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ABSTRACT

We study imitation learning using only visual observations for controlling dynami-
cal systems with continuous states and actions. This setting is attractive due to the
large amount of video data available from which agents could learn from. However,
it is challenging due to i) not observing the actions and ii) the high-dimensional
visual space. In this setting, we explore recipes for imitation learning based on
adversarial learning and optimal transport. A key feature of our methods is to
use representations from the RL encoder to compute imitation rewards. These
recipes enable us to scale these methods to attain expert-level performance on
visual continuous control tasks in the DeepMind control suite. We investigate the
tradeoffs of these approaches and present a comprehensive evaluation of the key
design choices. To encourage reproducible research in this area, we provide an
easy-to-use implementation for benchmarking visual imitation learning, including
our methods1.

1 INTRODUCTION

Learning continuous control policies directly from pixel observations is an important problem due
to its potential impact on fields like robotics, autonomous driving and video games. These domains
have rich resources of data available of humans performing expert-level demonstrations that our
software agents do not leverage as they are often trained from scratch without any knowledge of
how humans think about these problems. However, using unlabeled video data is challenging as it i)
requires distilling a representation of the world into the policy of an agent, and ii) we do not know
the underlying actions and reasoning process of the expert. This renders common algorithms like
canonical behavioral cloning (Pomerleau, 1988; 1991) useless in the no-action setting.

Recently the community has advanced our understanding in learning visual representations and
learning to imitate demonstrations provided as proprioceptive states. Visual representation learning
has been crucial in recent advancements for sample-efficient reinforcement learning (RL) directly
from pixels in continuous spaces, e.g. with reconstruction (Finn et al., 2016; Yarats et al., 2019),
contrastive learning (Srinivas et al., 2020; Stooke et al., 2020), unsupervised pre-training (Liu &
Abbeel, 2021; Yarats et al., 2021b; Seo et al., 2021), world models (Hafner et al., 2018; 2019; 2020)
and data augmentation (Yarats et al., 2021c; Raileanu et al., 2020; Laskin et al., 2020).

These approaches require known reward signals from the environment, which are not always available
or well-defined. When expert demonstrations are available, imitation learning (IL) and inverse RL
(IRL) methods overcome the issue of not having a reward signal and seek to recover the expert
agent (Ng & Russell, 2000). These methods are very effective when low-dimensional proprioceptive
states and actions are available and typically consist in learning based on the mismatch between the
expert and agent’s state(-action) distributions.

In this paper, we combine the budding areas of model-free image-based reinforcement learning
and state-action imitation learning to control non-trivial continuous dynamical systems from pixel
demonstrations. We extend two leading proprioceptive-state approaches to comparing the pixel
trajectories of the learner and expert – see fig. 1 for an illustration. The first approach, pixel sinkhorn
imitation learning, P-SIL, extends optimal transport approaches for imitation learning to the image
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Figure 1: Summary of our proposed methods P-SIL and P-DAC. Top: P-SIL, i) encodes the agent
oa and expert oe trajectories into a latent space, ii) computes a cost matrix C and iii) transport
map π? between these to iv) produce imitation rewards r1:T . Bottom: P-DAC, i) encodes the
(data-augmented) agent oa and expert oe trajectories into a latent space, ii) passes them through
the discriminator, and iii) evaluates the DAC loss. iv) Rewards r1:T can then be produced with the
discriminator.

setting (Papagiannis & Li, 2020; Dadashi et al., 2021). A key component here is how we learn
and compare latent representations using the cosine distance on a target encoder that is updated
with the RL encoder’s weights. Our second approach, pixel discriminator actor critic, P-DAC, is
a GAIL-based method for pixels (Ho & Ermon, 2016; Kostrikov et al., 2019; Torabi et al., 2018).
We propose several key modifications, including data augmentation and using the RL encoder for
representations, that enable P-DAC to scale to non-trivial control tasks without needing access to
expert actions. The imitation rewards from these methods are optimized with DrQ-v2 as an underlying
image-based RL backbone (Yarats et al., 2021a).

We demonstrate the versatility and strong performance of both approaches on DeepMind control
suite tasks, and find that both P-DAC and P-SIL are able to recover expert performance while out-
performing canonical extensions of corresponding state-based IL methods, such as SIL (Papagiannis
& Li, 2020) and DAC (Kostrikov et al., 2019; Ho & Ermon, 2016) in terms of performance and
sample efficiency. Our extensive ablation study reveals insights into the key design decisions for
pixel imitation learning. Finally, we also provide an easy-to-use implementation of these methods
with unified DrQ-v2 backbone to make it simple for practitioners to build upon in this under-explored
area.

2 BACKGROUND AND RELATED WORK

2.1 REINFORCEMENT LEARNING (RL) WITH PIXEL OBSERVATIONS

Pixel reinforcement learning can be instantiated as an infinite-horizon Markov decision process
(MDP) (Bellman, 1957; Sutton & Barto, 2018), where the agent’s state is approximated by a stack of
consecutive RGB frames (Mnih et al., 2015). The MDP is of the form (O, A, P , R, γ, d0) where
O is the observation space, A is the action space, P : O × A → ∆(O) is the transition function
(∆(O) is a probability distribution over O), R : O ×A → R is the reward function, γ ∈ [0, 1) is the
discount factor and d0 is the initial state distribution. The RL problem consists of finding an optimal
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policy π : O → ∆(A) that maximizes the expected long-term reward Eπ[
∑∞
t=0 γ

tR(ot,at)], where
o0 ∼ d0, at ∼ π(·|ot) and ot+1 ∼ P (·|ot,at).

2.2 IMITATION LEARNING

In imitation learning, agents do not have access to the environment reward R. Instead, they are
provided with a dataset of multiple expert trajectories which the agent aims to imitate, where
each trajectory is of the form oe = (oe0, . . . ,o

e
T ) ∈ OT . More formally, agent trajectories oa =

(oa0 , . . . ,o
a
T ) under the policy π have to be close to expert trajectories oe under some metric between

trajectories. We note these trajectories are empirical proxies for the occupancy distributions under the
learner and expert policies (Ho & Ermon, 2016; Dadashi et al., 2021). This paper follows the line of
research in imitation learning via agent-expert density matching, initially studied by Ng & Russell
(2000); Boularias et al. (2011); Englert et al. (2013). Here, imitation-reward signals are derived from
trajectories obtained by an expert policy; the agent is then trained using RL methods, which use these
imitation rewards as learning signals.

Generative Adversarial Learning for IL P-DAC builds on the budding area of state(-action)-
based generative adversarial imitation learning, originally initiated by Ho & Ermon (2016) with
the GAIL method, which uses adversarial learning combined with RL. A significant body of work
built upon GAIL, notably AIRL and WGAIL (Fu et al., 2018; Xiao et al., 2019; Kostrikov et al.,
2020), which propose alternative losses relying on other probabilistic divergences. Also, Torabi et al.
(2018) extend GAIL to the no-action setting, a setting which we consider in this paper as well. DAC
(Kostrikov et al., 2019) significantly improves upon GAIL by turning it into an offline algorithm, and
adding a gradient penalty. Our P-DAC approach directly builds upon DAC, extending it to the visual
setting. A key difference, which allowed us to stabilize visual DAC, was to store imitation rewards in
the replay buffer and to not recompute them with up-to-date discriminators and encoders. Also, while
DAC parameterizes the discriminator directly on the (proprioceptive) observation space, we compose
the discriminator with the RL image encoder to leverage representations learned in the RL pipeline.

GAIL-based methods in visual spaces are nascent, and contain works leveraging auxiliary losses
(Cetin & Celiktutan, 2021). Toyer et al. (2020) propose a robust visual IL benchmark in which
they evaluate mainly adversarial approaches in the discrete action setting. Finally, Rafailov et al.
(2021) concurrently propose a model-based extension of GAIL, which does adversarial learning
in the latent space of a world model. As a baseline, they use a direct extension of DAC to visual
spaces by parameterizing a discriminator in image space, which does not perform well on nearly all
tasks they consider, while our P-DAC extension achieves expert performance on all considered tasks
(including tasks considered by Rafailov et al. (2021), such as walker walk and cheetah run).

Optimal Transport for IL P-SIL extends to the visual case recent SOTA works on imitation
learning via optimal transport (OT), namely Dadashi et al. (2021) and Papagiannis & Li (2020). They
both leverage optimal transport matching to define rewards. The former uses a greedy approximation
of the Wasserstein while the latter leverages the entropic Wasserstein with cosine cost. However,
the latter also learns an embedding for states adversarially, while we leverage the encoder of the RL
algorithm, avoiding the need for minimax optimization, and allowing us to avoid any computational
slowdown. Finally, most of the adversarial algorithms in the GAIL line (Ho & Ermon, 2016; Fu et al.,
2018) can also be interpreted from the standpoint of the minimization of an OT functional between
the state(-action) occupancy distribution of the agent and expert (Xiao et al., 2019). App. A reviews
relevant background on optimal transport.

3 RECIPES FOR VISUAL IMITATION LEARNING

We now describe our IL approaches, which consist of alternative ways of defining imitation rewards
that an RL backbone algorithm can learn from, and significantly improve upon canonical extensions
of proprioceptive-state methods. In this paper, we leverage DrQ-v2 as the underlying RL algorithm
(Yarats et al., 2021a). The data augmentation strategy throughout the paper (including for baselines)
hence consists of random shifts with padding and a random crop to restore the original image
dimension, followed by bilinear interpolation. For all methods, we gather episodes under the current
policy, evaluate reward trajectories, and update the replay buffer with such episodes, replacing
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environment rewards by imitation rewards. We summarize the overall process in algorithm 1. We
also illustrate our two proposed methods in fig. 1.

3.1 PIXEL SINKHORN IMITATION LEARNING (P-SIL)

Our first approach extends imitation learning algorithms based on optimal transport to a setting where
only pixel observations are available. We define imitation-reward signals via the negative entropic
Wasserstein distance between embedded agent and experts’ image trajectories.

We interpret an image trajectory o = (o1, . . . ,oT ) as a discrete probability measure of the form
µo = 1

T

∑T
t=1 δot , where images ot ∈ RC×H×W are atoms weighted uniformly over time. Optimal

transport distances directly on image observations provide weak signal given that i) the metric
between individual images does not take into account spatial relationships between individual pixels,
and ii) the sample complexity of OT grows exponentially with the number of dimensions (the number
of samples in each trajectory necessary for a good estimate of the OT plan π) (Genevay et al., 2019).

To alleviate these challenges, we embed image trajectories using DrQ-v2’s encoder:

oa,φ =
[
fφ(oa1), . . . , fφ(oaT )

]
, oe,φ =

[
fφ(oe1), . . . , fφ(oeT )

]
. (1)

In order to be agnostic to the scale of the encoded states, we consider the cosine distance as metric dc
between encoded visual observations, similarly to Papagiannis & Li (2020),

Ct,t′ = dc(o
a,φ
t ,oe,φt′ ) = 1−

〈oa,φt ,oe,φt′ 〉
||oa,φt || ||o

e,φ
t′ ||

. (2)

We estimate the entropic Wasserstein distance with the cosine cost between embedded trajectories

W2
ε (µoa,φ , µoe,φ) = min

ψ∈Ψ

T∑
t,t′=1

Ct,t′ψt,t′ −H(ψ), H(ψ) = −
T∑

t,t′=1

ψt,t′ logψt,t′ , (3)

where Ψ = {ψ ∈ RT×T : ψ1 = ψT1 = 1
T 1} is the set of coupling matrices, in order to obtain an

optimal alignment ψ?. Finally, we extract rewards for each of the agent’s states as

r(oa,φt ) = −
T∑
t′=1

Ct,t′ψ
?
t,t′ . (4)

If we are provided with multiple expert trajectories oe1 , . . . ,oeN , we infer the nearest-neighbor
expert by computing the embedded entropic Wasserstein distance with cosine cost between each
expert trajectory and the agent’s rollout. We then set rewards with the alignment to the closest expert:

e? = arg min
n∈{1,...,N}

W2
ε (µoa,φ , µoen,φ) r(oa,φt ) = −

T∑
t′=1

dc(o
a,φ
t ,oe?,φt′ )ψ?t,t′ . (5)

The rewards computed in (5) are non-stationary as the encoder fφ is updated to optimize the critic
loss. To increase the stability of P-SIL, we use a target network fφ′ , which is updated every Tupdate

environment steps with the weights of DrQ-v2’s encoder. We use fφ′ to estimate rewards via (5).
Also, we rescale P-SIL rewards so that the first episode is normalized to have a total return of −10 to
account for rapid changes in encoder representations during initial training.

An important benefit of P-SIL is that computing imitation rewards does not add any computational
burden as the cost of (5) is negligible, and we use the encoder of the RL agent. This is in contrast
to adversarial approaches (Papagiannis & Li, 2020; Ho & Ermon, 2016), which require training a
discriminator by solving an inner-loop maximization problem and then inferring rewards using the
discriminator. We thus preserve the attractive computational efficiency of the base algorithm DrQ-v2.

In summary, we compute imitation rewards as the entropic Wasserstein discrepancy between the
agent’s and expert’s encoded states for the single-demonstration case. For multiple expert demonstra-
tions, we use the transport cost from the closest expert demonstration in the OT sense.
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3.2 PIXEL DISCRIMINATOR ACTOR CRITIC (P-DAC)

We now propose and study P-DAC as a GAIL-based method for pixels that builds on the work by
Ho & Ermon (2016); Torabi et al. (2018); Kostrikov et al. (2019). The key differences with previous
works are that i) we compose the discriminator with the RL encoder to leverage its representations,
ii) we apply data augmentation to discriminator inputs and iii) we store imitation rewards in the
buffer rather than recomputing them at each iteration. We now describe the main components of
P-DAC in more detail.

In contrast to P-SIL, it is necessary to train a discriminator, along with DrQ-v2’s other networks
(actor, critic and encoder). To train the discriminator, we sample batches oe1:N and oa1:N of size N
from both the expert buffer and the policy buffer, respectively, apply data augmentation, and encode
augmented observations using DrQ-v2’s encoder, which then yields:

oa,φ =
[
fφ ◦ aug(oa1), . . . , fφ ◦ aug(oaN )

]
, oe,φ =

[
fφ ◦ aug(oe1), . . . , fφ ◦ aug(oeN )

]
. (6)

Per common practice (Kostrikov et al., 2019), we omit importance sampling when estimating the
policy state occupancy via replay buffer. We then maximize

max
D

N∑
n=1

logD(oa,φn ) +

N∑
n=1

log(1−D(oe,φn ))− Eōφ
[∥∥∇D(ōφ)

∥∥− 1
]2
, (7)

with respect to the discriminator’s weights and add a gradient penalty as recommended by Kostrikov
et al. (2019). Here, ōφs are sampled along straight lines between agent and expert’s encoded
observations. To compute rewards at the end of episodic rollouts, we embed the observation trajectory
with DrQ-v2’s encoder and then apply the discriminator to the encoded observations to obtain rewards

r(oat ) = log
(
σ ◦D(oa,φt )

)
− log

(
1− σ ◦D(oa,φt )

)
, (8)

where σ is the sigmoid function. We then add the episode with imitation rewards computed in (8)
to the replay buffer. This differs from the original GAIL implementation (Ho & Ermon, 2016),
where training is online, and from its follow-up offline extension DAC (Kostrikov et al., 2019) that
recomputes rewards at each training iteration. We will show in the experiment section that data
augmentation is a key component to scaling to challenging environments. Finally, in contrast with
previous works that parameterize the discriminator directly in observation space (Ho & Ermon, 2016;
Torabi et al., 2018; Kostrikov et al., 2019), we compose it with the RL encoder, which allows us to
leverage its representations.

4 EXPERIMENTS

In this section, we empirically evaluate the proposed algorithms on tasks from the DeepMind control
suite, aiming to contrast their strengths and weaknesses. We also provide an extensive ablation study
highlighting the key design choices that enable solving challenging tasks with imitation learning from
visual observations only.

Our set of experiments was designed with the aim of answering the following questions:

1. Are P-DAC and P-SIL able to achieve expert performance, and how do they compare in
terms of sample efficiency (number of interactions with the environment required to solve a
task) and computational efficiency?
Yes. P-DAC is more sample efficient than P-SIL, see fig. 2 while P-SIL has a 37% faster
computational footprint than P-DAC, see fig. 3. Furthermore, our methods allow to learn
policies that are closer to expert policies than baselines under the embedded Wasserstein
metric, see fig. 4.

2. Are P-DAC and P-SIL robust to the number of expert demonstrations they are provided?
Yes, see fig. 5.

3. Is data augmentation as essential and effective as it is in pixel-based reinforcement learning?
Yes, agents cannot approach expert performance on nearly all task without data augmentation,
see fig. 6.
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Figure 2: Our agents P-DAC and P-SIL demonstrate superior performance over vanilla instantiations
of DAC and SIL, as well as BC over a set of challenging image-based tasks from DMC. In many cases
P-DAC and P-SIL are able to recover the expert performance by using only 10 expert trajectories.
Note, DAC and BC have privileged access to expert actions, while other methods do not.

4. Is optimal transport providing a gain over simpler metrics without alignment (e.g., cosine
distance between trajectories)?
Yes, there is a significant performance gain when leveraging OT alignments, see fig. 7

5. Are expert actions required to solve challenging tasks or are pixel observations enough?
No, P-DAC without actions performs on par or better than P-DAC with actions on all
environments, see fig. 8.

4.1 EXPERIMENTAL SETUP

Environments We consider 8 Mujoco (Todorov et al., 2012) tasks in the DeepMind control suite
(Tassa et al., 2018). The selected tasks are distinct enough to demonstrate the versatility and robustness
of P-DAC and P-SIL. Environment observations are stacks of three consecutive 84×84 RGB images.
We evaluate the agents with the environment rewards, but they are not provided to the agents during
training. For the simplest tasks, we allow a budget of 1.5M environment frames, while for hard tasks
we allow 5M environment frame in main results. In ablations, we allow 3M for hard tasks.

Expert Demonstrations We gather expert demonstrations by training DrQ-v2 using the true
environment rewards. We run 10 seeds and pick the seed that achieves highest episodic reward to
generate expert trajectories (sequences of image observations).

Baselines As baselines, we consider our two proposed approaches, P-DAC and P-SIL, along with
a behavioral cloning (BC) baseline that we strengthen by leveraging the same data augmentation as
in our approaches. We also consider canonical extensions of DAC (Kostrikov et al., 2019) and SIL
(Papagiannis & Li, 2020), in which the discriminator is directly defined on pixel-space, and without
the tricks proposed in this paper (e.g., no data-augmentation applied to discriminator inputs, no
target encoder for SIL). DAC and SIL baselines are implemented with the same DrQ-v2 backbone as
P-DAC and P-SIL, hence also benefit from data-augmentation in the RL training loop, thus making
the comparison setup fair. We note that the BC and DAC baselines are privileged since they access
expert actions while our baselines do not.

Setup In all experiments, we run 10 seeds under each configuration and average results, while
providing a 90% confidence interval. We compare agents with respect to two distinct scores. Firstly,
we use the episodic return as a metric to verify whether the agent solves the task; secondly, we average
the entropic Wasserstein distance with cosine cost between agent rollouts and expert demonstrations,
both embedded via a common random encoder. This shows that agent rollouts are close to the expert
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Figure 3: Performance of P-DAC, P-SIL, and data-augmented BC on DeepMind control suite tasks
from pixel observations only with wall-clock time as axis. We notice P-SIL and P-DAC solve all
tasks in less than 4 hours.
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Figure 4: Entropic Wasserstein distance to the expert demonstrations (the lower the better) for
P-DAC, P-SIL, SIL, DAC and data-augmented BC on DeepMind control suite tasks from pixel
observations only, relative to a random policy. We notice P-SIL and P-DAC are on par in terms of
closeness to expert demonstrations while BC, SIL and DAC are worse.

demonstrations they are trained on. Finally, in ablation bar-plots, we show episodic reward averaged
over the final 10 environment episodes. App. D further describes all hyperparameters.

4.2 MAIN RESULTS

Sample efficiency We begin by comparing baselines with respect to sample efficiency, i.e., the
number of environment interactions required to solve a task. We observe in fig. 2 that both P-DAC
and P-SIL achieve expert performance on all environments besides acrobot swingup, which is a
hard exploration task. Both approaches significantly surpass the performance of SIL, DAC and
data-augmented behavioral cloning even though the latter two are privileged by knowing expert
actions. We also note that P-DAC is more sample efficient than P-SIL.

In fig. 4, we show the entropic Wasserstein between embeddings of agent rollouts and expert
trajectories; results correlate well with those under episodic return (see fig. 2). Again, P-SIL and
P-DAC outperform data-augmented BC under this alternative metric, i.e., trajectories under these
are closer in the embedded entropic Wasserstein sense than those of BC.

Computational efficiency We contrast the computational efficiency of our approaches in fig. 3; the
comparison is fair as methods are implemented on a unified backbone. Both of our approaches solve
the hard tasks in around 4 wall-clock hours on a single V100 GPU. This can be explained by the fact
that there is no loss in frames per second (FPS) for P-SIL over its RL backbone (FPSPSIL = 101),
while P-DAC’s FPS is impacted by the cost coming from discriminator training (FPSPDAC = 74).
As a result, both approaches have comparable computational efficiency.

4.3 ABLATIONS

We now provide an extensive ablation contrasting the approaches and highlighting key design choices.
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Figure 5: Ablation study on the number of demonstration. We train all P-DAC, P-SIL and BC
on 1, 10 and 50 demonstrations. We observe P-DAC and P-SIL are robust to the number of
demonstrations, while BC is not, and fails on most tasks for the 1-demonstration setting.

Number of demonstrations We first evaluate the robustness of baselines to the number of expert
demonstrations provided to the learner. We train agents on 1, 10 and 50 demonstrations, on all tasks,
and plot episodic return averaged across seeds in fig. 5. We observe that our approaches are robust to
the number of demonstrations, with comparable performance for 1, 10 and 50 demonstrations across
tasks (besides finger spin). By contrast, the data-augmented BC baseline is non-robust, and requires a
large number of demonstrations (typically 50) to approach expert performance.
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Figure 6: Ablation study on data augmentation (DA). We compare P-DAC, P-SIL and BC with and
without data augmentation. We observe the gap in performance between data-augmented (DA) and
no-data-augmented (No DA) implementations to be large. For instance, our baselines do not recover
any meaningful behaviors on finger spin, cheetah run, acrobot swingup, and walker environments
without DA.

Data augmentation Next, we evaluate whether data augmentation is necessary to achieve expert
performance. We observe that without augmentation, both P-DAC and P-SIL are not able to
recover solid performance on nearly all tasks, especially locomotion ones. We note that behavioral
cloning is less sensible to it. This may be explained by the fact that augmentation is necessary to
obtain good representations as seen in Laskin et al. (2020); Yarats et al. (2019; 2021a), and that our
imitation approaches leverage such representations to design reward signals. As a result, without
good representations the agents can not recover any meaningful behaviors.

Metrics We continue with analyzing one of the key design choices behind P-SIL, i.e., whether an
optimal transport alignment of the agent and expert trajectories is required over simply leveraging an
l2 or cosine distance (no alignment). We observe in fig. 7 that OT is essential to achieving expert
performance on most tasks. We believe this is due to the high variance in the initial state distribution
of agent and expert, which leads to unaligned trajectories, and hence uninformative rewards in the
absence of OT alignment.

Observations vs. Observation-actions GAIL-like methods are often assumed to require expert
actions to recover non-trivial performance. We hence compare P-DAC with a privileged implementa-
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Figure 7: Ablation study on the distance between trajectories for P-SIL. We compare our approach
(OT alignment with cosine cost), to the cosine distance and the Euclidean distance between trajectories
(without OT). We observe that OT significantly outperform non-OT approaches. In particular, our
baselines without OT do not recover any meaningful behaviors on finger spin and cheetah run, and
are weaker on acrobot swingup and walker run. Hence, OT alignment is also an essential component
of P-SIL.
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Figure 8: Ablation study on the need for expert actions. We train P-DAC with and without actions
concatenated to observations (the former is privileged). We observe the performance gap to be
marginal, hence actions are not necessary in the considered environments, contrarily to popular
beliefs on GAIL-like algorithms.

tion of P-DAC which accesses expert actions. In the latter case, we concatenate embedded image
observations, and actions before passing these to the discriminator. We observe in fig. 8 that our
approach without expert actions performs on par with the action-baseline, highlighting that on the
considered environments, actions are not required to achieve strong performance. This is encouraging
given that there are massive amounts of unlabeled video data that these agents could potentially learn
from.

5 CONCLUSION

We propose effective methods for imitation learning directly from pixels without expert actions,
extending state-based adversarial and optimal transport approaches, and significantly outperforming
canonical extensions of these. This steps us closer toward leveraging the rich amount of expert-level
data on non-trivial environments for the control of continuous systems. We envision that continuing
to scale in this space will involve further understanding how to recover a representation of the
high-dimensional data, e.g. with unsupervised pretraining, and how to go beyond settings where the
expert and learner live in the same space.
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A BACKGROUND ON OPTIMAL TRANSPORT

Optimal transport (Villani, 2009; Peyré & Cuturi, 2019) tools allow us to compare probability
measures while incorporating the geometry of the space. The entropic 2-Wasserstein distance
between two discrete measures µx = 1

T

∑T
t=1 δxt and µy = 1

T

∑T
t=1 δyt is

W2
ε (µx, µy) = min

ψ∈Ψ

T∑
t,t′=1

d2(xt,yt′)γt,t′ −H(π), H(ψ) = −
T∑

t,t′=1

ψt,t′ logψt,t′ , (9)

where Ψ = {ψ ∈ RT×T : ψ1 = ψT1 = 1
T 1} is the set of coupling matrices, and d is a metric.

Adding the entropic term has two main benefits: i) the induced problem can be solved in quadratic
time via Sinkhorn’s algorithm (Sinkhorn & Knopp, 1967), and ii) the resulting distance is smooth
in the measures’ samples. Intuitively, the optimal coupling matrix ψ provides an alignment of the
samples of µx, µy which minimizes the cost of transport between these. The distance then consists of
the weighted sum of distances between aligned samples, along with an entropic penalty.

B DRQ-V2

We use DrQv2 (Yarats et al., 2021a), which is a actor-critic method for continuous control based
on the deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015). Given a replay buffer
D, it learns simultaneously a Q-function Qθ and a policy πη. Qθ is trained by clipped double-Q-
learning (Fujimoto et al., 2018) with n-step returns. πη is trained via deterministic policy gradient.
DrQv2 employs data augmentation in the form of random shifts with padding and a random crop to
restore the original image dimension, followed by bilinear interpolation. Data augmentation acts as
regularization and reduces the variance of the Q estimates. Images are embedded into the latent space
via an encoder fφ after being augmented. This encoder is trained to minimize the critic loss only.

C ALGORITHMS

Algorithm 1 Inverse reinforcement learning core. Different methods can be instantiated by changing
the rewarder function.
Require: Expert demonstrations {µoen }Nn=1, replay buffer D, initialized policy network π, Q-

network Q and encoder f . For DAC-like baselines, also requires a discriminator D.
for t ∈ Ttotal do

if done then
r1:T = rewarder(episode), for instance (5) for P-SIL, (8) for P-DAC
Update episode with r1:T and add all quadruples [ot,at,ot+1, rt] to D.
ot = env.reset(), done = False, episode = [ ]

end if
at ∼ π(·|ot)→ ot+1,done = env.step(at), episode.append([ot,at,ot+1])
Update DrQ-v2’s actor and critic, and rewarder-specific functions using D.

end for
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D HYPERPARAMETERS AND FURTHER EXPERIMENTAL DETAILS.

We provide a list of all hyperparameters in table 1. The only environment-specific variation is that the
number of n-steps is set to 1 for walker tasks. For P-DAC, we use the DrQ-v2’s critic encoder, while
for P-SIL we use the actor’s encoder, noting that both share the same convolutional layer weights.

Agent Parameter Value 1

Common Replay buffer size 150000

Learning rate 1e−4

Exploration Schedule linear(1, 0.1, 500000)

Discount 0.99

n-step returns 3

Action repeat 2

Frame stack 3

Seed frames 2000

Exploration steps 4000

Mini-batch size 256

Agent update frequency 2

Critic soft-update rate 0.01

Features dim 50

Hidden dim 1024

Optimizer Adam

P-SIL Target update frequency 10000

Reward scale factor 10

P-DAC Gradient penalty coefficient λ 10

Table 1: List of hyperparameters.
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E EXTRA ABLATION PLOTS
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Figure 9: Ablation study on the number of demonstration. We train all P-DAC, P-SIL and BC
on 1, 10 and 50 demonstrations. We observe P-DAC and P-SIL are robust to the number of
demonstrations, while BC is not, and fails on most tasks for the 1-demonstration setting.
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Figure 10: Ablation study on data augmentation (DA). We compare P-DAC, P-SIL and BC with and
without data augmentation. We observe the gap in performance to be significantly larger for P-DAC
and P-SIL, showing that DA is a crucial component of our methods.
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Figure 11: Ablation study on the distance between trajectories for P-SIL. We compare our approach
(OT alignment with cosine cost), to the cosine distance and the Euclidean distance between trajectories
(without OT). We observe that OT significantly outperform non-OT approaches. Hence, OT alignment
is also an essential component of P-SIL.
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Figure 12: Ablation study on the need for expert actions. We train P-DAC with and without actions
concatenated to observations (the former is privileged). We observe the performance gap to be
marginal, hence actions are not necessary in the considered environments, contrarily to popular
beliefs on GAIL-like algorithms.

16


	1 Introduction
	2 Background and Related Work
	2.1 Reinforcement Learning (RL) with Pixel Observations
	2.2 Imitation Learning

	3 Recipes for Visual Imitation Learning
	3.1 Pixel Sinkhorn Imitation Learning (P-SIL)
	3.2 Pixel Discriminator Actor Critic (P-DAC)

	4 Experiments
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Ablations

	5 Conclusion
	A Background on Optimal Transport
	B DrQ-v2
	C Algorithms
	D Hyperparameters and further experimental details.
	E Extra Ablation Plots

