Published as a conference paper at ICLR 2023

LATENT GRAPH INFERENCE
USING PRODUCT MANIFOLDS

Haitz Saez de Ocariz Borde Anees Kazi
University of Oxford Harvard University

Federico Barbero Pietro Lio
University of Oxford University of Cambridge

ABSTRACT

Graph Neural Networks usually rely on the assumption that the graph topology
is available to the network as well as optimal for the downstream task. Latent
graph inference allows models to dynamically learn the intrinsic graph structure
of problems where the connectivity patterns of data may not be directly accessible.
In this work, we generalize the discrete Differentiable Graph Module (IDGM) for
latent graph learning. The original dDGM architecture used the Euclidean plane
to encode latent features based on which the latent graphs were generated. By
incorporating Riemannian geometry into the model and generating more complex
embedding spaces, we can improve the performance of the latent graph inference
system. In particular, we propose a computationally tractable approach to pro-
duce product manifolds of constant curvature model spaces that can encode latent
features of varying structure. The latent representations mapped onto the inferred
product manifold are used to compute richer similarity measures that are leveraged
by the latent graph learning model to obtain optimized latent graphs. Moreover,
the curvature of the product manifold is learned during training alongside the rest
of the network parameters and based on the downstream task, rather than it being a
static embedding space. Our novel approach is tested on a wide range of datasets,
and outperforms the original dADGM model.

1 INTRODUCTION

Graph Neural Networks (GNN5s) have achieved state-of-the-art performance in a number of applica-
tions, from travel-time prediction (Derrow-Pinion et al.|(2021)) to antibiotic discovery (Stokes et al.
(2020)). They leverage the connectivity structure of graph data, which improves their performance
in many applications as compared to traditional neural networks (Bronstein et al.| (2017)). Most
current GNN architectures assume that the topology of the graph is given and fixed during training.
Hence, they update the input node features, and sometimes edge features, but preserve the input
graph topology. A substantial amount of research has focused on improving diffusion using differ-
ent types of GNN layers. However, discovering an optimal graph topology that can help diffusion
has only recently gained attention (Topping et al.|(2021);/Cosmo et al.|(2020); Kazi et al.| (2022)).

In many real-world applications, data can have some underlying but unknown graph structure, which
we call a latent graph. That is, we may only be able to access a pointcloud of data. Nevertheless,
this does not necessarily mean the data is not intrinsically related, and that its connectivity cannot
be leveraged to make more accurate predictions. The vast majority of Geometric Deep Learning
research so far has relied on human annotators or simplistic pre-processing algorithms to generate
the graph structure to be passed to GNNs. Furthermore, in practice, even in settings where the cor-
rect graph is provided, it may often be suboptimal for the task at hand, and the GNN may benefit
from rewiring (Topping et al.| (2021))). In this work, we drop the assumption that the graph adja-
cency matrix is given and study how to learn the latent graph in a fully-differentiable manner, using

Published as a conference paper at ICLR 2023

product manifolds, alongside the GNN diffusion layers. More elaborately, we incorporate Rieman-
nian geometry to the discrete Differentiable Graph Module (dDGM) proposed by [Kazi et al.[(2022).
We show that it is possible and beneficial to encode latent features into more complex embedding
spaces beyond the Euclidean plane used in the original work. In particular, we leverage the conve-
nient mathematical properties of product manifolds to learn the curvature of the embedding space in
a fully-differentiable manner.

Contributions 1) We explain how to use model spaces of constant curvature for the embedding
space. To do so, we outline a principled procedure to map Euclidean GNN output features to constant
curvature model space manifolds with non-zero curvature: we use the hypersphere for spherical
space and the hyperboloid for hyperbolic space. We also outline how to calculate distances between
points in these spaces, which are then used by the dDGM sparse graph generating procedure to
infer the edges of the latent graph. Unlike the original dDGM model which explored using the
Poincaré ball with fixed curvature for modeling hyperbolic space, in this work we use hyperboloids
of arbitrary negative curvature. 2) We show how to construct more complex embedding spaces that
can encode latent data of varying structure using product manifolds of model spaces. The curvature
of each model space composing the product manifold is learned in a fully-differentiable manner
alongside the rest of the model parameters, and based on the downstream task performance. 3) We
test our approach on 15 datasets which includes standard homophilic graph datasets, heterophilic
graphs, large-scale graphs, molecular datasets, and datasets for other real-world applications such as
brain imaging and aerospace engineering. 4) It has been shown that traditional GNN models, such
as Graph Convolutional Networks (GCNs) (Kipf & Welling|(2017)) and Graph Attention Networks
(GATs) (Velickovi€ et al.|(2018))) struggle to achieve good performance in heterophilic datasets (Zhu
et al.| (2020)), since in fact homophily is used as an inductive bias by these models. Amongst
other models, Sheaf Neural Networks (SNNs) (Hansen & Gebhart (2020); |Bodnar et al.| (2022);
Barbero et al.|(2022bja))) have been proposed to tackle this issue. We show that latent graph inference
enables traditional GNN models to give good performance on heterophilic datasets without having to
resort to sophisticated diffusion layers or model architectures such as SNNs. 5) To make this work
accessible to the wider machine learning community, we have created a new PyTorch Geometric
layer.

2 BACKGROUND

In this section we discuss relevant background for this work. We first provide a literature review
regarding recent advances in latent graph inference using GNNs as well as related work on manifold
learning and graph embedding. Next, we give an overview of the original Differentiable Graph
Module (DGM) formulation, but we recommend referring to |[Kazi et al.[(2022) for further details.

2.1 RELATED WORK

Latent graph and topology inference is a standing problem in Geometric Deep Learning. In contrast
to algorithms that work on sets and that apply a shared pointwise function such as PointNet (Q1 et al.
(2017)), in latent graph inference we want to learn to optimally share information between nodes
in the pointcloud. Some contributions in the literature have focused on applying pre-processing
steps to enhance diffusion based on an initial input graph (Topping et al.| (2021); |Gasteiger et al.
(2019); |Alon & Yahav| (2021); Wu et al.|(2019)). Note, however, that this area of research focuses
on improving an already existing graph which may be suboptimal for the downstream task. This
paper is more directly related to work that addresses how to learn the graph topology dynamically,
instead of assuming a fixed graph at the start of training. When the underlying connectivity structure
is unknown, architectures such as transformers (Vaswani et al.| (2017))) and attentional multi-agent
predictive models (Hoshen| (2017)), simply assume the graph to be fully-connected, but this can
become hard to scale to large graphs. Generating sparse graphs can result in more computationally
tractable solutions (Fetaya et al.|(2018))) and avoid over-smoothing (Chen et al.| (2020a)). For this a
series of models have been proposed, starting from Dynamic Graph Convolutional Neural Networks
(DGCNNSs) (Wang et al.| (2019)), to other solutions that decouple graph inference and information
diffusion, such as the Differentiable Graph Modules (DGMs) in|Cosmo et al.| (2020) and [Kazi et al.
(2022). Note that latent graph inference may also be referred to as graph structure learning in the
literature. A survey of similar methods can be found in [Zhu et al.| (2021)), and some additional

Published as a conference paper at ICLR 2023

classical methods include LDS-GNN (Franceschi et al.l [2019), IDGL (Chen et al., 2020b), and Pro-
GNN (J1n et al., 2020).

In this work, we extend the dDGM module proposed by Kazi et al.|(2022)) for learning latent graphs
using product manifolds. Product spaces have primarily been studied in the manifold learning and
graph embedding literature (Cayton| (2005); Fefferman et al.| (2013); Bengio et al.| (2012)). Recent
work has started exploring encoding the geometry of data into rich ambient manifolds. In particular,
hyperbolic geometry has proven successful in a number of tasks (Liu et al.|(2019);/Chamberlain et al.
(2017);/Sala et al. (2018))). Different manifold classes have been employed to enhance modeling flex-
ibility, such as products of constant curvature spaces (Gu et al.[(2019)), matrix manifolds (Cruceru
et al.| (2021))), and heterogeneous manifolds (Di Giovanni et al.|(2022))). We will leverage these ideas
and use product manifolds to generate the embedding space for constructing our latent graphs.

2.2 AN OVERVIEW OF THE DISCRETE DIFFERENTIABLE GRAPH MODULE

Kazi et al.|(2022) proposed a general technique for learning an optimized latent graph, based on the
output features of each layer, onto which to apply the downstream GNN diffusion layers. Here, we
specifically focus on the dDGM module (not the cDGM), which is much more computationally effi-
cient and recommended by the authors. The main idea is to use some measure of similarity between
the latent node features to generate latent graphs which are optimal for each layer |. We can sum-
marize the architecture as XP' 19 F™%pconcatpXPe; Relag; APlag APl 10 prlapRel 1agq
XP! 19 gepXPla; APH 14g: The node features in layer |, XP'9, are transformed into XP' 19 through
a function T e, which has learnable parameters, and compared using a similarity measure ”pT g,
which is parameterized by a scalar learnable parameter T. On the other hand, gy is a diffusion
function which in practice corresponds to multiple GNN layers stacked together. g4 diffuses infor-
mation based on the inferred latent graph connectivity structure summarized in AP 29, which is an
unweighted sparse matrix. The dDGM module generates a sparse k-degree graph using the Gumbel
Top-k trick (Kool et al.| (2019)), a stochastic relaxation of the kNN rule, to sample edges from the
probability matrix PPlpXPla: Pla: T, where each entry corresponds to

PP P expppf] £ Tag expppgl! MR) M Tau: (1)

The main similarity measure used in |[Kazi et al.| (2022) was to compute the distance based on the
features of two nodes in the graph embedding space. They assumed that the latent features laid in an

Euclidean plane of constant curvature Kg 0, so that p?}q expp TdEpfplqu?Iqq; fplqpxgquqq
expp TdEpk?' 1q;5¥?| 1qqq; where de denotes distance in Euclidean space. Then, based on

argsortplogpp?'qq logp logpgqqy, where g P RN is uniform i.i.d in the interval r0; 1s, we can

sample the edges EPM9pXP!Y; Pl T:kq tpi; ji.aQ; pi; Jisa; i pi Jikg @ 0 152 Nu; where K

is the number of sampled connections using the Gumbel Top-k trick. This sampling approach fol-
plg

lows the categorical distribution % and EpXPlo; Pl9:T:Kkq is represented by the unweighted

adjacency matrix APpXPI9; PlA: T: kg, Note that including noise in the edge sampling approach
will result in the generation of some random edges in the latent graphs which can be understood as
a form of regularization. In this work, we generalize Equation [I] to measure similarities based on
distances but dropping the assumption used in Kazi et al.[(2022)), in which they limit themselves to
fixed-curvature spaces, specifically to Eucliden space where Kg 0. We will use product mani-
folds of model spaces of constant curvature to improve the similarity measure ” and construct better
latent graphs.

3 METHOD: PRODUCT MANIFOLDS FOR LATENT GRAPH INFERENCE

In this section, we first introduce model spaces, which are a special type of Riemannian manifolds,
and explain how to map Euclidean GNN output features to model spaces with non-zero curvature. In
case the reader is unfamiliar with the topic, additional details regarding Riemannian manifolds can
be found in Appendix [A] Then, we mathematically define product manifolds and how to calculate
distances between points in the manifold. Next, we introduce scaling metrics which help us learn

Published as a conference paper at ICLR 2023

the curvature of each model space composing the product manifold. A discussion on product mani-
fold curvature learning can be found in Appendix B. The intuition behind the method is that we can
consider the embedding space represented by the product manifold as a combination of more simple
spaces (model spaces of constant curvature), and compute distances between the latent representa-
tions mapped onto the product manifold by considering distances in each model space individually
and later aggregating them in a principled manner. This allows to generate diverse embedding spaces
which at the same time are computationally tractable.

3.1 CONSTANT CURVATURE MODEL SPACES

Curvature is effectively a measure of geodesic dispersion. When there is no curvature geodesics stay
parallel, with negative curvature they diverge, and with positive curvature they converge. Euclidean
space,EﬂEE RY, is a at space with curvatur& g 0. Note that here we usd: to denote
dimensionality. On the other hand, hyperbolic and spherical space, have negative and positive cur-
vature, respectively. We de ne hyperboloidsf&%*H t Xp PR 1 :x¢pixpy HKuu; where

Ky Oandx; y_ isthe Lorentz inner produsk; y yp X1Y1 jd” 21 Xjyj; @;yPR¥ 1

and hyperspheres @SS t xp PRI 1 tXpiXpY2 {Ksu, whereKs j Oandx; y, is the
standard Euclidean inner produat; y y» J-ds 11 Xjyj; @y P Rds 1: Table 1 provides a sum-

mary of relevant operators in Euclidean, hyperbolic, and spherical spaces with arbitrary curvatures.
The closed forms for the distances between points in hyperbolic and spherical space use the arccosh
and the arccos, their domains aseP R : x ¥ luandtx PR : 1 & x o 1u, respectively. We

apply clipping to avoid giving inputs close to the domain limits and prevent from instabilities during
training.

Table 1: Relevant operators (exponential maps and distances between two points) in Euclidean,
hyperbolic, and spherical spaces with arbitrary constant curvatures.

Space Model expx, Xq dex;yq
E, Euclidean ” Xp Xo Ix yll2
H, hyperboloid cosh ~~ KnlIx|l xp sinh Kyl ’ﬁ ?%HarCCOSWHm;nyq

S, hypersphere cos Kllx|l xp sin ~ Ksllxll >Z 24— arccosK XX Y¥2q

The latent output features produced by the neural network layers are in Euclidean space and must
be mapped to the relevant model spaces before applying the distance metrics. We use the ap-
propriate exponential map (refer to Table 1). To map Euclidean data to the hyperboloid, we use
the hyperboloid north pole, that is, the orighf : p ?1—TH;O; 20q p ?#TH;Oq as a refer-

ence point to perform tangent space operations. Using the trick described in Chami et alt,(2019)
if x is an Euclidean feature we can considgencaf; xqto be a point in the manifold tangent
space abf . Therefore, we can obtain the mapped feat&es expll, pconcatp0; xqqvia X

Kn

?__ ?__
?#TH cosh = Kyl[x]| ;sinh Kullx|| : Similarly for the hypersphere using as

2_X
KH”X,y 2
reference poinby 1 p 24—;0;::500 X 2q—cos KslIx|l ;sin ~ KslIxIl 2 Z5g

3.2 PRobucTMANIFOLDS

We de ne a product manifold as the Cartesian prodaict '*; M ﬂ‘i ; whereK; andd; are the
curvature and dimensionality of the manifaidl d‘i , respectively. We write points, P P using
their coordinates, concat xp% xf% i xB"" 9 xBIPM § : Also, the metric of the product
manifold decomposes into the sum of the constituent megsics inpl 0i; hencepP; g gis also

a Riemannian manifold ifv ﬂ' ;1 0iG @ are all Riemannian manifolds in the rst place. Note that
the signature of the product space, that is, its parametrization, has several degrees of freedom: the
number of components used, as well as the type of model spaces, their dimensionality, and curvature.

!Note that in this paper they de ne curvature differently.

Published as a conference paper at ICLR 2023

If we restrictP to be composed of the Euclidean pldﬂ% hyperboI0|dsH and hyperspheres

KH!

SdeS of constant curvature, we can write an arbitrary product manifold of model spaces as
k
aH 1 S 1 I
POEE H s E H S @

whereKe 0, K| H 0,andK S i 0. The rightmost part of Equation 2 is included to simplify
the notation.P Would have a total ol ny nscomponent spaces, and total dimensign

“” dJH rs . dP. As shown in Gallier & Quaintance (2020), in the case of a product manifold as
de ned in Equatlon 2, the geodesics, exponential, and logarithmic mapsare the concatenation
of the corresponding notions of the individual model spaces.

3.3 DISTANCES AND SCALING METRICS FORPRODUCT MANIFOLDS

To compute distances between points in the product manifold we can add up the square dis-

2
tances for the coordinates in each of the individual manifdids<,, ; Xp, ¢ de xB,% X0

o . . o 2
Y T G Gl k>0 XBL Mo Kaxhl nw o kd o where the overline denotes

that the adequate exponential map to project Euclidean feature entries to the relevant model space

has been applied before computing the distance. In practice, this would be equivalent to mapping

the feature outputs to the product manifold and operatin® atirectly. As suggested in Tabaghi

et al. (2021), instead of directly updating the curvature of the hyperboloid and hypersphere model

spaces used to construct the product manifold, we cald j§et 1, @,andK? 1; @; and use

ascaleddistance metric instead. To do so, we introduce learnable coef cie}ﬁmd S

Gl Ko, @ de BT TPy May SRR T fdy xp e axp ek G (3)
which is equivalent to learning the curvature of the non-Euclidean model spaces, but com-
putationally more tractable and efcient (for further details on how this coefcients are
updated refer to Appendix C.2). This newly de ned distance metric can then be ap-
plied to calculate the probability of there existing an edge connecting latent features

pﬁ-"qp Paq exp Tdp f“qu"qqf“qp(jp'qq . Hence, EP9X P9 PAaT:k:dpq

tpi;j 1 A i 2G P ik g 1;::;;Nu As discussed in Kazi et al. (2022), the logarithms
of the edge probabllltles are used to update the dDGM. This is done by incorporating an additional
term to the network loss function which will be dependent on

|ngilj)lqp Mdg Tdp f”'qp<ip'qo;f ﬂqp(jp'qq Tdp Xplq Xplq (4)
where the additional graph loss is given by IN 1 Bii%ig : & j :piyj qPEPa log pi',-jq ;

and pyi;¥q Epacq ag is areward function based on the expected accuracy of the model. The
loss function to update the dDGM modelg, , is identical to the original loss proposed by Kazi
et al. (2022), for a brief review one may refer to Appendix C.1. Note that after passing the input

x"9 through the dDGM parameterized functi6R?, the outputf "4P%q xP @ xB9 has
dimensiondg]““ dH dS and must be subdivided intb ny ng subarrays for each
of the component spaces Each subarray must be appropriately mapped to its model space. Hence,

the overline inf p'qp<i gin Equation 4. Finally, Figure 1 summarizes the method described in this
section. Note thak, in Figure 1, would correspond to the concatenation of the origins of each
model space composing the product manifold.

Published as a conference paper at ICLR 2023

Figure 1: Diagram depicting mapping procedure from GNN Euclidean output to latent mamifold
The appropriate exponential map is used to map the points from the tangent plane to the manifold.
We construct the latent graph based on the distances on the learned manifold.

4 EXPERIMENTS AND RESULTS

The main objective of the experimental validation is to show that latent graph inference can bene t
from using products of models spaces. To do so, we compare the performance of the dDGM module
when using single model spaces against Cartesian products of model spaces. The model spaces are
denoted as: Euclidean (dDGM-E/dDGME, which is equivalent to the original architecture used

by Kazi et al. (2022)), hyperbolic (A(DGM-H/dDGMH), and spherical space (dADGM-S/dDGM

S). The asterisk sign in the model name denotes that the dD@btlule is tasked with generating

the latent graph without having access to the original adjacency matrix. dDGM models take as
input X P9 andA P9, whereas dDGM models only have accessXd®9. To refer to product mani-

folds, we simply append all the model spaces that compose the manifold to the name of the module,
namely, the dDGM-SS module embedding space is a torus. In practice, we will use the same di-
mensionality but different curvature for each of the Cartesian components of the product manifolds.
Lastly, if a GNN model uses the dDGM module, we name the diffusion layers and the latent graph
inference module after. For example, GCN-dDGM-E refers to a GCN that instead of using the
original dataset graph for diffusion, incorporates latent graph inference to the network and uses the
Euclidean plane as embedding space.

Note that we only use a single latent graph inference module per neural network, that is, networks
diffuse information based on only one latent graph. This is in line with previous work (Kazi et al.
(2022)). Additionally, in Appendix E.1, we investigate the effect of leveraging multiple latent graphs

in the same network and conclude that in general it is better to use a single latent graph due to com-
putational ef ciency and diminishing returns. The study regarding computational ef ciency can be
found in Appendix C.3. In particular, we compare the runtime speedup obtained using symbolic ma-
trices as compared to standard dense PyTorch matrices. We observe that as more product manifolds
and dDGM modules are included, the runtime speedup obtained using symbolic matrices becomes
increasingly large. Moreover, without using symbolic matrices standard GPUs (we use NVIDIA
P100 and Tesla T4) run out of memory for datasets Wit 0*q nodes such as PubMed, Physics,

and CS. Hence, we recommend using symbolic matrices to help with scalability. Model architecture
descriptions for all experiments can be found in Appendix G.

4.1 HOMOPHILIC AND HETEROPHILICBENCHMARK GRAPH DATASETS

We rst focus on standard graph datasets widely discussed in the Geometric Deep Learning literature
such as Cora, CiteSeer (Yang et al. (2016); Lu & Getoor (2003); Sen et al. (2008)), PubMed, Physics
and CS (Shchur et al. (2018)), which have high homophily levels ranging between 0.74 and 0.93. We
also present the results for several heterophilic datasets, which have homophily levels between 0.11
and 0.23. In particular, we work with Texas, Wisconsin, Squirrel, and Chameleon (Rozemberczki
et al., 2021). Results of particular interest for these datasets are recorded in Table 2 (benchmark
models such as LDS-GNN (Franceschi et al., 2019), IDGL, IDGL-ANCH (Chen et al., 2020b),
Pro-GNN, Pro-GNN-fs (Jin et al., 2020), and GCN-Jaccard (Wu et al., 2019) are also included).
Additional experiments are available in Appendix E.2, E.3, and E.4, in which we perform an in depth

Published as a conference paper at ICLR 2023

exploration of different hyperparameters, compare dDGMs and dD&Gidr all datasets, and try

many product manifold combinations. Referring back to Table 2, we can see that product manifolds
consistently outperform latent graph inference systems which only leverage a single model space for
modeling the embedding space. Also note, that unlike in the work by Kazi et al. (2022), we do nd
single hyperbolic model spaces to often outperform inference systems that use the Euclidean plane
as embbeding space. This shows that indeed mapping the Euclidean output features of the GNN
layers to hyperbolic space using the exponential map before computing distances is of paramount
importance (Kazi et al. (2022) ignored the exponential maps required to map features to thegPoincar
ball).

Table 2: Results for heterophilic and homophilic datasets combining GCN diffusion layers with the
latent graph inference system. We display results using model spaces as well as product manifolds
to construct the latent graphs. Thest, SecondandThird best models for each dataset are high-
lighted in each tablek denotes the number of connections per node when implementing the Gumbel
Top-k sampling algorithm. Addition& values are tested in Appendix E.2. Note that the models
which use the Euclidean plane (former dDGM) as embedding space, denoted with an E in the table,
are equivalent to those presented in Kazi et al. (2022).

HETEROPHILIC DATASETS HOMOPHILIC DATASETS

Texas Wisconsin Squirrel Chameleon Cora CiteSeer PubMed Physics Ccs
Homophily level 0.11 0.21 0.22 0.23 Homophily level 0.81 0.74 0.80 0.93 0.80
Nodes 183 251 5,201 2,277 Nodes 2,708 3,327 18,717 34,493 18,333
Features 1,703 1,703 2,089 2,325 Features 1,433 3,703 500 8,415 6,805
Edges 295 466 198,498 31,421 Edges 5,278 4,676 44,327 247,962 81,894
Classes 5 5 5 Classes 7 6 3
Average Degree 3.22 3.71 76.33 27.60 Average Degree 39 277 4.5 14.38 8.93

Former dDGM
Model Accuracybq Standard Deviation Model Accuraggbq Standard Deviation
k 10 3 5 k 7 7 5 7
GCN-dDGM -E 80:00 .31 88:00 565 3435 234 48:90 361 GCN-dDGM-E 8211 a24 7235 192 87:69 067 9596 040 87:17 3e2
dDGM with Riemannian Geometry and Single Model Spaces (Ours)
Model Accuracy®6q Standard Deviation Model Accuraghq Standard Deviation
k 10 3 k 7 7 7
GCN-dDGM -H 7944 788 89:03 1.89 3500 235 4828 411 GCN-dDGM-H 84:68 331 70143 495 87:74 072 96:06 042 8878 224
GCN-dDGM -S 7388 005 8533 498 3312 222 48:63 312 GCN-dDGM-S 8044 s26 7289 200 8713 066 9591 041 8416 278
dDGM with Riemannian Geometry and Product Manifolds (Ours)
Model Accuracy®6q Standard Deviation Model Accuraghq Standard Deviation
k 10 3 k 3 10 10 3
GCN-dDGM -HH 7889 g53 88:00 326 34:38 107 48:33 414 GCN-dDGM-HH 76.09 711 7127 209 87.50 ;o1 9473 283 8291 300
GCN-dDGM -SS 7389 862 7466 18:85 3406 220 4828 307 GCN-dDGM-SS 6596 946 5916 596 87:82 0:59 9072 526 5931 7:18
GCN-dDGM -EH 81:67 7:.05 86:67 3:77 3437 172 47.58 385 GCN-dDGM-EH 8232 471 7289 164 87:41 o0 96:03 0:37 91:37 1:28
GCN-dDGM -ES 81:11 10:30 76:00 11:31 3338 186 47:49 360 GCN-dDGM-ES 8144 so 7187 320 87.50 o:6s 9541 173 90:87 o082
GCN-dDGM -HS 81:11 9:69 86:67 1:80 34:65 2.5 47:84 267 GCN-dDGM-HS 8259 450 7277 276 8589 420 9584 029 8943 2:37
GCN-dDGM -EHH 81:11 s:09 77:60 862 3319 102 4427 206 GCN-dDGM-EHH 86:63 325 75:42 2:39 3993 1:35 9563 1:36 92:86 0:96
GCN-dDGM -EHS 79144 611 89:33 189 3417 223 4758 45¢ GCN-dDGM-EHS 8358 430 6998 270 87.05 1:38 96:21 044 8993 3:86
Vanilla Architectures

Model Accuracybq Standard Deviation Model Accuraggbq Standard Deviation
MLP 7778 1024 8533 a9 30144 255 4035 337 MLP 5892 328 5948 214 8575 102 9491 030 87:80 154
GCN 4166 11:72 47:20 9:76 2419 256 3256 353 GCN 8311 229 6997 206 8575 100 9551 0:3¢ 87:28 1:54

We have shown that the latent graph inference system enables GCN diffusion layers to achieve
good performance for heterophilic datasets. We hypothesize that for this to be possible, it should
be able to generate homophilic latent graphs, on which GCNs can easily diffuse. In Table 3 we
display the homophily levels of the learned latent graphs, which corroborates our intuition. As we
can see from the results all models are able to generate latent graphs with higher homophily than
those of the original dataset graphs. The latent graph inference system seems to nd it easier to
increase the homophily levels of smaller datasets, which is reasonable since there is less information
to reorganize. There is a clear correlation between model performance in terms of accuracy (Table 2)
and the homophily level that the dDGMnodules are able to achieve for the latent graphs (Table 3).

Table 3: Homophily level of the learned latent graphs. Latent graph inference modules which use
different manifolds to generate their respective latent graphs achieve different homophily levels.
Also, depending on weight initialization, the inference system can converge to slightly different

latent graphs.

Texas Wisconsin ~ Squirrel Chameleon
0. 0.21 0.22 0.23

Original Graph Homophily 11
K 2 10 3 5
Model Latent Graph Homophili _Standard Deviation
GCN-dDGM -E 089 00z 069 oor 033 000 0:37 002
GCN-dDGM -H 089 oo 066 cor 033 soo 0:46 005
GCN-dDGM -S 0:86 003 0:64 001 0:32 0:00 0:45 0:04
GCN-dDGM -HH 091 oo 066 0oz 032 moo 0:37 001
GCN-dDGM -SS 085 002 051 oor 027 oo 0:31 001
GCN-dDGM -EH 090 co1 065 o1 032 000 043 003
GCN-dDGM -ES 091 000 063 0oz 027 ooz 0:32 004
GCN-dDGM -HS 091 0oz 067 ooz 033 oo 0:36 008
GCN-dDGM -EHH 0:90 005 0:59 004 0:43 0:03 0:55 o:03
GCN-dDGM -EHS 091 003 0:66 003 032 o1 045 oL

Published as a conference paper at ICLR 2023

For example, in the case of Texas we achieve the highest homophily levels for the latent graphs
of between0:85 0:02and0:91 0:03, and also some of the highest accuracies ranging from
7388 9:95%t081:67 7:05% For Wisconsin the homophily level is lower than that for Texas,

but this can be attributed to the fact that 10, inevitably creating more connections with nodes
from other classes. Also, in Wisconsin there are two classes with substantially less nodes than the
rest, meaning that a high accuracy can be achieved even if those are misclassi ed. On the other
hand, for Squirrel, although the latent graph inference system still manages to increase homophily
from 0:22 in the original graph to betweeti27 0:00 and0:43 0:03 in the latent graph, the
increase is not big as compared to the other datasets and we can see how this also has an effect
on performance. In Table 2 the maximum accuracy for Squirrel 85030 2:35% Note that

this is still substantially better than using a MLP or a standard GCN, which obtain accuracies of
30:44 2:55%and24:19 2:56% respectively. The same discussion applies to Chameleon. Figure 2
displays how the graph connectivity is modi ed during the training process. This shows that the
inference system is able to dynamically learn an optimal connectivity structure for the latent graph
based on the downstream task, and modify it accordingly during training. Additional latent graph
plots for the different datasets can be found in Appendix F.

(a) Epoch 1h 0:39. (b) Epoch 5h 0:46. (c) Epoch 10h 0:50.

(d) Epoch 100h 0:74. (e) Epoch 500h 0:81. (f) Epoch 1000h 0:93.

Figure 2: Latent graph homophily levél, evolution as a function of training epochs for Texas. The
latent graphs are produced during the training process for the GCN-dDEHmModel withk 2.

4.2 REAL-WORLD APPLICATIONS

Next, we test the latent graph inference system on real-world applications: on the TadPole
dataset (Marinescu et al. (2020)), which was also discussed by Kazi et al. (2022), and the Aerothe-
modynamics dataset, which we have created for this work. The TadPole dataset contains infor-
mation about brain images for different patients and the task is to classify each patient into three
classesNormal Contro| Alzheimer's DiseasandMild Cognitive ImpairmentOn the other hand,

the Aerothermodynamics dataset was inspired by recent research discussing potential applications of
machine learning to aerospace engineering (Maheshwari et al. (2G3);de Oariz Borde et al.
(2021); de Oariz Borde et al. (2021)), and challenges networks to classify different regions of a
shock wave around a rocket (refer to Appendix D for more information on the dataset). Note that
since neither of these datasets have a graph structure (they are pointclouds), only the d&GM

be utilized in this case. Results are given in Table 4. We use GAT diffusion layers and compare
the performance using single model spaces and product manifolds. Almost all models using the
latent graph inference system outperform the performance of the MLP. It is important to note that
since the datasets do not provide an input graph it would not be possible to use GAT models without
using dDGM modules. Again, we nd that using product manifolds to model the latent space of
potentially complex real-world datasets proves bene cial and boosts model accuracy.

In principle, the Aerothermodynamics datasets classi es shock regions based on the ow absolute
velocity into 4 regions as recorded in Table 4. However, we tested increasing the number of classes
by further subdividing the ow into a total of 7 regions, as shown in Figure 3. We found that
interestingly, the latent graph inferred by the model does not only cluster nodes with similar labels
together, but it actually organizes the latent graph in order based on the absolute velocities (which
are not explicitly given to the model: the velocities are used to create the labels but values are

Published as a conference paper at ICLR 2023

not provided to the model as input). This suggests that the graph generation system is organizing
the latent graph based on some inferred high level understanding of the physics of the problem.
Additional latent graphs for these datasets are provided in Appendix F.2.

TadPole Aerothermodynamics
Nodes 564 1,456
Features 30
Classes 3 4

Model Accuracypbq Standard Deviation

GAT-dDGM -E 90:36 3:21 89:20 1:81
GAT-dDGM -H 8875 3:91 86:36 2:99
GAT-dDGM -S 90:89 4:55 86:21 5:37
GAT-dDGM -HH 89:68 s:70 T7:47 13:81
GAT-dDGM -SS 89:82 4:79 7126 14:40
GAT-dDGM -EH 90:36 4:16 89:90 o0:55
GAT-dDGM -ES 89:46 5:56 90:34 3:90
GAT-dDGM -HS 86:43 s:82 8873 472
GAT-dDGM -EHH 87:68 9:95 91:72 o0:98
GAT-dDGM -EHS 92:68 3:52 8874 3:39

MLP 87:68 3:52 8103 &:56

Table 4: Results for the TadPold-igure 3: Latent graph obtained by the GAT-
and the AerothermodynamicsdDGM -EHH model with k 7 including
datasets using GAT diffusionmore subclasses for different absolute velocity
layers and different latent graphsimulation regions for the Aerothermodynamics
inference modules. dataset.

4.3 SCALING TO LARGE GRAPHS

All datasets considered so far are relatively small. In this section we work with datasets from the
Open Graph Benchmark (OGB) which contain large-scale graphs and require models to perform
realistic out-of-distribution generalization. In particular, we use the OGB-Arxiv and the OGB-
Products datasets. As discussed in Appendix C.3.3, for training on these datasets we use graph
subsampling techniques, and Graph Attention Network version 2 (GATv2) diffusion layers (Brody

et al. (2021)); since we do not expect over tting we can use more expressive layers. OGB-Arxiv
and OGB-Products have a total4fdand47 classes, respectively. Previous datasets only considered
multi-class classi cation for between 3 to 15 classes. This, added to the fact that the datasets have
orders of magnitude more nodes and edges, makes the problems in this section considerably more
challenging. For OGB-Arxiv using a MLP and a GATv2 model without leveraging latent graph
inference we obtain accuracies@g8:49 0:15%and61:93 1:62% respectively. The best model

with latent graph inference, GATv2-dDGMEHS, achieves an accurary 6506 0:09% For
OGB-Products, the MLP and a GATV2 results 86205 0:20%and62.02 2:60%, and for the

best model, GATv2-dDGM-E, we record an accuracy6669 0:30% From the results (more

in Appendix E.5), we conclude that latent graph inference is still bene cial for this larger datasets
but there is substantial room for improvement. Graph subsampling interferes with embedding space
learning.

5 DiscussiON ANDCONCLUSION

In this work we have incorporated Riemannian geometry to the dDGM latent graph inference mod-
ule by Kazi et al. (2022). First, we have shown how to work with manifolds of constant arbitrary
curvature, both positive and negative. Next, we have leveraged product manifolds of model spaces
and their convenient mathematical properties to enable the dDGM module to generate a more com-
plex homogeneous manifold with varying curvature which can better encode the latent data, while
learning the curvature of each model space composing the product manifold during training.

We have evaluated our method on many and diverse datasets, and we have shown that using product
manifolds to model the embedding space for the latent graph gives enhanced downstream perfor-
mance as compared to using single model spaces of constant curvature. The inference system has
been tested on both homophilic and heterophilic benchmarks. In particular, we have found that us-
ing optimized latent graphs, diffusion layers like GCNs are able to successfully operate on datasets
with low homophily levels. Additionally, we have tested and proven the applicability of our method

to large-scale graphs. Lastly, we have shown the bene ts of applying this procedure in real-world
problems such as brain imaging based data and aerospace engineering problems. All experiments

Published as a conference paper at ICLR 2023

discussed in the main text are concerned with transductive learning; however, the method is also
applicable to inductive learning, see Appendix E.6.

The product manifold embedding space approach has provided a computationally tractable way of
generating more complex homogenous manifolds for the latent features' embedding space. Further-
more, the curvature of the product components is learned rather than it being a xed hyperparameter,
which allows for greater exibility. However, the number of model spaces to generate the product
manifold must be speci ed before training. It would be interesting to devise an approach for the
network to independently add more model spaces to the product manifold when needed. Also, we
are restricting our approach to product manifolds based on model spaces of constant curvature due
to their suitable mathematical properties. Such product manifolds do not cover all possible arbitrary
manifolds in which the latent data could be encoded and hence, there could still be, mathematically
speaking, more optimal manifolds to represent the data. It is worth exploring whether approaches to
generate even more diverse and computationally tractable manifolds would be possible.

Future Work Lastly, there are a few limitations intrinsic to the dDGM module, irrespective of the
product manifold embedding approach introduced in this work. Firstly, although utilizing symbolic
matrices can help computational ef ciency (Appendix C.3), the method still has quadratic complex-
ity. Kazi et al. (2022) proposed computing probabilities in a neighborhood of the node and using
tree-based algorithms to reduce it@gn logng Moreover, the Gumbel Top-k sampling approach
restricts the average node degree of the latent graph and requires manually adjuskingline
through testing. A possible solution could be to use a distance based sparse threshold approach in
which an unweighted edge is created between two nodes if they are within a threshold distance of
each other in latent space. This is similar to the Gumbel Top-k trick, but instead of choosing a xed
number of closest neighbors, we connect all nodes within a distance. This could help better capture
the heterogeneity of the graph. However, we actually tested this approach and found it quite unsta-
ble. Note that although we do not have thparameter anymore, we must still choose a threshold
distance. Another avenue to help with scalability, improve computational complexity, and facili-
tate working with large-scale graphs would be to use a hierarchical perspective. Inspired by brain
interneurons (Freund & Buaki (1996)), we could introduce ctitious connector inducing nodes

in different regions of the graph, use those nodes to summarize different regions of large graphs,
and apply the kNN algorithm or the Gumbel Top-k trick to the ctitious connector inducing nodes.
This way the computational complexity would still be quadratic, but proportional to the number of
interconnectors. Similar techniques have been applied to Gaussian Processes (Galy-Fajou & Opper
(2021); Wu et al. (2021)) and Set Transformers (Lee et al. (2019)).

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
ArXiv, 2021.

Federico Barbero, Cristian Bodnar, Haitaeg de Oariz Borde, and Pietro bi Sheaf attention
networks. InNeurlPS 2022 Workshop on Symmetry and Geometry in Neural Representations
2022a. URLhttps://openreview.net/forum?id=LIDvgVjpkZr .

Federico Barbero, Cristian Bodnar, HaitA¢z de Oariz Borde, Michael Bronstein, Petar
Velickovic, and Pietro Lo. Sheaf neural networks with connection laplaciansTdpological,
Algebraic and Geometric Learning Workshops 202@22b.

Gabriele Beltramo, Rayna Andreeva, Ylenia Giarratano, Miguel O. Bernabeu, Rik Sarkar, and Pri-
moz Skraba. Euler characteristic surfac&sXiv, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives, 2012.

Cristian Bodnar, Francesco Di Giovanni, Benjamin P. Chamberlain, Pietrodnd Michael M.
Bronstein. Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing
in GNNs, 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?, 2021.

10

Published as a conference paper at ICLR 2023

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur D. Szlam, and Pierre Vandergheynst. Ge-
ometric deep learning: Going beyond euclidean dd&EE Signal Processing Magazind4:
18-42, 2017.

Lawrence Cayton. Algorithms for manifold learning. 2005.

Benjamin P. Chamberlain, James R. Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic spacérXiv, 2017.

Ines Chami, Rex Ying, Christophe&Rand Jure Leskovec. Hyperbolic graph convolutional neural
networks, 2019.

Benjamin Charlier, Jean Feydy, Joan Alexis GlesinFrancgois-David Collin, and Ghislain Durif.
Kernel operations on the gpu, with autodiff, without memory over owdournal of Machine
Learning Researcg22(74):1-6, 2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological viewAAl, 2020a.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddinyiv, abs/2006.13009, 2020b.

Luca Di Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein.
Latent-graph learning for disease predictionMRCCAI, 2020.

Calin Cruceru, Gary Bcigneul, and Octavian-Eugen Ganea. Computationally tractable riemannian
manifolds for graph embeddings. Rroceedings of the AAAI Conference on Arti cial Intelli-
gencevolume 35, pp. 7133-7141, 2021.

Haitz Saez de Oariz Borde, David Sondak, and Pavlos Protopapas. Multi-task learning based con-
volutional models with curriculum learning for the anisotropic reynolds stress tensor in turbulent
duct ow. ArXiv, 2021.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang
Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and PetarcWelvic. ETA prediction with
graph neural networks in google mapsProceedings of the 30th ACM International Conference
on Information & Knowledge ManagemeACM, oct 2021.

Francesco Di Giovanni, Giulia Luise, and Michael Bronstein. Heterogeneous manifolds for
curvature-aware graph embedding, 2022.

Charles Fefferman, Sanjoy K. Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
arXiv: Statistics Theory2013.

T. Fetaya, Elias Wang, K. C. Welling, Michelle Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh
Wang, Max Welling, and Richard S. Zemel. Neural relational inference for interacting systems.
arXiv: Machine Learning2018.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. fCML, 2019.

Tamas F. Freund and @ygy Buzski. Interneurons of the hippocampusippocampus6, 1996.

Jean Galllier and Jocelyn Quaintance. Differential geometry and lie groups: A computational per-
spective, 2020.

Théo Galy-Fajou and Manfred Opper. Adaptive inducing points selection for gaussian processes.
ArXiv, 2021.

Johannes Gasteiger, Stefan WeiRenberger, and Steplwame@ann. Diffusion improves graph
learning. 2019.

11

Published as a conference paper at ICLR 2023

Jonathan Godwin, Michael Schaarschmidt, Alex Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova,
Petar Velckovic, James Kirkpatrick, and Peter W. Battaglia. Simple GNN regularisation for 3D
molecular property predictiof beyond, 2021.

Albert Gu, Frederic Sala, Beliz Gunel, and Christophér Rearning mixed-curvature representa-
tions in product spaces. ICLR, 2019.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020.
Yedid Hoshen. Vain: Attentional multi-agent predictive modelingNIRS 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on gxexiks.
2020.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networlroceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mini2@20.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Differ-
entiable graph module (DGM) for graph convolutional networlEsEE Transactions on Pattern
Analysis and Machine Intelligencpp. 1-1, 2022.

Thomas Kipf and Max Welling. Semi-supervised classi cation with graph convolutional networks.
ArXiv, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to nd them: The
gumbel-top-k trick for sampling sequences without replacement, 2019.

Oldrich Kowalski, Franco Tricerri, and Lieven Vanhecke. Curvature homogeneous riemannian man-
ifolds. Journal de Matkmatiques Pures et Appligas 71:471-501, 1989.

Wolfgang Kiihnel. Differential geometry: Curves - surfaces - manifolds, second edition, 2005.

Peter B. Ladkin and Stefan Leue. Interpreting message ow gragirsnal Aspects of Computing
7:473-509, 2005.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural network€Mh,
20109.

Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and Hui Xiong. Geomgcl: Geometric graph
contrastive learning for molecular property predictidmXiv, 2021.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networkdN&urlPS 2019.

Qing Lu and Lise Getoor. Link-based classi cation. Emcyclopedia of Machine Learning and
Data Mining, 2003.

Apoorv Maheshwari, Navindran Davendralingam, and Daniel DeLaurentis. A comparative study
of machine learning techniques for aviation applicatid®18 Aviation Technology, Integration,
and Operations Conferenc2018.

Razvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga,
Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Arman Eshaghi, Tina Toni, Marcin Salaterski,
Veronika Lunina, Manon Ansart, Stanley Durrleman, Pascal Lu, Samuel Iddi, Dan Li, Wesley K.
Thompson, Michael C. Donohue, Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen,
Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Jose G. Tamez-Pena, Aya Ismail, Timothy
Wood, Hector Corrada Bravo, Minh Nguyen, Nanbo Sun, Jiashi Feng, B. T. Thomas Yeo, Gang
Chen, Ke Qi, Shiyang Chen, Degiang Qiu, lonut Buciuman, Alex Kelner, Raluca Pop, Denisa
Rimocea, Mostafa M. Ghazi, Mads Nielsen, Sebastien Ourselin, Lauge Sorensen, Vikram Venka-
traghavan, Keli Liu, Christina Rabe, Paul Manser, Steven M. Hill, James Howlett, Zhiyue Huang,
Steven Kiddle, Sach Mukherjee, Anais Rouanet, Bernd Taschler, Brian D. M. Tom, Simon R.
White, Noel Faux, Suman Sedai, Javier de Velasco Oriol, Edgar E. V. Clemente, Karol Estrada,

12

Published as a conference paper at ICLR 2023

Leon Aksman, Andre Altmann, Cynthia M. Stonnington, Yalin Wang, Jianfeng Wu, Vivek De-
vadas, Clementine Fourrier, Lars Lau Raket, Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos
Davatzikos, Jacob Vogel, Andrew Doyle, Angela Tam, Alex Diaz-Papkovich, Emmanuel Jam-
meh, Igor Koval, Paul Moore, Terry J. Lyons, John Gallacher, Jussi Tohka, Robert Ciszek, Bruno
Jedynak, Kruti Pandya, Murat Bilgel, William Engels, Joseph Cole, Polina Golland, Stefan Klein,
and Daniel C. Alexander. The alzheimer's disease prediction of longitudinal evolution (tadpole)
challenge: Results after 1 year follow-up, 2020.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020.

Tristan Needham. Visual complex analysis, 1997.

C. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets for 3d
classi cation and segmentatio2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) pp. 77-85, 2017.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecuBzsenti ¢ data 1(1):1-7, 2014.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Network8(2), 2021.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdbeli#nal of chemical
information and modelings2(11):2864—-2875, 2012.

Frederic Sala, Christopher De Sa, Albert Gu, and Christopléer Representation tradeoffs for
hyperbolic embeddingg$?roceedings of machine learning researéf:4460-4469, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classi cation in network dataAl Mag., 29:93-106, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stepianégmann. Pitfalls
of graph neural network evaluation, 2018.

Hannes Stark, D. Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Gunne-
mann, and Pietro lo. 3d infomax improves GNNs for molecular property predictiohrXiv,
2021.

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M.
Donghia, Craig R. MacNair, Shawn French, Lindsey A. Carfrae, Zohar Bloom-Ackermann, Vic-
toria M. Tran, Anush Chiappino-Pepe, Ahmed H. Badran, lan W. Andrews, Emma J. Chory,
George M. Church, Eric D. Brown, T. Jaakkola, Regina Barzilay, and James J. Collins. A deep
learning approach to antibiotic discovetell, 180:688-702.e13, 2020.

Haitz Shez de Oariz Borde, David Sondak, and Pavlos Protopapas. Convolutional neural network
models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional
ows. Journal of Turbulenceg?23:1 — 28, 2021.

Puoya Tabaghi, Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milénkbiriear classi ers in
product space forms, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature, 2021.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and lllia Polosukhin. Attention is all you negdXiv, 2017.

Petar Velckovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietm hAnd Yoshua
Bengio. Graph attention network&rXiv, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point cloudsCM Transactions on Graphics
(TOG), 38:1 - 12, 2019.

13

Published as a conference paper at ICLR 2023

Oliver Wieder, Stefan Kohlbacher,&hine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Sei-
del, and Thierry Langer. A compact review of molecular property prediction with graph neural
networks.Drug Discovery Today: Technologie®7:1-12, 2020. ISSN 1740-6749.

Huijun Wu, Chen Wang, Yu. O. Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples for graph data: Deep insights into attack and defensgetnational Joint Conference
on Arti cial Intelligence, 2019.

Luhuan Wu, Andrew Miller, Lauren Anderson, Geoff Pleiss, David M. Blei, and John P. Cunning-
ham. Hierarchical inducing point gaussian process for inter-domain observatioA$STATS
2021.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings, 2016.

Zaixin Zhang, Qi Liu, Hao Wang, Chenggiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property predictiénXiv, 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective desaixgv: Learning
2020.

Yangiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph struc-
ture learning for robust representations: A survegXiv, abs/2103.03036, 2021.

A RIEMANNIAN MANIFOLDS

In Riemannian geometry, we de ne a Riemannian manifold or Riemannian gpacggas a real

and differentiable manifolé¥l in which each tangent space has an associated inner prgdbett

is, a Riemannian metric, which must vary smoothly when considering points in the manifold. The

Riemannian manifoldM , RN (lives in the ambient spad@N) is a collection of real vectors,

and is locally similar to a linear space. The Riemannian metric generalizes inner products for Rie-

mannian manifolds. It also allows to de ne geometric notions on a Riemannian manifold such as

lengths of curves, curvature, and angles to name a few. If the pgi® M , then we can de-

note the tangent spaceaf asTx,M , which has the same dimensionality ls. Tx,M is the

collection of all tangent vectors &p. Moreovergy, : Tx, M Tx,M N Ris given by a positive-

de nite inner product in the tangent space and depends smoothk,0rmA geodesic represents

the shortest smooth path between two points in a Riemannian manifold and generalizes the notion

of a straight line in Euclidean space. The length of a smooth continuously differentiable curve
:t N pg PM;t P 10;1sis given by

»l

Lpq . Il “etal|dt: (5)

Note thatlL p gis unchanged by a monotone reparametrization. The geodesic distance between two
pointsxp, ; Xp, P M is de ned as the in mum (greatest lower bound) of the length taken over all
piecewise continuously differentiable curves, such that

Xpj iXpj argminLp q: pOq Xp s plg Xp, (6)

The norm of a tangent vectorP Ty M is given by

b
VIl o, pviva)

Moving from a pointx, P M with initial constant velocitw P Ty M is formalized by the expo-
nential map

14

Published as a conference paper at ICLR 2023

expy, : Tx,M N M; (8)

which gives the position of the geodesid at 1 so that

exp, Vg plg ©)

There is a unique unit speed geodesiwhich satises g xp and g v. On the other
hand, and less relevant to the work at hand, the logarithmic map is the inverse of the exponential
map

logy, exp, M N T ,M: (10)

In geodesically complete Riemannian manifolds, both the exponential and logarithm maps are well-
de ned (Needham (1997)).

In general, it can be impossible to nd a solution for the geodesic between two points for an arbi-
trary manifold. As discussed in the main text, we want to be able to move beyond constant curvature
spaces and compute the similarity measufer latent features which may reside in a more general

and learnable manifold. This will enable us to more accurately model data which may comprise
varying structure, beyond that which can be represented in Euclidean space, and also beyond hier-
archical or cyclical data which can be linked to constant curvature hyperbolic and spherical spaces,
respectively. That is, by varying structure we refer to data which may present different underlying
patterns in different regions of space. Generating more complex manifolds we intend to minimize
the distortion incurred in the data and to represent the points in a more suitable manifold for the
downstream task. However, we must still be able to map the Euclidean output features of the net-
work to our learnable manifold and to compute distances between points. To generate a more com-
plex and learnable manifold while still having a closed form solution for the exponential map and
geodesics, we will introduce a product manifold embedding space composed of multiple copies of
simple model spaces with constant curvature. Although product manifolds based on constant curva-
ture models still fall under the homogeneous manifold category (Kowalski et al. (1989)), they allow
to model more complex embedding spaces for the dDGM module than those that can be represented
using only constant curvature homogeneous spaces.

For example, the standard torus, which can be obtained by multiplying two spheres, is a homoge-
neous manifold. Nevertheless, some points on the manifold have positive Gaussian curvature (outer
part of the torus, elliptic points), some have negative (inner part, hyperbolic points), and others have
zero (parabolic points). This is because for the torus the Euler characteristic (Beltramo et al. (2021))
is zero so it must always have regions of negative Gaussian curvature. This is to counterbalance the
regions of positive curvature guaranteed in Hilbert's theorem. The main point is that using product
manifolds of constant curvature spaces we can generate manifolds with regions with different Gaus-
sian curvature that can help us better represent data structures which may not be purely Euclidean,
hyperbolic, or spherical.

For all points on the manifold, we can de ne a normal vector that is at right angles to the surface. By
generating intersections between normal planes (that contain the normal vector) and the surface we
can compute normal sections. In general, different normal sections will have different curvatures.
We referto ; and , as the principal curvatures. They correspond to the maximum and minimum
values that the curvature can take at a given poiiihfkel (2005)). The Gaussian curvatigras the

product of the two

K 1 2: (11)

A Riemannian manifold is said to have constant Gaussian curvtuieseqPq K for all
two-dimensional linear subspacBs€ Tx,M and for allx, P M . Manifolds can be classied

into three classes depending on their curvature: at space, positively curved space, and negatively
curved space.

15

Published as a conference paper at ICLR 2023

B FURTHERDISCUSSION ONCURVATURE LEARNING

Next, we aim to provide a more detailed explanation on the topic of curvature learning for product
manifolds and the implemented procedure using learnable distance-metric-scaling coef cients. Let
us discuss product manifolds which are solely generated based on Cartesian products of the same
model spaces, such as

n
" ogH

I:’H HKJH;
. i
j 1

12)

which uses Cartesian products of hyperboloids. Likewise, taking Cartesian products of hyperspheres
we would obtain

(13)

P1 p2 p1?
Kk H K S

For these cases, althoughn XP%xBY andd s XK% XY are in practice computed all
H S
k

J
using hyperboloids and hyperspheres with the same xed curvb(tﬁre 1, @,andK S 1; @,
the scaling coef cients control the curvature of the spaces individually,

NH

> - > H <P 9- wpi .

dPHp(pl'szq € j deiH Xglq’xgzq ’ (14)
) OH

i

and,

P :

5

dPSprl ;szq € EdeE ngq;yg:q . (15)

k 1 (354
Thatis, M and §? scale the distances generated based on unit hyperboloids and hyperspheres,
respectively. Using the scaled metrics, we are effectively still computing Cartesian products of
hyperboloids and hyperspheres with different curvatures, so that

Ny

inn at .

Py H s HY i (16)
i1 i1
i"s s i"s s

Ps S S 17)
k 1 k 1

This guarantees we are retrieving equivalent values to those which would be generated by model
spaces with different curvatures. This is done to avoid backpropagating through operators such as
exponential maps and closed form solutions for distances in the different model spaces.

Considering again an arbitrary product manifold of all model spaces as in Equation 2, we can control
the curvature through the following derivatives

Bdp

BH (18)

for the hyperboloid terms, and

16

Published as a conference paper at ICLR 2023

g

(19)

uy)
~w0

for the hyperspheres. In the case of Euclidean space the curvature is Elway9, so there is no
need to learn it. Also, using a Cartesian product of Euclidean spaces would be equivalent to using a
single Euclidean space of greater dimensionality

n
IE

E
Pe Ey. EF; (20)
i1
whereKE Kg 0 @, andde "€ dE. Hence, in Equation 2 we used a single Euclidean
I I 1

space. The behavior described in Equation 20 can be better appreciated by comparing distance
obtained using’e anddEdE from EﬁEE:

ng ne 2
s 5

d3, d e de (21)

i1 K E i1 KEg

2 2 2 2 .
&2, dE‘ii dE‘ii SRR (22)

Considering that the equation for independent distances in each Euclidean space is

d
> paq pag 2
d e Xp: ' Xp, s (23)
EK‘
E a
we obtain,
d
> pag mg 2 > pbg pog 2 > pzq g 2
dPE Xpy Xp, Xpy Xp, o Xpy Xp, ; (24)
a b z

which is analogous to taking the second power of the difference of two points in another Euclidean
space with more dimensions, so that

Opc Ggoe: (25)

This behavior is only applicable to Euclidean space (Gu et al. (2019)), when multiplying other model
spaces

Py HK‘jH H (26)
j 1
ins ds
Ps S¢s Se (27)
k 1

even when the curvature is the same for all hyperboloids and hyperspKQ'l‘es, Ky; @ and
Kg Ks; @. For example, multiplying two hyperspheres will result in a hypertorus, not a higher-
dimensional hypersphere.

As a nal remark, note that any loss function which is dependent on the distance function induced
by the Riemannian metric of a Riemannian manifold is locally smoothklofwhereM could be a
product manifold?) and can be optimized by rst order methods.

17

Published as a conference paper at ICLR 2023

C TRAINING PROCEDURE

In this appendix we discuss key concepts to train the dDGM module. We detail how to back-
propagate through the discrete sampling method and introduce an additional loss term to make this
possible. We also we provide additional implementation details for updating learnable distance-
metric-scaling coef cients and dealing with distance functions during training. Lastly, we describe
the two approaches used in this work to make training computationally tractable for larger graphs:
symbolic handling of distance metrics and graph subsampling.

C.1 BACKPROPAGATION THROUGH THE DGM

The baseline node feature learning part of the architecture is optimized based on the downstream
task loss: for classi cation we use the cross-entropy loss and for regression the mean squared error
loss. Nevertheless, we must also update the graph learning dDGM parameters. To do so, we follow
the approach proposed by Kazi et al. (2022) and apply a compound loss that rewards edges involved
in a correct classi cation and penalizes edges which result in misclassi cation. We de ne the reward
function,

pi;%d Epacq ag (28)

as the difference between the average accuracy offtrtsample and the current prediction accuracy,
wherey; andy; are the predicted and true labels, amgd 1if y; ¢ or O otherwise. Based on
pyi ; ¥i gwe obtain the loss employed to update the graph learning module

N I L

Lee ~ wmiga 0 logpf? (29)
i1 I 1j:pi;j gPEP!d

L. 's gradient approximates the gradient of the expectation

N

EpGP“I;:::; GpLaqp PPLa;:; PPrLag] Pyi ;%q; (30)
i1

with respect to the parameters of the graphs in all the layer So that,
dLeL d N

EpGplq;:::; GPLagp PPia;:; pPPL qq, Wi;qu: (31)
i1

de. doaL

The expectatiofE pac 9 is calculated based on

Epaccf Epgd ¥ pl ag; (32)

with 0:9andEpacd* @ 0:5. For regression we use the R2 score instead of the accuracy.

C.2 UPDATING LEARNABLE DISTANCE-METRIC-SCALING COEFFICIENTS

The scaling metrics are learnable, so that we can indirectly adjust the curvature of each model space
without having to backpropagate through the exponential map functions and the formulas for the
distances. If we simply take the derivative of the graph loss and update the distance-metric-scaling
coef cients during training ™9 mla g Btal s (Ir being the learning rate) this can result

in negative values for the coef cients that multiply the distances in different model spaces, which
would be mathematically incorrect since distances are by de nition positive or zero. To solve this
issue we learn-, instead of . The two are related by the following equation, S p~q; where

S is the sigmoid function. So thatP4 Sp~Pdg S ~P a4 |r Ba : which means that

18

Published as a conference paper at ICLR 2023

0 a1, Using ReLU instead o could allow ™9 to take arbitrarily large positive values,

but we would have gradient problems-iftbecomes negative. Given that using the sigmoid function
bounds the maximum value that the scaling metrics can take, we must multiply the Euclidean plane
distance by its own scaling coef cient. Since the Gumbel Top-k trick selects the closest points to
generate unweighted edges, rather than storing the actual geodesics, if we scale the Euclidean plane
contribution down when necessary, this would equate to having other model spaces with much bigger
curvature than that which is actually possible due to the scaling coef cient being now bounded by
zero and one. For example, if we were to have a product manifold based on the Cartesian product
of the Euclidean plane and a hypersphere, if the model learns a scaling metric close to zero for
the Euclidean plane geodesics, this would be equivalent to having a hypersphere with a really large
curvature since edges would only be generated based on the distances calculated on the hypersphere.
Finally, note that in practice we use the Adam optimizer instead of simple gradient descent for
training.

C.3 COMPUTATIONAL EFFICIENCY

In this section we discuss some of the implementation techniques used to make computation more
ef cient. We cover two main topics: symbolic handling of distance metrics and graph subsam-
pling. One of the main computational limitations of the approach described in this work is that
we must compute distances between all points to generate the latent graph. Although the discrete
graph sampling method used by dDGM is more computationally ef cient than its continuous coun-
terpart, cDGM — because it generates sparse graphs that make convolutional operators lighter —
we quickly run into memory problems for graph datasets Wifi0*qnodes. Starting from a point-

cloud, we must compute the distances between all points to determine whether a connection should
be established. This is problematic, since the computational complexity scales quadratically as a
function of the number of nodes in the graph, which can rapidly become intractable as we increase
the size of our graph.

Most of the experiments were performed using NVIDIA Tesla T4 Tensor Core GPUs with 16 GB of
GDDR6 memory, NVIDIA P100 GPUs with 16 GB of CowoS HBM2 memory, or NVIDIA Tesla

K80 GPUs with 24 GB of GDDR5 memory. All these GPUs have limited memories that are easily
exceeded during backpropagation for datasets other than Cora and CiteSeer (Yang et al. (2016); Lu
& Getoor (2003); Sen et al. (2008)), which have 2,708 nodes and 3,327 nodes, respectively. For
example, using the standard PyTorch Geometric implementation we are not able to backpropagate
for the PubMed dataset which has 18,717 nodes.

C.3.1 SrmBOLIC HANDLING OF DISTANCE METRICS

To avoid memory over ows we resort to Kernel Operations (KeOps) (Charlier et al. (2021)), which
makes it possible to compute reductions of large arrays whose entries are given by a mathematical
formula. We can classify matrices in three categories: dense, sparse, and symbolic.

Dense matrices are dense numerical arfdys M ri;j swhich put a heavy load on computer
memory. When they increase in size, they can struggle to t into RAM or GPU memory. This is
what happens in our case, when calculating distances between points. Sparse matrices are typically
used to try to address this problem. Sparse matrices use lists of ipgdicesqand associated values

Mpn. Hence, in sparse matrices we only store the values for non-zero entries. The main limitation of
this approach is that the computing speedup obtained by using sparse matrices is highly dependent
on sparsity. To obtain signi cant improvements in performance using sparse encoding, the origi-
nal matrix should effectively be more th&9% empty (Charlier et al. (2021)). This signi cantly
constrains the applicability of sparse encoding.

Alternatively, KeOps uses symbolic matrices, to represent matrices which can be summarized using
an underlying common mathematical structure. In this setup the matrix elfkjieare represented
as a function of vectors; andx;, so that

Mij Fpixg (33)
Even if these objects are not necessarily sparse, they can be represented using only small data arrays

Xi andx;, which can result into large improvements in computational ef ciency, avoiding memory
over ow. In our case, the matrices we are working with are fully populated and using sparse tensors

19

Published as a conference paper at ICLR 2023

would not enhance performance. On the other hand, the symbolic approach implemented using
KeOps enables us to represent the original dense matrix containing all the distances between all the
points in a much more compact way, and to work with larger graphs than Cora and Citeseer (Yang
et al. (2016); Lu & Getoor (2003); Sen et al. (2008)), namely, PubMed, CS, and Physics (Shchur
et al. (2018)). Finally, note that in our case the function used by the symbolic matrix is the distance
metric appropiate for whichever manifold we are using to construct the latent graph.

Mj dpXi; X g (34)

C.3.2 QUANTITATIVE STUDY OF RUNTIME SPEEDUP

We quantify the runtime speedup obtained by using symbolic handling of the distance metrics when
generating latent graphs for Cora and CiteSeer. Note, however, that improved execution time is not
the only bene t of symbolic handling. As discussed in Section C.3.1, symbolic matrices also help
avoid memory over ow for larger graphs. Indeed, this is the reason we choose Cora and CiteSeer to
conduct these experiments: using other datasets we experience GPU memory over ow when using
dense matrices, and hence we cannot compare dense to symbolic matrix performance. It should
also be highlighted that using both dense and symbolic matrices gives the same results in terms of
accuracy since they are equivalent mathematically, the difference lies in the computational ef ciency
of each method.

We display the results in Table 5 and Table 6, in which we record execution times for a 100 epochs
using a NVIDIA P100 GPU. We evaluate the effect of increasing the number of dDGM layers on
the runtime. We also compare the dDGM module using Euclidean (GCN-dDGM-E) and a product
manifold of Euclidean, hyperbolic, and spherical space (GCN-dDGM-EHS) to generate the latent
graphs.

Table 5: Results for runtime speedup quanti cation using symbolic as compared to dense matrices.
These results are for the GCN-dDGM-E model using 3 and training for 100 epochs using
NVIDIA P100 GPU.

Model No. dDGMs Matrix ~ Dataset Runtime (s)Standard Deviation
1 Dense Cora 2:98 o:01
1 Symbolic Cora 2:64 o001
1 Dense CiteSeer 3:50 0:02
1 Symbolic CiteSeer 2:73 0:02
2 Dense Cora 4:87 0:19
2 Symbolic Cora 4:03 0:03
GCN-dDGM-E 2 Dense CiteSeer 6:16 0:58
2 Symbolic CiteSeer 4:13 002
3 Dense Cora 6:53 0:15
3 Symbolic Cora 5:38 0:00
3 Dense CiteSeer 8:42 o0:69
3 Symbolic CiteSeer 5:51 0:04

Table 6: Results for runtime speedup quanti cation using symbolic as compared to dense matrices.
These results are for the GCN-dDGM-EHS model uding 3 and training for 100 epochs using
NVIDIA P100 GPU.

Model No. dDGMs Matrix ~ Dataset Runtime (s)Standard Deviation
1 Dense Cora 6:17 o:41
1 Symbolic Cora 4:27 0:06
1 Dense CiteSeer 7:92 o0:33
1 Symbolic CiteSeer 4:38 0:02
2 Dense Cora 10:67 o0:32
2 Symbolic Cora 7:18 0:03
GCN-dDGM-EHS 2 Dense CiteSeer 14:15 o:07
2 Symbolic CiteSeer 7:48 o:16
3 Dense Cora 15:32 0:13
3 Symbolic Cora 10:08 o0:06
3 Dense CiteSeer 20:85 o:42
3 Symbolic CiteSeer 10:31 o0:04

We can see that as we add more dDGMs the difference between using dense and symbolic matri-
ces becomes more substantial. Likewise, the bene t from using symbolic matrices becomes more
apparent when using product manifolds, this is because more distances must be computed. The

20

Published as a conference paper at ICLR 2023

product manifolds are calculated based on the Cartesian product of three model spaces and hence,
to obtain the overall distance between each of the nodes, we must compute geodesics in all constant
curvature manifolds independently. Another observation that we can make is that the computation
time for CiteSeer increases substantially as compared to Cora using dense matrices. CiteSeer only
has 995 more nodes than Cora, yet using 3 dDGM-EHS layers the execution time for 100 epochs
increases by 5.53 seconds for dense matrices. This clearly shows that using dense matrices can
quickly become hard to scale for larger graphs, which can have orders of magnitude more nodes
than CiteSeer. In line with the literature, using symbolic matrices is more computationally tractable
for larger graphs Kazi et al. (2022).

Also, we run some additional experiments to quantify the increase in computation time as a function
of k, that is, the number of edges per latent graph node when applying the Gumbel Top-k trick. As
we can see in Table 7 and Tablek8does not seem to have a statistically signi cant impact on the
execution time. As before, we nd that using symbolic matrices is consistently more ef cient.

Table 7: Results for runtime speedup quanti cation using symbolic as compared to dense matrices
for differentk 1 30. These results are for the GCN-dDGM-E model and training for 100 epochs
using a Tesla T4 GPU.

GCN-dDGM-E
k Matrix Dataset Runtime (s) Standard Deviation
1 Dense Cora 4:22 014
1 Symbolic Cora 2:84 0:02
1 Dense CiteSeer 5:26 0:.06
1 Symbolic CiteSeer 2:95 0:02
2 Dense Cora 4:23 0:.06
2 Symbolic Cora 2:99 018
2 Dense CiteSeer 5:29 003
2 Symbolic CiteSeer 2:98 001
3 Dense Cora 4:24 006
3 Symbolic Cora 2:94 002
3 Dense CiteSeer 5:54 0:24
3 Symbolic CiteSeer 3:04 0:03
5 Dense Cora 4:25 o011
5 Symbolic Cora 2:93 01
5 Dense CiteSeer 5:41 017
5 Symbolic CiteSeer 3:02 011
7 Dense Cora 4:27 0:02
7 Symbolic Cora 2:94 003
7 Dense CiteSeer 5:44 o:16
7 Symbolic CiteSeer 3:11 o018
10 Dense Cora 4:30 014
10 Symbolic Cora 2:94 0:04
10 Dense CiteSeer 5:48 o021
10 Symbolic CiteSeer 301 003
20 Dense Cora 4:67 o052
20 Symbolic Cora 3:19 005
20 Dense CiteSeer 5:49 o:03
20 Symbolic CiteSeer 3:14 005
30 Dense Cora 4:23 o001
30 Symbolic Cora 321 020
30 Dense CiteSeer 5:25 003
30 Symbolic CiteSeer 3:35 0:03

Table 8: Results for runtime speedup quanti cation using symbolic as compared to dense matrices
for differentk 1 30. These results are for the GCN-dDGM-EHS model and training for 100
epochs using a Tesla T4 GPU.

GCN-dDGM-EHS

k Matrix ~ Dataset ~ Runtime (s) Standard Deviation
1 Dense Cora 5:46 0:02
1 Symbolic Cora 4:50 0:02
1 Dense CiteSeer 7:27 080
1 Symbolic CiteSeer 4:97 056
2 Dense Cora 5:37 003
2 Symbolic Cora 4:56 0:.02
2 Dense CiteSeer 6:69 0:.02
2 Symbolic CiteSeer 471 0.03
3 Dense Cora 5:36 0:02
3 Symbolic Cora 457 0:16
3 Dense CiteSeer 6:77 0:06
3 Symbolic CiteSeer 5:06 073
5 Dense Cora 5:57 0:22
5 Symbolic Cora 4:58 0:.07
5 Dense CiteSeer 6:74 0:02
5 Symbolic CiteSeer 4:70 0:03
7 Dense Cora 5:62 0:29
7 Symbolic Cora 447 001
7 Dense CiteSeer 675 005
7 Symbolic CiteSeer 4:99 o:s8
10 Dense Cora 592 073
10 Symbolic Cora 4:70 0:04
10 Dense CiteSeer 7:06 0:43
10 Symbolic CiteSeer 4:83 0:03
20 Dense Cora 5:44 0:.02
20 Symbolic Cora 477 013
20 Dense CiteSeer 6:76 0:03
20 Symbolic CiteSeer 4:86 0:18
30 Dense Cora 5:63 0:30
30 Symbolic Cora 474 0.03
30 Dense CiteSeer 6:93 0:22
30 Symbolic CiteSeer 5:33 0:66

21

Published as a conference paper at ICLR 2023

C.3.3 TRAINING ON LARGE GRAPHS

Although symbolic handling of distance metrics is certainly necessary, for larger graphs such as the
graphs for node property prediction of the Open Graph Benchmark (OGB) (Hu et al. (2020)) which
haveOpl®®’q OplC®qnodes andpl®Pq Opl0°qedges, we must combine KeOps with graph
subsampling techniques to make backpropagating computationally tractable.

We apply a neighbor sampler to track message passing dependencies for the subsampled nodes. This
allows computation to be more lightweight. Based on the message passing equation
a
1
P P % x Mg (35)
jPN pvig

to calculatexipI 19 e must aggregate, and hence, have stored the node features of its neighbors
when subsampling the graph. Note that unlike in the original node prediction setup in which we
give as input all the nodes and predict properties for all nodes in the complete graph, here we have a
different number of input and output nodes, which gives rise to a bipartite structure for multi-layer
minibatch message passing. Such a bipartite graph, which samples only the necessary input and
output nodes from the original graph, is callethassage ow grapliLadkin & Leue (2005)). For

every node that we compute in a given batch we will need to track its message ow graph alongside
all relevant dependencies.

D THE AEROTHERMODYNAMICS DATASET

We generate a multi-class classi cation dataset based on Computational Fluid Dynamics (CFD) sim-
ulations conducted for the rocket designs developed for the Karman Space Programme. Speci cally,
the dataset is generated based on the shock wave velocity distribution around the nose of a rocket at
10 degrees of angle of attack. The simulation meshgrid has varying degrees of resolution, and the
shock wave is not symmetric due to the angle of attack. Although CFD software uses a meshgrid
to discretize space and run the aerothermodynamics simulations, it can be challenging to extract the
connectivity of the original graph, since most often the software is designed to only output a point-
cloud. Moreover, given that across a shock wave, the static pressure, temperature, and gas density
increases almost instantaneously and there is an abrupt decrease in the ow area, the original graph
can present high heterophily. Hence, latent graph inference can be bene cial.

For the dataset, we only consider the shock region at the leading edge of the rocket. To obtain the
class labels, we separate the shock ow absolute velocity into 4 regior@00m/s,300 450m/s,

450 650m/s and;j 650m/s. The original simulation has 207,745 datapoints, but we only focus
on the shock around the nose of the rocket and apply graph coarsening, see Figure 4.

Figure 4: Pointcloud plot of shock intensity regions. The different regions are represented using
different colors which correspond to each target class. This is the dataset after applying graph
coarsening.

22

Published as a conference paper at ICLR 2023

The network input is a pointcloud with pressure values. Note that the coordinates with respect to
the rocket are not given to the network. The model is tasked with classifying the shock into four
intensity regions which are based on the absolute velocity distribution. Table 9 summarizes the
dataset.

Table 9: Summary of properties for Aerothermodynamics dataset

Aerothermodynamics

Homophily level N/A
Nodes 1,456
Features 1
Edges N/A
Classes 4
Average Degree N/A
Learning Transductive
Task Classi cation
Network Type CFD simulation

E ADDITIONAL EXPERIMENTS AND RESULTS

In this appendix we include additional experiments for the latent graph inference system. In Sec-
tion E.1 we explore using more than one latent graph inference system per GNN model. In Sec-
tion E.2 we include additional results for the homophilic graph datasets in which we vary the value
of k for the graph generation algorithm. In Section E.3 we experiment with using a greater number
of model spaces to generate product manifolds for the embedding space. Section E.4 includes results
for heterophilic datasets, Section E.5 for OGB, and Section E.6 for inductive learning=iiBhe
SecondandThird best models for each dataset are highlighted in each table.

E.1 NuMBER OF DDGM MODULES

In these experiments, we investigate whether there is any bene t in stacking multiple dDGM mod-
ules. Using multiple dDGMs effectively means that within the model, the network layers would be
learning based on different latent graphs. In principle, according to the results in Table 10 and 11,
there is no clear improvement in performance for Cora and CiteSeer. In fact, the accuracy of the
models can decrease. It is only for PubMed that there is sometimes some improvement in the ac-
curacy. These results align with previous studies by Kazi et al. (2022). Finally, we also run a few
experiments for Physics and CS. Again, we nd no substantial improvement using an additional
dDGM module, see Table 12. Given our ndings, we use a single dDGM module, since it is more
computationally ef cient.

Table 10: Results for Cora, CiteSeer, and PubMed using more than one d&kihg a pointcloud
as input) latent graph inference module.

Cora CiteSeer PubMed
Model k Layers Accuracy?eq Standard Deviation
GCN-dDGM -E 3 dDGM /GCN/GCN/GCN 6248 324 6247 320 8389 o070
GCN-dDGM -E 3 dDGM /GCN/dDGM /GCN/GCN 54:22 379 5976 218 8574 2:06
GCN-dDGM -EH 3 dDGM /GCN/GCN/GCN 61:07 10:18 65:13 2:19 86:67 o0:69
GCN-dDGM -EH 3 dDGM /GCN/dDGM /GCN/GCN 51:96 453 5536 535 8619 1:10
GCN-dDGM -EHS 3 dDGM /GCN/GCN/GCN 66:87 327 63:80 2:94 87:03 0:70
GCN-dDGM -EHS 3 dDGM /GCN/dDGM /GCN/GCN 50:66 4:26 51.66 3:24 86:32 0:70
GCN-dDGM -E 5 dDGM /GCN/GCN/GCN 60:63 301 6328 335 86:82 069
GCN-dDGM -E 5 dDGM /GCN/dDGM /GCN/GCN 5215 421 5446 319 7904 445
GCN-dDGM -EH 5 dDGM /GCN/GCN/GCN 63:67 648 6159 1228 86:90 1:16
GCN-dDGM -EH 5 dDGM /GCN/dDGM /GCN/GCN 4530 3.06 51:69 433 8202 5:42
GCN-dDGM -EHS 5 dDGM /GCN/GCN/GCN 64:82 368 64:62 3:35 86:85 0:97
GCN-dDGM -EHS 5 dDGM /GCN/dDGM /GCN/GCN 4507 421 4542 300 86:92 0:83
MLP N/A Linear/Linear/Linear 5892 328 5948 2114 8575 1:02

23

Published as a conference paper at ICLR 2023

Table 11: Results for Cora, CiteSeer, and PubMed using more than one dDGM (leveraging the
original graph connectivity structure) latent graph inference module.

Cora CiteSeer PubMed
Model k Layers Accuracy?eq Standard Deviation
GCN-dDGM-E 3 dDGM/GCN/GCN/GCN 8044 460 70:18 146 87:45 072
GCN-dDGM-E 3 dDGM/GCN/dDGM/GCN/GCN 7044 581 69:85 422 86:67 0:48
GCN-dDGM-EH 3 dDGM/GCN/GCN/GCN 83:65 s5:25 72:89 1:64 87:62 0:64
GCN-dDGM-EH 3 dDGM/GCN/dDGM/GCN/GCN 77:30 7:30 72:32 2:00 87:02 0:79
GCN-dDGM-EHS 3 dDGM/GCN/GCN/GCN 84:70 2:96 6998 2270 87:35 0:90
GCN-dDGM-EHS 3 dDGM/GCN/dDGM/GCN/GCN 79.07 435 71:99 104 86:93 0:71
GCN-dDGM-E 5 dDGM/GCN/GCN/GCN 8274 442 TL78 150 87:60 o0:69
GCN-dDGM-E 5 dDGM/GCN/dDGM/GCN/GCN 7270 603 6825 457 8659 o0:87
GCN-dDGM-EH 5 dDGM/GCN/GCN/GCN 8232 471 73:56 2:75 87:67 0:76
GCN-dDGM-EH 5 dDGM/GCN/dDGM/GCN/GCN 76:04 423 7211 233 86149 0:73
GCN-dDGM-EHS 5 dDGM/GCN/GCN/GCN 83:58 4:39 74:00 168 87:12 0:72
GCN-dDGM-EHS 5 dDGM/GCN/dDGM/GCN/GCN 76:67 555 7042 1:66 8257 o:81
GCN N/A GCN/GCN/GCN 8311 229 6997 206 8575 101

Table 12: Results for Physics and CS using two dDGM latent graph inference modules with a
product manifold combining Euclidean, hyperbolic, and spherical model spaces.

Physics Cs
Model k Layers Accuracy?eq Standard Deviation
GCN-dDGM-EHS 5 dDGM/GCN/GCN/GCN 96:17 0:30 92:06 o0:83
GCN-dDGM-EHS 5 dDGM/GCN/dDGM/GCN/GCN 96:18 0:31 87:00 4:00
GCN N/A GCN/GCN/GCN 95:51 o0:34 87:28 154

E.2 HoMOPHILIC GRAPH DATASETS EXTENDED RESULTS

In this section we include extended results for the Cora, CiteSeer, PubMed, Physics, and CS datasets.
Table 13 presents results using single model spaces for the embedding space, and Table 14 and
Table 15 using product manifolds. As discussed in the main text, the dD@&dés not use the
original dataset graph as inductive bias, since it is only provided with a pointcloud. On the other
hand, the dDGM does use the original graph. Diffelemtlues are applied.

E.3 MORE COMPLEX PRODUCT MANIFOLDS RESULTS

The main objective of this section is trying to test the limits of our approach. In Table 16 we display
the results multiplying up to ve model spaces for the CS dataset. From the results, we can see
that adding more product manifolds can result in improved performance. The GCN-dDGM-EHHSS
network withk 5 obtains an accuracy &3:10 0:74% as compared to the best single model
space based model GCN-dDGM-E wkh 5 which achieves a result of on87:88 2:55%

E.4 HETEROPHILICGRAPH DATASETS EXTENDED RESULTS

In Table 17 we display the results using both the dDGM and the dD@Giddule for heterophilic
datasets. The dDGM module uses the original dataset graph as inductive bias for the generation
of the latent graphs. As expected, this leads to worse results than those using the dB\GM
heterophilic graphs, since the original graph is not good for diffusion using GCNSs. It is better to
start directly from a pointcloud and completely ignore the original adjacency maffi%since it

does not provide the model with a good inductive bias.

E.5 RESULTS FORLARGE GRAPHS FROM THEOPEN GRAPH BENCHMARK

Table 18 and Table 19 display results for the OGB-Arxiv and OGB-Products datasets. Although the
OGB-Products dataset is considerably larger than the OGB-Arxiv both in terms of the number of
nodes and edges, our models achieve slightly better performance. This may be due to the fact that
the OGB-Products dataset is an undirected graph, whereas the OGB-Arxiv dataset is directed. The
dDGM module generates undirected edges between nodes by construction (if we neglect the noise in
the Gumbel Top-k trick), which may be affecting performance in the case of the OGB-Arxiv dataset.

24

Published as a conference paper at ICLR 2023

Table 13: Results for classical homophilic datasets combining GCN diffusion layers with the
dDGM and dDGM latent graph inference system and using single model spaces to construct the
latent graphs.

Cora CiteSeer PubMed Physics Cs
Homophily level 0.81 0.74 0.80 0.93 0.80
Nodes 2,708 3,327 18,717 34,493 18,333
Features 1,433 3,703 500 8,415 6,805
Edges 5,278 4,676 44,327 247,962 81,894
Classes 7 6 3 5 15
Average Degree 3.9 277 45 14.38 8.93
Model k Accuracypq Standard Deviation
GCN-dDGM -E 3 62:48 324 6247 320 8389 070 94:03 045 76:05 6:89
GCN-dDGM -H 3 63:82 369 63:76 3:40 87:15 069 9324 045 7626 6:39
GCN-dDGM -S 3 3278 590 21:96 6:32 41:60 543 5837 1:44 5452 17:30
GCN-dDGM -E 5 60:63 3:00 6328 335 86:82 069 95:13 o0:50 8046 2:34
GCN-dDGM -H 5 6148 368 64:76 2:88 8500 o060 94:83 051 8269 1:44
GCN-dDGM -S 5 4204 500 2220 6:23 4038 544 5470 200 70:67 13:69
GCN-dDGM -E 7 62:30 527 61:36 746 86:86 068 9371 323 86:03 s5:27
GCN-dDGM -H 7 6144 1083 6205 5:74 8519 507 95:05 0:30 84:20 4:70
GCN-dDGM -S 7 AL71 1422 20:75 2:8¢ 40149 157 5520 1326 7346 817

GCN-dDGM -E 10 61:37 385 64:27 3:97 8548 440 91:82 362 81:42 a0
GCN-dDGM -H 10 6163 456 6362 522 8492 ass 95:02 046 80:36 5:42
GCN-dDGM -S 10 3404 965 1996 414 3984 107 5052 2:77 6955 5:04

GCN-dDGM-H 84:68 331 7043 495 87:74 0:72 96:06 o0:46 88:78 2:24
GCN-dDGM-S 80:44 526 72:89 2:00 8713 066 9576 0:43 8416 278

GCN-dDGM-E 10 8167 s74 72:44 2:81 8545 432 95:99 o0:49 88:19 3:51
GCN-dDGM-H 10 83:15 3:20 7154 146 87:69 o076 9584 073 88:49 2:21
GCN-dDGM-S 10 8270 322 7229 287 87:38 0:69 96:03 0:44 8520 407

GCN N/A 83:11 2120 6997 206 8575 101 9551 0:3¢ 87:28 154

MLP N/A 5892 328 5948 214 8575 102 9491 030 87:80 1:54
Cora CiteSeer PubMed Physics Cs

GCN-dDGM-E 3 8044 460 70:18 1:46 87:45 0:72 96:03 041 8598 2:50
GCN-dDGM-H 3 80:31 430 6978 1:56 8579 073 9529 043 85:95 2:58
GCN-dDGM-S 3 7326 433 6798 221 8139 100 9160 0:55 7676 4:65
GCN-dDGM-E 5 8274 442 7178 150 87:60 o069 9596 0:40 87:88 255
GCN-dDGM-H 5 80:80 4:43 67.53 212 8758 071 96:06 0:42 87.65 2:56
GCN-dDGM-S 5 8081 230 7181 120 77:65 o1 9591 041 8073 462
GCN-dDGM-E 7 8211 424 72:35 192 87:69 o067 9550 125 8717 382

7

7

Table 14: Results for classical homophilic datasets combining GCN diffusion layers with the
dDGM module and using product manifolds to construct the latent graphs.

Cora CiteSeer PubMed Physics Cs
Homophily level 0.81 0.74 0.80 0.93 0.80
Nodes 2,708 3,327 18,717 34,493 18,333
Features 1,433 3,703 500 8,415 6,805
Edges 5,278 4,676 44,327 247,962 81,894
Classes 7 6 3 5 15
Average Degree 3.9 2.77 4.5 14.38 8.93
Model Accuracypq Standard Deviation
GCN-dDGM -HH 57.00 978 6250 425 87:43 040 9220 3:47 74:88 465
GCN-dDGM -SS 3826 10:94 2420 10:12 4159 071 5443 10:00 5529 7:33
GCN-dDGM -EH 6107 10:18 6513 2:19 86:67 0:69 94:85 0:55 8591 2:88
GCN-dDGM -ES 6207 408 6431 315 86:85 1:.02 9501 o055 78:67 4:44

GCN-dDGM -HS
GCN-dDGM -EHH
GCN-dDGM -EHS

GCN-dDGM -HH

5955 10:00 6395 2:35 87:04 0:79 9502 o045 7655 9:89
70:85 4:30 68:86 2:97 3993 1:35 95:21 0:3¢ 92:22 1:09
66:87 327 6380 2:94 87:03 0:70 9503 0:39 88:64 1:90

5903 486 6347 170 86:30 0:99 94:31 047 7648 4:30

GCN-dDGM -SS 41:33 10554 21:48 381 4070 1:31 5343 915 5847 579
GCN-dDGM -EH 6367 648 6159 1228 8690 116 9394 337 8600 304
GCN-dDGM -ES 6344 418 6310 2271 86:83 0:82 9392 238 75:86 11:18

GCN-dDGM -HS
GCN-dDGM -EHH
GCN-dDGM -EHS

GCN-dDGM -HH

64:44 400 6280 390 8517 472 94:81 023 77:93 447
69:74 s:.00 66:81 2:04 3993 1:35 95:25 0:36 90:46 1:03
64:82 368 6462 335 86:85 0:97 9430 200 8848 177

5458 10:40 6202 5:73 8691 0:.89 9408 314 7988 s5:77

GCN-dDGM -Ss 40:22 13.00 20:54 342 4049 1:39 5867 16:44 5094 14:36
GCN-dDGM -EH 5992 892 6479 2232 8697 045 9418 246 80:82 e:38
GCN-dDGM -ES 6144 323 6241 288 86148 058 9213 581 74:84 7:24

GCN-dDGM -HS
GCN-dDGM -EHH
GCN-dDGM -EHS

5911 815 6486 303 8521 474 9472 092 8323 395
70:37 472 6250 11:69 3993 1:35 95:16 0:37 91:58 o:01
6330 3:93 6454 1:89 86199 0:79 92:85 249 86:96 2:54

NNNNNgYN | OO wWww W WX

GCN-dDGM -HH 10 5759 sos 5943 546 86143 0:70 9250 3:35 7313 855
GCN-dDGM -SS 10 3630 823 21:20 2:88 39:83 1:17 50:52 2:77 5385 16:78
GCN-dDGM -EH 10 5963 11:04 65:49 2:86 8454 577 9355 453 7279 579
GCN-dDGM -ES 10 6304 421 6265 620 8671 o089 9342 322 7485 7:50
GCN-dDGM -HS 10 6424 s:38 6273 2:50 8524 458 9503 064 7503 6:18
GCN-dDGM -EHH 10 6963 400 6470 461 3993 1:35 9502 0:39 8381 11:41
GCN-dDGM -EHS 10 6361 371 6452 277 8660 oe6 90.03 486 8452 7:39
MLP N/A 5892 3:28 5948 2114 8575 102 9491 o030 87:80 1:54

25

Published as a conference paper at ICLR 2023

Table 15: Results for classical homophilic datasets combining GCN diffusion layers with the dDGM
module and using product manifold to construct the latent graphs.

Cora CiteSeer PubMed Physics Cs
Homophily level 0.81 0.74 0.80 0.93 0.80
Nodes 2,708 3,327 18,717 34,493 18,333
Features 1,433 3,703 500 8,415 6,805
Edges 5,278 4,676 44,327 247,962 81,894
Classes 7 6 3 5 15
Average Degree 3.9 2.77 4.5 14.38 8.93
Model Accuracypq Standard Deviation
GCN-dDGM-HH 7782 546 7127 2:00 87:35 0:65 94:04 354 8291 3:00
GCN-dDGM-SS 67.00 10:23 5916 5:96 86:83 060 90:30 590 5931 7:18
GCN-dDGM-EH 8365 s:25 7289 164 87:62 064 96:07 027 91:37 128
GCN-dDGM-ES 8119 e63 71:87 320 86:47 230 9532 042 90:87 o082

GCN-dDGM-HS
GCN-dDGM-EHH
GCN-dDGM-EHS

80:70 296 7277 276 87:29 o:8s 96:10 0:35 8943 2:37
86:59 3:33 75:42 2:39 4917 10:39 9606 0:3¢ 92:86 0:96
85:84 2:96 6998 2270 87:35 0:90 9596 042 8993 386

GCN-dDGM-HH 7609 7:11 7265 2:23 87:36 0:78 9593 037 80:73 462
GCN-dDGM-SS 6596 9:46 6537 s:90 87:21 075 90:40 690 70:60 9:31
GCN-dDGM-EH 8232 471 7356 275 87:67 o0:76 9448 433 9111 157
GCN-dDGM-ES 8144 s80 7157 2:08 87:41 1:14 9611 040 8931 231
GCN-dDGM-HS 8259 450 7251 252 87:79 1:08 9513 2241 90:98 1:00

GCN-dDGM-EHH
GCN-dDGM-EHS

86:63 3:25 7395 2:97 4453 13:8¢ 96:16 0:37 92:30 1:05
8358 439 7400 168 87:12 072 96:17 o0:30 92:06 o0:83

GCN-dDGM-HH 7970 s:55 71:30 2:04 8508 5115 9599 044 86:27 2:66
GCN-dDGM-SS 6362 919 61:39 s:61 87:41 055 91:68 s:550 6405 13:45
GCN-dDGM-EH 8289 431 71:84 2:50 87:40 o059 96:06 052 9122 0:93
GCN-dDGM-ES 80:85 475 7108 414 8554 s5:04 9524 288 8921 256
GCN-dDGM-HS 8178 s:25 7241 186 87:27 062 96:03 0:37 8990 106

GCN-dDGM-EHH 8565 354 74:67 2:00 4804 16:30 96:18 0:39 90:74 2:88
GCN-dDGM-EHS 8370 388 7302 257 87:61 067 96:09 0:38 90:64 1:26

GCN-dDGM-HH 10 8218 2:90 7247 281 87:50 091 9473 2:83 8648 o:88
GCN-dDGM-SS 10 6615 161 6151 814 87:82 059 90:72 5226 69:62 10:14
GCN-dDGM-EH 10 8144 394 7310 226 87:41 oso 9603 037 90:98 1:15
GCN-dDGM-ES 10 8007 s40 7286 251 8750 o:es 9541 173 90:25 1:79
GCN-dDGM-HS 10 8378 332 7252 282 8589 420 9584 020 8864 2:97
GCN-dDGM-EHH 10 8453 384 74:33 2:30 3993 1:35 9563 1:36 91:54 2:09
GCN-dDGM-EHS 10 8350 464 71:82 1:.68 87.05 1:38 96:21 0:44 9142 1:08

GCN N/A 8311 2:20 6997 2006 8575 100 9551 0:3¢ 87:28 1:54

NNNNNGN | AU wWwwww|

Table 16: Results using more complex product manifolds for the CS dataset. We multiply up to ve
model spaces to generate the product manifolds.

Cs
Model k Accuracyp¥q Standard Deviation
GCN-dDGM-E 3 8598 2:59
GCN-dDGM-H 3 85:95 2:58
GCN-dDGM-S 3 7676 4:65
GCN-dDGM-EH 3 91:37 1:28
GCN-dDGM-ES 3 90:87 o:82
GCN-dDGM-HS 3 89:43 2:37
GCN-dDGM-EHH 3 92:86 0:96
GCN-dDGM-EHS 3 89:93 3:86
GCN-dDGM-EHHH 3 92:86 1:04
GCN-dDGM-EHHS 3 9270 o:66
GCN-dDGM-EHHSH 3 92:96 0:46
GCN-dDGM-EHHSS 3 91:51 2:51
GCN-dDGM-E 5 87:88 2:55
GCN-dDGM-H 5 87:65 2:56
GCN-dDGM-S 5 80:73 462
GCN-dDGM-EH 5 91:11 157
GCN-dDGM-ES 5 89:31 231
GCN-dDGM-HS 5 90:98 1:00
GCN-dDGM-EHH 5 92:30 1:05
GCN-dDGM-EHS 5 92:06 o:83
GCN-dDGM-EHHH 5 92:63 0:63
GCN-dDGM-EHHS 5 92:82 1:34
GCN-dDGM-EHHSH 5 92:91 o:66
GCN-dDGM-EHHSS 5 93:10 o0:74
GCN N/A 87:28 1:54

26

Published as a conference paper at ICLR 2023

Table 17: Results for heterophilic datasets combining GCN diffusion layers with the dD&#ht
graph inference system. We display results using model spaces as well as product manifolds to
construct the latent graphs.

Texas Wisconsin Squirrel Chameleon
Homophily level 0.11 0.21 0.22 0.23
Nodes 183 251 5,201 2,277
Features 1,703 1,703 2,089 2,325
Edges 295 466 198,498 31,421
Classes 5 5 5 5
Average Degree 3.22 3.71 76.33 27.60
k 2 10 3 5

Model Accuracypgq Standard Deviation

GCN-dDGM -E 80:00 s8:31 88:00 s:65 3435 2:3¢ 48:90 361
GCN-dDGM -H 7944 788 89:03 1:89 35:00 2:35 4828 411
GCN-dDGM -S 7388 9:95 8533 498 3312 2:22 48:63 3:12
GCN-dDGM -HH 7889 853 88:00 3:26 34:38 1:07 48:33 4:14
GCN-dDGM -SS 7389 862 7466 18:85 3406 220 4828 307
GCN-dDGM -EH 81:67 7.05 8667 377 3437 172 4758 385
GCN-dDGM -ES 81:11 10:30 7600 11:31 3338 1:86 47:49 360
GCN-dDGM -HS 81:11 o:69 8667 1:809 34:65 2:45 47:84 2:67
GCN-dDGM -EHH 81:11 s:09 7760 862 3319 192 4427 2:96
GCN-dDGM -EHS 7944 611 89:33 1:89 3417 2:23 47:58 454
GCN-dDGM-E 60:56 803 70:67 10:49 2987 2146 4419 385
GCN-dDGM-H 5889 9:36 7200 s:56 2956 2:49 44:01 408
GCN-dDGM-S 5944 g2 6266 16:11 3058 2:3¢ 4546 2:35
GCN-dDGM-HH 57:22 s:58 60:00 19:87 30:29 1:37 4419 378
GCN-dDGM-SS 5944 611 4933 12:36 30115 2:40 4529 1:87
GCN-dDGM-EH 6278 9:31 6533 499 3000 2:58 4309 3:42
GCN-dDGM-ES 60:56 8:03 6933 680 30:44 2:38 4568 2:66
GCN-dDGM-HS 5778 10:00 7200 3:26 30:06 2:66 4330 4:67
GCN-dDGM-EHH 57.77 10:88 44:80 10:55 2855 428 41.01 7:68
GCN-dDGM-EHS 5889 7:53 76.00 326 30:27 2:905 41:15 9:84
MLP 7778 10:24 8533 499 30:44 255 40:35 3:37
GCN 41:66 11:72 47:20 976 2419 256 3256 3:53

Table 18: Results for OGB-Arxiv dataset using GATv2 diffusion layers and different latent graph
inference modules.

OGB-Arxiv
Nodes 169,343
Features 128
Edges 1,166,243
Classes 40
k 20
Model AccuracyPeq Standard Deviation
GATv2-dDGM -E 64:34 o:40
GATv2-dDGM -H 61:30 o:50
GATv2-dDGM -S 64:41 o064
GATv2-dDGM -HH 64:24 o:17
GATv2-dDGM -SS 64:05 o:29
GATv2-dDGM -EH 64:.08 101
GATv2-dDGM -ES 64:13 o061
GATv2-dDGM -HS 64:45 o:12
GATv2-dDGM -EHS 65:06 0:09
GATv2-dDGM-E 64:65 o:01
GATv2-dDGM-H 65:05 o:10
GATv2-dDGM-S 64:60 o:16
GATv2-dDGM-HH 64:00 o:36
GATv2-dDGM-SS 64:35 0:36
GATv2-dDGM-EH 64:00 o:76
GATv2-dDGM-ES 64:37 0:.04
GATv2-dDGM-HS 61:00 1:12
GATv2-dDGM-EHS 64:25 o:50
MLP 6349 o0:15
GATv2 61:93 162

27

Published as a conference paper at ICLR 2023

Table 19: Results for OGB-Products dataset using GATV2 diffusion layers and different latent graph
inference modules.

OGB-Products

Nodes 2,449,029
Features 100
Edges 61,859,140
Classes 47

Model Accuracypq Standard Deviation

GATv2-dDGM-E 66:59 o0:30

k
3
GATv2-dDGM-H 3 62:22 0:25
GATv2-dDGM-EH 3 6551 o:30
5
5

GATv2-dDGM-E 66:25 o0:71

GATv2-dDGM-H 63:95 0:42
GATv2-dDGM-EH 5 65:62 0:20
MLP N/A 66:05 o0:20
GATv2 N/A 62.02 2:60

E.6 INDUCTIVE LEARNING: RESULTS FOR THEQM9 AND ALCHEMY DATASETS

The datasets discussed in the main task were solely concerned with tranductive learning. For com-
pleteness, we show that the latent graph inference system based on product manifolds is also ap-
plicable to inductive learning. Molecules are naturally represented as graphs, with atoms as nodes
and bonds as edges. Prediction of molecular properties is a popular application of GNNs in chem-
istry Wieder et al. (2020); Stark et al. (2021); Li et al. (2021); Godwin et al. (2021); Zhang et al.
(2021). Speci cally, we work with the QM9 (Ramakrishnan et al. (2014); Ruddigkeit et al. (2012))
and Alchemy (Morris et al. (2020)) datasets which are well known in the Geometric Deep Learning
literature. Table 20 displays the results. These tasks are substantially different to the ones previously
discussed because they involve inductive learning and regression, whereas before all tasks focused
on transductive learning and multi-class classi cation.

Table 20: Results for the QM9 and Alchemy datasets using the dDGM module.

QM9 Alchemy
No. graphs 133,885 119,487
Targets 12 12
k 5 5
Model R2 score (100 Standard Deviation
GCN-dDGM -E 96:23 1:55 96:11 1:43
GCN-dDGM -H 97:50 1:04 96:12 1:59
GCN-dDGM -S 96:52 2:30 9452 2:45
GCN-dDGM -HH 96:53 2:03 9506 1:59
GCN-dDGM -SS 9551 1:23 9201 204
GCN-dDGM -EH 97:79 1:24 96:52 1:89
GCN-dDGM -ES 9403 2:13 94:10 2:54
GCN-dDGM -HS 9659 1:53 96:00 1:01
GCN-dDGM -EHS 9678 1:56 96:03 2:59
GCN-dDGM-E 9779 1:34 96:10 2:01
GCN-dDGM-H 96:69 1:34 96:11 1:04
GCN-dDGM-S 9553 2:30 91:98 2:40
GCN-dDGM-HH 96:78 1:05 96:45 2:54
GCN-dDGM-SS 96:45 2:32 93:67 3:01
GCN-dDGM-EH 98:00 1:34 96:04 1:45
GCN-dDGM-ES 96:52 1:54 9502 1:23
GCN-dDGM-HS 96:51 1:23 95:39 1:01
GCN-dDGM-EHS ~ 97:99 1:.02 96:02 2:10
MLP 8220 3:80 76:56 1:50
GCN 94:35 1:30 9515 1:43

F LATENT GRAPHLEARNING PLOTS

In this appendix we include additional plots for the learned latent graphs for the heterophilic datasets
discussed in the main text as well as for the TadPole and the Aerothermodynamics dataset.

F.1 LEARNED LATENT GRAPHS FORHETEROPHILICDATASETS

In Figure 5, 6, 7, and 8, we display the original graphs provided by the heterophilic datasets, and
compare them to the latent graphs generated by the dDGM modules. From the plots we can clearly
see the high homophily levels of the Texas latent graph in Figure 5, for which we obtain four distinct
clusters. In the case of the bigger datasets in Figure 7, and 8, the algorithm is still able to create
clusters but there is mixing between classes.

28

	Introduction
	Background
	Related Work
	An Overview of the Discrete Differentiable Graph Module

	Method: Product Manifolds for Latent Graph Inference
	Constant Curvature Model Spaces
	Product Manifolds
	Distances and Scaling Metrics for Product Manifolds

	Experiments and Results
	Homophilic and Heterophilic Benchmark Graph Datasets
	Real-World Applications
	Scaling to Large Graphs

	Discussion and Conclusion
	Riemannian Manifolds
	Further Discussion on Curvature Learning
	Training Procedure
	Backpropagation through the dDGM
	Updating Learnable Distance-metric-scaling Coefficients
	Computational Efficiency
	Symbolic Handling of Distance Metrics
	Quantitative Study of Runtime Speedup
	Training on Large Graphs

	The Aerothermodynamics Dataset
	Additional Experiments and Results
	Number of dDGM Modules
	Homophilic Graph Datasets Extended Results
	More Complex Product Manifolds Results
	Heterophilic Graph Datasets Extended Results
	Results for Large Graphs from the Open Graph Benchmark
	Inductive Learning: Results for the QM9 and Alchemy datasets

	Latent Graph Learning Plots
	Learned Latent Graphs for Heterophilic Datasets
	Learned Latent Graphs for Real-World datasets

	Model Architectures
	Network Architectures
	Networks for Classical Graph Datasets
	Networks for Heterophilic Graph Datasets
	Networks for OGB-Arxiv
	Networks for OGB-Products
	Networks for Inductive Learning
	Networks for Brain Imaging
	Networks for Aerospace Engineering

	dDGM Architectures

