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ABSTRACT

State space models (SSMs) often sacrifice capacity, search space, or stability to
offset the memory and compute costs of large state dimensions. We introduce a
structured post-training pruning method for SSMs — AIRE-Prune (Asymptotic
Impulse- Response Energy for State PRUN(E)ing ) — that reduces each layer’s
state dimension by directly minimizing long-run output-energy distortion. AIRE-
Prune assigns every state a closed-form asymptotic impulse-response energy based
score, i.e., the total impulse-response energy it contributes over an infinite hori-
zon (time), and normalizes these scores layer-wise to enable global cross-layer
comparison and selection. This extends modal truncation from single systems to
deep stacks and aligns pruning with asymptotic response energy rather than worst-
case gain. Across diverse sequence benchmarks, AIRE-Prune reveals substantial
redundancy in SISO and MIMO SSMs with average pruning of 60.8% , with
average accuracy drop of 0.29% without retraining while significantly lowering
compute. Code will be released: https://github.com/falcon-arrow/AIRE-Prune.

1 INTRODUCTION

Deep state space models (SSMs) have proven effective in modeling sequential data by optimally
compressing input history into internal states [Gu et al. (2020)Gu et al. (2021)Gu et al. (2022c)Gu
& Dao (2023)Zhang et al. (2023)Parnichkun et al. (2024)]. Alongside these advances, a persistent
challenge is to train SSMs efficiently and stably without divergence. Building on classical linear
systems theory [Kailath, 1980], recent work has developed stability–guaranteeing parameteriza-
tions Gu et al. (2022b), general architectural blueprints Smith et al. (2023), and frequency–domain
implementations that leverage transfer functions and FFTs for throughput Gu et al. (2022a)Zhang
et al. (2023)Parnichkun et al. (2024).

A central driver of computation and memory in SSMs is the state dimension n. Since early propos-
als, a multiple single–input single–output (multi–SISO) construction has been widely adopted for
scalable training: many small SISO subsystems are learned in parallel and then mixed through chan-
nel projections [Gu et al., 2022b,a; Gu and Dao, 2023; Zhang et al., 2023; Parnichkun et al., 2024].
Within this setting, diagonal (or diagonalizable) systems have been shown to match the accuracy
of more general non–diagonal systems while remaining efficient [Gupta et al., 2022]. In paral-
lel, multi–input multi–output (MIMO) SSMs (e.g., S5–style stacks) explicitly exploit multi–channel
structure, often attaining strong performance with a smaller n than equivalently sized multi–SISO
blocks; this advantage is especially evident on long–horizon tasks such as Path-X [Smith et al.
(2023);Parnichkun et al. (2024)] . Despite these developments, both multi–SISO and MIMO fam-
ilies typically lack post–training mechanisms to optimize n, leading to over–parameterization and
unnecessary inference cost.

Several orthogonal directions attempt to reduce complexity including unstructured weight pruning
or structured state pruning strategies. This work focuses on structured state pruning as it translates to
real computation reduction with reduced dimensionality. Parameterizing transfer functions for SISO
systems can enable state–free inference, but tends to restrict the search space or guarantee stability
only at initialization Parnichkun et al. (2024). Frequency–domain kernels accelerate training and
inference but do not directly resolve redundancy in the learned state space Gu et al. (2022a)Gupta
et al. (2022)Zhang et al. (2023). This motivates post–training model order reduction (MOR) in deep
SSMs: identify and remove states that minimally affect the task output while preserving accuracy.
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Layer–adaptive pruning provides a practical MOR route. Recent work (LAST) Gwak et al. (2025)
proposed to score each learned subsystem by a worst–case, frequency–domain gain (an H∞ view),
then normalize scores layer–wise to enable global, cross–layer selection and pruning with bounded
output distortion. Empirically, this revealed that trained SSMs are often highly compressible, achiev-
ing sizable state reductions with minimal accuracy loss on long–range sequence benchmarks (e.g.,
LRA and Speech Commands). While powerful, worst–case measures can be conservative for typical
workloads, as they emphasize peak amplification that tasks may rarely excite.

This work. We introduce AIRE-Prune (Asymptotic Impulse- Response Energy for State
PRUN(E)ing), a structured, post-training, layer-adaptive method for pruning states in deep state
space model. The contribution of this work are as follows:

• Energy-based ranking: ranks each state (mode) by its total output energy over infinite
time when excited under a unit impulse input.

• Closed-form per-mode energy score: assigns every learned mode a closed-form total
output energy score, enabling fast, principled importance ordering.

• Cross-layer normalization⇒ global pruning score: normalizes per-layer energy scores
to a common scale, enabling global, cross-layer comparison and selection of the least-
energetic (insignificant) states.

This extends classical modal truncation from single systems to deep stacks and aligns pruning with
asymptotic impulse response energy—a typical–case criterion—rather than a worst–case gain ap-
proach. AIRE-Prune is architecture–agnostic (covering multi–SISO and MIMO SSMs).

Results. On Long Range Arena with S5–style MIMO SSMs, AIRE-Prune prunes on average
60.8% of states with only 0.29% average accuracy degradation without retraining. These find-
ings indicate that state spaces in trained SSMs contain substantial removable redundancy and that
aligning pruning with total output energy yields strong compression at negligible cost to task per-
formance, surpassing worst–case frequency gain–based approaches.

2 RELATED WORK

2.1 MODEL ORDER REDUCTION (MOR)

MOR approximates high–dimensional linear systems by lower–order models with controlled error,
with applications in VLSI Antoulas & Sorensen (2001), power systems Li & White (1999), and
PDE discretizations Jones & Kerrigan (2010); Curtain & Zwart (2012). Modal truncation removes
states from a diagonal realization using frequency–domain criteria that limit H∞ distortion Green
& Limebeer (2012). Balanced truncation constructs a realization in which states are simultaneously
controllable and observable, then discards the least energetic ones, offering strong error guarantees
and many variants Jones & Kerrigan (2010)Curtain & Zwart (2012). However, the similarity trans-
forms central to balanced truncation eliminate the diagonal structure exploited by modern SSMs for
efficiency and stability. Our stance: we preserve diagonal parameterization and per–state granu-
larity (as in modal truncation) and extend the setting from a single linear system to deep stacks with
nonlinearities encountered in contemporary sequence models.

2.2 LAYER–ADAPTIVE PRUNING IN DEEP NETWORKS

Allowing different layers to prune by different amounts (layer–adaptive pruning) [Morcos et al.
(2019); Han et al. (2015); Mocanu et al. (2018); J. Lee & Shin (2021); Xu et al. (2023)] gener-
ally outperforms uniform ratios [Zhu & Gupta (2017); Gale et al. (2019)]. Approaches include
layerwise magnitude thresholds/targets and global criteria that compare scores across layers un-
der a single budget. For example, provides a Frobenius–norm bound on worst–case ℓ2 distor-
tion when pruning one layer (others frozen), and extends this to joint optimization over layer-
wise ratios. Because SSMs are governed by transfer functions and dynamical couplings—not
only static weights—a non–magnitude importance criterion is essential. Our stance: we adopt
the layer–adaptive paradigm but base importance on total output energy, yielding closed–form,
mode–separable scores that respect controllability, observability, and damping.
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2.3 STATE PRUNING FOR DEEP SSMS: LAST VS. THIS WORK

LAST Gwak et al. (2025) ranks states via a worst–case frequency–domain measure: per–state H∞
scores are normalized to produce a global cross–layer ranking under a model–level budget, giv-
ing a peak–gain bound on output distortion and showing trained SSMs are highly compressible.
This work (AIRE-Prune): we retain per–state, layer–adaptive pruning but use infinite–horizon
output energy (total impulse–response energy) as a typical–case criterion that emphasizes long–run
expenditure through controllability/observability/damping. This energy view yields closed–form,
layer-normalized, globally comparable scores and, in practice, enables aggressive compression with
negligible degradation in accuracy. Refer appendix, for detailed mathematical difference.

3 BACKGROUND

3.1 STABILITY OF STATE SPACE MODELS

A DT LTI SSM is asymptotically stable iff its poles lie strictly inside the unit circle, i.e., ρ(A) < 1.
Directly enforcing this during training is nontrivial: constraining parameters to a fixed stable set
(e.g., disk/polygon) guarantees stability but can reduce expressivity, while “center–of–stability” ini-
tialization helps early training yet offers no guarantee thereafter. Diagonal (or diagonalizable) SSMs
mitigate this by parameterizing poles directly: we use a diagonal DT realization with conjugate pairs
for real I/O. When derived from CT diagonal poles with ℜ(λct

i ) < 0, zero–order hold at step ∆i

gives λi = exp(λct
i ∆i), hence |λi| < 1. This diagonal parameterization preserves stability by

construction and enables classical analyses (Lyapunov, modal formulas) within deep SSM layers.

3.2 DIAGONAL STATE SPACE MODELS (S5–STYLE)

High–level architecture. An S5 layer processes a length–T sequence u0:T−1 ∈ Rh through a
diagonal, linear time–invariant (LTI) core followed by a pointwise nonlinearity and channel mixing.
As in prior diagonal SSMs, the stack comprises: an encoder that lifts inputs to h channels, a se-
quence of LTI+nonlinearity blocks, and a decoder tailored to the downstream task. Each block can
be implemented either as a multi–SISO assembly (one diagonal SISO system per channel) or as a
single MIMO system acting jointly on the h channels. We adopt a unified MIMO description whose
effective state dimension per layer is

n =

{
ns h for multi–SISO (ns states per channel)
nm for MIMO (nm shared states)

(1)

so that multi–SISO is a structured special case of MIMO with block–diagonal couplings.

Parameterization. We model each diagonal SSM layer (state size n; channels h) in continuous
time (CT) by ẋ(t) = Λx(t) + Bu(t) and y(t) = Cx(t) +Du(t), where Λ = diag(λ1, . . . , λn) ∈
Cn×n is diagonal, B ∈ Cn×h, C ∈ Ch×n, and D ∈ Rh×h. To preserve real inputs/outputs,
complex parameters appear in conjugate pairs Gu et al. (2022b). Following diagonal SSM practice,
each mode i carries its own step size ∆i > 0 (collected into ∆ ∈ Rn), so zero–order–hold (ZOH)
discretization ? yields a diagonal DT system

xk+1 = Λdxk +Bduk, yk = Cxk +Duk, (2)

where, Λd = diag
(
eλi∆i

)
, Bd = Λ−1

(
Λd − I

)
B, (3)

where the Bd expression holds elementwise and extends continuously at λi = 0. Stability is en-
forced at the CT level (Hurwitz), i.e., ℜ(λi) < 0, which implies |eλi∆i | < 1 and thus DT con-
tractivity. A pointwise nonlinearity wraps the linear core to form the layer output, fσ(uk; Σ) =
σ
(
Cxk +Duk

)
, optionally combined with residual and normalization layers. This diagonal param-

eterization admits closed–form per–mode discretization, simple stability control, and efficient ker-
nel/scan implementations, while remaining applicable to both multi–SISO (n = nsh) and MIMO
(n = nm) instantiations under a unified notation.

3
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Figure 1: AIRE-Prune: Asymptotic Impulse Response Local Energy Score

4 AIRE-PRUNE: ASYMPTOTIC IMPULSE-RESPONSE ENERGY FOR STATE
PRUNING IN STATE SPACE MODELS

State Space Model. We begin with a discrete–time (DT) diagonal state space layer

xk+1 = Λxk +Buk, yk = Cxk, (4)

where Λ = diag(λ1, . . . , λn) with |λi| < 1 (all poles strictly inside the unit circle). This spectral
condition is the DT counterpart of asymptotic stability in control: it guarantees that perturbations
decay and that linear system quantities defined as infinite sums over time are finite. Diagonal (or
diagonalizable) parameterizations make stability explicit through pole variables {λi} and enable
mode–wise analysis.

Why energy as importance metric? In linear time-invariant (LTI) systems, “importance” has a
canonical meaning: how much output energy a direction (state) can transmit from inputs to outputs.
For stable discrete-time systems this energy is literally an area under a curve— over time (sum of
squared impulse response) or over frequency (integral of squared transfer magnitude). This section
develops that basic connection and, from it, derives a simple state-importance score and a practical
pruning rule.

Why impulse response energy? An impulse (or white noise) excites all frequencies equally, so
the measured energy reflects aggregate amplification (realizable to real input variations), not a single
resonant tone.

Total (steady–state) output energy. Consider a stable discrete–time SSM layer Σ : (Λ, B, C)
with zero initial state and an impulse input ut = δt0, the impulse response is Ht = CΛtB and
output yt = Ht. The (squared) steady–state output energy is the discrete–timeH2 energy

∥Σ∥2energy =
1

2π

∫ 2π

0

∥G(ejω)∥2F dω︸ ︷︷ ︸
frequency domain

=

∞∑
t=0

∥Ht∥2F︸ ︷︷ ︸
time domain

=

∞∑
t=0

∥CΛtB∥2F , (5)

where, transfer G(z) = C(zI − A)−1B and Parseval’s identity yields the equality of time- and
frequency-domain energies. This admits two equivalent interpretations that connect directly to con-
trol and signal processing: (i) impulse-energy: the total squared output produced by a unit im-
pulse, accumulated from t = 0 to ∞; and (ii) long–run output power under unit white noise: the
steady–state variance of yk when uk∼N (0, I) (by Parseval’s identity). Both views rely on |λi| < 1
to ensure the series in equation 5 converges which is the case for diagonal SSMs.

Per–mode energy via a geometric progression (finite horizon). For a single diagonal mode
Σi : (λi, Bi,:, C:,i) with |λi| < 1, the rank–1 impulse slice is H(i)

t = C:,i λ
t
i Bi,:. Using ∥uv⊤∥2F =

∥u∥22 ∥v∥22 for rank–1 outer products,∥∥H(i)
t

∥∥2
F
= |λi|2t ∥C:,i∥22 ∥Bi,:∥22. (6)

4
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Figure 2: AIRE-Prune: Prefix-normalized global scoring across all the layers. (Yellow shade defines
pruned states as they correspond to low magnitude score

Therefore, the (truncated) output energy contributed by mode i over horizon T is the geometric sum

Ei(T ) =

T−1∑
t=0

∥∥H(i)
t

∥∥2
F
= ∥C:,i∥22 ∥Bi,:∥22

T−1∑
t=0

|λi|2t = ∥C:,i∥22 ∥Bi,:∥22
1− |λi|2T

1− |λi|2
. (7)

Impulse Response Energy. Stability of state space models implies |λi|2T→ 0 as T→∞. Taking
the limit in equation 7 gives the per–mode steady–state output energy

Ei = lim
T→∞

Ei(T ) =
∥C:,i∥22 ∥Bi,:∥22

1− |λi|2
, (8)

and the total layer energy is additive across modes: ∥Σ∥2energy =
∑n

i=1 Ei.

Local pruning (Energy) score. Pruning a set P of states removes their modal responses. The
layer’s energy change is exactly the sum of their energies:

∥Σ∥2energy − ∥Σ−P ∥2energy =
∑
i∈P

Ei. (9)

Thus, to minimize steady–state distortion at the layer level, one should remove the smallest–energy
modes. We therefore define the Energy (AIRE-Prune local) score for state xi as

EnergyScorelocal(xi) = Ei =
∥C:,i∥22 ∥Bi,:∥22

1− |λi|2
. (10)

Special cases. If B is fixed and row–normalized (common in practice), ∥Bi,:∥2 = 1 so Ei =
∥C:,i∥22/(1− |λi|2). For bidirectional layers, replace ∥C:,i∥22 by the forward/backward average.

Why this score is a good representation. The score in equation 10 is (a) mode–separable (no
large matrix solves), (b) scale–aware through B/C couplings, and (c) dynamics–aware through
damping. A state with larger ∥B̃i,:∥2 (more controllable i.e. easy to excite), larger ∥C̃:,i∥2 (more
observable i.e. easy to see), or larger |λi| (longer memory) has larger Ei and thus causes a larger
accuracy/variance hit if removed. This aligns pruning with steady–state distortion and empirically
enables aggressive compression with negligible accuracy loss.

From local to global: layer normalization. Per–mode asymptotic energies E
(ℓ)
i can differ in

scale across layers (e.g., due to encoder/decoder gains), therefore we need to normalize individual
layers in such a way to have a common global threshold for state pruning. The per-layer scales can
differ substantially, so we first sort the states of each layer by their Per-mode Asymptotic Energy in

5
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Algorithm 1: AIRE-Prune: Asymptotic Impluse-Response Energy for State Pruning)

Input: SSM Layers {ℓ = 1 . . . L} with parameters (Λ(ℓ), B(ℓ), C(ℓ)); prune ratio p.
Output: Kept-index sets {K(ℓ)} and pruned sets {P(ℓ)}.

1 Step 1: Per-mode asymptotic energy E
(ℓ)
i .

2 for ℓ← 1 to L do
3 Extract modal triplets {(λ(ℓ)

i , B
(ℓ)
i,: , C

(ℓ)
:,i )}

nℓ
i=1 with |λ(ℓ)

i | < 1.

4 E
(ℓ)
i ←

∥C(ℓ)
:,i ∥22 ∥B

(ℓ)
i,: ∥22

1− |λ(ℓ)
i |2

5 Step 2: Per-layer sorting and prefix sums.
6 for ℓ← 1 to L do
7 Sort modes by E

(ℓ)
i in descending order to get E(ℓ)

(1) ≥ · · · ≥ E
(ℓ)
(nℓ)

and their indices.

8 Compute prefix sums: S(ℓ)
(i) ←

∑
j≤i E

(ℓ)
(j) for i = 1 . . . nℓ.

9 Compute AIRE-Prune scores: s(ℓ)(i) ←
E

(ℓ)
(i)

S
(ℓ)
(i) + ε

where ε→ 0

10 Step 2: Global selection
11 if prune ratio p given then
12 B ←

∑L
ℓ=1 nℓ · (1− p)

13 Sort AIRE-Prune in decending order to get global list
L ← {(s(ℓ)(i) , ℓ, i) | 1 ≤ ℓ ≤ L, 1 ≤ i ≤ nℓ}.

14 Find the value τ equal to the B-th largest score in L Define the kept count per layer by
kℓ ← max{ i : s

(ℓ)
(i) ≥ τ }

15 Step 3: Materialize keep/prune indices.
16 for ℓ← 1 to L do
17 K(ℓ) ← original indices of the top kℓ sorted modes; P(ℓ) ← Pruned indices.

18 return {K(ℓ)}, {P(ℓ)}

descending order. Let E(ℓ)
(i) denote the i-th largest per-mode asymptotic energy in layer ℓ, and define

the prefix sum

S
(ℓ)
(i) =

∑
j≤i

E
(ℓ)
(j) .

We then use the prefix-normalized score (AIRE-Prune)

AIREPrune
(
x
(ℓ)
(i)

)
=

E
(ℓ)
(i)

S
(ℓ)
(i) + ε

, (11)

with a small ε > 0 for numerical stability. This “hazard-rate” ratio is monotonically non-increasing
in i, enabling an elbow-style, layer-adaptive rule: given a single global threshold τ , we keep the
longest prefix in each layer for which Scoreprefix ≥ τ and prune the remaining contiguous tail.

Summary. Stability ensures that infinite–horizon energy is well–posed; energy decomposes addi-
tively by modes in diagonal SSMs; the closed–form per–mode energy equation 10 gives an inter-
pretable, dynamics– and scale–aware local importance; and simple layer normalization equation 11
turns these into globally comparable scores for cross-layer sensitive pruning. Refer Appendix for
mathematical analysis of the above.

6
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Method State importance

Random –
Uniform magnitude |λ̄i| ∥B̄i∥ ∥Ci∥
Global magnitude |λ̄i| ∥B̄i∥ ∥Ci∥

LAMP
|λ̄i|2 ∥B̄i∥2 ∥Ci∥2∑

j≤i |λ̄j |2 ∥B̄j∥2 ∥Cj∥2

UniformH∞
∥Ci∥2 ∥B̄i∥2

(1− |λ̄i|)2

GlobalH∞
∥Ci∥2 ∥B̄i∥2

(1− |λ̄i|)2

LAST
∥Ci∥2 ∥B̄i∥2

(1−|λ̄i|)2∑
j≤i

∥Cj∥2 ∥B̄j∥2

(1−|λ̄j |)2

AIRE-Prune (ours)
∥Ci∥2 ∥B̄i∥2

1−|λ̄i|2∑
j≤i

∥Cj∥2 ∥B̄j∥2

1−|λ̄j |2

(a) State-importance definitions

(b) Accuracy loss vs. pruning ratio.

Figure 3: Comparision across baselines

5 EXPERIMENTS

5.1 SETUP

Models and tasks. We evaluate pruning on the S5 (MIMO) SSM Smith et al. (2023)across the
six Long Range Arena (LRA) tasks (Tay et al., 2021). All runs use a single NVIDIA H100
(40GB/80GB) GPU with the reported training and inference settings of the released S5 configu-
ration. Unless noted otherwise, we report one-shot pruning (no retraining) and evaluate accuracy by
freezing all parameters not involved with SSM layers.

Baselines. We compare against six pruning baselines which includes random, uniform magnitude,
global magnitude, LAMP J. Lee & Shin (2021), Uniform H∞ Gwak et al., 2025, Global H∞ Gwak
et al., 2025, LAST Gwak et al., 2025. Figure 3a shows the the state importance metric (scoring
method) for the baselines.

Pruning ratios. For methods that allocate layerwise budgets (Global H∞, AIRE-Prune), we report
average pruning ratios across layers. We sweep pruning ratios from {0% to 100%} with step size of
10% for Uniform H∞ Gwak et al., 2025, Global H∞ Gwak et al., 2025, LAST Gwak et al., 2025
and AIRE-Prune (our work) as in Figure 4. A ratio of 100% would leave a single complex-conjugate
pair per layer.

5.2 ANALYSIS

Long Range Arena (S5). We evaluate AIRE-Prune on the LRA suite (Tay et al., 2021), which
probes long-range dependencies with sequence lengths from 1,024 to 16,384. In all runs we apply
a single global threshold to the prefix–normalized AIRE scores and prune without any retraining.
Table 1 reports the post–pruning accuracies.

Aggregate outcome. Averaged across tasks, AIRE-Prune removes 60.8% of states with only
0.29 pp accuracy drop (Figure 3b, last row). In the common “≤1 pp loss” regime, compressibility
is task–dependent: Text, Pathfinder, and Path-X sustain 80%, 80%, and 70% pruning, respectively,
while matching or nearly matching full accuracy (Text: 88.24 vs. 88.88; Pathfinder: 95.15 vs. 95.15;
Path-X: 98.41 vs. 98.41; Table 1). Retrieval and Image tolerate 50–65% pruning at ≤1 pp loss (Re-

7
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Figure 4: Trade-off curves between pruning ratio and accuracy for pruned S5 models across tasks
in the LRA benchmark. Baselines LAST, Uniform H∞, Global H∞ are refered from Gwak et al.
(2025)

Table 1: Task-wise accuracy on LRA with S5. Pruning ratio (Prun.) and post-pruning accuracy
(Acc.). Numbers for Full/Uniform H∞/Global H∞/LAST Gwak et al. (2025) are compared with
AIRE-Prune (our work)

ListOps
(2,048)

Text
(4,096)

Retrieval
(4,000)

Image
(1,024)

Pathfinder
(1,024)

Path-X
(16,384)

Avg.

Model Prun. Acc. Prun. Acc. Prun. Acc. Prun. Acc. Prun. Acc. Prun. Acc.

S5 Full 0% 61.48 0% 88.88 0% 91.20 0% 87.30 0% 95.15 0% 98.41
Uniform H∞ 0% 61.48 60% 82.49 50% 90.29 30% 86.45 30% 71.38 30% 90.90
Global H∞ 0% 61.48 60% 88.56 50% 90.93 30% 87.04 30% 57.20 30% 69.21
LAST 0% 61.48 60% 88.52 50% 90.42 30% 86.34 30% 94.45 30% 97.95

AIRE-Prune (ours) 20% 61.48 80% 88.24 50% 90.11 65% 87.30 80% 95.15 70% 98.41

trieval: 90.11 vs. 90.93; Image: 87.30 vs. 87.30). ListOps is sensitive, admitting only 20% pruning
before degradation; at this operating point, accuracy is preserved (61.48 vs. 61.48).

Comparison to baselines. At high compression (right half of each panel in Fig. 4), AIRE-PRUNE
dominates Uniform/GlobalH∞ magnitude rules and outperforms LAST under the≤1 pp loss crite-
rion. This is mirrored in the average accuracy loss of Figure 3b: AIRE-PRUNE (0.29 pp) improves
over Uniform H∞ (4.32 pp), Global H∞ (7.51 pp), and LAST (0.52 pp), while achieving a much
higher average pruning ratio (60.8% vs. 33% for those methods; ≈1.8× higher).

Superiority over state of the art. Against the strongest baselines (Uniform/Global H∞ and
LAST), AIRE-PRUNE delivers strictly larger safe no-retrain budgets (defined at ≤ 1 pp accuracy
drop) on five of six LRA tasks while matching or exceeding accuracy. From Table 1, AIRE’s safe
pruning exceeds the best baseline by +20 pp on ListOps, +20 pp on Text, +35 pp on Image, +50 pp
on Pathfinder, and +40 pp on Path-X; on Retrieval, the listed AIRE point at 50% misses the ≤ 1 pp
rule by only 0.09 pp, yielding no advantage at that specific sample yet remaining competitive with
the best baseline. We attribute this margin to AIRE’s time-accumulated energy lens and prefix nor-
malization, which together create strong head–tail separation and enable a single global threshold to
keep essential modes intact and collapse low-energy layers, a behavior not observed in magnitude-
or peak-gain–based scoring.

Accuracy drop vs. pruning ratio. Figure 4 exhibits a pronounced elbow/step for AIRE-Prune:
accuracy remains near the full model up to a high pruning threshold, then drops sharply; in contrast,

8
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Figure 5: Layer-wise pruning ratio as we increase the global pruning threshold for S5 models across
tasks in the LRA benchmark.

baselines degrade smoothly as pruning increases. We interpret the step as evidence that AIRE’s rank-
ing separates important from unimportant states with a wide margin, while smooth curves indicate
that pruning mixes both groups throughout the sweep. Takeaway. The step-like profile is robust only
when using AIRE energies and prefix normalization, which together keep the high-margin head in-
tact and prune contiguous tails. Baselines show smooth decay because their scores offer weaker
head–tail separation, so valuable states are progressively removed throughout the sweep.

Layer-wise pruning profile. Figure 5 shows kept–state percentages per layer as the global ratio
increases, revealing task–specific structure. On Path-X and Pathfinder, AIRE progressively thins
later layers and, at high ratios, can remove entire layers whose states fall below the global thresh-
old—turning fine–grained sparsity into block–level deletions This gives a understanding that our
method can help achieve low latency SSM model as we are able to prune layers withput loosing on
accuracy. For Text and Retrieval, earlier layers retain larger fractions while mid/late layers contribute
most of the budget, consistent with encoder–style front–end processing. Image exhibits more even
shrinkage until its elbow, after which a few layers collapse. ListOps shows non–trivial contribution
from all layers even at small ratios, explaining its early elbow and our conservative cap around 20%.
This heterogeneous, layer–selective behavior contrasts with reported layer pruning profile of LAST
Gwak et al. (2025), which tends to have relatively more uniformly pruning among layers at similar
global budgets.

6 CONCLUSION

We introduced AIRE-PRUNE, a training-free pruning criterion for diagonal (or diagonalized) state-
space models that ranks modes by asymptotic output energy, combined with prefix normalization
that puts scores from different layers on a common scale. With a single global threshold and no
retraining, AIRE-PRUNE achieves strong compression/accuracy trade-offs across the LRA bench-
mark.

Summary of findings. Averaged over tasks, AIRE-PRUNE removes 60.8% of states while incur-
ring only 0.29 percentage points of accuracy loss. Under a ≤1 pp loss budget, it safely prunes 80%
on Text and Pathfinder, 70% on Path-X, 65% on Image, 50% on Retrieval, and even 20% on the
often-labeled “incompressible” ListOps. Across the board, AIRE-Prune dominates across all the
baselines.

Practical implications. Because scores are computed once and applied globally, practitioners can:
(i) set a target budget without per-layer tuning; (ii) sweep to the elbow and stop just before it to
maximize savings at fixed accuracy; and (iii) realize system-level gains by deleting entire layers
whenever their states fall below threshold, converting fine-grained sparsity into block-structured
reductions that are easier to deploy on hardware.

Future Work. AIRE—Prune can be looked to extend for input–selective models like Mamba,
where state matrices are input dependent. Pruning can be thought of estimating energy under gating
dynamics (e.g., Monte-Carlo over gates) for robust state scoring and applying to the AIRE-Prune
closed form solution. Also, look for the adaption to other tasks (e.g. speech and language bench-
marks).

9
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A APPENDIX

A.1 MATHEMATICAL PROOFS

A.1.1 VECTOR/MATRIX INNER PRODUCTS AND NORMS

Euclidean space. For x ∈ Cn, the standard inner product and induced 2-norm are

⟨x, y⟩ := x∗y, ∥x∥2 :=
√
x∗x.

The Cauchy–Schwarz inequality gives |⟨x, y⟩| ≤ ∥x∥2 ∥y∥2.

Frobenius (Hilbert–Schmidt) structure. For A,B ∈ Cm×n, the Frobenius inner product and
norm are

⟨A,B⟩F := tr(A∗B), ∥A∥F :=
√
tr(A∗A) =

(∑
i,j

|aij |2
)1/2

.

This norm is: (i) unitarily invariant ( ∥UAV ∥F = ∥A∥F for unitary U, V ), (ii) compatible with
vectorization ( ∥A∥F = ∥vec(A)∥2 ), and (iii) submultiplicative with respect to the spectral norm:
∥AB∥F ≤ ∥A∥2 ∥B∥F and ∥AB∥F ≤ ∥A∥F ∥B∥2.

Rank–1 outer products. Given u ∈ Cm and v ∈ Cn, the outer product uv∗ ∈ Cm×n has entries
(uv∗)ij = ui vj .

A.1.2 IDENTITY FOR RANK–1 TERMS

[Frobenius norm of a rank–1 outer product] For u ∈ Cm and v ∈ Cn,
∥uv∗∥2F = ∥u∥22 ∥v∥22.

∥uv∗∥2F =
∑
i,j

|ui vj |2 =
(∑

i

|ui|2
)(∑

j

|vj |2
)
= ∥u∥22 ∥v∥22.

A.1.3 “ENERGY” INTERPRETATION OF ∥Ht∥2F
For an LTI system with yt =

∑
k≥0 Hk ut−k and a zero-mean white input ut ∼ CN (0, Ih) inde-

pendent across t, the instantaneous output power contributed by the k-lag kernel is
E ∥Hkut−k∥22 = E tr(u∗

t−kH
∗
kHkut−k) = tr

(
H∗

kHk E[ut−ku
∗
t−k]

)
= tr(H∗

kHk) = ∥Hk∥2F .
Thus, ∥Hk∥2F equals the expected output energy (power for unit-variance inputs) contributed by
the k-th impulse slice. The same holds componentwise for H(i)

t , so ∥H(i)
t ∥2F quantifies the energy

carried by the i-th mode at lag t. Moreover, since ∥Ht∥2F =
∑

i ∥H
(i)
t ∥2F when the rank–1 terms are

mutually orthogonal in the Frobenius inner product, or more generally ∥Ht∥2F = tr(H∗
t Ht) always,

this norm provides a natural, additive energy accounting across modes and lags.

A.1.4 CONNECTION TO THE H2 NORM (TOTAL ENERGY)

For a stable MIMO LTI system with transfer matrix G(z) and impulse sequence {Ht},

∥G∥2H2
=

1

2π

∫ 2π

0

tr
(
G(ejω)∗G(ejω)

)
dω =

∞∑
t=0

∥Ht∥2F ,

by Parseval/Plancherel (discrete-time). Hence the Frobenius-squared of impulse slices sums to the
total output energy for white inputs. This makes ∥Ht∥2F a natural energy density over lags.

A.1.5 REAL VS. COMPLEX DATA; BIDIRECTIONALITY

If the model uses complex pairs to represent real-valued dynamics, terms appear as conjugate pairs
whose sum is real. Use v∗ (not v⊤) in complex algebra; in purely real settings, v∗ = v⊤. For bidi-
rectional SSMs, one can form an augmented LTI with block-diagonal forward/backward dynamics;
the energy accounting above applies componentwise and adds.
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B FROM ENERGY-BASED PRUNING TO WORST-CASE CERTIFICATES

B.1 SCOPE AND PROMISE (WHAT THIS APPENDIX DELIVERS)

• What AIRE-Prune proposes. An energy-based, post-training, layer-adaptive pruning rule
for diagonal (or diagonalizable) state-space layers that uses a single global threshold.

• What we add here. A precise, worst-case (H∞) error certificate that complements the
original typical-case (energy/H2) rationale, and an end-to-end distortion bound for a resid-
ual stack with Lipschitz wrappers.

• Why it matters. You keep the same AIRE ranking/thresholding, but now with a com-
putable, auditable guarantee; we also position the result against LAST Gwak et al. (2025)
and highlight the mathematical differences.

B.2 BACKGROUND: DIAGONAL SSM LAYERS AND ENERGY (NO PRIOR KNOWLEDGE
ASSUMED)

Diagonal/diagonalized SSM layer. Let xk+1 = Λxk + Buk and yk = Cxk, with Λ =
diag(λ1, . . . , λn), |λi| < 1 for stability. The impulse response and frequency response are

Ht = CΛtB (t = 0, 1, 2, . . . ), G(ejω) = C(I − Λe−jω)−1B =

n∑
i=1

C:,iBi,:

1− λie−jω
.

Each mode i contributes a rank-1 impulse slice H
(i)
t = C:,iλ

t
iBi,:.

Energy (H2) of a layer and a mode. Parseval implies

∥Σ∥2energy =

∞∑
t=0

∥Ht∥2F =
1

2π

∫ 2π

0

∥G(ejω)∥2F dω.

Using ∥uv∗∥2F = ∥u∥22∥v∥22 and the geometric series,

Ei ≜
∞∑
t=0

∥H(i)
t ∥2F =

∥C:,i∥22 ∥Bi,:∥22
1− |λi|2

, ∥Σ∥2energy =

n∑
i=1

Ei.

Intuition. Ei is the mode’s long-run output power (e.g., under unit white-noise inputs). If B rows
are normalized, then Ei = ∥C:,i∥22/(1− |λi|2).

B.3 AIRE-PRUNE: THE ALGORITHM

[leftmargin=1.25em]

1. Per-mode energy. Compute Ei for each state in each layer.
2. Sort & prefix sums (per layer). Sort E(1) ≥ · · · ≥ E(n); set S(i) =

∑
j≤i E(j).

3. Prefix-normalized score.
s(i) =

E(i)

S(i) + ε
, 0 < ε≪ 1.

This score is monotone non-increasing in i; a single global threshold τ causes each layer
to keep its longest prefix and prune a contiguous tail.

4. Global threshold. Concatenate all s(i) across layers, choose τ for the desired global
budget, and materialize kept/pruned indices per layer.

Practical effect. The prefix rule yields clear head–tail separation and, at higher thresholds, may
delete entire low-energy layers, which helps wall-clock latency.

B.4 WHY DISCUSS WORST-CASE BOUNDS IF ENERGY ALREADY WORKS?

The energy lens (H2) explains typical/average behavior and aligns with many workloads. We there-
fore derive an H∞ certificate from the same energy quantities AIRE already computes, plus a single
stability factor. The method remains unchanged; the mathematics provides assurance why AIRE-
Prune works.
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WHY THE BOUND SHOULD HOLD

Sort a layer’s states by energy. Cumulative energy vs. kept states shows an elbow: most energy sits
in a short head. Pruning the tiny tail barely changes the typical output. Our result shows the worst-
case change is also small unless pruned poles are extremely close to the unit circle. The stability
margin enters through a single factor.

B.5 PER-LAYER WORST-CASE (H∞) CERTIFICATE FROM ENERGY TAILS

Goal. We want to bound the worst-case (induced ℓ2→ ℓ2) error of a layer after pruning a set of
modes T :

ε ≜ ∥G− G̃∥∞ = sup
ω∈[0,2π)

∥∥∥ ∑
i∈T

Gi(e
jω)

∥∥∥
2
, Gi(e

jω) =
C:,iBi,:

1− λie−jω
.

Step 1: Triangle inequality under the H∞ norm. The induced (operator) 2-norm satisfies ∥A+
B∥2 ≤ ∥A∥2 + ∥B∥2. Taking the supremum over ω preserves the inequality:

ε = sup
ω

∥∥∥∑
i∈T

Gi(e
jω)

∥∥∥
2

(triangle)
≤ sup

ω

∑
i∈T
∥Gi(e

jω)∥2

(sup subadditivity)
≤

∑
i∈T

sup
ω
∥Gi(e

jω)∥2 =
∑
i∈T
∥Gi∥∞.

Hence,
ε ≤

∑
i∈T
∥Gi∥∞. (12)

Step 2: Per-mode H∞ envelope. Write Gi(e
jω) =

C:,iBi,:

1− λie−jω
. For a rank-1 matrix uv∗,

∥uv∗∥2 = ∥u∥2∥v∥2, so define

αi ≜ ∥C:,i∥2 ∥Bi,:∥2 = ∥C:,iBi,:∥2.

For any ω, the reverse triangle inequality gives |1− λie
−jω| ≥ 1− |λi|. Therefore,

∥Gi(e
jω)∥2 =

αi

|1− λie−jω|
≤ αi

1− |λi|
⇒ ∥Gi∥∞ ≤

αi

1− |λi|
. (13)

Step 3: Express the peak envelope via the energy Ei. By definition of the per-mode energy
(asymptotic impulse/white-noise energy),

Ei =
∥C:,i∥22 ∥Bi,:∥22

1− |λi|2
=

α2
i

1− |λi|2
.

Solving for αi and substituting into equation 13:

αi =
√

Ei

√
1− |λi|2 ⇒ αi

1− |λi|
=

√
Ei

√
1− |λi|2
1− |λi|

=
√
Ei

√
1 + |λi|
1− |λi|

.

Thus, for every pruned mode i,

∥Gi∥∞ ≤
√
Ei

√
1 + |λi|
1− |λi|

. (14)

Step 4: Uniform “stability factor” over the pruned set. Let

ρ ≜ max
i∈T
|λi| and κ(ρ) ≜

√
1 + ρ

1− ρ
.
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The scalar function x 7→
√

1+x
1−x is increasing on [0, 1), so for all i ∈ T ,√

1 + |λi|
1− |λi|

≤ κ(ρ).

Combining with equation 14 yields the uniform bound

∥Gi∥∞ ≤ κ(ρ)
√
Ei, ∀i ∈ T . (15)

Step 5: First aggregate bound (linear in
√
Ei). Substitute equation 15 into equation 12:

ε ≤
∑
i∈T

κ(ρ)
√

Ei = κ(ρ)
∑
i∈T

√
Ei. (16)

Step 6: Second aggregate bound via Cauchy–Schwarz (root-of-sum). For nonnegative {ai}
and m = |T |, Cauchy–Schwarz gives

∑m
i=1 ai ≤

√
m

√∑m
i=1 a

2
i . Apply this with ai =

√
Ei:∑

i∈T

√
Ei ≤

√
|T |

√∑
i∈T

Ei.

Combining with equation 16 yields

ε ≤ κ(ρ)
√
|T |

√∑
i∈T

Ei. (17)

Step 7: Final certificate (take the minimum). Both equation 16 and equation 17 are valid; each
can be tighter depending on whether the pruned tail is concentrated or diffuse. We therefore report
the minimum:

ε = ∥G− G̃∥∞ ≤ κ(ρ) min
{ ∑

i∈T

√
Ei ,

√
|T |

√∑
i∈T

Ei

}
.

Why the bound is finite (stability). Since the layer is stable, |λi| < 1 for all i, so each Ei =

α2
i /(1− |λi|2) is finite and ρ < 1, which implies κ(ρ) =

√
(1 + ρ)/(1− ρ) <∞.

Special cases. If B rows are normalized, then Ei = ∥C:,i∥22/(1− |λi|2) (the derivation above ap-
plies verbatim). For bidirectional layers, sum (or average) the forward/backward ∥C∥22 contributions
when forming Ei; the rank-1 and norm inequalities used here are unchanged.

Design guidance. Avoid pruning modes with |λi| ≈ 1 (they inflate κ(ρ)). AIRE’s energy already
discourages this via (1− |λ|2)−1, and the certificate makes the risk explicit.

B.6 MATHEMATICAL COMPARISON TO LAST (AND THEORY POSITIONING)

Per-mode quantities (shorthand). αi ≜ ∥C:,i∥2 ∥Bi,:∥2, Ei =
α2
i

1− |λi|2
, g

(∞)
i ≤ αi

1− |λi|
,

ρ = maxi∈T |λi|, κ(ρ) =

√
1 + ρ

1− ρ
.

Layer-level envelopes (apples-to-apples).

LAST (H∞-first) : ∥G− G̃∥∞ ≲
∑
i∈T

αi

1− |λi|
(18)

AIRE (energy-first→ H∞) : ∥G− G̃∥∞ ≤ κ(ρ) min

{ ∑
i∈T

αi√
1− |λi|2

,
√
|T |

√√√√∑
i∈T

α2
i

1− |λi|2

}
.

(19)
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Key mathematical differences.

1. Aggregation. LAST sums peak gains linearly,
∑

αi/(1− |λi|). AIRE aggregates energies
either linearly in

√
Ei or sublinearly via

√
|T |

∑
Ei, which is strictly tighter for diffuse

tails (Cauchy–Schwarz gap).
2. Pole-radius dependence. As ρ ↑ 1, 1 − |λ|2 ≈ 2(1 − |λ|). Both equation 18 and the first

term in equation 19 scale like (1− ρ)−1; AIRE’s κ(ρ) makes this dependence explicit and
uniform across the pruned set.

3. Quantities needed. LAST needs αi and (1 − |λi|)−1 per pruned mode. AIRE needs Ei

(already computed for ranking) and a single ρ. No new per-mode statistics are required
beyond AIRE’s pipeline.

4. Cross-layer coupling. LAST’s guarantee is tied to per-mode peak surrogates. AIRE’s
certificate is tail-centric (energy tail + one ρ), aligning with prefix-normalized, contiguous-
tail pruning and explaining whole-layer drops.

When AIRE can be tighter. Diffuse tails: if |T | is large but
∑

Ei is tiny, then

κ(ρ)
√
|T |

∑
Ei ≪

∑
i∈T

αi

1− |λi|
,

making AIRE’s root-of-sum form substantially less conservative.

Conceptual positioning. LAST is worst-case-first and can be conservative when worst frequen-
cies are rarely excited. AIRE is typical-case-first (energy/H2), empirically enabling larger safe
pruning.

B.7 EXPERIMENTAL DETAILS

All S5 experiments were implemented in JAX ? and run on a single NVIDIA A100 accelerator
(40 GB or 80 GB VRAM). Our models and training code are based on the public S5 implementa-
tion Smith et al. (2023)1. Unless otherwise stated, we employ bidirectional SSM layers for all LRA
tasks, and use the parallel-scan inference kernel provided by S5.

B.7.1 BENCHMARKS / TASKS

We evaluate on the Long Range Arena (LRA), a suite of long-context sequence problems span-
ning symbolic reasoning, byte-level text, document retrieval, and flattened vision, designed to probe
modeling of dependencies across sequences up to 16k tokens.

ListOps 10-way classification over extended ListOps expressions Nangia & Bowman (2018). Inputs
are single-channel sequences (max length 2,048) encoding digits, operators, and bracket
markers as one-hot vectors over 17 tokens. Splits: 96k train, 2k validation, 2k test.

Text Binary sentiment classification on IMDB reviews at the byte level Maas et al. (2011). Each
example is a single-channel sequence up to 4,096 tokens, using a 129-symbol one-hot al-
phabet. Splits: 25k train, 25k test.

Retrieval Binary document-pair classification on the ACL Anthology Network Radev et al. (2009).
The goal is to predict whether two documents share equivalent citation links. Each doc-
ument is byte-tokenized with a 97-symbol one-hot encoding and capped at 4,000 tokens.
Splits: 147,086 train pairs, 18,090 validation pairs, 17,437 test pairs.

Image 10-way classification on flattened CIFAR-10 Krizhevsky & Hinton (2009), represented as
single-channel sequences of length 1,024.

Pathfinder Binary classification on flattened Pathfinder stimuli Linsley et al. (2018), determining
whether two points are connected by a target path among distractors. Sequences are single-
channel with length 1,024. Splits: 160k train, 20k validation, 20k test.

Path-X A scaled, more challenging Pathfinder variant Linsley et al. (2018) with single-channel
sequences of length 16,384, again testing path connectivity under heavy clutter.

1https://github.com/lindermanlab/S5
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Table 2: Training configurations for S5 models on the six LRA tasks. All runs use batch normaliza-
tion, pre-normalization, and ∆max = 0.1. nm: SSM state dimension; J : blocks for diagonal/block
init of Λ; D: dropout; LR: global learning rate; SSM LR: learning rate for SSM-only params; B:
batch size; E: epochs; WD: weight decay; ∆min: minimum step.

Task L h nm J D LR SSM LR B E WD ∆min

ListOps 8 128 16 8 0 0.003 0.001 50 40 0.07 0.001
Text 6 256 192 12 0.1 0.004 0.001 50 35 0.07 0.001
Retrieval 6 128 256 16 0 0.002 0.001 32 20 0.05 0.001
Image 6 512 384 3 0.1 0.005 0.001 50 250 0.07 0.001
Pathfinder 6 192 256 8 0.05 0.005 0.0009 64 200 0.07 0.001
Path-X 6 128 256 16 0 0.002 0.0006 32 75 0.05 0.001

B.7.2 HYPERPARAMETER

We follow the LRA protocol across six tasks—ListOps, Text, Retrieval, Image, Pathfinder, and
Path-X—tuning depth (L), hidden width (h), and SSM state size (nm) per task. Byte-level Text
and long-context Retrieval favor larger J (more blocks) and higher nm to capture long-range depen-
dencies; flattened Image/Pathfinder variants use wider channels (h) with moderate dropout D for
regularization. Learning rates are decoupled, with a smaller SSM LR than the global LR to stabilize
eigen-parameter updates, and modest weight decay (WD) throughout. Batch sizes B and epochs E
reflect dataset scale (e.g., longer training for Image/Pathfinder), while ∆min fixes the minimum step
size used in state discretization. This setup (as in Table 2provides a consistent, comparable training
recipe across heterogeneous long-context workloads.
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