

000 001 002 003 004 005 AIRE-PRUNE: ASYMPTOTIC IMPULSE-RESPONSE EN- 006 ERGY FOR STATE PRUNING IN STATE SPACE MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

State space models (SSMs) often sacrifice capacity, search space, or stability to offset the memory and compute costs of large state dimensions. We introduce a structured post-training pruning method for SSMs — AIRE-Prune (Asymptotic Impulse- Response Energy for State PRUN(E)ing) — that reduces each layer’s state dimension by directly minimizing long-run output-energy distortion. AIRE-Prune assigns every state a closed-form *asymptotic impulse-response energy* based score, i.e., the total impulse-response energy it contributes over an infinite horizon (time), and normalizes these scores layer-wise to enable global cross-layer comparison and selection. This extends modal truncation from single systems to deep stacks and aligns pruning with asymptotic response energy rather than worst-case gain. Across diverse sequence benchmarks, AIRE-Prune reveals substantial redundancy in SISO and MIMO SSMs with average pruning of 60.8%, with average accuracy drop of 0.29% without retraining while significantly lowering compute. Code will be released: <https://github.com/falcon-arrow/AIRE-Prune>.

1 INTRODUCTION

Deep state space models (SSMs) have proven effective in modeling sequential data by optimally compressing input history into internal states (Gu et al., 2020; 2021; 2022c; Gu & Dao, 2023; Zhang et al., 2023; Parnichkun et al., 2024). Alongside these advances, a persistent challenge is to train SSMs efficiently and stably without divergence. Building on classical linear systems theory (Kailath, 1980), recent work has developed stability-guaranteeing parameterizations (Gu et al., 2022b), general architectural blueprints (Smith et al., 2023), and frequency-domain implementations that leverage transfer functions and FFTs for throughput (Gu et al., 2022a; Zhang et al., 2023; Parnichkun et al., 2024).

A central driver of computation and memory in SSMs is the *state dimension* n . Since early proposals, a multiple single-input single-output (multi-SISO) construction has been widely adopted for scalable training: many small SISO subsystems are learned in parallel and then mixed through channel projections [Gu et al., 2022b,a; Gu and Dao, 2023; Zhang et al., 2023; Parnichkun et al., 2024]. Within this setting, diagonal (or diagonalizable) systems have been shown to match the accuracy of more general non-diagonal systems while remaining efficient [Gupta et al., 2022]. In parallel, multi-input multi-output (MIMO) SSMs (e.g., S5-style stacks) explicitly exploit multi-channel structure, often attaining strong performance with a smaller n than equivalently sized multi-SISO blocks; this advantage is especially evident on long-horizon tasks such as Path-X (Smith et al., 2023; Parnichkun et al., 2024). Despite these developments, both multi-SISO and MIMO families typically lack *post-training mechanisms* to optimize n , leading to over-parameterization and unnecessary inference cost.

Several orthogonal directions attempt to reduce complexity including unstructured weight pruning or structured state pruning strategies. This work focuses on structured state pruning as it translates to real computation reduction with reduced dimensionality. Parameterizing transfer functions for SISO systems can enable state-free inference, but tends to restrict the search space or guarantee stability only at initialization (Parnichkun et al., 2024). Frequency-domain kernels accelerate training and inference but do not directly resolve redundancy in the learned state space (Gu et al., 2022a; Gupta et al., 2022; Zhang et al., 2023). This motivates *post-training model order reduction* (MOR) in deep SSMs: identify and remove states that minimally affect the task output while preserving accuracy.

054 Layer-adaptive pruning provides a practical MOR route. Recent work (LAST) (Gwak et al., 2025)
 055 proposed to score each learned subsystem by a worst-case, frequency-domain gain (an H_∞ view),
 056 then normalize scores layer-wise to enable global, cross-layer selection and pruning with bounded
 057 output distortion. Empirically, this revealed that trained SSMs are often highly compressible, achiev-
 058 ing sizable state reductions with minimal accuracy loss on long-range sequence benchmarks (e.g.,
 059 LRA and Speech Commands). While powerful, worst-case measures can be conservative for typical
 060 workloads, as they emphasize peak amplification that tasks may rarely excite.

061
 062 **This work.** We introduce **AIRE-Prune** (Asymptotic Impulse- Response Energy for State
 063 PRUN(E)ing), a structured, post-training, layer-adaptive method for pruning states in deep state
 064 space model. The contribution of this work are as follows:

- 065 • **Energy-based ranking:** ranks each state (mode) by its *total output energy* over infinite
 066 time when excited under a *unit impulse input*.
- 067 • **Closed-form per-mode energy score:** assigns every learned mode a *closed-form* total
 068 output energy score, enabling fast, principled importance ordering.
- 069 • **Cross-layer normalization \Rightarrow global pruning score:** normalizes per-layer energy scores
 070 to a common scale, enabling *global, cross-layer* comparison and selection of the *least-*
 071 *energetic* (insignificant) states.

072 This extends classical modal truncation from single systems to deep stacks and aligns pruning with
 073 *asymptotic impulse response energy*—a typical-case criterion—rather than a worst-case gain ap-
 074 proach. AIRE-Prune is architecture-agnostic (covering multi-SISO and MIMO SSMs).

075 **Results.** On Long Range Arena with S5-style MIMO SSMs, AIRE-Prune *prunes on average*
 076 **60.8%** of states with only **0.29%** average accuracy degradation *without retraining*. These find-
 077 ings indicate that state spaces in trained SSMs contain substantial removable redundancy and that
 078 aligning pruning with total output energy yields strong compression at negligible cost to task per-
 079 formance, surpassing worst-case frequency gain-based approaches.

080 2 RELATED WORK

081 2.1 MODEL ORDER REDUCTION (MOR)

082 MOR approximates high-dimensional linear systems by lower-order models with controlled error,
 083 with applications in VLSI (Antoulas & Sorensen, 2001), power systems (Li & White, 1999), and
 084 PDE discretizations (Jones & Kerrigan, 2010; Curtain & Zwart, 2012). *Modal truncation* removes
 085 states from a diagonal realization using frequency-domain criteria that limit H_∞ distortion (Green
 086 & Limebeer, 2012). *Balanced truncation* constructs a realization in which states are simultaneously
 087 controllable and observable, then discards the least energetic ones, offering strong error guarantees
 088 and many variants (Jones & Kerrigan, 2010; Curtain & Zwart, 2012). However, the similarity trans-
 089 forms central to balanced truncation eliminate the diagonal structure exploited by modern SSMs for
 090 efficiency and stability. **Our stance:** we preserve diagonal parameterization and *per-state* granular-
 091 ity (as in modal truncation) and extend the setting from a single linear system to *deep stacks with*
 092 *nonlinearities* encountered in contemporary sequence models.

093 2.2 LAYER-ADAPTIVE PRUNING IN DEEP NETWORKS

094 Allowing different layers to prune by different amounts (layer-adaptive pruning) (Morcos et al.,
 095 2019; Han et al., 2015; Mocanu et al., 2018; J. Lee & Shin, 2021; Xu et al., 2023) generally out-
 096 performs uniform ratios (Zhu & Gupta, 2017; Gale et al., 2019). Approaches include layerwise
 097 magnitude thresholds/targets and *global* criteria that compare scores across layers under a single
 098 budget. For example, provides a Frobenius-norm bound on worst-case ℓ_2 distortion when prun-
 099 ing one layer (others frozen), and extends this to joint optimization over layerwise ratios. Because
 100 SSMs are governed by transfer functions and dynamical couplings—not only static weights—a *non-*
 101 *magnitude* importance criterion is essential. **Our stance:** we adopt the layer-adaptive paradigm but
 102 base importance on *total output energy*, yielding closed-form, mode-separable scores that respect
 103 controllability, observability, and damping.

108
109

2.3 STATE PRUNING FOR DEEP SSMs: LAST vs. THIS WORK

110
111
112
113
114
115
116
117

LAST (Gwak et al., 2025) ranks states via a *worst-case* frequency-domain measure: per-state H_∞ scores are normalized to produce a *global* cross-layer ranking under a model-level budget, giving a *peak-gain* bound on output distortion and showing trained SSMs are highly compressible. **This work (AIRE-Prune):** we retain per-state, layer-adaptive pruning but use *infinite-horizon output energy* (total impulse-response energy) as a *typical-case* criterion that emphasizes long-run expenditure through controllability/observability/damping. This energy view yields closed-form, layer-normalized, globally comparable scores and, in practice, enables aggressive compression with negligible degradation in accuracy. Refer appendix B.6, for detailed mathematical difference.

118
119

3 BACKGROUND

120
121
122

3.1 STABILITY OF STATE SPACE MODELS

123
124
125
126
127
128
129
130

A DT LTI SSM is asymptotically stable iff its poles lie strictly inside the unit circle, i.e., $\rho(A) < 1$. Directly enforcing this during training is nontrivial: constraining parameters to a fixed stable set (e.g., disk/polygon) guarantees stability but can reduce expressivity, while “center-of-stability” initialization helps early training yet offers no guarantee thereafter. Diagonal (or diagonalizable) SSMs mitigate this by *parameterizing poles directly*: we use a diagonal DT realization with conjugate pairs for real I/O. When derived from CT diagonal poles with $\Re(\lambda_i^{\text{ct}}) < 0$, zero-order hold at step Δ_i gives $\lambda_i = \exp(\lambda_i^{\text{ct}} \Delta_i)$, hence $|\lambda_i| < 1$. This diagonal parameterization preserves stability by construction and enables classical analyses (Lyapunov, modal formulas) within deep SSM layers.

131
132

3.2 DIAGONAL STATE SPACE MODELS (S5-STYLE)

133
134
135
136
137
138
139

High-level architecture. An S5 layer processes a length- T sequence $u_{0:T-1} \in \mathbb{R}^h$ through a diagonal, linear time-invariant (LTI) core followed by a pointwise nonlinearity and channel mixing. As in prior diagonal SSMs, the stack comprises: an *encoder* that lifts inputs to h channels, a sequence of *LTI+nonlinearity* blocks, and a *decoder* tailored to the downstream task. Each block can be implemented either as a *multi-SISO* assembly (one diagonal SISO system per channel) or as a single *MIMO* system acting jointly on the h channels. We adopt a unified MIMO description whose *effective state dimension* per layer is

140

$$n = \begin{cases} n_s h & \text{for multi-SISO (} n_s \text{ states per channel)} \\ n_m & \text{for MIMO (} n_m \text{ shared states)} \end{cases} \quad (1)$$

141
142

so that multi-SISO is a structured special case of MIMO with block-diagonal couplings.

143
144
145
146
147
148
149
150
151

Parameterization. We model each diagonal SSM layer (state size n ; channels h) in continuous time (CT) by $\dot{\mathbf{x}}(t) = \mathbf{\Lambda}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ and $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$, where $\mathbf{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^{n \times n}$ is diagonal, $\mathbf{B} \in \mathbb{C}^{n \times h}$, $\mathbf{C} \in \mathbb{C}^{h \times n}$, and $\mathbf{D} \in \mathbb{R}^{h \times h}$. To preserve real inputs/outputs, complex parameters appear in conjugate pairs (Gu et al., 2022b). Following diagonal SSM practice, each mode i carries its own step size $\Delta_i > 0$ (collected into $\Delta \in \mathbb{R}^n$), so zero-order hold (ZOH) discretization yields a diagonal DT system

152
153

$$\mathbf{x}_{k+1} = \mathbf{\Lambda}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k, \quad \mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{D}\mathbf{u}_k, \quad (2)$$

154
155

$$\text{where, } \mathbf{\Lambda}_d = \text{diag}(e^{\lambda_i \Delta_i}), \quad \mathbf{B}_d = \mathbf{\Lambda}^{-1}(\mathbf{\Lambda}_d - I)\mathbf{B}, \quad (3)$$

156
157
158
159
160
161

where the \mathbf{B}_d expression holds elementwise and extends continuously at $\lambda_i = 0$. Stability is enforced at the CT level (Hurwitz), i.e., $\Re(\lambda_i) < 0$, which implies $|e^{\lambda_i \Delta_i}| < 1$ and thus DT contractivity. A pointwise nonlinearity wraps the linear core to form the layer output, $f_\sigma(\mathbf{u}_k; \Sigma) = \sigma(\mathbf{C}\mathbf{x}_k + \mathbf{D}\mathbf{u}_k)$, optionally combined with residual and normalization layers. This diagonal parameterization admits closed-form per-mode discretization, simple stability control, and efficient kernel/scan implementations, while remaining applicable to both multi-SISO ($n = n_s h$) and MIMO ($n = n_m$) instantiations under a unified notation.

Figure 1: AIRE-Prune: Asymptotic Impulse Response Local Energy Score

4 AIRE-PRUNE: ASYMPTOTIC IMPULSE-RESPONSE ENERGY FOR STATE PRUNING IN STATE SPACE MODELS

State space model. We begin with a discrete-time (DT) diagonal state space layer

$$x_{k+1} = \Lambda x_k + B u_k, \quad y_k = C x_k, \quad (4)$$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ with $|\lambda_i| < 1$ (all poles strictly inside the unit circle). This spectral condition is the DT counterpart of asymptotic stability in control: it guarantees that perturbations decay and that linear system quantities defined as *infinite sums over time* are finite. Diagonal (or diagonalizable) parameterizations make stability explicit through pole variables $\{\lambda_i\}$ and enable mode-wise analysis.

Why energy as importance metric? In linear time-invariant (LTI) systems, “importance” has a canonical meaning: *how much output energy a direction (state) can transmit from inputs to outputs*. For stable discrete-time systems this energy is literally an *area under a curve*, over time (sum of squared impulse response) or over frequency (integral of squared transfer magnitude). This section develops that basic connection and, from it, derives a simple state-importance score and a practical pruning rule. An impulse (or white noise) excites all frequencies equally, so the measured energy reflects *aggregate* amplification (realizable to real input variations), not a single resonant tone.

For total (steady-state) output energy corresponding to a state, we consider a stable discrete-time SSM layer $\Sigma : (\Lambda, B, C)$ with zero initial state and an impulse input $u_k = \delta_{k0}$. The impulse response is

$$H_k = C \Lambda^k B,$$

and the output is $y_k = H_k$. The (squared) *steady-state output energy* is the discrete-time \mathcal{H}_2 energy

$$\|\Sigma\|_{\text{energy}}^2 = \underbrace{\frac{1}{2\pi} \int_0^{2\pi} \|G(e^{j\omega})\|_F^2 d\omega}_{\text{frequency domain}} = \underbrace{\sum_{k=0}^{\infty} \|H_k\|_F^2}_{\text{time domain}} = \sum_{k=0}^{\infty} \|C \Lambda^k B\|_F^2, \quad (5)$$

where the transfer function is $G(z) = C(zI - \Lambda)^{-1} B$, and Parseval’s identity yields the equality of time- and frequency-domain energies. This admits two equivalent interpretations that connect directly to control and signal processing: (i) *impulse energy*: the total squared output produced by a unit impulse, accumulated from $k = 0$ to ∞ ; and (ii) *long-run output power under unit white noise*: the steady-state variance of y_k when $u_k \sim \mathcal{N}(0, I)$ (by Parseval’s identity). Both views rely on $|\lambda_i| < 1$ to ensure that the series in equation 5 converges, which is the case for the diagonal SSMs considered here.

Per-mode energy via a geometric progression (finite horizon). For a single diagonal mode $\Sigma_i : (\lambda_i, B_{i,:}, C_{:,i})$ with $|\lambda_i| < 1$, the rank-1 impulse slice is $H_t^{(i)} = C_{:,i} \lambda_i^t B_{i,:}$. Using $\|uv^\top\|_F^2 = \|u\|_2^2 \|v\|_2^2$ for rank-1 outer products,

$$\|H_t^{(i)}\|_F^2 = |\lambda_i|^{2t} \|C_{:,i}\|_2^2 \|B_{i,:}\|_2^2. \quad (6)$$

Figure 2: AIRE-Prune: Prefix-normalized global scoring across all the layers. (Yellow shade defines pruned states as they correspond to low magnitude score)

Therefore, the (truncated) output energy contributed by mode i over horizon T is the geometric sum

$$E_i(T) = \sum_{t=0}^{T-1} \|\mathbf{H}_t^{(i)}\|_F^2 = \|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2 \sum_{t=0}^{T-1} |\lambda_i|^{2t} = \|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2 \frac{1 - |\lambda_i|^{2T}}{1 - |\lambda_i|^2}. \quad (7)$$

Stability of the state space model implies $|\lambda_i|^{2T} \rightarrow 0$ as $T \rightarrow \infty$. Taking the limit in equation 7 gives the *per-mode steady-state output energy which is equivalent to the impulse response energy*.

$$E_i = \lim_{T \rightarrow \infty} E_i(T) = \frac{\|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2}{1 - |\lambda_i|^2}, \quad (8)$$

and the total layer energy can be approximated as an additive sum across modes (Appendix A.1.2),

$$\|\Sigma\|_{\text{energy}}^2 \approx \sum_{i=1}^n E_i.$$

Pruning a set P of states removes their modal responses. The resulting change in layer energy is approximately the sum of their individual contributions:

$$\|\Sigma\|_{\text{energy}}^2 - \|\Sigma_{-P}\|_{\text{energy}}^2 \approx \sum_{i \in P} E_i. \quad (9)$$

Thus, to minimize steady-state distortion at the layer level, one should remove the *smallest-energy* modes. We therefore define the **energy (AIRE-Prune local) score** for state x_i as

$$\text{EnergyScore}_{\text{local}}(x_i) = E_i = \frac{\|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2}{1 - |\lambda_i|^2}. \quad (10)$$

Special cases. If \mathbf{B} is fixed and row-normalized (common in practice), then $\|\mathbf{B}_{i,:}\|_2 = 1$ and $E_i = \|\mathbf{C}_{:,i}\|_2^2 / (1 - |\lambda_i|^2)$. For bidirectional layers, $\|\mathbf{C}_{:,i}\|_2^2$ is replaced by the average of the forward and backward contributions.

Intuition: Why this score is a good importance measure. The score in Eq. equation 10 is (a) *mode-separable* (no large matrix solves), (b) *scale-aware* through the \mathbf{B}/\mathbf{C} couplings, and (c) *dynamics-aware* through the pole damping. A state with larger $\|\mathbf{B}_{i,:}\|_2$ (more controllable, i.e., easier to excite), larger $\|\tilde{\mathbf{C}}_{:,i}\|_2$ (more observable, i.e., easier to measure), or larger $|\lambda_i|$ (longer memory) has larger E_i and therefore induces a larger accuracy or variance drop if removed. This aligns pruning with steady-state distortion and empirically enables aggressive compression with negligible accuracy loss.

270 **Algorithm 1:** AIRE-Prune: Asymptotic Impulse-Response Energy for State Pruning

271 **Input:** SSM Layers $\{\ell = 1 \dots L\}$ with parameters $(\mathbf{A}^{(\ell)}, \mathbf{B}^{(\ell)}, \mathbf{C}^{(\ell)})$; prune ratio p .

272 **Output:** Kept-index sets $\{\mathcal{K}^{(\ell)}\}$ and pruned sets $\{\mathcal{P}^{(\ell)}\}$.

273

274 **1 Step 1: Per-mode asymptotic energy $E_i^{(\ell)}$.**

275 **2 for** $\ell \leftarrow 1$ **to** L **do**

276 3 Extract modal triplets $\{(\lambda_i^{(\ell)}, \mathbf{B}_{i,:}^{(\ell)}, \mathbf{C}_{:,i}^{(\ell)})\}_{i=1}^{n_\ell}$ with $|\lambda_i^{(\ell)}| < 1$.

277 4 $E_i^{(\ell)} \leftarrow \frac{\|\mathbf{C}_{:,i}^{(\ell)}\|_2^2 \|\mathbf{B}_{i,:}^{(\ell)}\|_2^2}{1 - |\lambda_i^{(\ell)}|^2}$

278

279

280 **5 Step 2: Per-layer sorting and prefix sums.**

281 **6 for** $\ell \leftarrow 1$ **to** L **do**

282 7 Sort modes by $E_i^{(\ell)}$ in descending order to get $E_{(1)}^{(\ell)} \geq \dots \geq E_{(n_\ell)}^{(\ell)}$ and their indices.

283 8 Compute prefix sums: $S_{(i)}^{(\ell)} \leftarrow \sum_{j \leq i} E_{(j)}^{(\ell)}$ for $i = 1 \dots n_\ell$.

284 9 Compute AIRE-Prune scores: $s_{(i)}^{(\ell)} \leftarrow \frac{E_{(i)}^{(\ell)}}{S_{(i)}^{(\ell)} + \varepsilon}$ where $\varepsilon \rightarrow 0$

285

286

287

288

289 **10 Step 3: Global selection**

290 **11 if** prune ratio p given **then**

291 12 $B \leftarrow \sum_{\ell=1}^L n_\ell \cdot (1 - p)$

292 13 Sort AIRE-Prune in descending order to get global list

293 $\mathcal{L} \leftarrow \{(s_{(i)}^{(\ell)}, \ell, i) \mid 1 \leq \ell \leq L, 1 \leq i \leq n_\ell\}$.

294

295 14 Find the value τ equal to the B -th largest score in \mathcal{L} Define the kept count per layer by

296 $k_\ell \leftarrow \max\{i : s_{(i)}^{(\ell)} \geq \tau\}$

297

298 **15 Step 4: Materialize keep/prune indices.**

299 **16 for** $\ell \leftarrow 1$ **to** L **do**

300 17 $\mathcal{K}^{(\ell)} \leftarrow$ original indices of the top k_ℓ sorted modes; $\mathcal{P}^{(\ell)} \leftarrow$ Pruned indices.

301 **18 return** $\{\mathcal{K}^{(\ell)}\}, \{\mathcal{P}^{(\ell)}\}$

302

303

304 **From local to global: layer normalization.** Per-mode asymptotic energies $E_i^{(\ell)}$ can differ in
 305 scale across layers (e.g., due to encoder/decoder gains), therefore we need to normalize individual
 306 layers in such a way to have a common global threshold for state pruning. The per-layer scales can
 307 differ substantially, so we first sort the states of each layer by their Per-mode Asymptotic Energy in
 308 descending order. Let $E_{(i)}^{(\ell)}$ denote the i -th largest per-mode asymptotic energy in layer ℓ , and define
 309 the *prefix sum*

$$S_{(i)}^{(\ell)} = \sum_{j \leq i} E_{(j)}^{(\ell)}.$$

310 We then use the **prefix-normalized score (AIRE-Prune)**

$$\text{AIREPrune}(x_{(i)}^{(\ell)}) = \frac{E_{(i)}^{(\ell)}}{S_{(i)}^{(\ell)} + \varepsilon}, \quad (11)$$

311 with a small $\varepsilon > 0$ for numerical stability. This “hazard-rate” ratio is *monotonically non-increasing*
 312 in i , enabling an *elbow-style, layer-adaptive* rule: given a single global threshold τ , we *keep* the
 313 longest prefix in each layer for which $\text{Score}_{\text{prefix}} \geq \tau$ and *prune* the remaining contiguous tail.

314 **Summary.** Stability ensures that infinite-horizon energy is well-posed; energy decomposes addi-
 315 tively by modes in diagonal SSMs; the closed-form per-mode energy equation 10 gives an inter-
 316 pretable, dynamics- and scale-aware *local* importance; and simple *layer normalization* equation 11
 317 turns these into globally comparable scores for cross-layer sensitive pruning. Refer Appendix for
 318 mathematical analysis of the above.

Method	State importance
Random	—
Uniform magnitude	$ \bar{\lambda}_i \ \bar{\mathbf{B}}_i\ \ \mathbf{C}_i\ $
Global magnitude	$ \bar{\lambda}_i \ \bar{\mathbf{B}}_i\ \ \mathbf{C}_i\ $
LAMP	$\frac{ \bar{\lambda}_i ^2 \ \bar{\mathbf{B}}_i\ ^2 \ \mathbf{C}_i\ ^2}{\sum_{j \leq i} \bar{\lambda}_j ^2 \ \bar{\mathbf{B}}_j\ ^2 \ \mathbf{C}_j\ ^2}$
Uniform \mathcal{H}_∞	$\frac{\ \mathbf{C}_i\ ^2 \ \bar{\mathbf{B}}_i\ ^2}{(1 - \bar{\lambda}_i)^2}$
Global \mathcal{H}_∞	$\frac{\ \mathbf{C}_i\ ^2 \ \bar{\mathbf{B}}_i\ ^2}{(1 - \bar{\lambda}_i)^2}$
LAST	$\frac{\ \mathbf{C}_i\ ^2 \ \bar{\mathbf{B}}_i\ ^2}{(1 - \bar{\lambda}_i)^2}$
AIRE-Prune (ours)	$\frac{\ \mathbf{C}_i\ ^2 \ \bar{\mathbf{B}}_i\ ^2}{\sum_{j \leq i} \frac{\ \mathbf{C}_j\ ^2 \ \bar{\mathbf{B}}_j\ ^2}{1 - \bar{\lambda}_j ^2}}$

(a) State-importance definitions

(b) Accuracy loss vs. pruning ratio.

Figure 3: Comparison across baselines

5 EXPERIMENTS

5.1 SETUP

Models and tasks. We evaluate pruning on the **S5** (MIMO) SSM (Smith et al., 2023) across the six Long Range Arena (LRA) tasks (Tay et al., 2021) and the **Speech Commands** 35-way keyword recognition benchmark (Warden, 2018) (sequence length 16,000). All runs use a single **NVIDIA H100** (40GB/80GB) GPU with the released S5 training and inference configuration. Unless noted otherwise, we report one-shot pruning (no retraining) and evaluate accuracy by freezing all parameters.

Baselines. We compare against six pruning baselines which includes random, uniform magnitude, global magnitude, LAMP (J. Lee & Shin, 2021), Uniform H_∞ (Gwak et al., 2025), Global H_∞ (Gwak et al., 2025), LAST (Gwak et al., 2025). Figure 3a shows the state importance metric (scoring method) for the baselines.

Additional architectures. Beyond S5, we also evaluate AIRE-PRUNE on **S4D** and **Mamba (S6)** backbones to test generalization across SSM families. Task-wise pruning/accuracy numbers for these models on LRA are summarized in Table 2.

Pruning ratios. For methods that allocate layerwise budgets (Global H_∞ , AIRE-Prune), we report *average* pruning ratios across layers. We sweep pruning ratios from {0% to 100%} with step size of 10% for Uniform H_∞ (Gwak et al., 2025), Global H_∞ (Gwak et al., 2025), LAST (Gwak et al., 2025) and AIRE-Prune (our work) as in Figure 4. A ratio of 100% would leave a single complex-conjugate pair per layer.

5.2 ANALYSIS

Long Range Arena (S5). We evaluate AIRE-Prune on the LRA suite (Tay et al., 2021), which probes long-range dependencies with sequence lengths from 1,024 to 16,384. In all runs we apply a single global threshold to the prefix-normalized AIRE scores and prune without any retraining. Table 1 reports the post-pruning accuracies.

Figure 4: Trade-off curves between pruning ratio and accuracy for pruned S5 models across tasks in the LRA benchmark. Baselines LAST, Uniform H_∞ , Global H_∞ are referred from (Gwak et al., 2025)

Table 1: **Task-wise accuracy on LRA and Speech Commands with S5.** Pruning ratio (Prun.) and post-pruning accuracy (Acc.). Numbers for Full/Uniform H_∞ /Global H_∞ /LAST (Gwak et al., 2025) are compared with AIRE-Prune (ours).

Model	ListOps (2,048)		Text (4,096)		Retrieval (4,000)		Image (1,024)		Pathfinder (1,024)		Path-X (16,384)		Speech (16,000)	
	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.
S5 Full	0%	61.48	0%	88.88	0%	91.20	0%	87.30	0%	95.15	0%	98.41	0%	96.43
Uniform H_∞	0%	61.48	60%	82.49	50%	90.29	30%	86.45	30%	71.38	30%	90.90	20%	96.20
Global H_∞	0%	61.48	60%	88.56	50%	90.93	30%	87.04	30%	57.20	30%	69.21	20%	96.21
LAST	0%	61.48	60%	88.52	50%	90.42	30%	86.34	30%	94.45	30%	97.95	20%	96.31
AIRE-Prune (ours)	20%	61.48	80%	88.24	50%	90.11	65%	87.30	80%	95.15	70%	98.41	45%	96.40

Speech Commands (S5). On Speech Commands, AIRE-PRUNE achieves **45%** state pruning while essentially preserving accuracy (96.40% vs. 96.43% for the full S5 model; Table 1). This mirrors the high-compressibility regime observed on several LRA tasks and indicates that AIRE’s energy-based ranking transfers cleanly from synthetic long-range benchmarks to real audio classification.

Aggregate outcome. Averaged across tasks, AIRE-Prune removes **60.8%** of states with only **0.29 pp** accuracy drop (Figure 3b, last row). In the common “ ≤ 1 pp loss” regime, compressibility is task-dependent: *Text*, *Pathfinder*, and *Path-X* sustain **80%**, **80%**, and **70%** pruning, respectively, while matching or nearly matching full accuracy (*Text*: 88.24 vs. 88.88; *Pathfinder*: 95.15 vs. 95.15; *Path-X*: 98.41 vs. 98.41; Table 1). *Retrieval* and *Image* tolerate **50-65%** pruning at ≤ 1 pp loss (*Retrieval*: 90.11 vs. 90.93; *Image*: 87.30 vs. 87.30). *ListOps* is sensitive, admitting only **20%** pruning before degradation; at this operating point, accuracy is preserved (61.48 vs. 61.48).

Comparison to baselines. At high compression (right half of each panel in Fig. 4), AIRE-PRUNE dominates *Uniform/Global H_∞* magnitude rules and outperforms LAST under the ≤ 1 pp loss criterion. This is mirrored in the *average accuracy loss* of Figure 3b: AIRE-PRUNE (0.29 pp) improves over *Uniform H_∞* (4.32 pp), *Global H_∞* (7.51 pp), and LAST (0.52 pp), while achieving a much higher *average* pruning ratio (60.8% vs. 33% for those methods; $\approx 1.8 \times$ higher).

Generalization to S4D and Mamba. Table 2 shows that AIRE-PRUNE also yields competitive pruning/accuracy trade-offs on **S4D** and **Mamba**. On S4D, AIRE attains up to **90%** pruning on *Text* and **40%** on *Image* while closely tracking full-model accuracy. On Mamba, AIRE safely prunes

432 Table 2: **Task-wise accuracy on LRA with S4D and Mamba.** Pruning ratio (Prun.) and post-
 433 pruning accuracy (Acc.). Numbers for Full/Uniform H_∞ /Global H_∞ /LAST (Gwak et al., 2025)
 434 (S4D) are compared with AIRE-Prune (ours).

Model	ListOps (2,048)		Text (4,096)		Retrieval (4,000)		Image (1,024)	
	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.	Prun.	Acc.
S4D Full	0%	56.42	0%	86.40	0%	90.46	0%	77.02
Uniform H_∞	10%	55.82	80%	86.02	60%	89.87	0%	77.02
Global H_∞	10%	49.95	80%	86.20	60%	89.84	0%	77.02
LAST	10%	56.27	80%	85.95	60%	89.46	0%	77.02
AIRE-Prune (ours)	35%	56.07	90%	85.83	-%	-	40%	76.32
Mamba Full	0%	38.02	0%	82.98	0%	72.14	0%	69.82
LAST	-%	-	20%	81.32	45%	71.37	45%	69.13
AIRE-Prune (ours)	-%	-	45%	81.19	60%	71.45	80%	68.97

448 Table 3: **Performance (S5):** pruning ratios and resulting inference speedups and parameter-memory
 449 reductions for S5

Metric ↓ / Dataset →	ListOps	Text	Retrieval	Image	Pathfinder	Path-X
Pruning ratio	20%	80%	50%	65%	80%	70%
Inference speedup (×)	1.23×	2.49×	1.82×	1.93×	2.82×	2.86×
Model reduction (%)	19.3%	58.7%	38.3%	45.3%	64.7%	64.2%

457 **45%** of states on *Text*, **60%** on *Retrieval*, and **80%** on *Image* with negligible degradation. These
 458 results suggest that the asymptotic energy ranking is not tied to a specific SSM parameterization and
 459 can serve as a drop-in pruning rule across modern state-space architectures.

461 **Superiority over state of the art.** Against the strongest baselines (Uniform/Global H_∞ and
 462 LAST), AIRE-PRUNE delivers strictly larger *safe* no-retrain budgets (defined at ≤ 1 pp accuracy
 463 drop) on five of six LRA tasks while matching or exceeding accuracy. From Table 1, AIRE’s safe
 464 pruning exceeds the best baseline by **+20 pp** on *ListOps*, **+20 pp** on *Text*, **+35 pp** on *Image*, **+50 pp**
 465 on *Pathfinder*, and **+40 pp** on *Path-X*; on *Retrieval*, the listed AIRE point at 50% misses the ≤ 1 pp
 466 rule by only 0.09 pp, yielding no advantage at that specific sample yet remaining competitive with
 467 the best baseline. We attribute this margin to AIRE’s time-accumulated energy lens and prefix
 468 normalization, which together create strong head-tail separation and enable a single global threshold to
 469 keep essential modes intact and collapse low-energy layers, a behavior not observed in magnitude-
 470 or peak-gain-based scoring.

471 **Inference efficiency and model size.** We next quantify the system-level impact of pruning-by-
 472 removal. For each LRA task, we transfer the kept states into a dimension-reduced S5 model and
 473 measure inference throughput and parameter reduction on an NVIDIA H100 GPU (Table 3). Across
 474 tasks, AIRE’s pruning schedules yield **1.2×–2.9×** speedups and **19%–65%** reductions in parameter
 475 count, with larger gains on high-pruning regimes such as *Pathfinder* and *Path-X*. This confirms that
 476 aggressive state pruning translates into meaningful computational and memory savings, not just
 477 abstract sparsity. Similar analysis for Mamba has been mentioned in Appendix C.3

479 **Accuracy drop vs. pruning ratio.** Figure 4 exhibits a pronounced *elbow/step* for *AIRE-Prune*:
 480 accuracy remains near the full model up to a high pruning threshold, then drops sharply; in contrast,
 481 baselines degrade *smoothly* as pruning increases. We interpret the step as evidence that AIRE’s ranking
 482 separates *important* from *unimportant* states with a wide margin, while smooth curves indicate
 483 that pruning mixes both groups throughout the sweep. *Takeaway.* The step-like profile is robust only
 484 when using AIRE energies *and* prefix normalization, which together keep the high-margin *head* in-
 485 tact and prune contiguous *tails*. Baselines show smooth decay because their scores offer weaker
 486 head-tail separation, so valuable states are progressively removed throughout the sweep.

Figure 5: Layer-wise pruning ratio as we increase the global pruning threshold for S5 models across tasks in the LRA benchmark.

Layer-wise pruning profile. Figure 5 shows kept-state percentages per layer as the global ratio increases, revealing task-specific structure. On *Path-X* and *Pathfinder*, AIRE progressively thins later layers and, at high ratios, can *remove entire layers* whose states fall below the global threshold, turning fine-grained sparsity into block-level deletions. This indicates that our method can help achieve low-latency SSMs, as we are able to prune layers without losing accuracy. For *Text* and *Retrieval*, earlier layers retain larger fractions while mid/late layers contribute most of the budget, consistent with encoder-style front-end processing. *Image* exhibits more even shrinkage until its elbow, after which a few layers collapse. *ListOps* shows non-trivial contribution from all layers even at small ratios, explaining its early elbow and our conservative cap around 20%. This heterogeneous, layer-selective behavior contrasts with reported layer pruning profile of LAST (Gwak et al., 2025), which tends to have more uniform pruning among layers at similar global budgets.

6 CONCLUSION

We introduced AIRE-PRUNE, a training-free pruning criterion for diagonal (or diagonalized) state-space models that ranks modes by *asymptotic output energy*, combined with *prefix normalization* that puts scores from different layers on a common scale. With a single global threshold and *no retraining*, AIRE-PRUNE achieves strong compression/accuracy trade-offs across the LRA benchmark.

Summary of findings. Averaged over tasks for S5, AIRE-PRUNE removes **60.8%** of states while incurring only **0.29** percentage points of accuracy loss. Under a ≤ 1 pp loss budget, it safely prunes **80%** on *Text* and *Pathfinder*, **70%** on *Path-X*, **65%** on *Image*, **50%** on *Retrieval*, and even **20%** on the often-labeled “incompressible” *ListOps*. Across the board, AIRE-Prune dominates across all the baselines.

Practical implications. Because scores are computed once and applied globally, practitioners can: (i) set a target budget without per-layer tuning; (ii) sweep to the elbow and stop just before it to maximize savings at fixed accuracy; and (iii) realize system-level gains by deleting entire layers whenever their states fall below threshold, converting fine-grained sparsity into *block-structured* reductions that are easier to deploy on hardware.

Future Work. AIRE—Prune can be analyzed on language datasets for *input-selective* models like Mamba, where state matrices are input dependent. Pruning can be thought of estimating energy under gating dynamics (e.g., Monte-Carlo over gates) for robust state scoring and applying to the AIRE-Prune closed form solution.

540 REFERENCES
541

542 Athanasios C. Antoulas and Danny C. Sorensen. Approximation of large-scale dynamical systems:
543 An overview. *International Journal of Applied Mathematics and Computer Science*, 11(5):1093–
544 1121, 2001.

545 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
546 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
547 composable transformations of python+ numpy programs. 2018.

548 Ruth F. Curtain and Hans Zwart. *An Introduction to Infinite-Dimensional Linear Systems Theory*,
549 volume 21 of *Texts in Applied Mathematics*. Springer Science & Business Media, 2012.

550 Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. *arXiv*
551 preprint [arXiv:1902.09574](https://arxiv.org/abs/1902.09574), 2019.

552 M. Green and D. J. N. Limebeer. *Linear Robust Control*. Courier Corporation, 2012.

553 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
554 preprint [arXiv:2312.00752](https://arxiv.org/abs/2312.00752), 2023. URL <https://arxiv.org/abs/2312.00752>.

555 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
556 with optimal polynomial projections. In *Advances in Neural Information Processing Systems*,
557 volume 33, pp. 1474–1487, 2020.

558 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
559 bining recurrent, convolutional, and continuous-time models with linear state space layers. In
560 *Advances in Neural Information Processing Systems*, volume 34, pp. 572–585, 2021.

561 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initial-
562 ization of diagonal state space models. In *Advances in Neural Information Processing Systems*,
563 volume 35, pp. 35971–35983, 2022a.

564 Albert Gu, Karan Goel, and Christopher Ré. Selective state spaces for long sequences. In *Inter-
565 national Conference on Learning Representations (ICLR)*, 2022b.

566 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
567 state spaces. In *International Conference on Learning Representations*, 2022c. URL <https://openreview.net/forum?id=uYLFoz1vlAC>.

568 Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
569 state spaces. In *Advances in Neural Information Processing Systems*, volume 35, pp. 22982–
570 22994, 2022.

571 Minseon Gwak, Seongrok Moon, Joohwan Ko, and PooGyeon Park. Layer-adaptive state pruning
572 for deep state space models. In *Proceedings of the 38th International Conference on Neural*
573 *Information Processing Systems*, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc.
574 ISBN 9798331314385.

575 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
576 efficient neural networks. In *Advances in Neural Information Processing Systems*, volume 28,
577 2015.

578 S. Mo S. Ahn J. Lee, S. Park and J. Shin. Layer-adaptive sparsity for the magnitude-based pruning.
579 In *International Conference on Learning Representations (ICLR)*, 2021.

580 B. L. Jones and E. C. Kerrigan. When is the discretization of a spatially distributed system good
581 enough for control? *Automatica*, 46(9):1462–1468, 2010.

582 Thomas Kailath. *Linear Systems*. 01 1980.

583 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
584 nical report, University of Toronto, 2009.

594 J.-R. Li and J. White. Efficient model reduction of interconnect via approximate system grami-
 595 ans. In *Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design*
 596 (*ICCAD*), pp. 380–383. IEEE, 1999.

597

598 Drew Linsley, Jinkyung Kim, Vijay Veerabadrán, Charles Windolf, and Thomas Serre. Learning
 599 long-range spatial dependencies with horizontal gated recurrent units. In *Advances in Neural*
 600 *Information Processing Systems*, volume 31, 2018.

601 Andrew Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
 602 Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the*
 603 *Association for Computational Linguistics: Human Language Technologies*, pp. 142–150, 2011.

604

605 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine Gibescu,
 606 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
 607 tivity inspired by network science. *Nature Communications*, 9(1):2383, 2018.

608 Ari S. Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
 609 Generalizing lottery ticket initializations across datasets and optimizers. In *Advances in Neural*
 610 *Information Processing Systems*, volume 32, 2019.

611

612 Nikita Nangia and Samuel R. Bowman. Listops: A diagnostic dataset for latent tree learning. *arXiv*
 613 *preprint arXiv:1804.06028*, 2018. URL <https://arxiv.org/abs/1804.06028>.

614

615 R. N. Parnichkun, Stefano Massaroli, Andrea Moro, J. T. Smith, Ramin Hasani, Mathias Lechner,
 616 Qian An, Christopher Ré, Hajime Asama, Stefano Ermon, et al. State-free inference of state-
 617 space models: The transfer function approach. *arXiv preprint arXiv:2405.06147*, 2024. URL
<https://arxiv.org/abs/2405.06147>.

618

619 Dragomir R. Radev, Paramveer Muthukrishnan, and Vahed Qazvinian. The acl anthology net-
 620 work corpus. In Min-Yen Kan and Simone Teufel (eds.), *Proceedings of the 2009 Workshop*
 621 *on Text and Citation Analysis for Scholarly Digital Libraries*, pp. 54–61, Suntec City, Singapore,
 622 August 2009. Association for Computational Linguistics. URL <https://aclanthology.org/W09-3607>.

623

624 J. T. Smith, Adam Warrington, and Scott W. Linderman. Simplified state space layers for se-
 625 quence modeling. In *International Conference on Learning Representations (ICLR)*, 2023.
 626 *arXiv:2208.04933*.

627

628 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
 629 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
 630 transformers. In *International Conference on Learning Representations (ICLR)*, 2021.

631

632 Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018. URL
<https://arxiv.org/abs/1804.03209>.

633

634 Xu, Z. Wang, X. Geng, M. Wu, X. Li, and W. Lin. Efficient joint optimization of layer-adaptive
 635 weight pruning in deep neural networks. In *Proceedings of the IEEE/CVF International Confer-
 636 ence on Computer Vision (ICCV)*, pp. 17447–17457, 2023.

637

638 M. Zhang, K. K. Saab, M. Poli, T. Dao, K. Goel, and C. Ré. Effectively modeling time series
 639 with simple discrete state spaces. In *The International Conference on Learning Representations*
 640 (*ICLR*), 2023. URL <https://openreview.net/forum?id=3mR3h--Kq6n>.

641

642 Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
 643 model compression. *arXiv preprint arXiv:1710.01878*, 2017.

644

645

646

647

648 **A APPENDIX**649 **A.1 MATHEMATICAL PROOFS**650 **A.1.1 VECTOR/MATRIX INNER PRODUCTS AND NORMS**651 **Euclidean space.** For $\mathbf{x} \in \mathbb{C}^n$, the standard inner product and induced 2-norm are

652
$$\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^* \mathbf{y}, \quad \|\mathbf{x}\|_2 := \sqrt{\mathbf{x}^* \mathbf{x}}.$$

653 The Cauchy–Schwarz inequality gives $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$.654 **Frobenius (Hilbert–Schmidt) structure.** For $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$, the Frobenius inner product and
655 norm are

656
$$\langle \mathbf{A}, \mathbf{B} \rangle_F := \text{tr}(\mathbf{A}^* \mathbf{B}), \quad \|\mathbf{A}\|_F := \sqrt{\text{tr}(\mathbf{A}^* \mathbf{A})} = \left(\sum_{i,j} |a_{ij}|^2 \right)^{1/2}.$$

657 This norm is: (i) *unitarily invariant* ($\|\mathbf{U} \mathbf{A} \mathbf{V}\|_F = \|\mathbf{A}\|_F$ for unitary \mathbf{U}, \mathbf{V}), (ii) *compatible* with
658 vectorization ($\|\mathbf{A}\|_F = \|\text{vec}(\mathbf{A})\|_2$), and (iii) *submultiplicative* with respect to the spectral norm:
659 $\|\mathbf{AB}\|_F \leq \|\mathbf{A}\|_2 \|\mathbf{B}\|_F$ and $\|\mathbf{AB}\|_F \leq \|\mathbf{A}\|_F \|\mathbf{B}\|_2$.660 **Rank-1 outer products.** Given $\mathbf{u} \in \mathbb{C}^m$ and $\mathbf{v} \in \mathbb{C}^n$, the outer product $\mathbf{u}\mathbf{v}^* \in \mathbb{C}^{m \times n}$ has entries
661 $(\mathbf{u}\mathbf{v}^*)_{ij} = u_i \bar{v}_j$.662 **A.1.2 IDENTITY FOR RANK-1 TERMS**663 [Frobenius norm of a rank-1 outer product] For $\mathbf{u} \in \mathbb{C}^m$ and $\mathbf{v} \in \mathbb{C}^n$,

664
$$\|\mathbf{u}\mathbf{v}^*\|_F^2 = \|\mathbf{u}\|_2^2 \|\mathbf{v}\|_2^2.$$

665
$$\|\mathbf{u}\mathbf{v}^*\|_F^2 = \sum_{i,j} |u_i \bar{v}_j|^2 = \left(\sum_i |u_i|^2 \right) \left(\sum_j |v_j|^2 \right) = \|\mathbf{u}\|_2^2 \|\mathbf{v}\|_2^2.$$

666 **A.1.3 “ENERGY” INTERPRETATION OF $\|\mathbf{H}_t\|_F^2$** 667 For an LTI system with $\mathbf{y}_t = \sum_{k \geq 0} \mathbf{H}_k \mathbf{u}_{t-k}$ and a zero-mean white input $\mathbf{u}_t \sim \mathcal{CN}(0, \mathbf{I}_h)$ inde-
668 pendent across t , the instantaneous output power contributed by the k -lag kernel is

669
$$\mathbb{E} \|\mathbf{H}_k \mathbf{u}_{t-k}\|_2^2 = \mathbb{E} \text{tr}(\mathbf{u}_{t-k}^* \mathbf{H}_k^* \mathbf{H}_k \mathbf{u}_{t-k}) = \text{tr}(\mathbf{H}_k^* \mathbf{H}_k \mathbb{E}[\mathbf{u}_{t-k} \mathbf{u}_{t-k}^*]) = \text{tr}(\mathbf{H}_k^* \mathbf{H}_k) = \|\mathbf{H}_k\|_F^2.$$

670 Thus, $\|\mathbf{H}_k\|_F^2$ equals the expected output energy (power for unit-variance inputs) contributed by
671 the k -th impulse slice. The same holds componentwise for $\mathbf{H}_t^{(i)}$, so $\|\mathbf{H}_t^{(i)}\|_F^2$ quantifies the energy
672 carried by the i -th mode at lag t . Moreover, since $\|\mathbf{H}_t\|_F^2 = \sum_i \|\mathbf{H}_t^{(i)}\|_F^2$ when the rank-1 terms
673 are mutually orthogonal in the Frobenius inner product, or more generally $\|\mathbf{H}_t\|_F^2 = \text{tr}(\mathbf{H}_t^* \mathbf{H}_t)$
674 always, this norm provides a natural, additive energy accounting across modes and lags.675 **A.1.4 CONNECTION TO THE \mathcal{H}_2 NORM (TOTAL ENERGY)**676 For a stable MIMO LTI system with transfer matrix $\mathbf{G}(z)$ and impulse sequence $\{\mathbf{H}_t\}$,

677
$$\|\mathbf{G}\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_0^{2\pi} \text{tr}(\mathbf{G}(e^{j\omega})^* \mathbf{G}(e^{j\omega})) d\omega = \sum_{t=0}^{\infty} \|\mathbf{H}_t\|_F^2,$$

678 by Parseval/Plancherel (discrete-time). Hence the Frobenius-squared of impulse slices sums to the
679 total output energy for white inputs. This makes $\|\mathbf{H}_t\|_F^2$ a natural energy density over lags.680 **A.1.5 REAL VS. COMPLEX DATA; BIDIRECTIONALITY**681 If the model uses complex pairs to represent real-valued dynamics, terms appear as conjugate pairs
682 whose sum is real. Use \mathbf{v}^* (not \mathbf{v}^\top) in complex algebra; in purely real settings, $\mathbf{v}^* = \mathbf{v}^\top$. For bidi-
683 rectional SSMs, one can form an augmented LTI with block-diagonal forward/backward dynamics;
684 the energy accounting above applies componentwise and adds.

702 B FROM ENERGY-BASED PRUNING TO WORST-CASE CERTIFICATES 703

704 B.1 SCOPE AND PROMISE (WHAT THIS APPENDIX DELIVERS) 705

- 706 • **What AIRE-Prune proposes.** An *energy-based*, post-training, layer-adaptive pruning rule
707 for diagonal (or diagonalizable) state-space layers that uses a single global threshold.
- 708 • **What we add here.** A precise, *worst-case* (H_∞) *error certificate* that complements the
709 original *typical-case* (energy/ H_2) rationale, and an end-to-end distortion bound for a resid-
710 ual stack with Lipschitz wrappers.
- 711 • **Why it matters.** You keep the same AIRE ranking/thresholding, but now with a com-
712 putable, auditable guarantee; we also position the result against LAST (Gwak et al., 2025)
713 and highlight the mathematical differences.

714 B.2 BACKGROUND: DIAGONAL SSM LAYERS AND ENERGY (NO PRIOR KNOWLEDGE 715 ASSUMED) 716

717 **Diagonal/diagonalized SSM layer.** Let $\mathbf{x}_{k+1} = \mathbf{\Lambda}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$ and $\mathbf{y}_k = \mathbf{C}\mathbf{x}_k$, with $\mathbf{\Lambda} =$
718 $\text{diag}(\lambda_1, \dots, \lambda_n)$, $|\lambda_i| < 1$ for stability. The impulse response and frequency response are
719

$$720 \mathbf{H}_t = \mathbf{C}\mathbf{\Lambda}^t \mathbf{B} \quad (t = 0, 1, 2, \dots), \quad \mathbf{G}(e^{j\omega}) = \mathbf{C}(\mathbf{I} - \mathbf{\Lambda}e^{-j\omega})^{-1} \mathbf{B} = \sum_{i=1}^n \frac{\mathbf{C}_{:,i} \mathbf{B}_{i,:}}{1 - \lambda_i e^{-j\omega}}.$$

723 Each mode i contributes a rank-1 impulse slice $\mathbf{H}_t^{(i)} = \mathbf{C}_{:,i} \lambda_i^t \mathbf{B}_{i,:}$.

724 **Energy (H_2) of a layer and a mode.** Parseval implies
725

$$726 \|\Sigma\|_{\text{energy}}^2 = \sum_{t=0}^{\infty} \|\mathbf{H}_t\|_F^2 = \frac{1}{2\pi} \int_0^{2\pi} \|\mathbf{G}(e^{j\omega})\|_F^2 d\omega.$$

729 Using $\|\mathbf{u}\mathbf{v}^*\|_F^2 = \|\mathbf{u}\|_2^2 \|\mathbf{v}\|_2^2$ and the geometric series,

$$731 E_i \triangleq \sum_{t=0}^{\infty} \|\mathbf{H}_t^{(i)}\|_F^2 = \frac{\|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2}{1 - |\lambda_i|^2}, \quad \|\Sigma\|_{\text{energy}}^2 = \sum_{i=1}^n E_i.$$

733 *Intuition.* E_i is the mode's long-run output power (e.g., under unit white-noise inputs). If \mathbf{B} rows
734 are normalized, then $E_i = \|\mathbf{C}_{:,i}\|_2^2 / (1 - |\lambda_i|^2)$.
735

736 B.3 AIRE-PRUNE: THE ALGORITHM 737

- 738 1. **Per-mode energy.** Compute E_i for each state in each layer.
- 739 2. **Sort & prefix sums (per layer).** Sort $E_{(1)} \geq \dots \geq E_{(n)}$; set $S(i) = \sum_{j \leq i} E_{(j)}$.
- 740 3. **Prefix-normalized score.**

$$741 s(i) = \frac{E(i)}{S(i) + \varepsilon}, \quad 0 < \varepsilon \ll 1.$$

743 This score is monotone non-increasing in i ; a single global threshold τ causes each layer
744 to *keep its longest prefix* and *prune a contiguous tail*.
745

- 746 4. **Global threshold.** Concatenate all $s(i)$ across layers, choose τ for the desired global
747 budget, and materialize kept/pruned indices per layer.

748 *Practical effect.* The prefix rule yields clear head-tail separation and, at higher thresholds, may
749 delete entire low-energy layers, which helps wall-clock latency.
750

751 B.4 WHY DISCUSS WORST-CASE BOUNDS IF ENERGY ALREADY WORKS? 752

753 The energy lens (H_2) explains typical/average behavior and aligns with many workloads. We there-
754 fore derive an H_∞ *certificate* from the same energy quantities AIRE already computes, plus a single
755 stability factor. The method remains unchanged; the mathematics provides assurance why AIRE-
Prune works.

756 WHY THE BOUND SHOULD HOLD
757

758 Sort a layer’s states by energy. Cumulative energy vs. kept states shows an elbow: most energy sits
759 in a short head. Pruning the tiny tail barely changes the typical output. Our result shows the *worst-
760 case* change is also small unless pruned poles are extremely close to the unit circle. The stability
761 margin enters through a single factor.

762
763 B.5 PER-LAYER WORST-CASE (H_∞) CERTIFICATE FROM ENERGY TAILS
764

765 **Goal.** We want to bound the worst-case (induced $\ell_2 \rightarrow \ell_2$) error of a layer after pruning a set of
766 modes \mathcal{T} :

$$767 \varepsilon \triangleq \|\mathbf{G} - \tilde{\mathbf{G}}\|_\infty = \sup_{\omega \in [0, 2\pi)} \left\| \sum_{i \in \mathcal{T}} \mathbf{G}_i(e^{j\omega}) \right\|_2, \quad \mathbf{G}_i(e^{j\omega}) = \frac{\mathbf{C}_{:,i} \mathbf{B}_{i,:}}{1 - \lambda_i e^{-j\omega}}.$$

770 **Step 1: Triangle inequality under the H_∞ norm.** The induced (operator) 2-norm satisfies $\|\mathbf{A} +$
771 $\mathbf{B}\|_2 \leq \|\mathbf{A}\|_2 + \|\mathbf{B}\|_2$. Taking the supremum over ω preserves the inequality:

$$772 \varepsilon = \sup_{\omega} \left\| \sum_{i \in \mathcal{T}} \mathbf{G}_i(e^{j\omega}) \right\|_2 \stackrel{\text{(triangle)}}{\leq} \sup_{\omega} \sum_{i \in \mathcal{T}} \|\mathbf{G}_i(e^{j\omega})\|_2 \\ 773 \stackrel{\text{(sup subadditivity)}}{\leq} \sum_{i \in \mathcal{T}} \sup_{\omega} \|\mathbf{G}_i(e^{j\omega})\|_2 = \sum_{i \in \mathcal{T}} \|\mathbf{G}_i\|_\infty.$$

774 Hence,

$$775 \varepsilon \leq \sum_{i \in \mathcal{T}} \|\mathbf{G}_i\|_\infty. \quad (12)$$

776 **Step 2: Per-mode H_∞ envelope.** Write $\mathbf{G}_i(e^{j\omega}) = \frac{\mathbf{C}_{:,i} \mathbf{B}_{i,:}}{1 - \lambda_i e^{-j\omega}}$. For a rank-1 matrix $\mathbf{u}\mathbf{v}^*$,
777 $\|\mathbf{u}\mathbf{v}^*\|_2 = \|\mathbf{u}\|_2 \|\mathbf{v}\|_2$, so define

$$778 \alpha_i \triangleq \|\mathbf{C}_{:,i}\|_2 \|\mathbf{B}_{i,:}\|_2 = \|\mathbf{C}_{:,i} \mathbf{B}_{i,:}\|_2.$$

779 For any ω , the reverse triangle inequality gives $|1 - \lambda_i e^{-j\omega}| \geq 1 - |\lambda_i|$. Therefore,

$$780 \|\mathbf{G}_i(e^{j\omega})\|_2 = \frac{\alpha_i}{|1 - \lambda_i e^{-j\omega}|} \leq \frac{\alpha_i}{1 - |\lambda_i|} \Rightarrow \|\mathbf{G}_i\|_\infty \leq \frac{\alpha_i}{1 - |\lambda_i|}. \quad (13)$$

781 **Step 3: Express the peak envelope via the energy E_i .** By definition of the per-mode energy
782 (asymptotic impulse/white-noise energy),

$$783 E_i = \frac{\|\mathbf{C}_{:,i}\|_2^2 \|\mathbf{B}_{i,:}\|_2^2}{1 - |\lambda_i|^2} = \frac{\alpha_i^2}{1 - |\lambda_i|^2}.$$

784 Solving for α_i and substituting into equation 13:

$$785 \alpha_i = \sqrt{E_i} \sqrt{1 - |\lambda_i|^2} \Rightarrow \frac{\alpha_i}{1 - |\lambda_i|} = \sqrt{E_i} \frac{\sqrt{1 - |\lambda_i|^2}}{1 - |\lambda_i|} = \sqrt{E_i} \sqrt{\frac{1 + |\lambda_i|}{1 - |\lambda_i|}}.$$

786 Thus, for every pruned mode i ,

$$787 \|\mathbf{G}_i\|_\infty \leq \sqrt{E_i} \sqrt{\frac{1 + |\lambda_i|}{1 - |\lambda_i|}}. \quad (14)$$

788 **Step 4: Uniform “stability factor” over the pruned set.** Let

$$789 \rho \triangleq \max_{i \in \mathcal{T}} |\lambda_i| \quad \text{and} \quad \kappa(\rho) \triangleq \sqrt{\frac{1 + \rho}{1 - \rho}}.$$

810 The scalar function $x \mapsto \sqrt{\frac{1+x}{1-x}}$ is increasing on $[0, 1)$, so for all $i \in \mathcal{T}$,

$$812 \quad 813 \quad 814 \quad \sqrt{\frac{1+|\lambda_i|}{1-|\lambda_i|}} \leq \kappa(\rho).$$

815 Combining with equation 14 yields the uniform bound

$$817 \quad \|G_i\|_\infty \leq \kappa(\rho) \sqrt{E_i}, \quad \forall i \in \mathcal{T}. \quad (15)$$

819 **Step 5: First aggregate bound (linear in $\sqrt{E_i}$).** Substitute equation 15 into equation 12:

$$821 \quad 822 \quad \varepsilon \leq \sum_{i \in \mathcal{T}} \kappa(\rho) \sqrt{E_i} = \kappa(\rho) \sum_{i \in \mathcal{T}} \sqrt{E_i}. \quad (16)$$

824 **Step 6: Second aggregate bound via Cauchy–Schwarz (root-of-sum).** For nonnegative $\{a_i\}$
825 and $m = |\mathcal{T}|$, Cauchy–Schwarz gives $\sum_{i=1}^m a_i \leq \sqrt{m} \sqrt{\sum_{i=1}^m a_i^2}$. Apply this with $a_i = \sqrt{E_i}$:

$$827 \quad 828 \quad \sum_{i \in \mathcal{T}} \sqrt{E_i} \leq \sqrt{|\mathcal{T}|} \sqrt{\sum_{i \in \mathcal{T}} E_i}.$$

830 Combining with equation 16 yields

$$832 \quad \varepsilon \leq \kappa(\rho) \sqrt{|\mathcal{T}|} \sqrt{\sum_{i \in \mathcal{T}} E_i}. \quad (17)$$

835 **Step 7: Final certificate (take the minimum).** Both equation 16 and equation 17 are valid; each
836 can be tighter depending on whether the pruned tail is concentrated or diffuse. We therefore report
837 the minimum:

$$839 \quad 840 \quad \varepsilon = \|G - \tilde{G}\|_\infty \leq \kappa(\rho) \min \left\{ \sum_{i \in \mathcal{T}} \sqrt{E_i}, \sqrt{|\mathcal{T}|} \sqrt{\sum_{i \in \mathcal{T}} E_i} \right\}.$$

842 **Why the bound is finite (stability).** Since the layer is stable, $|\lambda_i| < 1$ for all i , so each $E_i =$
843 $\alpha_i^2 / (1 - |\lambda_i|^2)$ is finite and $\rho < 1$, which implies $\kappa(\rho) = \sqrt{(1 + \rho) / (1 - \rho)} < \infty$.

845 **Special cases.** If \mathcal{B} rows are normalized, then $E_i = \|\mathcal{C}_{:,i}\|_2^2 / (1 - |\lambda_i|^2)$ (the derivation above
846 applies verbatim). For bidirectional layers, sum (or average) the forward/backward $\|\mathcal{C}\|_2^2$ contributions
847 when forming E_i ; the rank-1 and norm inequalities used here are unchanged.

849 B.6 MATHEMATICAL COMPARISON TO LAST (AND THEORY POSITIONING)

851 **Per-mode quantities (shorthand).** $\alpha_i \triangleq \|\mathcal{C}_{:,i}\|_2 \|\mathcal{B}_{i,:}\|_2$, $E_i = \frac{\alpha_i^2}{1 - |\lambda_i|^2}$, $g_i^{(\infty)} \leq$
852 $\frac{\alpha_i}{1 - |\lambda_i|}$, $\rho = \max_{i \in \mathcal{T}} |\lambda_i|$, $\kappa(\rho) = \sqrt{\frac{1 + \rho}{1 - \rho}}$.

856 **Layer-level envelopes (apples-to-apples).**

$$858 \quad 859 \quad \text{LAST (H}\infty\text{-first)} : \quad \|G - \tilde{G}\|_\infty \lesssim \sum_{i \in \mathcal{T}} \frac{\alpha_i}{1 - |\lambda_i|} \quad (18)$$

$$861 \quad 862 \quad \text{AIRE (energy-first} \rightarrow \text{H}\infty\text{)} : \quad \|G - \tilde{G}\|_\infty \leq \kappa(\rho) \min \left\{ \sum_{i \in \mathcal{T}} \frac{\alpha_i}{\sqrt{1 - |\lambda_i|^2}}, \sqrt{|\mathcal{T}|} \sqrt{\sum_{i \in \mathcal{T}} \frac{\alpha_i^2}{1 - |\lambda_i|^2}} \right\}. \quad (19)$$

864
865 **Key mathematical differences.**

866 1. *Aggregation.* LAST sums *peak gains* linearly, $\sum \alpha_i / (1 - |\lambda_i|)$. AIRE aggregates *energies*
867 either linearly in $\sqrt{E_i}$ or sublinearly via $\sqrt{|\mathcal{T}| \sum E_i}$, which is strictly tighter for *diffuse*
868 tails (Cauchy–Schwarz gap).

869 2. *Pole-radius dependence.* As $\rho \uparrow 1$, $1 - |\lambda|^2 \approx 2(1 - |\lambda|)$. Both equation 18 and the first
870 term in equation 19 scale like $(1 - \rho)^{-1}$; AIRE’s $\kappa(\rho)$ makes this dependence explicit and
871 uniform across the pruned set.

872 3. *Quantities needed.* LAST needs α_i and $(1 - |\lambda_i|)^{-1}$ per pruned mode. AIRE needs E_i
873 (already computed for ranking) and a single ρ . No new per-mode statistics are required
874 beyond AIRE’s pipeline.

875 4. *Cross-layer coupling.* LAST’s guarantee is tied to per-mode peak surrogates. AIRE’s
876 certificate is *tail-centric* (energy tail + one ρ), aligning with prefix-normalized, contiguous-
877 tail pruning and explaining whole-layer drops.

879 **When AIRE can be tighter.** *Diffuse tails:* if $|\mathcal{T}|$ is large but $\sum E_i$ is tiny, then

$$\kappa(\rho) \sqrt{|\mathcal{T}| \sum E_i} \ll \sum_{i \in \mathcal{T}} \frac{\alpha_i}{1 - |\lambda_i|},$$

883 making AIRE’s root-of-sum form substantially less conservative.

885 **Conceptual positioning.** LAST is worst-case-first and can be conservative when worst frequencies
886 are rarely excited. AIRE is typical-case-first (energy/ H_2), empirically enabling larger safe
887 pruning.

889 **C EXPERIMENTAL DETAILS**
890

891 All S5 experiments were implemented in JAX (Bradbury et al., 2018) and run on a single NVIDIA
892 A100 / H100 accelerator (40 GB or 80 GB VRAM). Our models and training code are based on
893 the public S5 (Smith et al., 2023)¹, S4D (Gu et al., 2022a)² and Mamba(S6) Gu & Dao, 2023³
894 implementation. Unless otherwise stated, we employ bidirectional SSM layers for all LRA tasks,
895 and use the parallel-scan inference kernel provided by S5.

897 **C.1 BENCHMARKS / TASKS**
898

899 We evaluate on the Long Range Arena (LRA), a suite of long-context sequence problems spanning
900 symbolic reasoning, byte-level text, document retrieval, and flattened vision, designed to probe
901 modeling of dependencies across sequences up to 16k tokens.

902 **ListOps** 10-way classification over extended ListOps expressions (Nangia & Bowman, 2018). Inputs
903 are single-channel sequences (max length 2,048) encoding digits, operators, and
904 bracket markers as one-hot vectors over 17 tokens. Splits: 96k train, 2k validation, 2k
905 test.

906 **Text** Binary sentiment classification on IMDB reviews at the byte level (Maas et al., 2011).
907 Each example is a single-channel sequence up to 4,096 tokens, using a 129-symbol one-
908 hot alphabet. Splits: 25k train, 25k test.

909 **Retrieval** Binary document-pair classification on the ACL Anthology Network (Radev et al., 2009).
910 The goal is to predict whether two documents share equivalent citation links. Each document
911 is byte-tokenized with a 97-symbol one-hot encoding and capped at 4,000 tokens.
912 Splits: 147,086 train pairs, 18,090 validation pairs, 17,437 test pairs.

913 **Image** 10-way classification on flattened CIFAR-10 (Krizhevsky & Hinton, 2009), represented as
914 single-channel sequences of length 1,024.

915 ¹<https://github.com/lindermanlab/S5>

²<https://github.com/srush/annotated-s4>

³<https://github.com/jsie7/ssm-benchmark>

918
 919 Table 4: Training configurations for S5 models on the six LRA tasks. All runs use batch normalization,
 920 pre-normalization, and $\Delta_{\max} = 0.1$. n_m : SSM state dimension; J : blocks for diagonal/block
 921 init of Λ ; D : dropout; LR: global learning rate; SSM LR: learning rate for SSM-only params; B :
 922 batch size; E : epochs; WD: weight decay; Δ_{\min} : minimum step.

Task	L	h	n_m	J	D	LR	SSM LR	B	E	WD	Δ_{\min}
ListOps	8	128	16	8	0	0.003	0.001	50	40	0.07	0.001
Text	6	256	192	12	0.1	0.004	0.001	50	35	0.07	0.001
Retrieval	6	128	256	16	0	0.002	0.001	32	20	0.05	0.001
Image	6	512	384	3	0.1	0.005	0.001	50	250	0.07	0.001
Pathfinder	6	192	256	8	0.05	0.005	0.0009	64	200	0.07	0.001
Path-X	6	128	256	16	0	0.002	0.0006	32	75	0.05	0.001

932
 933 Table 5: AIRE-Prune: pruning ratios and resulting inference speedups and parameter-memory re-
 934 ductions for **Mamba (S6)**

Metric \downarrow / Dataset \rightarrow	ListOps	Text	Retrieval	Image	Pathfinder	Path-X
Pruning ratio	–	45%	60%	80%	–	–
Inference speedup (\times)	–	1.61 \times	1.57 \times	2.03 \times	–	–
Parameter reduction (%)	–	19.1%	8.1%	12.1%	–	–

941 **Pathfinder** Binary classification on flattened Pathfinder stimuli (Linsley et al., 2018), determining
 942 whether two points are connected by a target path among distractors. Sequences are single-
 943 channel with length 1,024. Splits: 160k train, 20k validation, 20k test.

944 **Path-X** A scaled, more challenging Pathfinder variant (Linsley et al., 2018) with single-channel
 945 sequences of length 16,384, again testing path connectivity under heavy clutter.

946 **Speech** Speech command is a 35-way classification task on 1-second spoken utterances (Warden,
 947 2018). Each audio clip is a single-channel waveform of length 16,000 samples (16 kHz).
 948 For experiments with different sampling rates, we additionally create a downsampled ver-
 949 sion at 8 kHz. The resulting split contains 24,482 training examples, 5,246 validation
 950 examples, and 5,247 test examples.

952 C.2 HYPERPARAMETER

954 We follow the LRA protocol across six tasks—ListOps, Text, Retrieval, Image, Pathfinder, and
 955 Path-X—tuning depth (L), hidden width (h), and SSM state size (n_m) per task. Byte-level Text
 956 and long-context Retrieval favor larger J (more blocks) and higher n_m to capture long-range depen-
 957 dencies; flattened Image/Pathfinder variants use wider channels (h) with moderate dropout D for
 958 regularization. Learning rates are decoupled, with a smaller SSM LR than the global LR to stabilize
 959 eigen-parameter updates, and modest weight decay (WD) throughout. Batch sizes B and epochs E
 960 reflect dataset scale (e.g., longer training for Image/Pathfinder), while Δ_{\min} fixes the minimum step
 961 size used in state discretization. This setup (as in Table 4) provides a consistent, comparable training
 962 recipe across heterogeneous long-context workloads.

963 C.3 EFFICIENCY IMPACT OF DIMENSION-REDUCED S5 MODELS

965 To assess the practical efficiency impact of AIRE-Prune for mamba (S6), we implemented pruning
 966 by removal in addition to the standard masking-based implementation, transferring the retained
 967 high-importance states into a lower-dimensional S5 model. Table 5 reports the average evalua-
 968 tion-step throughput and the corresponding parameter reduction achieved by the pruned S5 models on an
 969 NVIDIA H100 GPU. Shrinking the state dimension consistently improves both compute cost and
 970 model size, with the magnitude of savings varying across tasks as a function of channel width.