements
(i) and (i) can be respectively relaxed depending on whether we focus only on behaviors formalized
throughAP or rewards. The relation can be extended to compare two MDPsie.gndM ) by
considering the disjoint union of their state space. We denote the largest bisimulation relation by

Characterized by a logical family of functional expressions derived from a logiisimulation
pseudometricDesharnais et al., 2004) generalize the notion of bisimilariy. More speci cally, given
apolicy P ,we consider a familf of real-valued functions parameterized by a discount factor
and de ning the semantics af in M . Such functional expressions allow to formalize discounted
properties such as reachability, safety, as well as geheradular speci cations (Chatterjee et al.,
2010) and may include rewards as well (Ferns et al., 2014). The pseudonheigae ned asthe
largest behavioral differencd psi;s,q suppe [f 520 529 andits kernel is bisimilarity

d ps1;829 Oiff 59 S2. In particular,value functions are Lipschitz-continuous w.rk. :

IV B9 V ps2q| e Kd psg;s2q whereK isYpr qif rewards are included i and1 otherwise.
To ensure the upcoming bisimulation guarantees, we make the following assumptions:

Assumption 2.1. MDP M is ergodic,ImpRgis a bounded space scaled iin{2; {25 and the
embedding function preserves the labels, i.esq s (A 'psg “psqforsPS,sPS.

Note that the ergodicity assumption is compliant with episodic RL and a wide range of continuous
learning tasks (see Huang 2020; Delgrange et al. 2022 for detailed discussions on this setting).

Bisimulation bounds (Delgrange et al., 2022M being set over continuous spaces with possibly
unknown dynamics, evaluatingj can turn out to be particularly arduous, if not intractable. A solution
is to evaluate the original and latent model bisimilarity via local losses? R , assumeM is
discrete, then given the induced stationary distributiom M |, lets;;s, PSwith 819  ps2g

_E_d-ps; psag e I'Rlil'P; d-pB1; 520 ® I'Rlil'P ' -tmeq: (1)

The two inequalities guarantee respectivelydbelity of the abstractiomndrepresentationwhen

local losses are small, (i) states and their embedding are bisimilarly close in average, and (ii) all states
sharing the same discrete representation are bisimilarly close. The local losses and related bounds
can be ef ciently PAC-estimated. Our goal is to learn a latent model where the behaviors of the agent
executing™ can be formally veri ed, and the bounds offer a con dence metric allowing to lift the
guarantees obtained this way back to the original mbtelwhen the latter operates underWe

show in the following how to learn a latent space model by optimizing the aforementioned bounds,

and distill policies P  obtained viaanyRL technique to a latent policy P

3 WASSERSTEINAUTO-ENCODEDMDPS

Fix M S;A;P ;R ;AP ;S5 and - as a latent space model df parameter-
ized by and . Our method relies on learningkeehavioral model of M from which we can
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retrieve the latent space model and distillThis can be achieved via the minimization of a suitable
discrepancy between andM . VAE-MDPs optimize a lower bound on the likelihood of the
dynamics oM using theKullback-Leibler divergenceyielding ()M , (ii) a distillation~ of

and (i) and . Local losses are not directly minimized, but rather variational proxies that do
not offer theoretical guarantees during the learning process. To control the local losses minimization
and exploit their theoretical guarantees, we present a novel autoencoder that incorporates them in its
objective, derived from the OT. Proofs of the claims made in this Section are provided in Appendix A.

3.1 THE OBJECTIVEFUNCTION

Assume thatS, A, and ImpRq are respectively equipped with metridg, da, anddg, we
de ne theraw transition distance metri€ as the component-wise sum of distances between
states, actions, and rewards occurring of along transitidpss;; a;; r1;sty; xs,; az; r2; skyq
dsps1;S20 dapas;axq drprisraq dspsi; sig Given Assumption 2.1, we consider the OT be-
tweenlocal distributions, where traces are drawn from episodic RL processes or in nite interactions
(we show in Appendix A.1 that considering the OT between trace-based distributions in the limit
amounts to reasoning about stationary distributions). Our goal is to miniMize ; gso that

»

s;a;r;st P sjanst|siast d - siast; 2)

S A S

whereP is a transition decoder and denotes the stationary distribution of the latent madel.

As proved by Bousquet et al. (2017), this model allows to derive a simpler form of the OT: instead
of nding the optimal coupling of (i) the stationary distribution of M and (ii) the behavioral
model , in the primal de nition ofW,p ; g itis sufcientto nd an encodelg whose marginal

is given byQps; 8;5'q  Esas: s, a;st| s;a;s'gand identical to . This is summarized in the
following Theorem, yielding a particular case\Whsserstein-autoencod@olstikhin et al. (2018):
Theorem 3.1. Let andP be respectively a behavioral model and transition decoder as de ned in
Eq.2,G : SN S be a state-wise decoder, anghbe an action embedding fungsion. Assufnes
deterministic with Dirac functios ps;a;s'q G psg ps;agR ps;aq G ps'g , then

i @ D
Wap v g inf E E a s;a;r;sl ‘G §;a;§1

aQ - sarns!? s.& st gplsiais g

Henceforth, x :SN Sand *:S AN A asparameterized state and action encoders
with ps;a;st|s;a;slg 1 sq s PA[Saq 1 14 51, @and de ne the marginal encoder as

Q  Esas: p |s;a;s'g Training the model components can be achieved via the objective:
. @ D
min E E d¢ siarnst ;G sast DQi-
;o osars!  sast  plsaslg

whereD is an arbitrary discrepancy metric and 0 a hyperparameter. Intuitively, the encoder
can be learned by enforcing its marginal distribut@nto match - through this discrepancy.

Remark2. If M has a discrete action space, then learinig not necessary. We can get A
using identity functions for the action encoder and decoder (details in Appendix A.2).

When is executed irM , observe that itparallel executiorin M is enabled by the action encoder

A given an original state PS,  rst prescribes the actioa p |sq which is then embedded
inthe latent spacevia  *p | psqgaq(cf. Fig. 1b). This parallel execution, along with setting
D to W4, yield an upper bound on the latent regularization, compliant with the bisimulation bounds.
A two-fold regularizer is obtained thereby, de ning the foundations of our objective function:

Lemma3.2.DeneTps;a8" Esa Il sqs “PA|S;agqP ps'|s;agsas the distribution of
drawing state-action pairs from interacting wit , embedding them to the latent spaces, and nally
letting them transition to their successor stateMn . ThenW, Q; - =& W, - T Lp:

We therefore de ne the WAE-MDP (Wasserstein-Wasserstein auto-encoded @ifective as:

min  E dsps;G psqq dapa;  ps;aqq ds sLG s Le W Lpg
’ s’;aT;si’avs pls;a;s g
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Algorithm 1: WasserstetAuto-Encoded MDP

Input: batch sizeN , max. stegl’, no. of regularizer updatesn, penalty coefcient j 0
fort 1toT do
fori  1toN do
Sample a transitios;; & ; ri; sil from the original environment via
Embed the transition into the latent space by dravéing;; ' from p |si;a;slq
Make the latent space model transition to the next latent state:P p |si;aq
Sample a latent transition from :z - ,a ~ plzgandzt P p |z;alq
Wb, N imsasa o maahzilg Ppssass;arsiy CPpsiansiaisq
PD N, GP' ixs;a;5y;x;ahzy Gpx bR Pps;a;s;a;xqgshs
Update the Lipschitz networks parameterby ascendindin p W Pq
iftmodm  Othen
L LD [, dspsi;Gpsiaq dapai; pSi;a4qq dr ri;R pi;aq dspsh G slaq
Update the latent space model parametersy by descending{n pL Wq

Jnction GpPg 1 ;X;¥q ™ Gradient penalty for' ; : R” N Randx;y PR"
Ul lgxb x pl oy ™random noise; straight lines betweerandy

| return p x' i peq} 1o

—+

whereW W, T, - andL, are respectively callesteady-stat@ndtransitionregularizers.

The former allows to quantify the distance between the stationary distributions respectively induced
by inM and~ inM |, further enabling the distillation. The latter allows to learn the latent
dynamics. Note thdt; andL, — setover instead of - — are not suf cient to ensure the
bisimulation bounds (Eg. 1): runningin M depends on the parallel execution oin the original
model, which does not permit its (conventional) veri cation. Breaking this dependency is enabled by
learning the distillatiorm throughW , as shown in Fig. 1b: minimizing/  allows to make

and - closer together, further bridging the gap of the discrepancy between~ . At any time,
recovering the local losses along with the linked bisimulation bounds in the objective function of the
W?AE-MDP is allowed by considering the latent policy resulting from this distillation:

Theorem 3.3. Assume that traces are generated by running a latent poliBy in the original
environment and ledr be the usual Euclidean distance, then th&\&+MDP objective is

min E dsps;Gp psqqq ds s5G st Lg W Lpg

S;S

Optimizing the regularizers is enabled by the dual form of the OT: we introduce two parameterized
networks, , and' |, constrained to bé-Lipschitz and trained to attain the supremum of the dual:

W gag max E E _E 1P Bgasq E ', z;atZ!
©osa & “pl pgads P p| psgag z;akz1
L v P ara g el v P [ —
qu max E E P Sia;5,a;S E LS as;as q
' sasl  sast  plsiasl s P plsag

Details to derive this tractable form bf, p gare in Appendix A.5. The networks are constrained via
the gradient penalty approach of Gulrajani et al. (2017), leveraging that any differentiable function is
1-Lipschitz iff it has gradients with norm at mokeverywhere (we show in Appendix A.6 this is still
valid for relaxations of discrete spaces). The nal learning process is presented in Algorithm 1.

3.2 DISCRETELATENT SPACES

To enable the veri cation of latent models supported by the bisimulation guarantees of Eq. 1, we focus
on the special case difscrete latent space modeldur approach relies on continuous relaxation of
discrete random variables, regulated by saemperaturgparameter(s) : discrete random variables

are retrieved as N 0, which amounts to applying a rounding operator. For training, we use the
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Figure 2: WAE-MDP architecture. Distances are depicted by red dotted lines.

temperature-controlled relaxations to differentiate the objective and let the gradient ow through the
network. When we deploy the latent policy in the environment and formally check the latent model,
the zero-temperature limit is used. An overview of the approach is depticted in Fig. 2.

State encoderWe work with abinary representatiof the latent states. First, this induces compact
networks, able to deal with a large discrete space via a tractable number of parameter variables. But
most importantly, this ensures that Assumption 2.1 is satis edn letlog, |S|, we reservéAP |

bits in S and each tims P S is passed to ,n | AP | bits are produced and concatenated Wit
ensuring a perfect reconstruction of the labels and further bisimulation bounds. To produce Bernoulli
variables, deterministically maps to a latent code, passed to the Heavisidepzqg 1,; 0. We

train by using the smooth approximatiéh pzq Pz q satisfyingH lim goH .

Latent distributions. Besides the discontinuity of their latent image space, a major challenge of
optimizing over discrete distributions gampling required to be a differentiable operation. We
circumvent this by usingoncrete distributiongJang et al., 2017; Maddison et al., 2017): the idea is

to sample reparameterizable random variables frgparameterized distributions, and applying a
differentiable, nonlinear operator in downstream. We uséaihmbel softmax tricko sample from
distributions over (one-hot encoded) latent actiorfs, (" ). For binary distributions® , - ), each
relaxed Bernoulli with logit is retrieved by drawing a logistic random variable located{inand
scaled td{ , then applying a sigmoid in downstream. We emphasize that this trick alone (as used
by Corneil et al. 2018; Delgrange et al. 2022) is not suf cient: it yields independent Bernoullis,
being too restrictive in general, which prevents from learning sound transition dynamics (cf. Ex. 1).

Examplel. Let M be the discrete MC of Fig. 3. In tgoalu
one-hot, APt goal: x1;0y;unsafe: x0; lyu We as- tunsafel @3
sume that3 bits are used for the (binary) state space (_.<

withS t §p: X0;0;0y;S;:: x1;0;0y;S,: X0;1;0y;S3:

X0; 1; 1yu (the two rst bits are reserved for the labels). tunsaf@i)
Considering each bit as being independent is not suf -
cient to learrP: the optimal estimatio® p |Spqisin .
that case represented by the independent Bernoulli veﬁlﬁ“
b x Y2;Y2; Yay, giving the probability to go fronsg, to e
each bitindependentlyThis yields a poor estimation of

the actual transition functio® sy |Sog pl bigd bgd bzg P psi|Sqg bipl
bogd bsg P ps2|Sq pl bigbopl bzg 6, P ps3|Soq pl bigbz b Yue.

re 3: Markov Chain with four states;
Is are drawn next to their state.

We consider instead relaxed multivariate Bernoulli distributions by decompésifg S asa
product of conditionalsPpsq ~ [ ; Ppsi | 1.1 1qwheres; is thei™ entry (bit) ofs. We learn
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(a) WPAE-MDP objective: reconstruction loss, transition and steady-state regularizers

(b) PAC local losses approximation for an error of at mid®t? and probability con denc®:955

(c) Episode return obtained when executing the distilled policy in the original MDP (average8lospisodes)

Figure 4: For each environment, we trained ve different instances of the models with different
random seeds: the solid line is the median and the shaded interval the interquartile range.

such distributions by introducingraasked autoregressive oAF, Papamakarios et al. 2017) for
relaxed Bernoullis via the recursios: pi  { g wherel; Logisticg0;1q ;i fipsi:i 16

andf is a MADE (Germain et al., 2015), a feedforward network implementing the conditional
output dependency on the inputs via a mask that only keeps the necessary connections to enforce the
conditional property. We use this MAF to model and the dynamics related to the labelsin.

We x the logits of the remainingn | AP | bits toO to allow for a fairly distributed latent space.

4 EXPERIMENTS

We evaluate the quality of latent space models learned and policies distilled thrddghMDPs .

To do so, we rst trained deep-RL policies (DQN, Mnih et al. 2015 on discrete, and SAC, Haarnoja
et al. 2018 on continuous action spaces) for various OpenAl benchmarks (Brockman et al., 2016),
which we then distill via our approach (Figure 4). We thus evaluate (a) theEVWIDP training
metrics, (b) the abstraction and representation quality?@ local losses upper boun{Belgrange

et al., 2022), and (c) the distilled policy performance when deployed in the original environment. The
con dence metrics and performance are compared with those of VAE-MDPs. Finally, we formally
verify properties in the latent model. The exact setting to reproduce our results is in Appendix B.

Learning metrics. The objective (Fig. 4a) is a weighted sum of the reconstruction loss and the two
Wasserstein regularizers. The choice afe nes the optimization direction. Posterior collapse is
not observed, naturally avoided in WAEs (Tolstikhin et al., 2018), re ecting that the latent space is
consistently distributed. Optimizing the objective (Fig. 4a) effectively allows minimizing the local
losses (Fig. 4b) and recovering the performance of the original policy (Fig. 4c).

Local lossesFor V- and WAEs, we formally evaluate PAC upper boundd.gn andL, via

the algorithm of Delgrange et al. (2022) (Fig 4b). The lower the local losses, the tloserd

M are in terms of behaviors induced by (cf. Eq. 1). In VAES, the losses are evaluated on a
transition functiorP obtained via frequency estimation of the latent transition dynamics (Delgrange

et al., 2022), by reconstructing the transition model a posteriori and collecting data to estimate the
transition probabilities (e.g., Bazille et al. 2020; Corneil et al. 2018). We thus also report the metrics
for P. Our bounds quickly converge to close values in generaPfoandP, whereas for VAEs,

the convergence is slow and unstable, iitioffering better bounds. We emphasize that WAEs do

not require this additional reconstruction step to obtain losses that can be leveraged to assess the
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Table 1: Formal Veri cation of distilled policies. Values are computed for 0:99 (lower is better).

Environment stepl®®) S A S A Ly (PAC) L, (PAC) }V-1} V- g
CartPole 1:2 ., R* t1;2u 512 2 000499653 (B99636 371213 00316655
MountainCar 2:32 ., R? t12u 1024 2 00141763 382323 283714 0

Acrobot 4:3 ., R® t1,23u 8192 3 00347698 0649478 222006 00021911
LunarLander 3:2 ., R® r 1,1¢ 16384 3 00207205 0131357 00372883 (00702039
Pendulum 37 ., R® r 22s 8192 3 00266745 639508 433006 00348492

quality of the model, in contrast to VAES, where learnfigwas performed via overly restrictive
distributions, leading to poor estimation in general (cf. Ex. 1). Finalhyen the distilled policies
offer comparable performand&ig. 4c), our bounds are either close to or better than those of VAEs.

Distillation. The bisimulation guarantees (Eq. 1) are only validfor the policy under which formal
properties can be veri ed. Itis crucial that achieves performance close tpthe original one, when
deployed in the RL environment. We evaluate the performance ofa the undiscounted episode
returnR - obtained by running in the original modeM . We observe thaR - approaches faster

the original performancB for W- than VAEs: WAEs converge in a few steps for all environments,
whereas the full learning budget is sometimes necessary with VAEs. The success in recovering the
original performance emphasizes the representation quality guarantees (Eq. 1) induced by WAEs:
when local losses are minimized, all original states that are embedded to the same representation are
bisimilarly close. Distilling the policy over the new representation, albeit discrete and hence coarser,
still achieves effective performance sincekeeps only what is important to preserve behaviors, and
thus values. Furthermore, the distillation can remove some non-robustness obtained during RL:
prescribes the same actions for bisimilarly close states, whereas this is not necessarily the case for

Formal veri cation. To formally verifyM , we implemented aalue iteration(V1) engine, handling

the neural network encoding of the latent space for discounted properties, which is one of the most
popular algorithms for checking property probabilities in MDPs (e.g., Baier & Katoen 2008; Hensel
et al. 2021; Kwiatkowska et al. 2022). We verifyne-to-failureproperties , often used to check

the failure rate of a system (Pnueli, 1977) by measuring whether the agetitefile the end of the
episode Although simple, such properties highlight the applicability of our approach on reachability
events, which are building blocks to verify MDPs (Baier & Katoen, 2008). In particular, we checked
whether the agent reaches an unsafe position or angle (CartPole, LunarLander), does not reach its
goal position (MountainCar, Acrobot), and does not reach and stay in a safe region of the system
(Pendulum). Results are in Table 1: for each environment, we select the distilled policy which gives
the best trade-off between performance (episode return) and abstraction quality (local losses). As
extra con dence metric, we report the value differefge } | V- ps;q V- ps5 g|obtained by

executing”™ inM andM (V- p gis averaged whil&/ - p gis formally computed).

5 CONCLUSION

We presented WAE-MDPs, a framework for learning formally veri able distillations of RL policies
with bisimulation guarantees. The latter, along with the learned abstraction of the unknown continuous
environment to a discrete model, enables the veri cation. Our method overcomes the limitations
of VAE-MDPs and our results show that it outperforms the latter in terms of learning speed, model
quality, and performance, in addition to being supported by stronger learning guarantees. As
mentioned by Delgrange et al. (2022), distillation failure reveals the lack of robustness of original RL
policies. In particular, we found that distilling highly noise-sensitive RL policies (such as robotics
simulations, e.g., Todorov et al. 2012) is laborious, even though the result remains formally veri able.

We demonstrated the feasibility of our approach through the veri cation of reachability objectives,
which are building blocks for stochastic model-checking (Baier & Katoen, 2008). Besides the scope
of this work, the veri cation of general discountédregular properties is theoretically allowed in

our model via the rechability to components of standard constructions based on automata products
(e.g., Baier et al. 2016; Sickert et al. 2016), and discounted games algorithms (Chatterjee et al., 2010).
Beyond distillation, our results, supported by Thm. 3.3, suggest that our WAE-MDP can be used as a
general latent space learnéor RL, further opening possibilities to combine RL and formal methods
onlinewhen no formal model is a priori known, and address this way safety in RL with guarantees.
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REPRODUCIBILITY STATEMENT

We referenced in the main text the Appendix parts presenting the proofs or additional details of
every claim, Assumption, Lemma, and Theorem occurring in the paper. In addition, Appendix B

is dedicated to the presentation of the setup, hyperparameters, and other extra details required for
reproducing the results of Section 4. We provide the source code of the implementation of our
approach in Supplementary materfiaand we also provide the models saved during training that

we used for model checking (i.e., reproducing the results of Table 1). Additionally, we present in

a notebook gvaluation.htm| ) videos demonstrating how our distilled policies behave in each
environment, and code snippets showing how we formally veri ed the policies.
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APPENDIX

A THEORETICAL DETAILS ON WAE-MDPSs

A.1 THE DISCREPANCYMEASURE

We show that reasoning about discrepancy measures between stationary distributions is sound in
the context of in nite interaction and episodic RL processes.R.ebe a parameterized behavioral
model that generate nite traces from the original environment (i.e., nite sequences of state, actions,
and rewards of the forms,.; ; a,.+ 1;ro.r 1Y), our goal is to nd the best parametewhich offers

the most accurate reconstruction of the original traces issued from the original Modpérating

under . We demonstrate that, in the limit, considering the OT between trace-based distributions
is equivalent to considering the OT between the stationary distributidh ofand the one of the
behavioral model.

Let us rst formally recall the de nition of the metric on theansitionsof the MDP.

Raw transition distance.Assume thas, A, andimpR qare respectively equipped with metdg,
da, anddg, let us de ne theraw transition distance metriovertransitionsof M , i.e., tuples of the

formxs;a;r;sly,asd: S A Im;:Rq S,
D
d si;ai;ri;st ; S2anra; Sz dsps1;S2q dapai;axq dr@ra;r2q ds Si;sj

In a nutshell @ consists of the sum of the distance of all the transition components. Note that it
is a well de ned distance metric since the sum of distances preserves the identity of indiscernible,
symmetry, and triangle inequality.

Trace-based distributions.The raw distancé allows to reason abowitansitions we thus consider
the distribution ovetransitions which occur along traces of lengthto compare the dynamics of the
original and behavioral models:

'ps|sig m|sq P st|s;a 1 rpsaq and
t 1
T

B

D 1Ts s;a;r;st

ool )
P rTss;a;ns E Ixsi 10 1re 1siy xsars iy

t 1Sot:@ot 1ifor 1 Ports

=~ H

whereP rTsdenotes the distribution over traces of lengithgenerated fron® . Intuitively, Yt
T 1 ' ps | sigcan be seen as the fraction of the time spesstaiong traces of lengtf, starting
from the initial state Kulkarni (1995). Therefore drawixgga;r;sly D rTstrivially follows: it

is equivalent to drawing from Yt tT 1 'p |sig then respectivelp ands! from p |sgand

Pp |s;aq to nally obtainr Ryps;ag GivenT P N, our objective is to minimize the Wasserstein
distance between those distributiohg, oD rTs P rTsq The following Lemma enables optimizing

the Wasserstein distance between the original MDP and the behavioral model when traces are drawn
from episodic RL processes or in nite interactions (Huang, 2020).

Lemma A.1. Assume the existence of a stationary behavioral model limtgg P rTs then
lim W ITsP rT W ;q
fm W o ITs sq aP 5 Q

Proof. First, note tha{t tT 1 'p |sigweakly convergesto asT goes to8 Kulkarni (1995).
The result follows then from (Villani, 2009, Corollary 6.9). O

A.2 DEALING WITH DISCRETEACTIONS

When the policy executed ifMl already produces discrete actions, learning a latent action space is,
in many cases, not necessary. We thus make the following assumptions:

Assumption A.2. Let : S N PA qbe the policy executed iM and assume thad is a
(tractable) nite set. Then, we takk A and * as the identity function, i.e.*:S A N

A ;xs;aybNa.
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Assumption A.3. Assume that the action space of the original environnvénis a (tractable) nite
set. Then, we take as the identity function, i.e., A,

Concretely, the premise of Assumption A.2 typically occurs whésa latent policy (see Rem. 1)

or whenM has already a discrete action space. In the latter case, Assumption A.2 and A.3 amount
to settingA A and ignoring the action encoder and embedding function. Note that if a discrete
action space is too large, or if the user explicitly aims for a coarser space, then the former is not
considered as tractable, these assumptions do not hold, and the action space is abstracted to a smaller
set of discrete actions.

A.3 PROOF OFLEMMA 3.2

Notation. From now on, we write ps;a|s;aq 1 q s “pPals;aq
Lemma3.2.DeneTps;a'q Esa Il qs “Pa|S;agqP ps'|s;agsas the distribution of
drawing state-action pairs from interacting wit , embedding them to the latent spaces, and nally
letting them transition to their successor statéMn . ThenW, Q; - & W, - ;T Ly

Proof. Wasserstein is compliant with the triangular inequality (Villani, 2009), which gives us:

We Qi - 8 WeR:Tq Wag T: -
where
W, T; - (note thatW/ is re exive (Villani, 2009))
sup E E E fsas E E E f s;ast,and
fPF, sia s;a  plsiaqst P p|s;aq s - a ~ plsast P p|saq
W :Tq
sup E E f s;ast E E E f sast (3)
fPF, sas?t s;ast  plsiaisig s;a sa@ plsagst P p|s;aq
o E E sup E f s;a st E f sast (4)
sia s;@ plsiaq fPF, st Pplsiaq st P pls;aq
E E sup E f st E f st (5)
sa & Ap|l psqaq fPFq_S' Pplsag st P p| psgaq
E E Wi, Pp |s;agP p | psgaq :

sa a “Ap| psgag
We pass from Eq. 3 to Eq. 4 by the Jensen's inequality. To see how we pass from Eq. 4 to Eq. 5,
notice that
- @ D@ D)
Fe fif spanst f spapsy o d Spanst 5 S8
Fe t fof spanst s o dgpsiisq dipi;dq dg si;s; u
Observe now thag anda are xed in the supremum computation of Eq. 4: all functiénsonsidered

and taken fronf, are of the fornf ps;a; g Itis thus suf cient to consider the supremum over
functions from the following subset & :

tf:f s;as f s;asy o dsps;sq dypgaq dg S;;Sp U
(for s, adrawn from )
t f:f s;as; f s;as; ods si;s; u
t f:f s& f s odsshs u
Fas:
Given a states P S in the original model, the (parallel) execution ofn M is enabled through

pa;al sq palsq “p| psgaq(cf. Fig. 1b). The local transition loss resulting from this
interaction is:

Lp E Wi PplsagPp| pgag

s;Xa; ay

E E Was Pp |s;agP p | pgaq ;
s;a a Apl|l psgaq
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which nally yields the result. O

A.4 PROOF OFTHEOREM3.3

Before proving Theorem 3.3, let us introduce the following Lemma, that explicitly demonstrates
the link between the transition regularizer of théAE-MDP objective and the local transition loss
required to obtain the guarantees related to the bisimulation bounds of Eq. 1.

Lemma A.4. Assume that traces are generated by running  in the original environment, then

E E We, Ppls;aqP p| mgag Lp:
ssa -a Ap| psgaq

Proof. Since the latent policy generates latent actions, Assumption A.2 holds, which means:

waE a oE ge o Nos PP IsiagP pl mqag
E W PplsiagP p| pmqaq
Lp:

O

Theorem 3.3. Assume that traces are generated by running a latent poliBy in the original
environment and ledr be the usual Euclidean distance, then th&\&+MDP objective is
min E dsps;Gp psqqq ds s5G st Lr o Lpg

s;s

Proof. We distinguish two cases: (i) the case where the original and latent models share the same
discrete action space, i.éd, A, and (ii) the case where the two have a different action space
(e.g., when the original action space is continuous), Ae., A. In both cases, the local losses
term follows by de nition ofL; and Lemma A.4. Whedr is the Euclidean distance (or even

the L, distance since rewards are scalar values), the expected reward distance occurring in the
expected trace-distance tethin the WPAE-MDP objective directly translates to the local ldsg .
Concerning the local transition loss, in case (i), the result naturally follows from Assumption A.2
and A.3. In case (i), only Assumption A.2 holds, meaning the action encoder term of4kig-W

MDP objective is ignored, but not the action embedding term appeari@g.iGivens -, recall

that executing in M amounts to embedding the produced latent actions™p | psggback to

the original environment via p psgaq(cf. Rem. 1 and Fig. 1a). Therefore, the projection

of dms; a;r;sly;G p psga; pslgqopn the action spack isdap p pgag p psgaqq O,
forr Rps;agands! Pp |s;aq O

A.5 OPTIMIZING THE TRANSITION REGULARIZER

In the following, we detail how we derive a tractable form of our transition regulatizepl g Opti-
mizing the ground Kantorovich-Rubinstein duality is enabled via the introduction of a parameterized,
1-Lipschitz network ", that need to be trained to attain the supremum of the dual:

LePa E E max E 'T ¢ E '} st
sa  sa  plsaqg! ' PPFags st Pplsiag st P p|saq
Under this form, optimizind., p gis intractable due to the expectation over the maximum. The

following Lemma allows us rewritingg , to make the optimization tractable through Monte Carlo
estimation.

LemmaA.5. LetX;Y be two measurable setsP pXxqP: X N prgQ: X N prg and
d:Y Y NrO; 8 beametricory. Then,

E WgpPp [XgQp IXqqg sup E E ' m™aywq E ' mdayzq
X "I XNFgX y1 Pplxq y2 Qplxq
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Proof. Our objective is to show that

E sup E 'piaxq E ' p2axq (6)
X fPFqy1 Pplxq y2 Qplxq
sup  E E 'mayiq E ' mxayzq (7)
"I XNFgX y1 Pplxq y2 Qplxq

We start with (6% (7). Construct : X N Fq4 by setting for allx P X

' ™q argsup E fpuq E fpeag
fPFgy1 Pplxq y2 Qplxq

This gives us

E sup E fpuq E fpeq
X fPFqy1 Pplxq y2 Qplxq

E E ' m™ayiq E
X y1 Pplxq y2 Qplxq

Xay29

o sup E E ' mapaiq E 'map2q :
" XN Fg X y1 Pplxq y2 Qplxq

It remains to show that (6§ (7). Take

arg sup E E ' mayiq E ';mapeq :
XN Fg X y1 Pplxq y2 Qplxq

Then, for allx P X, we havé pxq PF4 which means:

E ' m™ayiq E Xay2q
y1 Pplxq y2 Qplxq
osup E fpnaq E fpeq
fPFay1 Pplxq y2 Qplxq
This nally yields
E E ' mayiq E ' mapeq

X y1 Pplxq y2 Qplxq

a E sup E fpyq E fpreq:

X fPFqYy1 Pplxq y2 Qplxq
O]
Corollary A.5.1. Let be a stationary distribution d! andX S A S A, then
Lp sup E E 'ps;a;s;aq st E 'pasagst
' ZXNFd§5;3;51 s;\a  plsaq sl P plsaq
Consequently, we rewrite, pl gqas a tractable maximization:
Lo P q max E E ‘P s;ajs;a; st E 'P sasast
Di'PPRog sast  sa  plsag s' P plsaq

A.6 THE LATENT METRIC

In the following, we show that considering the Euclidean distancé tordds in the latent space

for optimizing the regularizerg  andL, is Lipschitz equivalent to considering a continuous

-relaxation of thediscrete metridd px;yq 1x y. Consequently, this also means itis consistently
suf cient to enforcel-Lispchitzness via the gradient penalty approach of Gulrajani et al. (2017)
during training to maintain the guarantees linked to the regularizers in the zero-temperature limit,
when the spaces are discrete.
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Lemma A.6. Letd be the usual Euclidean distance add: r0; 1" r 0;1s" N r 0;1r; xx;yy PN

% for P ®;1sandn PN, thend is a distance metric.

Proof. The functiond is a metric iff it satis es the following axioms:

1. Identity of indiscerniblesIf x vy, thend p;yq d%)‘p;(y;gq LO Osinced is a
distance metric. Assume now théitpx;yq Oandtake  dpx;yq for anyx;y. Thus,
P10; 8¢ and0 —— isonlyachievedin 0, which only occurs whenever y
sinced is a distance metric.
2. Symmetry
dx;yq
d px; _
heYa dx;yq
M (d is a distance metric)
dpy; xq
d pyixq

3. Triangle inequality Letx;y;z P 10; 15, the triangle inequality holds iff

d p;yq dpy;zg¥d x;zq 8)
dm;yq dpyizq , dmxizq
dpx;yq dpy; zq dpx; zq
dp;yq dpy;zq 2dpx;yodpy;zq ¥ dpx; zq
2 dpgyq dpy;zg o dpcyodpyizg dpx; zq

“dp<;yq dpy;zq 2d peyadpy;zg
dpGyoqx;zq  dpy;zogdpx;zq  2dpx; yodpy; zodpx; zg

¥ 2dpzq  dpGyodpzg  dpyszadpzg o dpyodpy s zodpg zg
(cross-product, with | Oandlimpdg P 0;8r )

2dp;yq 2dpy;zq 2d poyddpy;zg o dpyddpy;zadpk;zg ¥ 2dx; zq

©)
Sinced is a distance metric, we have
dp;yq 2dpy;zg ¥ %dpczq (10)
andimpdq P ©; 8r , meaning
2dpyodry;zq  dpcyodpy s zodpe; zg ¥ 0 (11)

By Eq. 10 and 11, the inequality of Eq. 9 holds. Furthermore, the fact that Eq. 8 and 9 are equivalent
yields the result. O

LemmaA.7. Letd,d as de ned above, then (g nglo 1 and (ii)d;d are Lipschitz-equivalent.

Proof. Part (i) is straightforward by de nition off . Distancesl andd are Lispchitz equivalent if
and only ifDa;bj Osuch thai@;y P 10; 18",

a dpx;yge d ;x;yg @b dx;yq
dpx;yq

dpc;yq

1
abc——— o b
dox;yq

Takinga —%—andb 1 yields the result. O

a dwx;yquo o b dx;yq
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Corollary A.7.1. Forall ¥ Y ,sPS,aPA,sPS,andaPA, we have
1. Wy T; - ®© Wy T; -

2.Wqg PplsiagP p|s;ag e Wy Pp |s;agP p |s;aq

Proof. By Lipschitz equivalence, taking ¥ { ensurestha@ PN, @;y P10;1s"; d x;yq o
dpx;yqg Moreover, for any distributionB; Q, Wy pP; Qq = Wy pP; Qq(cf., e.g., Gelada
et al. 2019, Lemma A.4 for details). O

In practice, taking the hyperparameter¥ Y in the WPAE-MDP ensures that minimizing the
-scaled regularizers w.rdl also minimizes the regularizers w.ithe -relaxationd , being the

discrete distribution in the zero-temperature limit. Note that optimizing over two different,

instead of a unique scale factoiis also a good practice to interpolate between the two regularizers.

B EXPERIMENT DETAILS

The code for conducting and replicating our experiments is availatit://github.com/
florentdelgrange/wae_mdp

B.1 SETUP

We usedTENSORFLOW 2.7.0 (Abadi et al., 2015) to implement the neural network architecture
of our WAAE-MDP , TENSORFLOW PROBABILITY 0.15.0 (Dillon et al., 2017) to handle the
probabilistic components of the latent model (e.g., latent distributions with reparameterization tricks,
masked autoregressive ows, etc.), as wellldSAGENTS0.11.0 (Guadarrama et al., 2018) to
handle the RL parts of the framework.

Models have been trained on a cluster running u@etOS Linux 7 (Core) composed of a
mix of nodes containing Intel processors with the following CPU microarchitecturegd-@pre
INTEL E5-2680v2 , (ii) 14-core INTEL E5-2680v4 , and (iii) 20-core INTEL Xeon
Gold 6148 . We used cores andB2 GB of memory for each run.

B.2 STATIONARY DISTRIBUTION

To sample from the stationary distribution of episodic learning environments operating under

P , we implemented theecursive -perturbation trickof Huang (2020). In a nutshell, the reset
of the environment is explicitly added to the state spadd gfwhich is entered at the end of each
episode and left with probability ~ to start a new one. We also added a special atomic proposition
resetinto AP to label this reset state and reason about episodic behaviors. For instance, this allows
verifying whether the agent behaves safely during the entire episode, or if it is able to reach a goal
before the end of the episode.

B.3 ENVIRONMENTS WITH INITIAL DISTRIBUTION

Many environments do not necessarily have a single initial state, but rather an initial distribution
over statesl] P pSqg In that case, the results presented in this paper remain unchanged: it suf ces
to add a dummy state to the state spacgYt s usothatsy s with the transition dynamics
Pps'|s ;aq d ps'gfor any actiona P A. Therefore, each time the reset of the environment is
triggered, we make the MDP entering the initial stitethen transitioning te! according tad, .

B.4 LATENT SPACE DISTRIBUTION

As pointed out in Sect. 4, posterior collapse is naturally avoided when optimizfAgWIDP . To
illustrate that, we report the distribution of latent states produced lajuring training (Fig. 5). The
plots reveal that the latent space generated by mapping original states drawn fdoiming training
toSvia is fairly distributed, for each environment.
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