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Abstract

Understanding model perturbation robustness mechanisms is critical for global interpretability.
In this research, we present a model-agnostic interpretability method to interpret the
perturbation robustness mechanisms of image models. Our method, dubbed as I-ASIDE1

(Image Axiomatic Spectral Importance Decomposition Explanation), aims to interpret the
perturbation robustness mechanisms through the lens of the predictive powers of robust
features and non-robust features within an information theory framework. This research
is motivated by two key aspects. First, previous perturbation robustness metrics of image
models such as mean corruption errors (mCE) fall short in providing further interpretations
regarding robustness mechanisms. Second, we notice that the spectral signal-to-noise ratios
(SNR) of perturbed natural images exponentially decay over the frequency. This power-law-
like decay implies that: Low-frequency signals are generally more robust than high-frequency
signals – yet high classification accuracy can not be achieved by low-frequency signals
alone. By deploying Shapley value theory, we quantify the predictive powers of robust
features and non-robust features in decisions with an axiomatic approach. Our method
provides a unique insight into model robustness mechanisms within an information theory
framework. We conduct extensive experiments over a variety of vision foundation models to
show that I-ASIDE can not only measure the perturbation robustness but also provide
interpretations of its mechanisms.

1 Introduction

Image modeling with deep neural networks has achieved great success (Khan et al., 2022; Awais et al., 2023;
Han et al., 2022). Yet, deep neural networks are known to be vulnerable to perturbations. For example, the
perturbations may arise from corruptions and adversarial attacks (Goodfellow et al., 2014; Hendrycks &
Dietterich, 2019; Szegedy et al., 2013), etc. Perturbation robustness characterizes a crucial intrinsic property
of models (Hendrycks & Dietterich, 2019; Bai et al., 2021; Goodfellow et al., 2014; Silva & Najafirad, 2020).
We refer to perturbation robustness as robustness hereafter. Answering the question ‘why some models
are more robust than others’ is vital in global interpretability (Lipton, 2018; Zhang et al., 2021).

The robustness of image models can be quantified by mean corruption errors (mCE) (Hendrycks & Dietterich,
2019) or the distances in feature spaces between clean and perturbed image pairs (Zheng et al., 2016; Zhang
et al., 2021). However, these scalar metrics often fall short in interpreting the underlying ‘why’ question.
This limitation prompts us to investigate the fundamental causes of robustness within an information theory
framework.

Motivation also arises from the robustness characterization of the spectral signals within natural images.
Images can be represented as spectral signals (Körner, 2022; Sherman & Butler, 2007). The signal-to-noise
ratios (SNR) (Sherman & Butler, 2007) of spectral signals can be used to characterize the signal robustness
with respect to perturbations. Our later empirical study, as illustrated in Figure 2, suggests that the spectral
SNRs of perturbed natural images decay over the frequency with a power-law-like distribution. We refer to

1Anonymized reproducibility: https://anonymous.4open.science/r/IASIDE_reproducibility-F8BC/.
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Figure 1: Power-law-like energy spectral density (ESD) distribution of natural images over the frequency.
The signal spectrum is divided into M bands (from I0 to IM´1). Each spectral band is a robustness band.

the spectral SNR as the ratio of the point-wise energy spectral density (ESD) (Stoica et al., 2005) of spectral
signal to noise (i.e. perturbation):

SNRprq :“ ESDrpxq
ESDrp∆xq (1)

where r is a radial frequency point, x is an image, ∆x is the perturbation, ESDrp¨q gives the point-wise
energy density at r. The ESDrp¨q is defined as:

ESDrpxq :“ 1
|Lr| ¨

ÿ

pu,vqPLr

|F pxqpu, vq|2 (2)

where Lr denotes a circle as illustrated in Figure 1, |Lr| denotes the circumference of Lr, and F pxq denotes
the 2D Discrete Fourier Transform (DFT) of x. Readers can further refer to more details in Appendix B.1.

Why do the spectral SNRs of some corruptions and adversarial attacks exhibit a power-law-like decay over the
frequency? We surmise that the ESDs of many perturbations are often not power-law-like, while the ESDs of
natural images are power-law-like empirically, as shown in Figure 1. For example, the spatial perturbation
drawn from N p0, σq (i.e. white noise) has a constant ESD: ESDrp∆xq “ σ2. In Figure 2, we characterize
the spectral SNR distributions of perturbed images. We set the energy of perturbations to 10% of the
energy of the clean image for a fair comparison. The perturbation sources include corruptions (Hendrycks
& Dietterich, 2019) and adversarial attacks (Szegedy et al., 2013; Tsipras et al., 2018). We notice that the
SNR distributions are also power-law-like over the frequency. We refer to spectral signals as spectral features
or simply as features if without ambiguity. This power-law-like SNR decay suggests an empirical feature
robustness prior: Low-frequency features are robust features (RF) while high-frequency features
are non-robust features (NRF).

To overcome the limitations inherent in the aforementioned scalar metrics, by leveraging the empirical feature
robustness prior, we seek to attribute model robustness to the predictive powers (Zheng & Agresti, 2000)
of robust features and non-robust features. Within an information theory framework, the features provide
information to classifiers for the predictions, and their predictive powers can be assessed by how much
information they contribute in the decisions. The more information they contribute the higher importance
they have. We assign their credits for the information they contribute by deploying Shapley value theory on
a spectral coalitional game, detailed in Section 3. We claim our major contributions as:
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Figure 2: Spectral SNR characterization with multiple corruptions and adversarial attacks. The corruptions
include: white noise, Poisson noise, Salt-and-pepper noise, and Gaussian blur. The adversarial attacks include:
FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017), SparseFool (Modas et al., 2019) and Pixel
(Pomponi et al., 2022). We set the perturbation energy to 10% of the energy of the reference image. The
results are shown in decibels (dB) for better visualization. The dB below zero indicates that the perturbations
overwhelm the spectral features.

• We propose a model-agnostic global interpretability method for interpreting model robustness
mechanisms through the lens of the predictive powers of robust features and non-robust features;

• We analyze the image model robustness problem within information theory in terms of spectral
signals;

• We showcase a case study that I-ASIDE has the potential to interpret how supervision noise levels
affect model robustness.

We also make our code as open source for the research community to further investigate the topics in
robustness.

2 Notations

Image classifier. The primary task of an image classifier is to predict the probability distributions over
discrete classes for given images. We use Qpy|x; θq : px, yq ÞÑ r0, 1s to denote an classifier in the form of
conditional probability. The Q predicts the probability that an image x is of class y. The θ are the parameters.
For brevity, we ignore the parameter θ. For example, we denote Qpy|x; θq as Qpy|xq.
Dataset and annotation. We use a tuple xX ,Yy to denote an image classification dataset, where X is the
image set and Y is the label set. We use |Y| to denote the number of classes (i.e. the cardinality of set Y).
The annotation task of image classification datasets is to assign each image with a discrete class probability
distribution. We use P py|xq to denote the ground-truth probability that an image x is assigned as a class y.
We use P pxq to denote the probability of x in set X . We use P pyq to denote the probability of y in set Y . In
class-balanced datasets, P pyq “ 1

|Y| .
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Figure 3: Framework of deploying Shapley value theory. Spectral coalition filtering creates spectral coalitions
over X . Each coalition contains a unique combination of spectral signals, in which some spectral bands are
present and others are absent. The coalitions are fed into a classifier Q. For each coalition, Q outputs the
predictions. The characteristic function v then uses the predictions to estimate the contributions of the
features present in the coalitions. The results from v are combined to compute the marginal contributions of
spectral bands – i.e. the spectral importance distribution of Q.

3 Method

Quantifying the predictive powers of features can be viewed as a value decomposition problem. In this
research, the value is the information quantities that the features contribute to decisions. Specifically, the
value is in the form of the log-likelihood expectation of predictions (i.e. the negative cross-entropy loss). The
value decomposition aims to assign each robustness band a predictive power such that: (1) The sums of the
predictive powers are equal to the value, and (2) the assigned predictive powers should reflect their importance
in the decisions. In the coalitional game theory, this decomposition scheme is known as an axiomatic fairness
division problem (Roth, 1988; Hart, 1989; Winter, 2002; Klamler, 2010; Han & Poor, 2009). The fairness
division must satisfy four axioms: efficiency, symmetry, linearity and dummy player (Roth, 1988). We refer to
the axiomatic fairness division as axiomatic decomposition. Of the scheme, the axioms guarantee uniqueness
and fairness (Aumann & Maschler, 1985; Yaari & Bar-Hillel, 1984; Aumann & Dombb, 2015; Hart, 1989;
Roth, 1988). The property fairness refers to the principle ‘equal treatment of equals’ (Yokote et al., 2019;
Navarro, 2019). Shapley value theory is the unique solution satisfying the above axioms. However, the theory
merely provides an abstract framework. To employ, we have to instantiate two abstracts: (1) players and
coalitions, and (2) characteristic function.

Abstract (1): players and coalitions. The spectral bands are dubbed as spectral players. A subset of the
spectral player set is dubbed as a spectral coalition. The details are as shown in Section 3.1. The M spectral
players can forge 2M spectral coalitions. We represent the presences and absences of the spectral players as
the pass-bands and stop-bands in a multi-band-pass digital signal filter (Oppenheim, 1978; Roberts & Mullis,
1987; Pei & Tseng, 1998), as shown in Section 3.2.

Abstract (2): characteristic function. The characteristic function is designed to measure the contributions
that the coalitions contribute in decisions. The contributions of the 2M coalitions are then combined to
compute their marginal contributions in decisions. We carry out an analysis within an information theory
framework, as shown in Section 3.3 and Appendix B.3. Figure 3 shows the framework of deploying the
Shapley value theory. Figure 4 shows the block diagram of the spectral coalition filtering. Figure 5 shows an
example of 2M spectral coalitions.

We organize the implementation details of instantiating the aforementioned two abstracts from three aspects:
(1) formulating a spectral coalitional game, (2) the implementation of spectral coalitions and (3) the design
of the characteristic function.
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3.1 Spectral coalitional game

Spectral player. We use Ii (where i P rM s :“ t0, 1, ¨ ¨ ¨ ,M ´ 1u) to denote the i-th spectral player. The
I0 contains the most robust features and the IM´1 contains the most non-robust features. The M spectral
players constitute a player set I :“ tIiuM´1

i“0 . Figure 14 in Appendix C.1 shows two partition schemes to
partition spectral bands (ℓ8 and ℓ2). We empirically choose ℓ8.

Spectral coalition. A subset rI Ď I is referred to as the spectral coalition. The player set I is often referred
to as the grand coalition.

Characteristic function. A characteristic function vprIq : rI ÞÑ R measures the contribution for a given
coalition and satisfies vpHq “ 0. In this research, the contribution of rI is measured in the form of the
log-likelihood expectation of the predictions by the Q, in which the input images only contain the signals
present in the rI. We show that this design of v theoretically measures how much information the Q uses
from the features in the rI for decisions.

Shapley value. A spectral coalitional game pI, vq is defined on a spectral player set I equipped with a
characteristic function v. The weighted marginal contribution of a spectral player Ii over all possible coalitions
is referred to as the Shapley value of the spectral player Ii. We use ψipI, vq to represent the Shapley value of
the player Ii. The Shapley value ψipI, vq is uniquely given by:

ψipI, vq “
ÿ

ĨĎIzIi

1
M

ˆ
M ´ 1

|Ĩ|
˙´1 ␣

vpĨ Y tIiuq ´ vpĨq( (3)

where 1
M

`
M´1

|Ĩ|
˘´1 gives the weight of the player Ii presenting in the coalition Ĩ.

Spectral importance distribution (SID). We use Ψpvq :“ pψiqiPrMs to denote the collection of ψipI, vq
over all players. We min-max normalize Ψpvq by taking Ψ˚pvq “ Ψpvq´min Ψpvq

||Ψpvq´min Ψpvq||1
. The reason for normalizing

the SIDs is that we want to scalarize the SIDs for numerical comparisons. The Ψ˚pvq is referred to as spectral
importance distribution. Figure 6 shows examples of the spectral importance distributions of trained and
un-trained models.

Spectral robustness score (SRC). We can also summarize spectral importance distributions into scalar
values. We refer to the summarized scalar values as spectral robustness scores. We use Spvq : v ÞÑ r0, 1s to
denote the summarizing function.

3.2 Spectral coalition filtering

We represent the presences and absences of the spectral players through the signal pass-bands and stop-bands
using a multi-band-pass digital signal filtering (Oppenheim, 1978; Pei & Tseng, 1998; Steiglitz, 2020), as
shown in Figure 4. For example, the example spectral coalition tI0, I2u signifies the signals present only in
I0 and I2. With the spectral coalition filtering, we are able to evaluate the contributions of the combinations
of various spectral features. Figure 5 shows an example of 2M spectral coalitions.

To implement the presences and absences of spectral signals, we define an indicator function TprIq : rI ÞÑ
t0, 1uMˆN on 2D spectrum, where rI is a spectral coalition and M ˆN denotes 2D image dimensions. The
indicator map is point-wisely defined as:

TprIqpm,nq “
#

1, if the frequency point (m,n) is present in coalition rI,
0, otherwise

(4)

where pm,nq P rM s ˆ rN s. In the digital signal processing literature, this mask map is known as a transfer
function (Steiglitz, 2020). The indicator function generates a spectral mask map with a given spectral
coalition rI, as shown in Figure 4. In the 2D mask map, the frequency points are ‘1’ in pass-bands (presences)
and ‘0’ in stop-bands (absences).
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Figure 4: Spectral coalition filtering. In this example, the mask map TprIq (i.e. transfer function) only allows
to pass the signals present in the spectral coalition tI0, I2u. The M is 4 and the absences are assigned to
zeros.
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Figure 5: An example of a complete 2M spectral coalitions. This example shows 16 spectral coalitions with
M “ 4. Each coalition provides various information relevant to decisions. Each image is a coalition. Each
coalition contains a unique spectral signal combination. We use binary code to index these coalitions. The ‘1’
in the i-th position indicates the presence of the i-th player. For example, 1001 indicates the presences of two
spectral players (I0 and I3) in the coalition.

We apply the transfer function TprIq on the spectra of images with element-wise product (i.e. Hadamard
product (Horn, 1990; Horadam, 2012)). Let F be the Discrete Fourier transform (DFT) operator and F ´1

be the inverse DFT (IDFT) operator (Tan & Jiang, 2018). Readers can further refer to Appendix ??.
Definition 3.1 (Spectral coalition filtering). We define a binary operator ‘‹’ to represent the signal filtering
by:

x ‹ rI :“ F ´1

»
—–F pxq d TprIqlooooooomooooooon

Spectral presence

` b d p1 ´ TprIqqloooooooomoooooooon
Spectral absence

fi
ffifl (5)

where ‘d’ denotes Hadamard product ( i.e. element-wise product), 1 P RMˆN denotes an all-ones matrix
and b P CMˆN represents the assignments of the absences of spectral players. In the context of attribution
analysis, b is often referred as the baseline. In our implementation, we empirically set b “ 0.
Remark 3.2 (Absence baseline). Formally, in the context of attribution analysis, the term ‘baseline’ defines
the absence assignments of players (Sundararajan et al., 2017; Shrikumar et al., 2017; Binder et al., 2016).
For example, if we use ‘zeros’ to represent the absence of players, the ‘zeros’ are dubbed as the ‘baseline’ in
the attribution analysis. We have discussed multiple baselines in Appendix B.2.
Definition 3.3 (Spectral coalition filtering over set). Accordingly, we define the filtering over a set X as:

X ‹ rI :“ tx ‹ rI|x P X u. (6)
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Figure 6: Spectral importance distributions of trained models and un-trained models. The experimental
models are pre-trained on ImageNet. We also include the models with random weights as a control marked
by the blue box. We have noticed that: (1) The spectral importance distributions of trained models exhibit
non-uniformity, and (2) the spectral importance distributions of un-trained models exhibit uniformity.

3.3 Characteristic function design

The characteristic function is needed in order to measure the contributions of the features in rI. We define
the characteristic function as the gains of the negative cross-entropy loss values between feature presences
and absences.
Definition 3.4 (Characteristic function). The characteristic function vprIq : rI ÞÑ R is defined as:

vprIq :“ E
x∼X

ÿ

yPY

$
’&
’%
P py|xq ¨ logQpy|x ‹ rIqlooooooooooooomooooooooooooon

Feature presence

´P py|xq ¨ logQpy|x ‹ Hqloooooooooooooomoooooooooooooon
Absence baseline

,
/.
/-

“ E
x∼X

ÿ

yPY
P py|xq ¨ logQpy|x ‹ rIq ´ C (7)

where the constant term C :“ E
x∼X

ř
yPY

P py|xq ¨ logQpy|x ‹ Hq is used to fulfil vpHq “ 0. We refer to the C as

the Dummy player constant.
Remark 3.5. If the labels are one-hot, then Equation 7 is simplified into:

vprIq :“ E
x,y∼xX ,Yy

logQpy|x ‹ rIq ´ C (8)

and C :“ E
x,y∼xX ,Yy

logQpy|x ‹ Hq.

Linking to information theory. The relationship between the information theory and the characteristic
function in the form of negative log-likelihood of Bayes classifiers has been discussed in the literature (Covert
et al., 2020; Aas et al., 2021; Lundberg & Lee, 2017). Following on from their discussions, we show that the v
in Equation 7 profoundly links to information theory in terms of spectral signals. The maximal information
of features relevant to labels in rI is the mutual information IpX ‹ rI,Yq. A classifier Q can merely utilize a
proportion of the information. Theorem 3.6 states an information quantity identity regarding the IpX ‹ rI,Yq
and the v. The term DKLrP ||Qs measures the point-wise (i.e. for an image x) KL-divergence between
the predictions and ground-truth labels. On the basis of the information quantity identity, the v can be
interpreted as the information gains between the presences and absences of the features, which the Q utilizes
in decisions from the rI. By enumerating all coalitions, the information gains are then combined to compute
the marginal information gains of features in decisions via Equation 3.
Theorem 3.6 (Spectral coalition information identity). The information quantity relationship is given as:

IpX ‹ rI,Yq ” E
xPX ‹rI

DKLrP py|xq||Qpy||xqs `HpYq ` vprIq ` C (9)

7
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where v is defined in Equation 7 and HpYq is the Shannon entropy of the label set Y. The proof is provided
in Appendix B.3.

3.4 Spectral robustness score (SRC)

Although we are firstly interested in using the spectral importance distributions (SID) for robustness
interpretations, they can also be summarized into scalar scores for purposes such as numerical comparisons,
and later correlation studies.
Assumption 3.7 (Spectral uniformity assumption of random decisions). The second row in Figure 6 shows
the SIDs from various models with randomized weights. We randomize the model weights with Kaiming
initialization (He et al., 2015). The measured SIDs exhibit spectral uniformity. This suggests: Un-trained
models do not have spectral preferences. We refer to ‘the models with randomized parameters’ as random
decisions. Therefore, we assume that the SIDs of random decisions are uniform: 1

M .
Assumption 3.8 (Robustness prior). We assume: Higher utilization of robust features in de-
cisions implies robust models. To reflect this robustness prior, we empirically design a series
β :“ pβ0, β1, ¨ ¨ ¨ , βM´1qT where β P p0, 1q as the summing weights of SIDs. Empirically, we choose β “ 0.75
because this choice achieves the best correlation with model robustness.

Summarizing with weighted sum. Let Ψpvq be the measured spectral importance distribution (SID). Set
Ψ˚pvq “ Ψpvq´min Ψpvq

||Ψpvq´min Ψpvq||1
with min-max normalization. The weighted sum of the Ψpvq with the weights β is

given by: ∣∣∣∣βT Ψ˚pvq ´ βT 1

M

∣∣∣∣ (10)

where βT 1

M is served as a random decision baseline. Let Spvq : v ÞÑ r0, 1s be the normalized result in
Equation 10. The Spvq is given by:

Spvq :“
∣∣βT Ψ˚pvq ´ βT 1

M

∣∣
sup
Ψ˚

∣∣βT Ψ˚pvq ´ βT 1

M

∣∣ “
∣∣∣∣∣β˚T Ψ˚pvq ´ η

1 ´ η

∣∣∣∣∣ (11)

where β P p0, 1q, β˚ “ β
||β||2

and η “ 1
M

||β||1
||β||2

. Readers can refer to Appendix C.2 for the simplification
deduction.

4 Experiments

We design experiments to show the dual functionality of I-ASIDE, which can not only measure robustness
and but also interpret robustness. We organize the experiments in three categories:

• Section 4.1: Correlation to a variety of robustness metrics;

• Section 4.2: Studying architectural robustness;

• Section 4.3: A case study interpreting how supervision noise levels affect model robustness.

Section 4.1 shows that the scores obtained with I-ASIDE correlate with the model robustness scores measured
with other methods. Section 4.2 and Section 4.3 show that I-ASIDE is able to interpret robustness by
examining SIDs.

Reproducibility. We choose M “ 8 and 200 samples to conduct experiments. We choose 200 samples
because the experiments in Appendix C.3. The experiment shows that: A small amount of examples are
sufficiently representative for spectral signals.
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Figure 7: Correlation to mean corruption errors (mCE).

4.1 Correlation to robustness metrics

Definition 4.1 (Mean prediction error). In our experiments, we measure model perturbation robustness
with mean prediction errors (mPE) besides the mean corruption errors (mCE). Let x be some clean image
and x˚ be the perturbed image. For a classifier Q, we define the mean prediction error (mPE) as:

∆P :“ E
x,y∼xX ,Yy

|Qpy|xq ´Qpy|x˚q|. (12)

We demonstrate that I-ASIDE is able to measure model robustness. The experiments are broken down into
three aspects: (1) correlation to mCE scores, (2) correlation to adversarial robustness, and (3) correlation to
corruption robustness.

Correlation to mCE scores. Figure 7 shows the correlation between spectral robustness scores (SRC) and
the mean corruption errors (mCE). The mCE scores are taken from the literature (Hendrycks & Dietterich,
2018). The mCE scores are measured on a corrupted ImageNet which is known as ImageNet-C in the literature
(Hendrycks & Dietterich, 2019). The ImageNet-C includes 75 common visual corruptions with five levels of
severity in each corruption. This correlation suggests that the results measured with I-ASIDE correlate
with the results measured with robustness metric mCE.

Correlation to adversarial robustness. Figure 8 shows the correlation between the correlation between
spectral robustness scores (SRC) and the mean prediction errors (mPE) of the adversarial attacks with
FGSM and PGD. We vary the eps from 0.1 to 0.2. The results show that our scores correlate with the mean
prediction errors in various eps settings. This suggests that the results measured by our method correlate
with adversarial robustness.

Correlation to corruption robustness. Figure 9 shows the correlation between the correlation between
spectral robustness scores (SRC) and the mean prediction errors (mPE) of the corruptions with white noise
and Gaussian blurring. We vary the σ of white noise from 0.1 to 0.2. We vary the Gaussian blurring kernel
sizes from 3 ˆ 3 to 7 ˆ 7. The results show that our scores correlate with the mean prediction errors in all
cases. This suggests that the results measured by our method can reflect the corruption robustness.
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Figure 8: Correlation to the mean prediction errors (mPE) in adversarial attacks.

4.2 Studying architectural robustness

I-ASIDE is able to answer questions such as:

• Does model parameter size play a role in robustness?

• Are vision transformers more robust than convolutional neural networks (ConvNets)?

Does model parameter size play a role in robustness? Figure 10 (a) shows parameter counts do
not correlate with model robustness. Thus, the tendency of a model to use robust features is not
determined by parameter counts alone. We would like to carry out further investigation in future work.
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Figure 9: Correlation to the mean prediction errors (mPE) in corruptions.

Are vision transformers more robust than ConvNets? Figure 10 (b) shows a t-SNE projection of the
spectral importance distributions of a variety of models. The results show that vision transformers form a
cluster (swin_b, maxvit_t and vit_b_16 ) and outperform ConvNets in terms of robustness. This results
correlate with the recent robustness research in the literature (Paul & Chen, 2022; Zhou et al., 2022; Shao
et al., 2021). The interpretation is that: Vision transformers tend to use more robust features than
ConvNets.

Discussion. Vision transformers generally outperform ConvNets; nevertheless, state-of-the-art ConvNets,
e.g. efficientnet, can achieve comparable robustness performance (Li & Xu, 2023; Tan & Le, 2019). The
literature (Devaguptapu et al., 2021) affirms that efficientnet is more robust than most ConvNets. But,
why efficientnet is unique? The efficientnet introduces an innovative concept in that the network sizes can
be controlled by scaling the width, depth, and resolution with a compound coefficient (Tan & Le, 2019).
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Figure 10: How do architectural elements affect robustness? The left figure is to answer: “Does model
parameter size play a role on robustness?”. The right figure is to answer: “Are vision transformers more
robust than convolutional neural networks?”. All experimental models are pre-trained on ImageNet.

The base architecture is then searched with neural architecture searching (NAS) (Ren et al., 2021) instead
of hand-crafted design. The NAS optimization objective is to maximize the network accuracy subject to
arbitrary image resolutions. The searching implicitly encourages that the network structure of efficientnet
uses more robust features. This is because: The low-frequency signals in various resolutions are
robust signals while high-frequency signals are not. The second column in Figure 6 shows the SID of
efficientnet pre-trained on ImageNet. The SID shows that efficientnet_v2_s uses more robust features than
alexnet and resnet18.

4.3 Interpreting how supervision noise levels affect model robustness

The previous robustness benchmarks with mean corruption errors (mCE) are not able to answer the long-
standing question: “How and why label noise levels affect robustness?”. We demonstrate that
I-ASIDE is able to answer this question.

Learning with noisy labels. Supervision signals refer to the prior knowledge provided by labels (Sucholutsky
et al., 2023; Zhang et al., 2020; Shorten & Khoshgoftaar, 2019; Xiao et al., 2020). There is a substantial line
of previous research on the question of “how supervision noise affects robustness” (Gou et al., 2021; Frénay &
Verleysen, 2013; Lukasik et al., 2020; Rolnick et al., 2017). This question is not completely answered yet. For
example, Flatow & Penner add uniform label noise into CIFAR-10 and study its impact on model robustness
(Flatow & Penner, 2017). Their results show that classification test accuracy decreases as the training label
noise level increases. However, empirical studies like this are not able to answer the underlying ‘why’ question.

Noisy-label dataset. We derive noisy-label datasets from a clean Caltech101. We randomly assign a
proportion of labels with a uniform distribution over label classes to create a noisy-label dataset. We refer to
the randomly assigned proportion as supervision noise level. We vary the noise level from 0.2 to 1.0 to derive
five training datasets.

Experiment. We train three models (googlenet, resnet18 and mobilenet_v2 ) over the clean and the five
noisy-label datasets for 120 epochs respectively. We then measure their SIDs. The results are visualized in
Figure 11 with heat maps. The results show that there is a pattern across the above three models in that:
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(b) resnet18
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(c) mobilenet_v2

Figure 11: How do models respond to label noise? Our results show that models trained with higher label
noise levels tend to use spectral signals uniformly, i.e. without a preference for robust (low-frequency) features.

The SIDs are more uniform with higher supervision noise levels. The interpretation regarding
the learning dynamics with the presence of label noise is that: Models tend to use more non-robust
features in the presence of higher label noise within training set.

5 Related work

We further conduct a literature investigation from three research lines: (1) global interpretability, (2) model
robustness, and (3) frequency-domain research. This literature study shows that I-ASIDE provides unique
insights in these research lines.

Global interpretability. Global interpretability summarizes the decision behaviours of models from a
holistic view. In contrast, local interpretability merely provides explanations on the basis of instances
(Sundararajan et al., 2017; Smilkov et al., 2017; Linardatos et al., 2020; Selvaraju et al., 2017; Arrieta et al.,
2020; Zhou et al., 2016; Ribeiro et al., 2016; Lundberg & Lee, 2017; Lakkaraju et al., 2019; Guidotti et al.,
2018; Bach et al., 2015; Montavon et al., 2019; Shrikumar et al., 2017). There are four major research lines in
image models: (1) feature visualization, (2) network dissection, (3) concept-based method, and (4) feature
importance.

Feature visualization seeks the ideal inputs for specific neurons or classes by maximizing activations (Olah
et al., 2017; Nguyen et al., 2019; Zeiler et al., 2010; Simonyan et al., 2013; Nguyen et al., 2016a;b). This
method provides intuitions regarding the question: “What inputs maximize the activations of specific neurons
or classes?”. Network dissection aims to connect the functions of network units (e.g. channels or layers) with
specific concepts (e.g. eyes or ears) (Bau et al., 2017). Concept-based methods understand the decisions by
answering the question “how do models use a set of given concepts in decisions?” (Kim et al., 2018; Ghorbani
et al., 2019; Koh et al., 2020; Chen et al., 2020). For example, TCAV explains model decisions by evaluating
the importance of a given set of concepts (e.g. the textures dotted, striped and zigzagged) for a given class
(e.g. the class zebra) (Kim et al., 2018). Global input feature importance analysis answers the question: “How
do input features contribute to predictions?” (Altmann et al., 2010; Greenwell et al., 2018; Lundberg & Lee,
2017; Ribeiro et al., 2016; Simonyan et al., 2013; Sundararajan et al., 2017; Covert et al., 2020). For example,
Covert et al. present SAGE, which applies Shapley value theory (Shapley, 1997), to assign spatial input
features with importance values for interpreting spatial feature contributions.

Although the aforementioned global interpretability methods provide insights into understanding decisions
inside black-box models, they do not provide interpretations regarding robustness mechanisms. Our work
fundamentally differs from them in that: We provide interpretations regarding robustness mechanisms. We
attempt to answer the fundamental question: “Why some models are more robust than others?”.

Model robustness. Model robustness refers to the prediction sensitivity of models to perturbations. The
perturbations can perturb in spaces such as the input space and the parameter space (Hendrycks & Dietterich,
2019; Drenkow et al., 2021). In this research, we focus on the perturbations within the input space. The
perturbations can stem from sources such as adversarial attacks (Szegedy et al., 2013; Goodfellow et al.,
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2014), corruptions (Hendrycks & Dietterich, 2019), outliers (Hendrycks et al., 2018a; Pang et al., 2021) and
supervision signal noise (Hendrycks et al., 2018b).

Model robustness is often assessed using scalar metrics (Hendrycks & Dietterich, 2019; Krizhevsky et al., 2012;
Laugros et al., 2019; Taori et al., 2020). For example, robustness can be measured by the distances between
clean and perturbed pairs in feature spaces (Zheng et al., 2016). Hendrycks & Dietterich benchmark the
corruption robustness with mean corruption errors (mCE) over a set of corrupted datasets like ImageNet-C
(Hendrycks & Dietterich, 2019), using AlexNet (Hendrycks & Dietterich, 2019) as a normalization baseline.

Despite their widespread adoption in previous literature, these scalar metrics lack the ability to provide
detailed insights into the robustness mechanisms. Our work not only serves as a robustness metric but
also offers mechanistic interpretations, answering the “why” question behind model robustness. This dual
functionality distinguishes our approach, providing a deeper understanding of the mechanisms.

Frequency-domain research. Neural networks are non-linear parameterized signal processing filters.
Investigating how neural networks respond to input signals in the frequency-domain can provide a unique
insight into understanding its functions. Xu et al. delve into the learning dynamics of neural networks in the
frequency-domain (Xu et al., 2019a;b). They present their findings as ‘F-Principle’. Their work suggests that
the learning behaviors of neural networks exhibit spectral non-uniformity: Neural networks fit low-frequency
components first, then high-frequency components.

In a related study, Tsuzuku & Sato show that convolutional neural networks have spectral non-uniformity
with respect to Fourier bases (Tsuzuku & Sato, 2019). Later, Wang et al. connect model generalization
behaviors and image spectrum (Wang et al., 2020). They argue that: (1) The supervision signals provided by
humans use more low-frequency signals in images and (2) models trained on it tend to use more low-frequency
signals. Our showcase experiment in Figure 11 provides the interpretations regarding their empirical findings.

In the interpretability research line within the frequency-domain, Kolek et al. propose ‘CartoonX’ based
on the rate-distortion explanation (RDE) framework (Macdonald et al., 2019; Heiß et al., 2020). The
RDE framework identifies decision-critical features by partially obfuscating the features. They refer to ‘the
prediction errors between clean inputs and the partially obfuscated inputs’ as distortions. CartoonX pinpoints
the decision-critical features within wavelet domain to answer the query: “What features are crucial for
decisions?” (Kolek et al., 2022). Our work differs from CartoonX in that: (1) Our method aims to interpret
model robustness mechanisms while CartoonX does not, (2) our method is a global interpretability method
while CartoonX is a local interpretability method, (3) our method analyzes within an information theory
framework while CartoonX uses RDE framework, and (4) our method uses Fourier bases while CartoonX
uses wavelet bases.

6 Limitations

I-ASIDE provides a unique insight into the perturbation robustness mechanisms. Yet, our method has two
major limitations: (1) The spectral perspective can merely reflect one aspect of the holistic view of model
robustness, and (2) the SID resolutions are low.

Limitation (1). For example, carefully crafted malicious adversarial perturbations on low-frequency
components can fool neural networks (Luo et al., 2022; Liu et al., 2023; Maiya et al., 2021). Luo et al.
demonstrate that attacking low-frequency signals can fool neural networks, resulting in attacks which are
imperceptible to humans. This further implies the complexity of this research topic.

Limitation (2). The computation cost is imposed by Op2M q. Fortunately, we do not need high SID
resolution to analyze the model robustness problem. For example, a choice with M “ 8 is sufficient to
interpret robustness mechanisms (as we have shown) while the computational cost remains reasonable.

7 Conclusions

On the solid ground provided by information theory and coalitional game theory, we present an axiomatic
method to interpret model robustness mechanisms, by leveraging the power-law-like decay of SNRs over the
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frequency. Our method addresses the limitation that scalar metrics fail to interpret robustness mechanisms.
We carry out extensive experiments over a variety of architectures. The SIDs, when scalarized, can largely
reproduce the results found with previous methods, but addresses their failures to answer the underlying
‘why’ questions. Our method goes beyond them with the dual functionality in that: I-ASIDE can not only
measure the robustness but also interpret its mechanisms. Our work provides a unique insight into the
robustness mechanisms of image classifiers.
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A Appendix

B Fairness division axioms

Symmetry axiom: Let rI P 2I be some spectral player coalition. For @ Ii, Ij P I ^ Ii, Ij R rI, the statement
vprI Y tIiuq “ vprI Y tIjuq implies ψipI, vq “ ψjpI, vq. This axiom restates the statement ‘equal treatment of
equals’ principle mathematically. This axiom states that the ‘names’ of players should have no effect on the
‘treatments’ by the characteristic function in coalition games (Roth, 1988).

Linearity axiom: Let u and v be two characteristic functions. Let pI, uq and pI, vq be two coalition games.
Let pu ` vqprIq :“ uprIq ` vprIq where rI P 2I . The divisions of the new coalition game pI, u ` vq should
satisfy: ψipI, u` vq “ ψipI, uq ` ψipI, vq. This axiom is also known as ‘additivity axiom’ and guarantees the
uniqueness of the solution of dividing payoffs among players (Roth, 1988).

Efficiency axiom: This axiom states that the sum of the divisions of all players must be summed to the

worth of the player set (the grand coalition):
M´1ř
i“0

ψipI, vq “ vpIq.

Dummy player axiom: A dummy player (null player) I˚ is the player who has no contribution such that:
ψ˚pI, vq “ 0 and vprI Y tI˚uq ” vprIq for @ I˚ R rI ^ I˚ Ď I.
Remark B.1. In the literature (Roth, 1988), the efficiency axiom and the dummy player axiom are also
combined and relabeled as carrier axiom.
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B.1 Spectral signal-to-noise ratio (SNR)

Discrete Fourier Transform. The notion ‘frequency’ measures how ‘fast’ the outputs can change with
respect to inputs. High frequency implies that small variations in inputs can cause large changes in outputs.
In terms of images, the ‘inputs’ are the pixel spatial locations while the ‘outputs’ are the pixel values.

Let x : pi, jq ÞÑ R be some 2D image with dimension M ˆN which sends every location pi, jq to some real
pixel value where pi, jq P rM s ˆ rN s. Let F : R2 ÞÑ C2 be some DFT functional operator. The DFT of x is
given by:

F pxqpu, vq “
N´1ÿ

j“0

M´1ÿ

i“0
xpi, jqe´i2πp u

M i` v
N jq. (13)

Point-wise energy spectral density (ESD). The ESD measures the energy quantity at a frequency. To
simplify discussions, we use radial frequency, which is defined as the radius r with respect to zero frequency
point (i.e. the frequency center). The energy is defined as the square of the frequency magnitude according
to Parseval’s Power Theorem.

Let Lr be a circle with radius r on the spectrum of image x, as illustrated in Figure 1. The r is referred to as
radial frequency. The point-wise ESD function is given by:

ESDrpxq :“ 1
|Lr| ¨

ÿ

pu,vqPLr

|F pxqpu, vq|2 (14)

where pu, vq is the spatial frequency point and |Lr| is the circumference of Lr.

Spectral signal-to-noise ratio (SNR). The SNR can quantify signal robustness. We define the spectral
SNR at radius frequency r as:

SNRprq :“ ESDrpxq
ESDrp∆xq (15)

where ∆x is some perturbation. We have characterized the SNRs of some corroptions and adversarial attacks
in Figure 2.
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B.2 Absence assignment scheme

There exist multiple choices for the assignments of the absences of spectral layers in coalition filtering design:
(1) Assigning to constant zeros (Zeroing), (2) assigning to complex Gaussian noise (Complex Gaussian) and
(3) assigning to the corresponding frequency components randomly sampled from other images at the same
dataset (Replacement).

Zeroing. The b in Equation 5 is set to zeros.

Complex Gaussian. The b in Equation 5 is sampled from a i.i.d. complex Gaussian distribution:
N pµ, σ2

2 q ` iN pµ, σ2

2 q.
Replacement. The b in Equation 5 is set to: b “ F px˚q (where x˚ ∼ X is a randomly sampled image from
some set X ).

In our implementation, we simply choose ‘zeroing’: b “ 0. Figure 12 shows the filtered image examples by
using the above three strategies and also show the examples of measured spectral importance distributions.
Empirically, the three strategies have rather similar performance. In this research, we do not unfold the
discussions regarding the masking strategy choices.
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sian
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Figure 12: Three absence assignment strategies: (1) Assigning the spectral absences with constant zeros
(Zeroing), (2) assigning the spevtral absences with Gaussian noise (Complex Gaussian) and (3) randomly
sampling spectral components from the same image datasets (Replacement). The standard complex Gaussian
distribution is given by: N p0, 1

2 q ` iN p0, 1
2 q. The figures (a), (b) and (c) show the coalition filtering results

with the spectral coalition: tI0u. The figures (d), (e) and (f) show the coalition filtering results with the
spectral coalition: tI1, I2, I3, I4, I5, I6, I7u. The figures (g) to (l) show the examples of the measured spectral
importance distributions of a resnet18 and a efficientnet_v2_s (both are pre-trained on ImageNet) with the
three assignment strategies.
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B.3 Proof for Spectral Coalition Information Identity Theorem

Proof for Spectral Coalition Information Identity. Suppose the probability measures P pxq, P px, yq, P py|xq,
and Qpy|xq are absolutely continuous with respect to x on domain X ‹ rI.

IpX ‹ rI,Yq “
ż

X ‹rI

ÿ

yPY
P px, yq ¨ log P px, yq

P pxq ¨ P pyqdx (16)

“
ż

X ‹rI

ÿ

yPY
P px, yq ¨ log

ˆ
P py|xq ¨ P pxq
P pyq ¨ P pxq ¨ Qpy|xq

Qpy|xq
˙
dx (17)

“
ż

X ‹rI

ÿ

yPY
P px, yq ¨ log

ˆ
P py|xq
Qpy|xq ¨ 1

P pyq ¨Qpy|xq
˙
dx (18)

“
ż

X ‹rI

P pxq
˜ÿ

yPY
P py|xq ¨ log P py|xq

Qpy|xq

¸
dx (19)

´
ÿ

yPY

¨
˚̋

ż

X ‹rI

P px, yqdx

˛
‹‚logP pyq (20)

`
ż

X ‹rI

ÿ

yPY
P px, yq ¨ logQpy|xqdx (21)

“ E
xPX ‹rI

KLpP py|xq||Qpy||xqqloooooooooooomoooooooooooon
point´wise

`HpYq `
ż

X ‹rI

P pxq
˜ÿ

yPY
P py|xq ¨ logQpy|xq

¸
dx (22)

“ E
xPX ‹rI

KLpP py|xq||Qpy||xqqloooooooooooomoooooooooooon
point´wise

`HpYq ` E
xPX ‹rI

ÿ

yPY
P py|xq ¨ logQpy|xq (23)

“ E
xPX ‹rI

KLpP py|xq||Qpy||xqqloooooooooooomoooooooooooon
point´wise

`HpYq ` vprIq ` C (24)

where HpYq is the Shannon entropy of the label set Y.
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C Information quantity relationship in spectral coalitions

IpX ‹ rI,Yq

vprIq

Dummy player constant: |C|

E
xP rX

KL pP py|xq||Qpy|xqq

HpYq

Constant Variable (KL divergence) Variable (characteristic function)

Figure 13: Information quantity relationship. This shows the theoretical information quantity relationship
between what the characteristic function v measures and the mutual information IpX ‹ rI,Yq. For a given
coalition rI, a dataset xX ,Yy and a classifier Q, the v measures how much information the classifier Q utilizes
in decisions. The measured results are then used to compute the marginal contributions of features.
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C.1 Partitioning spectrum with ℓ8 ball over ℓ2 ball

Spectral players with ℓ8 partition.

IM´1

IM´2 I0

The pixel density of IM´1 with ℓ2 ball. The pixel density of IM´1 with ℓ8 ball.

Frequency center Frequency center

IM´1

IM´1

No frequency data
Frequency data (in color ‘teal’)

Figure 14: Two spectral band partitioning schemes. This shows the motivation we choose ℓ8 ball over ℓ2 ball
in partitioning the frequency domain into the M bands (i.e., M ‘spectral players’) over 2D Fourier spectrum.
The frequency data density of the spectral players with ℓ8 remains a constant. However, the frequency data
density of the spectral players with ℓ2 is not a constant since some frequency components do not present.
This motives us to empirically choose ℓ8 metric to form spectral players in implementation.
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C.2 Normalizing summarized SIDs

We normalize the above result and set:

Spvq :“
∣∣∣βT Ψ˚pvq ´ ||β||1

M

∣∣∣
sup

∣∣∣βT Ψ˚pvq ´ ||β||1
M

∣∣∣ (25)

“
∣∣∣βT Ψ˚pvq ´ ||β||1

M

∣∣∣
sup

∣∣∣||β||2 ¨ ||Ψ˚pvq||2 ´ ||β||1
M

∣∣∣ (26)

“
∣∣∣βT Ψ˚pvq ´ ||β||1

M

∣∣∣∣∣∣||β||2 ´ ||β||1
M

∣∣∣ (27)

“
∣∣∣∣∣∣β˚T Ψ˚pvq ´ 1

M
||β||1
||β||2

1 ´ 1
M

||β||1
||β||2

∣∣∣∣∣∣. (28)

where β˚ “ β
||β||2

and sup
∣∣∣βT Ψ˚pvq ´ ||β||1

M

∣∣∣ is derived by:

sup
∣∣∣∣βT Ψ˚pvq ´ ||β||1

M

∣∣∣∣ “
∣∣∣∣sup βT Ψ˚pvq ´ ||β||1

M

∣∣∣∣ (29)

“
∣∣∣∣sup ||β||2 ¨ ||Ψ˚pvq||2 ´ ||β||1

M

∣∣∣∣ s.t. ||Ψ˚pvq||1 “ 1 (30)

“
∣∣∣∣||β||2 ´ ||β||1

M

∣∣∣∣ since ||Ψ˚pvq||22 ď ||Ψ˚pvq||21. (31)

Set η “ 1
M

||β||1
||β||2

:

Spvq “
∣∣∣∣∣β˚T Ψ˚pvq ´ η

1 ´ η

∣∣∣∣∣. (32)

Q.E.D.
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C.3 How much samples are sufficient?
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Figure 15: Convergence of relative estimation errors converge with respect to the numbers of samples K.
The errors are measured by: 1

M ||Ψpi`1qpvq ´ Ψpiqpvq||1 where Ψpiqpvq denotes the i-th measured spectral
importance distribution with respect to characteristic function v. The experiments are conducted on CIFAR10,
CIFAR100 and ImageNet with resnet18.

Error bound analysis. Let K be the number of the samples of some baseline dataset. Let:

∆vpĨ, Iiq :“ vpĨ Y tIiuq ´ vpĨq (33)

and

∆vpIiq :“ `
∆vpĨ, Iiq

˘
ĨĎI (34)

and

W :“
˜

1
M

ˆ
M ´ 1

|Ĩ|
˙´1

¸

ĨĎI

. (35)

Hence:

ψipI, vq “ WT ∆vpIiq (36)

where ||W ||1 ” 1 since W is a probability distribution. Let ψi̊ , ∆v˚pIiq and ∆v˚pĨ, Iiq be estimations with
K samples using Monte Carlo sampling. The error bound with ℓ1 norm is given by:

ϵ
def“ sup

i
||ψi̊ pI, vq ´ ψipI, vq||1 “ sup

i
||WT ∆v˚pIiq ´WT ∆vpIiq||1 (37)

ď sup
i

||W ||1 ¨ ||∆v˚pIiq ´ ∆vpIiq||8
`
Hölder1s inequality

˘
(38)

“ sup
i

||
ÿ

ĨĎIzIi

`
∆v˚pĨ, Iiq ´ ∆vpĨ, Iiq

˘ ||8 (39)

ď sup
i

2M´1 ¨ sup
Ĩ

||∆v˚pĨ, Iiq ´ ∆vpĨ, Iiq||8 (40)

“ sup
i

2M´1 ¨ sup
Ĩ

||∆v˚pĨ, Iiq ´ ∆vpĨ, Iiq||1 (41)

ď 2M´1 ¨
"
V arp∆v˚q

K

* 1
2

(42)

where V arp∆v˚q gives the upper bound of the variance of ∆v˚pĨ, Iiq.
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