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ABSTRACT

Although deep reinforcement learning (DRL) has many success stories, the large-
scale deployment of policies learned through these advanced techniques in safety-
critical scenarios is hindered by their lack of formal guarantees. Variational Markov
Decision Processes (VAE-MDPs) are discrete latent space models that provide
a reliable framework for distilling formally verifiable controllers from any RL
policy. While the related guarantees address relevant practical aspects such as
the satisfaction of performance and safety properties, the VAE approach suffers
from several learning flaws (posterior collapse, slow learning speed, poor dynamics
estimates), primarily due to the absence of abstraction and representation guarantees
to support latent optimization. We introduce the Wasserstein auto-encoded MDP
(WAE-MDP), a latent space model that fixes those issues by minimizing a penalized
form of the optimal transport between the behaviors of the agent executing the
original policy and the distilled policy, for which the formal guarantees apply. Our
approach yields bisimulation guarantees while learning the distilled policy, allowing
concrete optimization of the abstraction and representation model quality. Our
experiments show that, besides distilling policies up to 10 times faster, the latent
model quality is indeed better in general. Moreover, we present experiments from
a simple time-to-failure verification algorithm on the latent space. The fact that our
approach enables such simple verification techniques highlights its applicability.

1 INTRODUCTION

Reinforcement learning (RL) is emerging as a solution of choice to address challenging real-word
scenarios such as epidemic mitigation and prevention strategies (Libin et al., 2020), multi-energy
management (Ceusters et al., 2021), or effective canal control (Ren et al., 2021). RL enables learning
high performance controllers by introducing general nonlinear function approximators (such as neural
networks) to scale with high-dimensional and continuous state-action spaces. This introduction,
termed deep-RL, causes the loss of the conventional convergence guarantees of RL (Tsitsiklis, 1994)
as well as those obtained in some continuous settings (Nowe, 1994), and hinders their wide roll-out
in critical settings. This work enables the formal verification of any such policies, learned by agents
interacting with unknown, continuous environments modeled as Markov decision processes (MDPs).
Specifically, we learn a discrete representation of the state-action space of the MDP, which yield both
a (smaller, explicit) latent space model and a distilled version of the RL policy, that are tractable
for model checking (Baier & Katoen, 2008). The latter are supported by bisimulation guarantees:
intuitively, the agent behaves similarly in the original and latent models. The strength of our approach
is not simply that we verify that the RL agent meets a predefined set of specifications, but rather
provide an abstract model on which the user can reason and check any desired agent property.

Variational MDPs (VAE-MDPs, Delgrange et al. 2022) offer a valuable framework for doing so.
The distillation is provided with PAC-verifiable bisimulation bounds guaranteeing that the agent
behaves similarly (i) in the original and latent model (abstraction quality); (ii) from all original states
embedded to the same discrete state (representation quality). Whilst the bounds offer a confidence
metric that enables the verification of performance and safety properties, VAE-MDPs suffer from
several learning flaws. First, training a VAE-MDP relies on variational proxies to the bisimulation
bounds, meaning there is no learning guarantee on the quality of the latent model via its optimization.
Second, variational autoencoders (VAEs) (Kingma & Welling, 2014; Hoffman et al., 2013) are known
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to suffer fromposterior collapse(e.g., Alemi et al. 2018) resulting in a deterministic mapping to a
unique latent state in VAE-MDPs. Most of the training process focuses on handling this phenomenon
and setting up the stage for the concrete distillation and abstraction, �nally taking place in a second
training phase. This requires extra regularizers, setting up annealing schemes and learning phases,
and de�ning prioritized replay buffers to store transitions. Distillation through VAE-MDPs is thus a
meticulous task, requiring a large step budget and tuning many hyperparameters.

Building uponWassersteinautoencoders (Tolstikhin et al., 2018) instead of VAEs, we introduce
Wasserstein auto-encoded MDPs(WAE-MDPs), which overcome those limitations. Our WAE relies
on theoptimal transport(OT) from trace distributions resulting from the execution of the RL policy
in the real environment to that reconstructed from the latent model operating under the distilled
policy. In contrast to VAEs which rely on variational proxies, we derive a novel objective that directly
incorporate the bisimulation bounds. Furthermore, while VAEs learn stochastic mappings to the latent
space which need be determinized or even entirely reconstructed from data at the deployment time to
obtain the guarantees, our WAE has no such requirements, and learnall the necessary components to
obtain the guarantees during learning, and does not require such post-processing operations.

Those theoretical claims are re�ected in our experiments: policies are distilled up to10 times faster
through WAE- than VAE-MDPs and provide better abstraction quality and performance in general,
without the need for setting up annealing schemes and training phases, nor prioritized buffer and
extra regularizer. Our distilled policies are able to recover (and sometimes even outperform) the
original policy performance, highlighting the representation quality offered by our new framework:
the distillation is able to remove some non-robustness of the input RL policy. Finally, we formally
veri�ed time-to-failureproperties (e.g., Pnueli 1977) to emphasize the applicability of our approach.

Other Related Work. Complementary works approach safe RL via formal methods (Junges et al.,
2016; Alshiekh et al., 2018; Jansen et al., 2020; Simão et al., 2021), aimed at formally ensuring
safetyduring RL, all of which require providing an abstract model of the safety aspects of the
environment. They also include the work of Alamdari et al. (2020), applying synthesis and model
checking on policies distilled from RL, without quality guarantees. Other frameworks share our
goal of verifying deep-RL policies (Bacci & Parker, 2020; Carr et al., 2020) but rely on a known
environment model, among other assumptions (e.g., deterministic or discrete environment). Finally,
DeepSynth(Hasanbeig et al., 2021) allows learning a formal model from execution traces, with the
different purpose of guiding the agent towards sparse and non-Markovian rewards.

On the latent space training side, WWAEs (Zhang et al., 2019) reuse OT as latent regularizer
discrepancy (in Gaussian closed form), whereas we derive two regularizers involving OT. These two
are, in contrast, optimized via the dual formulation of Wasserstein, as inWassertein-GANs(Arjovsky
et al., 2017). Similarly toVQ-VAEs(van den Oord et al., 2017) andLatent Bernoulli AEs(Fajtl et al.,
2020), our latent space model learns discrete spaces via deterministic encoders, but relies on a smooth
approximation instead of using the straight-through gradient estimator.

Works onrepresentation learningfor RL (Gelada et al., 2019; Castro et al., 2021; Zhang et al., 2021;
Zang et al., 2022) consider bisimulation metrics to optimize the representation quality, and aim at
learning (continuous) representations which capture bisimulation, so that two states close in the
representation are guaranteed to provide close and relevant information to optimize the performance of
the controller. In particular, as in our work,DeepMDPs(Gelada et al., 2019) are learned by optimizing
local losses, by assuming a deterministic MDP and without veri�able con�dence measurement.

2 BACKGROUND

In the following, we write� pX qfor the set of measures over (complete, separable metric space)X .

Markov decision processes(MDPs) are tuplesM � x S; A ; P; R; `; AP ; sI y whereS is a set of
states; A , a set ofactions; P : S � A Ñ � pSq, a probability transition functionthat maps the
current state and action to adistributionover the next states;R : S � A Ñ R, a reward function;
` : S Ñ 2AP , a labeling functionover a set of atomic propositionsAP ; andsI P S, the initial
state. If |A | � 1, M is a fully stochastic process called aMarkov chain(MC). We writeM s for
the MDP obtained when replacing the initial state ofM by s P S. An agent interacting inM
producestrajectories, i.e., sequences of states and actions� � x s0: T ; a0: T � 1 y wheres0 � sI and
st � 1 � Pp� | st ; at qfor t   T . The set of in�nite trajectories ofM is Traj . We assumeAP and
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(a) Execution of the latent policy� in the
original and latent MDPs, and local losses.

(b) Parallel execution of the original RL policy� in the original
and latent MDPs, local losses, and steady-state regularizer.

Figure 1: Latent �ows: arrows represent (stochastic) mappings, the original (resp. latent) state-action
space is spread along the blue (resp. green) area, and distances are depicted in red. Distilling� into �
via �ow (b) by minimizing W� � allows closing the gap between �ows (a) and (b).

labels being respectively one-hot and binary encoded. GivenT „ AP , we writes |ù T if s is labeled
with T, i.e., `psq X T � H , ands |ù  T for s •|ù T. We refer to MDPs with continuous state or
action spaces ascontinuous MDPs. In that case, we assumeS andA are complete separable metric
spaces equipped with a Borel� -algebra, and̀� 1pTqis Borel-measurable for anyT „ AP .

Policies and stationary distributions.A (memoryless) policy� : S Ñ � pAq prescribes which
action to choose at each step of the interaction. The set of memoryless policies ofM is � . The
MDP M and� P � induce an MCM � with unique probability measurePM

� on the Borel� -algebra
over measurable subsets' „ Traj (Puterman, 1994). We drop the superscript when the context is
clear. De�ne� t

� ps1 | sq � PM s
� pts0: 8 ; a0: 8 | st � s1uqas the distribution giving the probability of

being in each state ofM s aftert steps.B „ S is abottom strongly connected component(BSCC) of
M � if (i) B is a maximal subset satisfying� t

� ps1 | sq ¡ 0 for anys; s1 PB and somet ¥ 0, and (ii)
Ea� � p�| sq PpB | s; aq � 1 for all s P S. The unique stationary distribution ofB is � � P � pB q. We
write s; a � � � for samplings from � � thena from � . An MDP M is ergodicif for all � P � , the
state space ofM � consists of a unique aperiodic BSCC with� � � lim t Ñ8 � t

� p� | sqfor all s PS.

Value objectives.Given� P � , thevalueof a states PS is the expected value of a random variable
obtained by running� from s. For a discount factor
 P r0; 1s, we consider the following objectives.
(i) Discounted return: we write V� psq � EM s

�

� ° 8
t � 0 
 t Rpst ; at q

�
for the expected discounted

rewards accumulated along trajectories. The typical goal of an RL agent is to learn a policy� � that
maximizesV� � psI qthrough interactions with the (unknown) MDP; (ii)Reachability: let C; T „ AP ,
the(constrained) reachabilityevent isCU T � t s0: 8 ; a0: 8 | Di P N; @j   i; s j |ù C ^ si |ù T u „
Traj . We write V '

� psq � EM s
�

�

 t �

1xs0: 8 ;a 0: 8 y P '
�

for the discounted probability of satisfying
' � CU T, wheret � is the length of the shortest trajectory pre�x that allows satisfying' . Intuitively,
this denotes the discounted return of remaining in a region of the MDP where states are labeled with
C, until visiting for the �rst time a goal statelabeled withT, and the return is the binary reward
signal capturing this event.Safetyw.r.t. failure statesC can be expressed as the safety-constrained
reachability to a destinationT through CU T. Notice thatV '

� psq � PM s
� p' qwhen
 � 1.

Latent MDP. Given the original (continuous, possibly unknown) environment modelM , alatent
space modelis another (smaller, explicit) MDPM �

@
S; A ; P; R; `; AP ; sI

D
with state-action space

linked to the original one via state and actionembedding functions: � : S Ñ S and : S � A Ñ A.
We refer to

@
M ; �;  

D
as alatent space modelof M andM as itslatent MDP. Our goal is to learn@

M ; �;  
D

by optimizing anequivalence criterionbetween the two models. We assume thatdS is a
metric onS, and write� for the set of policies ofM andV � for the values of running� P � in M .
Remark1 (Latent �ow). The latent policy� can be seen as a policy inM (cf. Fig. 1a): states passed to
� are �rst embedded with� to the latent space, then the actions produced by� are executed via in the
original environment. Lets P S, we writea � � p� | sqfor � p� | � psqq, then the reward and next state
are respectively given byRps;aq � Rps;  p� psq; aqqands1 � Pp� | s; aq � Pp� | s;  p� psq; aqq.
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Local lossesallow quantifying the distance between the original and latent reward/transition functions
in the local setting, i.e., under a given state-action distribution� P �

�
S � A

�
:

L �
R � E

s;a� �

�
�Rps;aq � Rp� psq; aq

�
� ; L �

P � E
s;a� �

D
�
� Pp� | s;aq; Pp� | � psq; aq

�

where� Pp� | s;aq is the distribution of drawings1 � Pp� | s; aqthen embeddings1 � � ps1q, and
D is a discrepancy measure. Fig 1a depicts the losses when states and actions are drawn from a
stationary distribution� � resulting from running� P � in M . In this work, we focus on the case
whereD is theWasserstein distanceWdS

: given two distributionsP; Q over a measurable setX
equipped with a metricd, Wd is the solution of theoptimal transport(OT) from P to Q, i.e., the
minimum cost of changingP into Q (Villani, 2009): Wd pP; Qq � inf � P� pP;Q q Ex;y � � dpx; yq;
� pP; Qqbeing the set of allcouplingsof P andQ. TheKantorovich dualityyieldsWd pP; Qq �
supf PF d Ex � P f pxq � Ex � Q f pyq whereFd is the set of 1-Lipschiz functions. Local losses are
related to a well-establishedbehavioralequivalence between transition systems, calledbisimulation.

Bisimulation. A bisimulationB on M is a behavioral equivalence between statess1; s2 P S so that,
s1 B s2 iff (i) PpT | s1; aq � PpT | s2; aq, (ii) `ps1q � `ps2q, and (iii) Rps1; aq � Rps2; aq for
each actiona P A and (Borel measurable) equivalence classT P S{B. Properties of bisimulation
include trajectory and value equivalence (Larsen & Skou, 1989; Givan et al., 2003). Requirements
(ii) and (iii) can be respectively relaxed depending on whether we focus only on behaviors formalized
throughAP or rewards. The relation can be extended to compare two MDPs (e.g.,M andM ) by
considering the disjoint union of their state space. We denote the largest bisimulation relation by� .

Characterized by a logical family of functional expressions derived from a logicL , bisimulation
pseudometrics(Desharnais et al., 2004) generalize the notion of bisimilariy. More speci�cally, given
a policy� P � , we consider a familyF of real-valued functions parameterized by a discount factor

and de�ning the semantics ofL in M � . Such functional expressions allow to formalize discounted
properties such as reachability, safety, as well as general! -regular speci�cations (Chatterjee et al.,
2010) and may include rewards as well (Ferns et al., 2014). The pseudometricd

�
� is de�ned asthe

largest behavioral differenced
�

� ps1; s2q � supf PF |f ps1q � f ps2q|, andits kernel is bisimilarity:
d
�

� ps1; s2q � 0 iff s1 � s2. In particular,value functions are Lipschitz-continuous w.r.t.d
�

� :
|V �

� ps1q � V �
� ps2q| ¤ K d

�
� ps1; s2q, whereK is 1{p1� 
 q if rewards are included inF and1 otherwise.

To ensure the upcoming bisimulation guarantees, we make the following assumptions:
Assumption 2.1. MDP M is ergodic,ImpRq is a bounded space scaled inr� 1{2; 1{2s, and the
embedding function preserves the labels, i.e.,� psq � s ùñ `psq � `psqfor s PS, s PS.

Note that the ergodicity assumption is compliant with episodic RL and a wide range of continuous
learning tasks (see Huang 2020; Delgrange et al. 2022 for detailed discussions on this setting).

Bisimulation bounds (Delgrange et al., 2022).M being set over continuous spaces with possibly
unknown dynamics, evaluatingd

�
can turn out to be particularly arduous, if not intractable. A solution

is to evaluate the original and latent model bisimilarity via local losses: �x� P � , assumeM is
discrete, then given the induced stationary distribution� � in M , let s1; s2 PS with � ps1q � � ps2q:

E
s� � �

d
�

� ps; � psqq ¤
L � �

R � 
L � �
P

1 � 

; d

�
� ps1; s2q ¤

� L � �
R � 
L � �

P

1 � 


	 �
� � 1

� ps1q � � � 1
� ps2q

�
: (1)

The two inequalities guarantee respectively thequality of the abstractionandrepresentation: when
local losses are small, (i) states and their embedding are bisimilarly close in average, and (ii) all states
sharing the same discrete representation are bisimilarly close. The local losses and related bounds
can be ef�ciently PAC-estimated. Our goal is to learn a latent model where the behaviors of the agent
executing� can be formally veri�ed, and the bounds offer a con�dence metric allowing to lift the
guarantees obtained this way back to the original modelM , when the latter operates under� . We
show in the following how to learn a latent space model by optimizing the aforementioned bounds,
and distill policies� P � obtained viaanyRL technique to a latent policy� P � .

3 WASSERSTEINAUTO-ENCODEDMDPS

Fix M � �
@
S; A ; P � ; R � ; `; AP ; sI

D
and

@
M � ; � � ;  �

D
as a latent space model ofM parameter-

ized by� and� . Our method relies on learning abehavioral model� � of M from which we can
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retrieve the latent space model and distill� . This can be achieved via the minimization of a suitable
discrepancy between� � andM � . VAE-MDPs optimize a lower bound on the likelihood of the
dynamics ofM � using theKullback-Leibler divergence, yielding (i) M � , (ii) a distillation� � of � ,
and (iii) � � and � . Local losses are not directly minimized, but rather variational proxies that do
not offer theoretical guarantees during the learning process. To control the local losses minimization
and exploit their theoretical guarantees, we present a novel autoencoder that incorporates them in its
objective, derived from the OT. Proofs of the claims made in this Section are provided in Appendix A.

3.1 THE OBJECTIVE FUNCTION

Assume thatS, A , and ImpRq are respectively equipped with metricsdS , dA , and dR , we
de�ne the raw transition distance metric~d as the component-wise sum of distances between
states, actions, and rewards occurring of along transitions:~dpxs1; a1; r 1; s1

1y; xs2; a2; r 2; s1
2yq �

dS ps1; s2q � dA pa1; a2q � dR pr 1; r 2q � dS ps1
1; s1

2q: Given Assumption 2.1, we consider the OT be-
tweenlocal distributions, where traces are drawn from episodic RL processes or in�nite interactions
(we show in Appendix A.1 that considering the OT between trace-based distributions in the limit
amounts to reasoning about stationary distributions). Our goal is to minimizeW~d p� � ; � � qso that

� �
�
s; a; r; s1

�
�

»

S� A � S
P�

�
s; a; r; s1 | s; a; s1

�
d�� � �

�
s; a; s1

�
; (2)

whereP� is a transition decoder and�� � � denotes the stationary distribution of the latent modelM � .
As proved by Bousquet et al. (2017), this model allows to derive a simpler form of the OT: instead
of �nding the optimal coupling of (i) the stationary distribution� � of M � and (ii) the behavioral
model� � , in the primal de�nition ofW~d p� � ; � � q, it is suf�cient to �nd an encoderq whose marginal
is given byQps;a; s1q � Es;a;s 1� � � qps;a; s1 | s; a; s1qand identical to� � . This is summarized in the
following Theorem, yielding a particular case ofWasserstein-autoencoderTolstikhin et al. (2018):

Theorem 3.1. Let � � andP� be respectively a behavioral model and transition decoder as de�ned in
Eq. 2,G� : S Ñ S be a state-wise decoder, and � be an action embedding function. AssumeP� is
deterministic with Dirac functionG� ps;a; s1q �

@
G� psq;  � ps;aq; R � ps;aq; G� ps1q

D
, then

W~d p� � ; � � q � inf
q: Q� �� � �

E
s;a;r;s 1� � �

E
s;a;s1� qp�| s;a;s 1q

~d
�@

s; a; r; s1
D

; G�
�
s; a; s1

��
:

Henceforth, �x � � : S Ñ S and� A
� : S � A Ñ �

�
A

�
as parameterized state and action encoders

with � � ps;a; s1 | s; a; s1q � 1� � psq� s � � A
� pa | s; aq �1� � ps1q� s1, and de�ne the marginal encoder as

Q� � Es;a;s 1� � � � � p� | s; a; s1q. Training the model components can be achieved via the objective:

min
�;�

E
s;a;r;s 1� � �

E
s;a;s1� � � p�| s;a;s 1q

~d
�@

s; a; r; s1
D

; G�
�
s; a; s1

��
� � � D

�
Q� ; �� � �

�
;

whereD is an arbitrary discrepancy metric and� ¡ 0 a hyperparameter. Intuitively, the encoder� �
can be learned by enforcing its marginal distributionQ� to match�� � � through this discrepancy.
Remark2. If M has a discrete action space, then learningA is not necessary. We can setA � A
using identity functions for the action encoder and decoder (details in Appendix A.2).

When� is executed inM , observe that itsparallel executionin M � is enabled by the action encoder
� A

� : given an original states PS, � �rst prescribes the actiona � � p� | sq, which is then embedded
in the latent space viaa � � A

� p� | � � psq; aq(cf. Fig. 1b). This parallel execution, along with setting
D to W~d, yield an upper bound on the latent regularization, compliant with the bisimulation bounds.
A two-fold regularizer is obtained thereby, de�ning the foundations of our objective function:

Lemma 3.2. De�ne T ps;a; s1q � Es;a � � � r1� � psq� s � � A
� pa | s; aq�P � ps1 | s; aqsas the distribution of

drawing state-action pairs from interacting withM , embedding them to the latent spaces, and �nally
letting them transition to their successor state inM � . Then,W~d

�
Q� ; �� � �

�
¤ W~d

� �� � � ; T
�

� L � �
P :

We therefore de�ne the W2AE-MDP (Wasserstein-Wasserstein auto-encoded MDP) objective as:

min
�;�

E
s;a;s 1� � �

s;a;s1� � � p�|s;a;s 1q

�
dS ps;G� psqq � dA pa;  � ps;aqq � dS

�
s1; G�

�
s1

���
� L � �

R � � � pW� � � L � �
P q;
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Algorithm 1: Wasserstein2 Auto-Encoded MDP
Input: batch sizeN , max. stepT, no. of regularizer updatesm, penalty coef�cient� ¡ 0
for t � 1 to T do

for i � 1 to N do
Sample a transitionsi ; ai ; r i ; s1

i from the original environment via� �

Embed the transition into the latent space by drawingsi ; ai ; s1
i from � � p� | si ; ai ; s1

i q
Make the latent space model transition to the next latent state:s�

i � P � p� | si ; ai q
Sample a latent transition from�� � � : zi � �� � � , a1

i � � � p� | zi q, andz1
i � P � p� | zi ; a1

i q

W Ð
° N

i � 1 ' �
! psi ; ai ; s�

i q � ' �
! pzi ; a1

i ; z1
i q � ' P

! psi ; ai ; si ; ai ; s1
i q � ' P

! psi ; ai ; si ; ai ; s�
i q

P Ð
° N

i � 1 GP
�
' �

! ; xsi ; ai ; s�
i y; xzi ; a1

i ; z1
i y

�
� GP

�
x ÞÑ' P

! psi ; ai ; si ; ai ; x q; s1
i ; s�

i

�

Update the Lipschitz networks parameters! by ascending1{N � p� W � � P q
if t mod m � 0 then

L Ð
° N

i � 1 dS psi ; G� psi qq � dA pai ;  � psi ; ai qq � dR
�
r i ; R � psi ; ai q

�
� dS ps1

i ; G� ps1
i qq

Update the latent space model parametersx�; � y by descending1{N � pL � � Wq

function GPp' ! ; x ; yq ™Gradient penalty for ' ! : Rn Ñ R andx ; y PRn

� � U p0; 1q; ~x Ð � x � p 1 � � qy ™random noise; straight lines betweenx andy
return p}r ~x ' ! p~x q} � 1q2

whereW� � � W~d

�
T ; �� � �

�
andL � �

P are respectively calledsteady-stateandtransitionregularizers.
The former allows to quantify the distance between the stationary distributions respectively induced
by � in M and� � in M � , further enabling the distillation. The latter allows to learn the latent
dynamics. Note thatL � �

R andL � �
P — set over� � instead of� � � — are not suf�cient to ensure the

bisimulation bounds (Eq. 1): running� in M � depends on the parallel execution of� in the original
model, which does not permit its (conventional) veri�cation. Breaking this dependency is enabled by
learning the distillation� � throughW� � , as shown in Fig. 1b: minimizingW� � allows to make� �

and �� � � closer together, further bridging the gap of the discrepancy between� and� � . At any time,
recovering the local losses along with the linked bisimulation bounds in the objective function of the
W2AE-MDP is allowed by considering the latent policy resulting from this distillation:

Theorem 3.3. Assume that traces are generated by running a latent policy� P � in the original
environment and letdR be the usual Euclidean distance, then the W2AE-MDP objective is

min
�;�

E
s;s 1� � �

�
dS ps;G� p� � psqqq � dS

�
s1; G�

�
� �

�
s1

����
� L � �

R � � � pW� � � L � �
P q:

Optimizing the regularizers is enabled by the dual form of the OT: we introduce two parameterized
networks,' �

! and' P
! , constrained to be1-Lipschitz and trained to attain the supremum of the dual:

W� � p! q � max
!

E
s;a � � �

E
a� � A

� p�| � � psq;aq
E

s� � P � p�| � � psq;aq
' �

! p� � psq; a; s� q � E
z;a1;z 1� �� � �

' �
!

�
z;a1; z1

�

L � �
P p! q � max

!
E

s;a;s 1� � �

E
s;a;s1� � � p�| s;a;s 1q

�
' P

!

�
s; a;s;a; s1

�
� E

s� � P � p�| s;aq
' P

! ps; a;s;a; s� q
�

Details to derive this tractable form ofL � �
P p! qare in Appendix A.5. The networks are constrained via

the gradient penalty approach of Gulrajani et al. (2017), leveraging that any differentiable function is
1-Lipschitz iff it has gradients with norm at most1 everywhere (we show in Appendix A.6 this is still
valid for relaxations of discrete spaces). The �nal learning process is presented in Algorithm 1.

3.2 DISCRETELATENT SPACES

To enable the veri�cation of latent models supported by the bisimulation guarantees of Eq. 1, we focus
on the special case ofdiscrete latent space models. Our approach relies on continuous relaxation of
discrete random variables, regulated by sometemperatureparameter(s)� : discrete random variables
are retrieved as� Ñ 0, which amounts to applying a rounding operator. For training, we use the
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Figure 2: W2AE-MDP architecture. Distances are depicted by red dotted lines.

temperature-controlled relaxations to differentiate the objective and let the gradient �ow through the
network. When we deploy the latent policy in the environment and formally check the latent model,
the zero-temperature limit is used. An overview of the approach is depticted in Fig. 2.

State encoder.We work with abinary representationof the latent states. First, this induces compact
networks, able to deal with a large discrete space via a tractable number of parameter variables. But
most importantly, this ensures that Assumption 2.1 is satis�ed: letn � log2 |S|, we reserve|AP |
bits inS and each times PS is passed to� � , n � | AP | bits are produced and concatenated with`psq,
ensuring a perfect reconstruction of the labels and further bisimulation bounds. To produce Bernoulli
variables,� � deterministically mapss to a latent codez, passed to the HeavisideH pzq � 1z ¡ 0. We
train � � by using the smooth approximationH � pzq � � p2z{� q, satisfyingH � lim � Ñ 0 H � .

Latent distributions. Besides the discontinuity of their latent image space, a major challenge of
optimizing over discrete distributions issampling, required to be a differentiable operation. We
circumvent this by usingconcrete distributions(Jang et al., 2017; Maddison et al., 2017): the idea is
to sample reparameterizable random variables from� -parameterized distributions, and applying a
differentiable, nonlinear operator in downstream. We use theGumbel softmax trickto sample from
distributions over (one-hot encoded) latent actions (� A

� , � � ). For binary distributions (P � , �� � � ), each
relaxed Bernoulli with logit� is retrieved by drawing a logistic random variable located in� {� and
scaled to1{� , then applying a sigmoid in downstream. We emphasize that this trick alone (as used
by Corneil et al. 2018; Delgrange et al. 2022) is not suf�cient: it yields independent Bernoullis,
being too restrictive in general, which prevents from learning sound transition dynamics (cf. Ex. 1).

s0

s1

t goalu

s2
t unsafeu

s3

t unsafeu 1{2

1{4

1{4
1

1

1

Figure 3: Markov Chain with four states;
labels are drawn next to their state.

Example1. Let M be the discrete MC of Fig. 3. In
one-hot,AP � t goal : x1; 0y; unsafe: x0; 1yu. We as-
sume that3 bits are used for the (binary) state space,
with S � t s0 : x0; 0; 0y; s1 : x1; 0; 0y; s2 : x0; 1; 0y; s3 :
x0; 1; 1yu (the two �rst bits are reserved for the labels).
Considering each bit as being independent is not suf�-
cient to learnP: the optimal estimationP � � p� | s0qis in
that case represented by the independent Bernoulli vector
b � x 1{2; 1{2; 1{4y, giving the probability to go froms0 to
each bitindependently. This yields a poor estimation of
the actual transition function:P � � ps0 | s0q � p 1� b1q�p1� b2q�p1� b3q � P � � ps1 | s0q � b1 �p1�
b2q�p1� b3q � P � � ps2 | s0q� p 1� b1q�b2 �p1� b3q � 3{16; P � � ps3 | s0q� p 1� b1q�b2 �b3 � 1{16.

We consider instead relaxed multivariate Bernoulli distributions by decomposingP P �
�
S

�
as a

product of conditionals:Ppsq �
± n

i � 1 Ppsi | s1 : i � 1qwheresi is thei th entry (bit) ofs. We learn

7
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(a) W2AE-MDP objective: reconstruction loss, transition and steady-state regularizers

(b) PAC local losses approximation for an error of at most10� 2 and probability con�dence0:955

(c) Episode return obtained when executing the distilled policy in the original MDP (averaged over30 episodes)

Figure 4: For each environment, we trained �ve different instances of the models with different
random seeds: the solid line is the median and the shaded interval the interquartile range.

such distributions by introducing amasked autoregressive �ow(MAF, Papamakarios et al. 2017) for
relaxed Bernoullis via the recursion:si � � pl i � � i{� q, wherel i � Logisticp0; 1q, � i � f i ps1 : i � 1q,
andf is a MADE (Germain et al., 2015), a feedforward network implementing the conditional
output dependency on the inputs via a mask that only keeps the necessary connections to enforce the
conditional property. We use this MAF to modelP � and the dynamics related to the labels in�� � � .
We �x the logits of the remainingn � | AP | bits to0 to allow for a fairly distributed latent space.

4 EXPERIMENTS

We evaluate the quality of latent space models learned and policies distilled through W2AE-MDPs .
To do so, we �rst trained deep-RL policies (DQN, Mnih et al. 2015 on discrete, and SAC, Haarnoja
et al. 2018 on continuous action spaces) for various OpenAI benchmarks (Brockman et al., 2016),
which we then distill via our approach (Figure 4). We thus evaluate (a) the W2AE-MDP training
metrics, (b) the abstraction and representation quality viaPAC local losses upper bounds(Delgrange
et al., 2022), and (c) the distilled policy performance when deployed in the original environment. The
con�dence metrics and performance are compared with those of VAE-MDPs. Finally, we formally
verify properties in the latent model. The exact setting to reproduce our results is in Appendix B.

Learning metrics. The objective (Fig. 4a) is a weighted sum of the reconstruction loss and the two
Wasserstein regularizers. The choice of� de�nes the optimization direction. Posterior collapse is
not observed, naturally avoided in WAEs (Tolstikhin et al., 2018), re�ecting that the latent space is
consistently distributed. Optimizing the objective (Fig. 4a) effectively allows minimizing the local
losses (Fig. 4b) and recovering the performance of the original policy (Fig. 4c).

Local losses.For V- and WAEs, we formally evaluate PAC upper bounds onL
� � �
R andL

� � �
P via

the algorithm of Delgrange et al. (2022) (Fig 4b). The lower the local losses, the closerM and
M � are in terms of behaviors induced by� � (cf. Eq. 1). In VAEs, the losses are evaluated on a
transition functionP̂ obtained via frequency estimation of the latent transition dynamics (Delgrange
et al., 2022), by reconstructing the transition model a posteriori and collecting data to estimate the
transition probabilities (e.g., Bazille et al. 2020; Corneil et al. 2018). We thus also report the metrics
for P̂ . Our bounds quickly converge to close values in general forP � andP̂ , whereas for VAEs,
the convergence is slow and unstable, withP̂ offering better bounds. We emphasize that WAEs do
not require this additional reconstruction step to obtain losses that can be leveraged to assess the
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Table 1: Formal Veri�cation of distilled policies. Values are computed for
 � 0:99 (lower is better).

Environment step (105) S A
�
�S

�
�

�
�A

�
� L

� � �
R (PAC) L

� � �
P (PAC) }V� � } V

'
� �

psI q

CartPole 1:2 „ R4 t 1; 2u 512 2 0:00499653 0:399636 3:71213 0:0316655
MountainCar 2:32 „ R2 t 1; 2u 1024 2 0:0141763 0:382323 2:83714 0
Acrobot 4:3 „ R6 t 1; 2; 3u 8192 3 0:0347698 0:649478 2:22006 0:0021911
LunarLander 3:2 „ R8 r� 1; 1s2 16384 3 0:0207205 0:131357 0:0372883 0:0702039
Pendulum 3:7 „ R3 r� 2; 2s 8192 3 0:0266745 0:539508 4:33006 0:0348492

quality of the model, in contrast to VAEs, where learningP � was performed via overly restrictive
distributions, leading to poor estimation in general (cf. Ex. 1). Finally,when the distilled policies
offer comparable performance(Fig. 4c), our bounds are either close to or better than those of VAEs.

Distillation. The bisimulation guarantees (Eq. 1) are only valid for� � , the policy under which formal
properties can be veri�ed. It is crucial that� � achieves performance close to� , the original one, when
deployed in the RL environment. We evaluate the performance of� � via the undiscounted episode
returnR � � obtained by running� � in the original modelM . We observe thatR � � approaches faster
the original performanceR � for W- than VAEs: WAEs converge in a few steps for all environments,
whereas the full learning budget is sometimes necessary with VAEs. The success in recovering the
original performance emphasizes the representation quality guarantees (Eq. 1) induced by WAEs:
when local losses are minimized, all original states that are embedded to the same representation are
bisimilarly close. Distilling the policy over the new representation, albeit discrete and hence coarser,
still achieves effective performance since� � keeps only what is important to preserve behaviors, and
thus values. Furthermore, the distillation can remove some non-robustness obtained during RL:� �
prescribes the same actions for bisimilarly close states, whereas this is not necessarily the case for� .

Formal veri�cation. To formally verifyM � , we implemented avalue iteration(VI) engine, handling
the neural network encoding of the latent space for discounted properties, which is one of the most
popular algorithms for checking property probabilities in MDPs (e.g., Baier & Katoen 2008; Hensel
et al. 2021; Kwiatkowska et al. 2022). We verifytime-to-failureproperties' , often used to check
the failure rate of a system (Pnueli, 1977) by measuring whether the agent failsbefore the end of the
episode. Although simple, such properties highlight the applicability of our approach on reachability
events, which are building blocks to verify MDPs (Baier & Katoen, 2008). In particular, we checked
whether the agent reaches an unsafe position or angle (CartPole, LunarLander), does not reach its
goal position (MountainCar, Acrobot), and does not reach and stay in a safe region of the system
(Pendulum). Results are in Table 1: for each environment, we select the distilled policy which gives
the best trade-off between performance (episode return) and abstraction quality (local losses). As
extra con�dence metric, we report the value difference}V� � } � | V� �

psI q � V � �
psI q|obtained by

executing� � in M andM � (V� �
p�qis averaged whileV � �

p�qis formally computed).

5 CONCLUSION

We presented WAE-MDPs, a framework for learning formally veri�able distillations of RL policies
with bisimulation guarantees. The latter, along with the learned abstraction of the unknown continuous
environment to a discrete model, enables the veri�cation. Our method overcomes the limitations
of VAE-MDPs and our results show that it outperforms the latter in terms of learning speed, model
quality, and performance, in addition to being supported by stronger learning guarantees. As
mentioned by Delgrange et al. (2022), distillation failure reveals the lack of robustness of original RL
policies. In particular, we found that distilling highly noise-sensitive RL policies (such as robotics
simulations, e.g., Todorov et al. 2012) is laborious, even though the result remains formally veri�able.

We demonstrated the feasibility of our approach through the veri�cation of reachability objectives,
which are building blocks for stochastic model-checking (Baier & Katoen, 2008). Besides the scope
of this work, the veri�cation of general discounted! -regular properties is theoretically allowed in
our model via the rechability to components of standard constructions based on automata products
(e.g., Baier et al. 2016; Sickert et al. 2016), and discounted games algorithms (Chatterjee et al., 2010).
Beyond distillation, our results, supported by Thm. 3.3, suggest that our WAE-MDP can be used as a
general latent space learnerfor RL, further opening possibilities to combine RL and formal methods
onlinewhen no formal model is a priori known, and address this way safety in RL with guarantees.
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REPRODUCIBILITY STATEMENT

We referenced in the main text the Appendix parts presenting the proofs or additional details of
every claim, Assumption, Lemma, and Theorem occurring in the paper. In addition, Appendix B
is dedicated to the presentation of the setup, hyperparameters, and other extra details required for
reproducing the results of Section 4. We provide the source code of the implementation of our
approach in Supplementary material1, and we also provide the models saved during training that
we used for model checking (i.e., reproducing the results of Table 1). Additionally, we present in
a notebook (evaluation.html ) videos demonstrating how our distilled policies behave in each
environment, and code snippets showing how we formally veri�ed the policies.
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APPENDIX

A THEORETICAL DETAILS ON WAE-MDPS

A.1 THE DISCREPANCYMEASURE

We show that reasoning about discrepancy measures between stationary distributions is sound in
the context of in�nite interaction and episodic RL processes. LetP� be a parameterized behavioral
model that generate �nite traces from the original environment (i.e., �nite sequences of state, actions,
and rewards of the formxs0: T ; a0: T � 1 ; r 0: T � 1 y), our goal is to �nd the best parameter� which offers
the most accurate reconstruction of the original traces issued from the original modelM operating
under� . We demonstrate that, in the limit, considering the OT between trace-based distributions
is equivalent to considering the OT between the stationary distribution ofM � and the one of the
behavioral model.

Let us �rst formally recall the de�nition of the metric on thetransitionsof the MDP.

Raw transition distance.Assume thatS, A , andImpRqare respectively equipped with metricdS ,
dA , anddR , let us de�ne theraw transition distance metricovertransitionsof M , i.e., tuples of the
form xs; a; r; s1y, as~d: S � A � ImpRq � S,

~d
�@

s1; a1; r 1; s1
1

D
;
@
s2; a2; r 2; s1

2

D�
� dS ps1; s2q � dA pa1; a2q � dR pr 1; r 2q � dS

�
s1

1; s1
2

�
:

In a nutshell,~d consists of the sum of the distance of all the transition components. Note that it
is a well de�ned distance metric since the sum of distances preserves the identity of indiscernible,
symmetry, and triangle inequality.

Trace-based distributions.The raw distance~d allows to reason abouttransitions, we thus consider
the distribution overtransitions which occur along traces of lengthT to compare the dynamics of the
original and behavioral models:

D� rTs
�
s; a; r; s1

�
�

1
T

Ţ

t � 1

� t
� ps | sI q �� pa | sq �P

�
s1 | s; a

�
� 1r � R ps;a q; and

P� rTs
�
s; a; r; s1

�
�

1
T

Ţ

t � 1

E
s0: t ;a 0: t � 1 ;r 0: t � 1 � P � rt s

1xst � 1 ;a t � 1 r t � 1 ;s t y� xs;a;r;s 1y;

whereP� rTsdenotes the distribution over traces of lengthT, generated fromP� . Intuitively, 1{T �
° T

t � 1 � t
� ps | sI qcan be seen as the fraction of the time spent ins along traces of lengthT, starting

from the initial state Kulkarni (1995). Therefore, drawingxs; a; r; s1y � D� rTstrivially follows: it
is equivalent to drawings from 1{T �

° T
t � 1 � t

� p� | sI q, then respectivelya ands1 from � p� | sqand
Pp� | s; aq, to �nally obtain r � Rps; aq. GivenT PN, our objective is to minimize the Wasserstein
distance between those distributions:W~d pD� rTs; P� rTsq. The following Lemma enables optimizing
the Wasserstein distance between the original MDP and the behavioral model when traces are drawn
from episodic RL processes or in�nite interactions (Huang, 2020).
Lemma A.1. Assume the existence of a stationary behavioral model� � � limT Ñ8 P� rTs, then

lim
T Ñ8

W~d pD� rTs; P� rTsq � W~d p� � ; � � q:

Proof. First, note that1{T �
° T

t � 1 � t
� p� | sI qweakly converges to� � asT goes to8 Kulkarni (1995).

The result follows then from (Villani, 2009, Corollary 6.9).

A.2 DEALING WITH DISCRETEACTIONS

When the policy� executed inM already produces discrete actions, learning a latent action space is,
in many cases, not necessary. We thus make the following assumptions:
Assumption A.2. Let � : S Ñ � pA � q be the policy executed inM and assume thatA � is a
(tractable) �nite set. Then, we takeA � A � and� A

� as the identity function, i.e.,� A
� : S � A � Ñ

A � ; xs; a� y ÞÑa� .
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Assumption A.3. Assume that the action space of the original environmentM is a (tractable) �nite
set. Then, we take � as the identity function, i.e., � � � A

� .

Concretely, the premise of Assumption A.2 typically occurs when� is a latent policy (see Rem. 1)
or whenM has already a discrete action space. In the latter case, Assumption A.2 and A.3 amount
to settingA � A and ignoring the action encoder and embedding function. Note that if a discrete
action space is too large, or if the user explicitly aims for a coarser space, then the former is not
considered as tractable, these assumptions do not hold, and the action space is abstracted to a smaller
set of discrete actions.

A.3 PROOF OFLEMMA 3.2

Notation. From now on, we write� � ps;a | s; aq � 1� � psq� s � � A
� pa | s; aq.

Lemma 3.2. De�ne T ps;a; s1q� Es;a � � � r1� � psq� s � � A
� pa | s; aq�P � ps1 | s; aqsas the distribution of

drawing state-action pairs from interacting withM , embedding them to the latent spaces, and �nally
letting them transition to their successor state inM � . Then,W~d

�
Q� ; �� � �

�
¤ W~d

� �� � � ; T
�

� L � �
P :

Proof. Wasserstein is compliant with the triangular inequality (Villani, 2009), which gives us:
W~d

�
Q� ; �� � �

�
¤ W~d pQ� ; T q � WdS

�
T ; �� � �

�
;

where
W~d

�
T ; �� � �

�
(note thatW~d is re�exive (Villani, 2009))

� sup
f PF ~d

E
s;a � � �

E
s;a� � � p�| s;a q

E
s1� P � p�| s;aq

f
�
s; a; s1

�
� E

s� �� � �

E
a� � � p�| sq

E
s1� P � p�| s;aq

f
�
s; a; s1

�
, and

W~d pQ� ; T q

� sup
f PF ~d

E
s;a;s 1� � �

E
s;a;s1� � � p�| s;a;s 1q

f
�
s; a; s1

�
� E

s;a � � �

E
s;a� � � p�| s;a q

E
s1� P � p�| s;aq

f
�
s; a; s1

�
(3)

¤ E
s;a � � �

E
s;a� � � p�| s;a q

sup
f PF ~d

E
s1� P p�| s;a q

f
�
s; a; � �

�
s1

��
� E

s1� P � p�| s;aq
f

�
s; a; s1

�
(4)

� E
s;a � � �

E
a� � A

� p�| � � psq;aq
sup

f PF d
S

E
s1� � � P p�| s;a q

f
�
s1

�
� E

s1� P � p�| � � psq;aq
f

�
s1

�
(5)

� E
s;a � � �

E
a� � A

� p�| � � psq;aq
WdS

�
� � Pp� | s; aq; P � p� | � � psq; aq

�
:

We pass from Eq. 3 to Eq. 4 by the Jensen's inequality. To see how we pass from Eq. 4 to Eq. 5,
notice that

F ~d �
!

f : f
�
s1; a1; s1

1

�
� f

�
s2; a2; s1

2

�
¤ ~d

�@
s1; a1; s1

1

D
;
@
s2; a2; s1

2

D�)

F ~d � t f : f
�
s1; a1; s1

1

�
� f

�
s2; a2; s1

2

�
¤ dS ps1; s2q � dA pa1; a2q � dS

�
s1

1; s1
2

�
u

Observe now thats anda are �xed in the supremum computation of Eq. 4: all functionsf considered
and taken fromF ~d are of the formf ps;a; �q. It is thus suf�cient to consider the supremum over
functions from the following subset ofF ~d :

t f : f
�
s; a; s1

1

�
� f

�
s; a; s1

2

�
¤ dS ps;sq � dA pa; aq � dS

�
s1

1; s1
2

�
u

(for s, a drawn from� � )

� t f : f
�
s; a; s1

1

�
� f

�
s; a; s1

2

�
¤ dS

�
s1

1; s1
2

�
u

� t f : f
�
s1

1

�
� f

�
s1

2

�
¤ dS

�
s1

1; s1
2

�
u

� FdS
:

Given a states P S in the original model, the (parallel) execution of� in M � is enabled through
� pa; a | sq � � pa | sq � � A

� pa | � � psq; aq(cf. Fig. 1b). The local transition loss resulting from this
interaction is:

L � �
P � E

s;xa;ay� � �

WdS

�
� � Pp� | s; aq; Pp� | � � psq; aq

�

� E
s;a � � �

E
a� � A

� p�| � � psq;aq
WdS

�
� � Pp� | s; aq; P � p� | � � psq; aq

�
;
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which �nally yields the result.

A.4 PROOF OFTHEOREM 3.3

Before proving Theorem 3.3, let us introduce the following Lemma, that explicitly demonstrates
the link between the transition regularizer of the W2AE-MDP objective and the local transition loss
required to obtain the guarantees related to the bisimulation bounds of Eq. 1.

Lemma A.4. Assume that traces are generated by running� P � in the original environment, then

E
s;a � � � �

E
a� � A

� p�| � � psq;a � q
WdS

�
� � Pp� | s; a� q; P � p� | � � psq; aq

�
� L � �

P :

Proof. Since the latent policy� generates latent actions, Assumption A.2 holds, which means:

E
s;a � � � �

E
a� � A

� p�| � � psq;a � q
WdS

�
� � Pp� | s; a� q; P � p� | � � psq; aq

�

� E
s;a� � �

WdS

�
� � Pp� | s;aq; P � p� | � � psq; aq

�

� L � �
P :

Theorem 3.3. Assume that traces are generated by running a latent policy� P � in the original
environment and letdR be the usual Euclidean distance, then the W2AE-MDP objective is

min
�;�

E
s;s 1� � �

�
dS ps;G� p� � psqqq � dS

�
s1; G�

�
� �

�
s1

����
� L � �

R � � � pW� � � L � �
P q:

Proof. We distinguish two cases: (i) the case where the original and latent models share the same
discrete action space, i.e.,A � A , and (ii) the case where the two have a different action space
(e.g., when the original action space is continuous), i.e.,A � A . In both cases, the local losses
term follows by de�nition ofL � �

R and Lemma A.4. WhendR is the Euclidean distance (or even
the L 1 distance since rewards are scalar values), the expected reward distance occurring in the
expected trace-distance term~d in the W2AE-MDP objective directly translates to the local lossL � �

R .
Concerning the local transition loss, in case (i), the result naturally follows from Assumption A.2
and A.3. In case (ii), only Assumption A.2 holds, meaning the action encoder term of the W2AE-
MDP objective is ignored, but not the action embedding term appearing inG� . Givens � � � , recall
that executing� in M amounts to embedding the produced latent actionsa � � p� | � � psqqback to
the original environment viaa �  � p� � psq; aq(cf. Rem. 1 and Fig. 1a). Therefore, the projection
of ~dpxs; a; r; s1y; G� p� � psq; a; � � ps1qqqon the action spaceA is dA p � p� � psq; aq;  � p� � psq; aqq � 0,
for r � Rps; aqands1 � Pp� | s; aq.

A.5 OPTIMIZING THE TRANSITION REGULARIZER

In the following, we detail how we derive a tractable form of our transition regularizerL � �
P p! q. Opti-

mizing the ground Kantorovich-Rubinstein duality is enabled via the introduction of a parameterized,
1-Lipschitz network' P

! , that need to be trained to attain the supremum of the dual:

L � �
P p! q � E

s;a � � �

E
s;a� � � p�| s;a q

max
! : ' P

! PF d
S

E
s1� � � P p�| s;a q

' P
!

�
s1

�
� E

s1� P � p�| s;aq
' P

!

�
s1

�
:

Under this form, optimizingL � �
P p! qis intractable due to the expectation over the maximum. The

following Lemma allows us rewritingL � �
P to make the optimization tractable through Monte Carlo

estimation.

Lemma A.5. Let X ; Y be two measurable sets,� P � pX q, P : X Ñ � pYq; Q: X Ñ � pYq, and
d: Y � Y Ñ r 0; �8r be a metric onY. Then,

E
x � �

Wd pPp� | xq; Qp� | xqq � sup
' : X Ñ F d

E
x � �

�

E
y1 � P p�| x q

' pxqpy1q � E
y2 � Qp�| x q

' pxqpy2q
�
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Proof. Our objective is to show that

E
x � �

�

sup
f PF d

E
y1 � P p�| x q

' py1qpxq � E
y2 � Qp�| x q

' py2qpxq

�

(6)

� sup
' : X Ñ F d

E
x � �

�

E
y1 � P p�| x q

' pxqpy1q � E
y2 � Qp�| x q

' pxqpy2q
�

(7)

We start with (6)¤ (7). Construct' � : X Ñ Fd by setting for allx PX

' � pxq � arg sup
f PF d

E
y1 � P p�| x q

f py1q � E
y2 � Qp�| x q

f py2q:

This gives us

E
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sup
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f py1q � E
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E
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:

It remains to show that (6)¥ (7). Take

' � � arg sup
' : X Ñ F d

E
x � �

�

E
y1 � P p�| x q

' pxqpy1q � E
y2 � Qp�| x q

' pxqpy2q
�

:

Then, for allx PX , we have' � pxq PFd which means:

E
y1 � P p�| x q

' � pxqpy1q � E
y2 � Qp�| x q

' � pxqpy2q

¤ sup
f PF d

E
y1 � P p�| x q

f py1q � E
y2 � Qp�| x q

f py2q

This �nally yields

E
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�

E
y1 � P p�| x q

' � pxqpy1q� E
y2 � Qp�| x q
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sup
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:

Corollary A.5.1. Let � � be a stationary distribution ofM � andX � S � A � S � A , then

L � �
P � sup

' : X Ñ F d
S

E
s;a;s 1� � �

E
s;a� � � p�| s;a q

�

' ps; a;s;aq
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s1

��
� E

s1� P � p�| s;a q
' ps; a;s;aq

�
s1

�
�

Consequently, we rewriteL � �
P p! qas a tractable maximization:

L � �
P p! q � max

! : ' P
! PF d

S

E
s;a;s 1� � �

E
s;a� � � p�| s;a q

�

' P
!

�
s; a;s;a; � �

�
s1

��
� E

s1� P � p�| s;aq
' P

!

�
s; a;s;a; s1

�
�

:

A.6 THE LATENT METRIC

In the following, we show that considering the Euclidean distance for~d anddS in the latent space
for optimizing the regularizersW� � andL � �

P is Lipschitz equivalent to considering a continuous
� -relaxation of thediscrete metric1� px ; yq � 1x � y . Consequently, this also means it is consistently
suf�cient to enforce1-Lispchitzness via the gradient penalty approach of Gulrajani et al. (2017)
during training to maintain the guarantees linked to the regularizers in the zero-temperature limit,
when the spaces are discrete.
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Lemma A.6. Let d be the usual Euclidean distance andd� : r0; 1sn � r 0; 1sn Ñ r 0; 1r; xx ; yy ÞÑ
dpx ;y q

� � dpx ;y q for � P s0; 1sandn PN, thend� is a distance metric.

Proof. The functiond� is a metric iff it satis�es the following axioms:

1. Identity of indiscernibles: If x � y , thend� px ; yq � dpx ;y q
� � dpx ;y q � 0

� � 0 � 0 sinced is a
distance metric. Assume now thatd� px ; yq � 0 and take� � dpx ; yq, for anyx ; y . Thus,
� P r0; �8r and0 � �

� � � is only achieved in� � 0, which only occurs wheneverx � y
sinced is a distance metric.

2. Symmetry:

d� px ; yq �
dpx ; yq

� � dpx ; yq

�
dpy ; x q

� � dpy ; x q
(d is a distance metric)

� d� py ; x q

3. Triangle inequality: Let x ; y ; z P r0; 1sn , the triangle inequality holds iff

d� px ; yq � d� py ; zq ¥ d� px ; zq (8)

�
dpx ; yq

� � dpx ; yq
�

dpy ; zq
� � dpy ; zq

¥
dpx ; zq

� � dpx ; zq

�
�d px ; yq � �d py ; zq � 2dpx ; yqdpy ; zq

� 2 � �d px ; yq � �d py ; zq � dpx ; yqdpy ; zq
¥

dpx ; zq
� � dpx ; zq

� � 2dpx ; yq � � 2dpy ; zq � 2�d px ; yqdpy ; zq�
�d px ; yqdpx ; zq � �d py ; zqdpx ; zq � 2dpx ; yqdpy ; zqdpx ; zq

¥ � 2dpx ; zq � �d px ; yqdpx ; zq � �d py ; zqdpx ; zq � dpx ; yqdpy ; zqdpx ; zq
(cross-product, with� ¡ 0 andImpdq P r0; 8r )

� � 2dpx ; yq � � 2dpy ; zq � 2�d px ; yqdpy ; zq � dpx ; yqdpy ; zqdpx ; zq ¥ � 2dpx ; zq
(9)

Sinced is a distance metric, we have

� 2dpx ; yq � � 2dpy ; zq ¥ � 2dpx ; zq (10)

andImpdq P r0; 8r , meaning

2�d px ; yqdpy ; zq � dpx ; yqdpy ; zqdpx ; zq ¥ 0 (11)

By Eq. 10 and 11, the inequality of Eq. 9 holds. Furthermore, the fact that Eq. 8 and 9 are equivalent
yields the result.

Lemma A.7. Letd, d� as de�ned above, then (i)d� ÝÝÝÑ
� Ñ 0

1� and (ii) d; d� are Lipschitz-equivalent.

Proof. Part (i) is straightforward by de�nition ofd� . Distancesd andd� are Lispchitz equivalent if
and only ifDa; b ¡ 0 such that@x ; y P r0; 1sn ,

a � dpx ; yq ¤ d� px ; yq ¤ b� dpx ; yq

� a � dpx ; yq ¤
dpx ; yq

� � dpx ; yq
¤ b� dpx ; yq

� a ¤
1

� � dpx ; yq
¤ b

Takinga � 1
� �

?
n andb � 1

� yields the result.
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Corollary A.7.1. For all � ¥ 1{� , s PS, a PA, s PS, anda PA, we have

1. Wd�

�
T ; �� � �

�
¤ � � Wd

�
T ; �� � �

�

2. Wd�

�
� � Pp� | s; aq; P � p� | s;aq

�
¤ � � Wd

�
� � Pp� | s; aq; P � p� | s;aq

�

Proof. By Lipschitz equivalence, taking� ¥ 1{� ensures that@n PN, @x ; y P r0; 1sn ; d� px ; yq ¤
� � dpx ; yq. Moreover, for any distributionsP; Q, Wd� pP; Qq ¤ � � Wd pP; Qq(cf., e.g., Gelada
et al. 2019, Lemma A.4 for details).

In practice, taking the hyperparameter� ¥ 1{� in the W2AE-MDP ensures that minimizing the
� -scaled regularizers w.r.t: d also minimizes the regularizers w.r.t: the � -relaxationd� , being the
discrete distribution in the zero-temperature limit. Note that optimizing over two different� 1; � 2
instead of a unique scale factor� is also a good practice to interpolate between the two regularizers.

B EXPERIMENT DETAILS

The code for conducting and replicating our experiments is available athttps://github.com/
florentdelgrange/wae_mdp .

B.1 SETUP

We usedTENSORFLOW 2.7.0 (Abadi et al., 2015) to implement the neural network architecture
of our W2AE-MDP , TENSORFLOW PROBABILITY 0.15.0 (Dillon et al., 2017) to handle the
probabilistic components of the latent model (e.g., latent distributions with reparameterization tricks,
masked autoregressive �ows, etc.), as well asTF-AGENTS0.11.0 (Guadarrama et al., 2018) to
handle the RL parts of the framework.

Models have been trained on a cluster running underCentOS Linux 7 (Core) composed of a
mix of nodes containing Intel processors with the following CPU microarchitectures: (i)10-core
INTEL E5-2680v2 , (ii) 14-core INTEL E5-2680v4 , and (iii) 20-core INTEL Xeon
Gold 6148 . We used8 cores and32GB of memory for each run.

B.2 STATIONARY DISTRIBUTION

To sample from the stationary distribution� � of episodic learning environments operating under
� P � , we implemented therecursive� -perturbation trickof Huang (2020). In a nutshell, the reset
of the environment is explicitly added to the state space ofM , which is entered at the end of each
episode and left with probability1 � � to start a new one. We also added a special atomic proposition
resetinto AP to label this reset state and reason about episodic behaviors. For instance, this allows
verifying whether the agent behaves safely during the entire episode, or if it is able to reach a goal
before the end of the episode.

B.3 ENVIRONMENTS WITH INITIAL DISTRIBUTION

Many environments do not necessarily have a single initial state, but rather an initial distribution
over statesdI P � pSq. In that case, the results presented in this paper remain unchanged: it suf�ces
to add a dummy states� to the state spaceS Y t s� u so thatsI � s� with the transition dynamics
Pps1 | s� ; aq � dI ps1qfor any actiona P A. Therefore, each time the reset of the environment is
triggered, we make the MDP entering the initial states� , then transitioning tos1 according todI .

B.4 LATENT SPACE DISTRIBUTION

As pointed out in Sect. 4, posterior collapse is naturally avoided when optimizing W2AE-MDP . To
illustrate that, we report the distribution of latent states produced by� � during training (Fig. 5). The
plots reveal that the latent space generated by mapping original states drawn from� � during training
to S via � � is fairly distributed, for each environment.
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