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ABSTRACT

Existing expert merging strategies for Sparse Mixture of Experts (SMoE) typically
rely on input-dependent or input-independent averaging of expert parameters, but
often lack a principled weighting mechanism. In this work, we reinterpret expert
merging through the lens of game theory, revealing cooperative and competitive
dynamics among experts. Based on this perspective, we introduce Nash Merging
of Experts (NAMEx), a novel framework that incorporates Nash Bargaining into the
merging process, enabling more balanced and efficient collaboration among experts.
Additionally, we incorporate complex momentum into NAMEx to accelerate expert
propagation with theoretical guarantees for convergence. Extensive experiments
across language modeling, text classification, image classification, and zero-shot
robustness under data corruption show that NAMEx consistently outperforms
competing methods while integrating seamlessly with popular MoE architectures.
Finally, we demonstrate NAMEx’s scalability by applying it to large-scale systems,
including Qwen1.5-MoE (14B) and DeepSeek-MoE (16B), where it proves effective
in both zero-shot and fine-tuning settings.

1 INTRODUCTION

Scaling up neural networks without proportional increases in computational cost is a
key goal in modern deep learning. Sparse Mixture of Experts (SMoE) architectures of-
fer a powerful solution: they selectively activate only a subset of expert modules for
each input, thereby maintaining high capacity while preserving computational efficiency.
Building on the classical Mixture of Experts (MoE) framework (Jacobs et al., 1991),
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Figure 1: Cosine similarity of expert outputs
in Swin-MoE (Liu et al., 2021) (top), Switch-
Transformer (Fedus et al., 2022) (middle),
and Qwen-MoE (Yang et al., 2024) (bottom).
Swin-MoE shows stable mid-layer features,
Switch-Transformer exhibits dynamic rout-
ing at Layer 8, and Qwen-MoE yields robust
final representations at Layer 9–highlighting
diverse expert interaction patterns.

SMoE leverages a dynamic gating mechanism to determine
which experts participate in processing a given input.
This sparsity allows extremely large models to be trained
efficiently and has shown promise across natural language
processing (Shazeer et al., 2017) and computer vision
(Ruiz et al., 2021) applications.

A core component of SMoE is the routing mechanism,
which dynamically determines expert assignments. Signifi-
cant efforts have focused on improving routing stability and
expressiveness. For example, StableMoE (Dai et al., 2022)
introduces a two-stage strategy to reduce routing variance;

SMEAR (Muqeeth et al., 2024) proposes soft parameter
merging via weighted averaging to bypass discrete selec-
tion; and HyperRouter (Do et al., 2023) uses hypernet-
works to generate router parameters. Meanwhile, SoftMoE
(Puigcerver et al., 2024a) blends sparse and dense routing,
and patch-level routing (Chowdhury et al., 2023) improves
sample efficiency in visual tasks.

Beyond routing, a complementary yet underexplored di-
rection is expert merging. Instead of selecting a subset
of experts per input, merging aims to combine all expert
parameters into a unified model, either during training or
at inference. This approach is especially appealing when
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deployment or memory constraints demand a single-expert representation. Merging is particularly
valuable in autoregressive models (Zhong et al., 2024) and cross-domain transfer settings (Chen et al.,
2022). However, most current merging techniques, such as soft-merging (Muqeeth et al., 2024) and
top-k aggregation (He et al., 2023; Li et al., 2024), rely on heuristic weighting schemes that ignore the
intricate dynamics between experts.

Recent work has begun to address this limitation. (Nguyen et al., 2025) introduces a curvature-aware
merging scheme, namely Curvature-aware merging of experts (CAMEx), that uses natural gradients
to account for non-Euclidean geometry in parameter space. A variant, corresponding to the dynamic
merging (Dynamic-Merg) mechanism in the CAMEx paper, which we refer to as Expert-Propagation
CAMEx (EP-CAMEx), propagates a base expert across layers to promote inter-layer communication.
However, despite its elegance, EP-CAMEx underperforms its static variant, likely due to insufficient
coordination among expert contributions. This motivates a deeper question: Can we interpret expert
merging as a structured interaction among experts, rather than just a linear average?

Contribution. In this paper, we frame expert merging as a cooperative-competitive game among
experts. Drawing inspiration from multi-task learning, we adopt the Nash Bargaining Solution (NBS)
(Nash, 1950) to derive merging coefficients from first principles based on each expert’s contribution.
Our method, named Nash Merging of Experts (NAMEx), treats expert domain vectors as utility
functions in a bargaining game. By solving for the optimal agreement point, NAMEx ensures a fair and
efficient merging process that reflects expert alignment and divergence.

To address the slow convergence of EP-CAMEx, we further integrate complex momentum (Lorraine
et al., 2022) into the propagation process. This enhancement accelerates convergence while preserving
stability, especially when expert interactions include adversarial or conflicting dynamics. We theoret-
ically prove the convergence of NAMEx under mild conditions and provide a spectral radius-based
bound for the convergence rate of NAMEx-Momentum. Our contribution is three-fold:

1. We develop NAMEx, a new expert merging method that integrates the Nash Bargaining opti-
mization framework of (Navon et al., 2022) into EP-CAMEx (Nguyen et al., 2025), improving
expert propagation at each SMoE layer.

2. We incorporate complex momentum into our NAMEx to enhance the stability and convergence
speed of expert propagation across layers and provide theoretical guarantees.

3. We demonstrate that quaternion momentum presents a promising future direction for further
improving expert merging.

Comprehensive experiments across diverse tasks–including WikiText-103 language modeling (Merity
et al., 2016), GLUE text classification finetuning (Wang et al., 2019), and ImageNet-1k image classifica-
tion and zero-shot robustness under data corruption (Deng et al., 2009)–demonstrate the effectiveness of
our approach, achieving superior accuracy compared to baseline methods while preserving advantages
in computational efficiency. Moreover, we establish NAMEx’s scalability by deploying it on large
systems such as Qwen1.5-MoE (14B) and DeepSeek-MoE (16B), where it delivers strong performance
in both zero-shot and fine-tuning scenarios.

Organization. Section 2 reviews SMoE, CAMEx, and Nash Bargaining; Section 3 introduces NAMEx
and its momentum extension; Section 4 presents experiments with ablations; Section 6 discusses related
work; and Section 7 concludes with limitations.

2 BACKGROUND

2.1 SPARSE MIXTURE OF EXPERTS

The Mixture of Experts (MoE) framework enables modular neural computation by combining multiple
specialized sub-networks (experts) through a gating function (Jacobs et al., 1991). The Sparse Mixture
of Experts (SMoE) variant enhances scalability by activating only a small subset of experts per input,
significantly reducing computation during training and inference (Shazeer et al., 2017; Fedus et al.,
2022; Lepikhin et al., 2021).

Let x∈Rd be an input and fi(x)
N
i=1 denote expert outputs. A gating network computes weights si(x)

such that:

si(x;θg)≥0,

N∑
i=1

si(x;θg)=1, F (x)=

N∑
i=1

si(x;θg)fi(x). (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Router

CA-Merg

Router

CA-MergAvg Merg

Router

CA-MergNash Merg

(b) Expert-Propagation CAMEx (c) NAMEx(a) CAMEx

Figure 2: Architecture overview of (a) CAMEx (Nguyen et al., 2025), (b) Expert-Propagation CAMEx (Nguyen
et al., 2025), and (c) our proposed merging method, NAMEx.

SMoE improves model capacity without linearly scaling compute, making it a central design in recent
large-scale architectures.

2.2 CURVATURE-AWARE MERGING OF EXPERTS

CAMEx uses natural gradients to align merged experts more closely with the geometry of the parameter
space, enhancing both pre-training and fine-tuning processes (Nguyen et al., 2025). Hence, CAMEx
generalizes popular expert merging methods such as SMEAR (Muqeeth et al., 2024) and Lory (Zhong
et al., 2024) and can be formulated as the following natural gradient-like merging scheme:

Ê(l)
m =E(l)

m +η

N∑
i=1

M
(l)
i ·(s

(l)
i ∗τ

(l)
i ), (2)

where τ
(l)
i =E

(l)
i −E

(l)
m is the domain-vector of the i-th expert, representing its deviation from the

base expert. E(l)
i , E(l)

m , and Ê
(l)
m denote the weights of the i-th expert, the base expert, and the resulting

merged expert that processes the input, respectively. Here, the base expertE(l)
m is shared between tokens

in layer l, just like in DeepSeek-V2 (Liu et al., 2024a) and V3 (Liu et al., 2024b). η>0 denotes the
stepsize for updating the base expert, and M

(l)
i is the curvature matrix for the i-th expert. EP-CAMEx

is an extension of CAMEx, in which the base expert E(0)
m is initialized at the first layer, and E

(l)
m and

Ê
(l)
m are updated at subsequent layers as follows:

E
(l+1)
m =E

(l)
m +

γ

N

N∑
i=1

M
(l)
i ·τ

(l)
i ,

Ê
(l+1)
m =E

(l+1)
m +η

N∑
i=1

M
(l+1)
i ·(s(l+1)

i ∗τ (l+1)
i ).

(3)

Here, γ >0 denotes the step size for the propagation of the base expert E(l)
m . In the first equation of

system (3) above, if we view each domain-vector τ (l)i as a “gradient direction” attempting to pull the
base expert toward the corresponding expert’s domain, then the formulation can be interpreted as a
dynamical system that updates E(l)

m using Multiple-Gradient Descent Algorithm (MGDA) (Désidéri,
2012) to minimize the distance between Em and i-th domain. Consequently, this can be framed
as a multi-objective optimization or multi-task learning problem. We illustrate both CAMEx and
EP-CAMEx in Figure 2(a) and (b).

2.3 NASH BARGAINING IN MULTI-TASK LEARNING

The Nash Bargaining Solution (NBS) (Nash, 1950) is a foundational concept in cooperative game
theory, describing how multiple agents can reach a fair and Pareto-optimal agreement. A bargaining
problem is typically defined by a agreement set of outcomes S⊆RN and a disagreement point d∈RN ,
which specifies the utility each player receives if no agreement is reached. The NBS selects an outcome
u∗∈S that maximizes the product of individual gains over the disagreement point:

u∗=argmax
u∈S

N∏
i=1

(ui−di). (4)

The disagreement point in the Nash Bargaining Problem is the fallback outcome each player receives if
no agreement is reached. It serves as a baseline against which any cooperative agreement is measured,
shaping the set of feasible solutions. Players often consider their disagreement point strategically, as
improvements to it can strengthen their bargaining position and influence the final outcome.

3
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Recent work by (Navon et al., 2022) demonstrates that multi-task learning (MTL) can be naturally
framed as a bargaining game. In this setting, each task corresponds to a player, and the goal is to
determine a shared parameter update direction ∆θ that benefits all tasks. The agreement set is typically
constrained to a unit ball Bϵ={∆θ |∥∆θ∥≤ϵ}, while the disagreement point is set to zero, indicating
no parameter update. Each task i provides a utility function

ui(∆θ)=τ⊤
i ∆θ, (5)

where τ i is the gradient of the task-specific loss with respect to the model parameters. Under the
assumption that these gradients are linearly independent, the NBS yields the optimal update direction:

∆θ=

N∑
i=1

αiτ i, where G⊤Gα=1/α, (6)

with G=[τ 1,...,τN ] and 1/α denoting element-wise reciprocals.

This formulation provides a principled way to resolve conflicting gradients, balancing cooperative
and adversarial dynamics among tasks. In this paper, we leverage this framework to reinterpret expert
merging in SMoE and particularly, CAMEx, as a bargaining game among experts, where each domain
vector τ (l)

i , i=1,...,N , plays the role of a task gradient.

3 NASH MERGING OF EXPERTS

Building on the foundations of CAMEx and Nash Bargaining, we now introduce NAMEx–a novel
method for merging experts in SMoE via Nash Bargaining. Rather than treating expert merging as
a simple averaging task, NAMEx models it as a multi-agent bargaining game, where each expert
proposes a directional update, i.e., its domain vector, and the merged expert is obtained through a
principled aggregation reflecting both cooperation and competition. To address slow convergence in
existing propagation methods like EP-CAMEx, we further introduce complex momentum into NAMEx,
enabling faster and more stable propagation through SMoE layers. An overview of our approach is
shown in Figure 2(c).

3.1 MERGING EXPERTS AS A BARGAINING GAME

Setting ∆E(l) as an update direction for E(l)
m of the l-th layer in the first equation of system (3), we

adjust the expert-propagating updating step in EP-CAMEx as follows:
E

(l+1)
m =E

(l)
m +γ∆E(l),

Ê
(l+1)
m =E

(l+1)
m +η

N∑
i=1

Mi ·(s(l+1)
i ∗τ (l+1)

i ).
(7)

Like CAMEx, we view the domain-vectors τ (l)
i =E

(l)
i −E

(l)
m as analogous to a gradient step that pulls

Em toward Ei’s domain. However, different from the formulation of EP-CAMEx in system (3), we
remove the curvature matrix in the first equation to align with the Bargaining Game given by Algorithm
1 in (Navon et al., 2022). Our goal now is to find an optimal update vector ∆E(l) which benefits all
experts, i.e., finding α(l)= [α

(l)
1 ,α

(l)
2 ,...,α

(l)
N ] to aggregate the domain-vectors τ (l)

i into ∆E(l) as in
Eqn. 7. We hypothesize that experts in SMoE engage in mixed games comprising both cooperative and
competitive dynamics.

Layer-Wise Expert Interaction Dynamics. Following the analysis protocol described in (Lo et al.,
2025), we observe that expert behavior varies by layer and architecture (see Figure 1), revealing both
cooperative and adversarial patterns. For instance, in Swin-MoE (Liu et al., 2021), middle layers show
high inter-expert similarity, while Qwen-MoE (Yang et al., 2024) concentrates alignment in deeper
layers. This motivates a dynamic, layer-wise approach to merging–exactly what NAMEx provides.
Please refer to Figure 8 and Figure 6 in Appendix F.4 for more analysis on the dynamic of expert
interaction. For comparison regarding expert interaction patterns under the impact of Load Balancing
loss, please refer to Figure 9 in Appendix F.4.

Adapting the bargaining game’s formulation in (Navon et al., 2022), NAMEx solves the following
problem:

[Bargaining of Expert Merging (BEM) Problem] Given an experts-merging problem with the
set of expert parameters {E1,E2,...,EN} and the base expert’s parameter Em, find an update
vector ∆E within a ball Bϵ of radius ϵ centered at zero, i.e., Bϵ={∆E |∥∆E∥≤ϵ}.
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Inspired by (Navon et al., 2022), in this bargaining problem, we set the disagreement point to 0,
corresponding to not updating Em. Similar to Eqn. 5, the utility function for each expert is defined as
ui(∆E)=τ⊤

i ∆E , where τ i is the domain-vector for expert i, representing its deviation from the base
expert and capturing its unique contribution to the merging process. Here, ∆E is equivalent to ∆θ in
Eqn. 5. We have the following mild axiom on the Nash bargaining solution.
Axiom 3.1 (Pareto optimality of Nash bargaining solution (Nash, 1950)). The selected agreement must
be Pareto efficient, i.e. no other feasible outcome should exist that improves one player’s utility without
reducing the utility of at least one other player.

Under Axiom 3.1, the solution to the BEM Problem above is given by the following lemma.
Lemma 3.2 (Nash Solution of Expert Merging). Let G denote the d×N matrix whose columns are
the domain-vectors τi. The solution to

arg max
∆E∈Bϵ

N∑
i=1

log(∆E⊤τi) (8)

is (up to scaling) ∆E∗ =
∑N

i=1αiτi, where α ∈ RN
+ satisfies G⊤Gα = 1/α, with 1/α being the

element-wise reciprocal.

Note that, under Axiom 3.1, it can be proven that the Nash solution to the bargaining problem is not
dominated by other solutions. A proof sketch for Lemma 3.2 is provided in Appendix B.1.

3.2 NAMEX AS THE NASH SOLUTION OF EXPERT MERGING

We now formally define NAMEx as the Nash Bargaining Solution to the BEM problem.

Definition 3.3 (NAMEx: Nash Merging of Experts). Let {E(l)
1 ,...,E

(l)
N } be the expert parameters

and let E(l)
m denote the base expert at layer l. Define the domain-vectors as τ (l)

i =E
(l)
i −E

(l)
m , and

let G(l)=[τ
(l)
1 ,...,τ

(l)
N ] be the matrix formed by stacking these vectors. The NAMEx update direction

∆E(l) is defined as:

∆E(l)=

N∑
i=1

α
(l)
i τ

(l)
i ,

where α(l) ∈ RN
+ satisfies the Nash Bargaining equation:G(l)⊤G(l)α(l) = 1/α(l), with 1/α(l)

denoting the element-wise reciprocal. The NAMEx update then proceeds by plugging NAMEx update
direction into Eqn. 7: 

E
(l+1)
m =E

(l)
m +γ

N∑
i=1

α
(l)
i τ

(l)
i ,

Ê
(l+1)
m =E

(l+1)
m +η

N∑
i=1

Mi ·(s(l+1)
i ∗τ (l+1)

i ),

(9)

where γ,η∈R+ are step-size coefficients, Mi is the curvature matrix for expert i, and s
(l+1)
i are the

routing weights at layer l+1.

We summarize the implementation of NAMEx in Algorithm 1.

Dissecting NAMEx. We now discuss the behavior of NAMEx by studying the Nash Solution of the

BEM Problem. First, if all τj are orthogonal, we obtain αj=
1

∥τj∥
and ∆E=

∑N
j=1αjτj , which is a

scale-invariant solution. When τj are not orthogonal, we obtain

αj∥τj∥2+
∑
i ̸=j

αiτ
⊤
i τj=

1

αj
. (10)

Lemma 3.2 allows us to calculate the optimal update direction ∆E for an expert-propagation step at
l-th layer as ∆E(l)=

∑N
i=1αiτ

(l)
i .

Furthermore, assuming that EP-CAMEx obeys the update law in Eqn. 7 in (Désidéri, 2012), the norm
∥τj∥ is (nearly) identical between domain vectors, we can view the expert update step in (Nguyen
et al., 2025) as a trivial solution (with a scaling factor) of Lemma 3.2, ignoring the interaction between
experts. While they also apply curvature matrices to the expert propagating step, the learned curvature
matrices provide no additional information about other experts. Thus, the conclusion still holds.
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Algorithm 1 Expert Merging via Nash Bar-
gaining

1: Initialize: ModelM withL SMoE layers,
number of experts N , γ,η∈R+

2: H(t)∈RB×S×N : router logits at layer t
3: T (t) ∈ RB×S×D: token sequence at

layer t
4: for t=1 to L do
5: for i=1 to N do
6: τ

(t)
i ←E

(t)
i −E

(t)
m

7: end for
8: G(t)← [τ

(t)
1 ,τ

(t)
2 ,...,τ

(t)
N ]

9: Solve for α:
(
G(t)

)⊤
G(t)α=1/α

10: E
(t+1)
m ←E

(t)
m +γ

∑
iτ

(t)
i αi

11: E
(t+1)
m ←E

(t+1)
m +η

∑
iH

(t)
i ·τ

(t)
i

12: end for

Algorithm 2 NAMEx-Momentum

1: Input: γ ∈R+, β∈C, µ(0)∈Cd, E(0)∈
Rd

2: for j=1 to L−1 do
3: for i=1 to N do
4: τ

(j)
i ←E

(j)
i −E

(j)
m

5: end for
6: G(j)← [τ

(j)
1 ,...,τ

(j)
N ]

7: Solve α from: (G(j))⊤G(j)α=1/α

8: ∆E(j)←
∑

iτ
(j)
i αi {Same update as

NAMEx}
9: µ(j+1)←βµ(j)+∆E(j)

10: E(j+1)←E(j)+ℜ(γµ(j+1))
11: // Optional: Add residual alignment or

router term if needed
12: end for

In Eqn. 10, we can consider
∑

i ̸=jαiτ
⊤
i τj=(

∑
i̸=jαiτ

⊤
i )τj as the interaction between the j-th expert

and the other experts. If the sum is positive, the experts cooperate, and the other domain-vectors aid the
j-th expert. αj decreases in this case. If the sum is negative, the other experts hamper the j-th expert,
i.e., an adversarial behavior between experts, and therefore, αj increases to ensure that Eqn. 10 holds.

3.3 INTEGRATING MOMENTUM INTO EXPERT MERGING

We hypothesize that one reason for EP-CAMEx’s inferior performance compared to CAMEx is its
reliance on a fixed number of update steps, constrained by the model’s layer count. This limitation
hinders the convergence of the base expert in later stages, leading to suboptimal performance. To
mitigate this, we introduce momentum to accelerate convergence during optimization. In particular,
we adopt complex momentum (Lorraine et al., 2022), which has been shown to be more robust and
effective than standard first-order methods across a wide range of cooperative and adversarial games.
By integrating complex momentum into expert merging, we enhance the propagation of expert updates
across layers and provide theoretical support for its improved convergence rate.

We present a formal definition NAMEx-Momentum below and summarize an algorithm to implement
it in Algorithm 2.
Definition 3.4 (NAMEx-Momentum: Nash Merging with Complex Momentum). Let {E1,...,EN} be
the expert parameters andEm the base expert at a given layer. Define the domain-vectorsτ i=Ei−Em

and the matrix G = [τ 1,...,τN ]. At each iteration j, the update direction ∆E(j) =
∑N

i=1αiτ i is
computed where α solves the Nash system:

G⊤Gα=1/α.

NAMEx-Momentum uses a complex momentum buffer µ(j)∈Cd to accumulate directional updates:
µ(j+1) =βµ(j)+∆E(j),

E
(j+1)
m =E

(j)
m +ℜ(γµ(j+1))

Ê
(l+1)
m =E

(l+1)
m +η

N∑
i=1

Mi ·(s(l+1)
i ∗τ (l+1)

i ),

(11)

where β∈C is the momentum coefficient, γ∈R+ is the step size, andℜ(·) denotes the real part.

We provide a convergence guarantee for NAMEx-Momentum update in Proposition 3.5 below and
Theorem B.3 in Appendix B. Their proofs are in Appendix B.3
Proposition 3.5 (Convergence rate of NAMEx-Momentum). There exist γ∈R+,β∈C so Algorithm 2
converges for NAMEx-Momentum.

4 EXPERIMENTAL RESULTS

We evaluate NAMEx and its variants against baseline methods (SMoE, CAMEx, and EP-CAMEx)
across diverse tasks: language modeling (WikiText-103 (Merity et al., 2016)), text classification
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Table 1: Validation and test perplexity on WikiText-103 for small- and medium-scale pretraining.
Model Params Small Medium

Val PPL Test PPL Val PPL Test PPL
SMoE (Top-1) 70M / 216M 86.64±.22 87.79±.31 38.60±.18 40.51±.25

SMoE (Top-2) 70M / 216M 84.26±.12 84.81±.29 33.76±.19 35.55±.22

SMEAR 70M / 216M 85.56±.20 87.24±.28 36.15±.17 37.42±.23

CAMEx 70M / 216M 83.53±.19 84.48±.26 35.69±.15 36.53±.21

w/o momentum

EP-CAMEx 70M / 216M 83.89±.18 85.03±.24 35.78±.16 36.55±.22

NAMEx 70M / 216M 83.30±.21 84.12±.29 35.14±.19 36.40±.27

NAMEx-Full 70M / 216M 82.85±.17 83.16±.23 34.92±.14 36.21±.20

w/ momentum

EP-CAMEx-Mom 70M / 216M 82.90±.16 84.05±.22 35.09±.13 36.16±.19

NAMEx-Mom 70M / 216M 82.63±.15 83.59±.21 34.89±.12 35.86±.18

NAMEx-Full-Mom 70M / 216M 82.44±.14 82.94±.20 34.25±.11 35.37±.17

Table 2: Performance of T5-base variants on fine-tuning tasks for GLUE. All SMoE variants have 8 experts per
layer. Following (Devlin et al., 2019), we conduct experiments on the GLUE benchmark.

Model Params SST-2 MRPC CoLA STSB RTE QNLI MNLI
Dense 220M 93.34±.15 89.70±.11 58.06±.15 89.06±.22 74.36±.27 92.34±.14 86.36±.15

SMoE (Top-1) 1.0B 94.26±.13 90.87±.12 56.78±.24 89.44±.29 70.75±.32 92.07±.13 86.38±.17

SMoE (Top-2) 1.0B 94.35±.14 91.04±.12 58.43±.26 89.73±.28 74.98±.29 92.48±.16 86.72±.15

CAMEx 1.0B 93.80±.14 91.16±.13 58.57±.24 89.47±.23 74.72±.35 92.60±.19 86.44±.12

w/o momentum

EP-CAMEx 1.0B 93.69±.11 91.01±.14 58.29±.24 89.92±.31 75.81±.33 92.17±.15 86.94±.14

NAMEx 1.0B 94.46±.12 92.01±.14 58.81±.36 90.12±.33 75.09±.22 92.86±.17 86.96±.12

NAMEx-Full 1.0B 94.82±.15 92.80±.13 59.63±.22 90.27±.24 77.83±.31 93.23±.18 87.23±.14

w/ momentum

EP-CAMEx-Mom 1.0B 94.61±.17 92.47±.13 59.31±.25 90.07±.23 76.17±.36 92.99±.13 86.80±.15

NAMEx-Mom 1.0B 94.61±.14 93.02±.16 58.90±.41 90.06±.36 77.62±.37 93.11±.10 87.02±.14

NAMEx-Full-Mom 1.0B 95.06±.12 93.27±.14 60.13±.32 90.63±.27 78.15±.30 93.31±.14 87.45±.11

(GLUE (Wang et al., 2019)), and image classification (ImageNet-1K (Deng et al., 2009)). To assess
robustness, we include evaluations on corrupted datasets: ImageNet-A, ImageNet-O, and ImageNet-
R (Hendrycks et al., 2021c;a). Results, averaged over five random seeds, show that: (1) NAMEx,
leveraging Nash bargaining, consistently improves performance on both vision and language bench-
marks; and (2) complex momentum provides additional gains. For MLP-based experts, we follow
standard practice and merge parameters layer-wise (Yadav et al., 2023; Yu et al., 2024; Matena &
Raffel, 2022). Experiments are run on a 8×A100 server. Additional details are available in Appendix C.

To match EP-CAMEx’s training time, we fix the bargaining budget to 20 iterations per batch and
evaluate two NAMEx variants: (1) NAMEx, which computes α once at the first layer and reuses
it, showing strong performance over naive averaging; and (2) NAMEx-Full, which distributes the
budget evenly across layers, inspired by (Navon et al., 2022). Update strategies are further discussed in
Section 5.

In the tables that follow, NAMEx-Full results are highlighted in grey, with the best and second-best
scores shown in bold and underlined, respectively.

4.1 LANGUAGE MODELING

We adopt the experimental setup of (Pham et al., 2024) and (Teo & Nguyen, 2024) for pre-training and
evaluating on the WikiText-103 dataset. Table 1 presents the results of our methods on small-scale and
medium-scale pre-training tasks using WikiText-103.

For both small- and medium-scale pre-training, NAMEx-Full-Mom achieves the lowest valida-
tion/test perplexities, outperforming SMoE and CAMEx-based methods. NAMEx variants as well
as momentum-equipped variants consistently surpass their counterparts across scales, proving the
efficacy of Nash bargaining and momentum integration.

4.2 TEXT CLASSIFICATION

We evaluate our method on downstream text classification tasks using the GLUE dataset (Wang et al.,
2019), with all models built on the T5-Base backbone. As shown in Table 2, NAMEx-Full-Mom
achieves the best results on all tasks. NAMEx consistently outperforms SMoE (Top-1 and Top-2
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Table 3: Finetuning and zero-shot results on ImageNet-1k and corrupted variants.

Model Params Acc@1 Acc@5 INet-O INet-A INet-R
SMoE 50M 83.15±.17 96.71±.12 43.34±.21 23.72±.18 38.02±.20

SMEAR 50M 83.15±.14 96.91±.09 43.35±.19 24.14±.16 38.16±.22

CAMEx 50M 83.29±.24 96.95±.13 50.69±.25 25.45±.21 38.37±.20

w/o momentum

EP-CAMEx 50M 83.23±.25 96.93±.16 50.27±.28 24.22±.17 37.88±.23

NAMEx 50M 84.06±.28 97.19±.18 50.30±.27 25.32±.15 38.56±.19

NAMEx-Full 50M 84.27±.24 97.94±.14 50.66±.22 25.74±.16 38.70±.18

w/ momentum

EP-CAMEx-Mom 50M 83.56±.12 97.03±.11 50.37±.20 33.22±.24 38.22±.19

NAMEx-Mom 50M 84.28±.26 97.94±.12 51.22±.18 35.05±.19 38.82±.14

NAMEx-Full-Mom 50M 84.52±.18 98.11±.15 51.34±.17 35.27±.20 38.96±.13

routing), CAMEx, and EP-CAMEx, highlighting the effectiveness of the Nash bargaining solution. The
momentum-based extensions, NAMEx-Mom and EP-CAMEx-Mom, further enhance performance,
demonstrating improved robustness and generalization.

4.3 IMAGE CLASSIFICATION
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Figure 3: Top-1 Accuracy Evaluation of Swin
Transformer Variants. Complex momentum
enhances convergence speed and improves
the performance of both NAMEx and EP-
CAMEx.

In this section, we evaluate our method on image classifi-
cation tasks using the Swin-Transformer (Liu et al., 2021)
and its MoE variant (Hwang et al., 2023). Specifically, we
fine-tune Swin-MoE Small on ImageNet-1k, training all
models for 30 epochs with a batch size of 96. For each
MoE layer, we perform Algorithm 2, where apart from the
first MoE layer that an Em expert is initialized, all experts
are merged into Em. We further evaluate NAMEx on an-
other SMoE architecture ACMoE (Nielsen et al., 2025), we
follow ACMoE training configurations, i.e., we train the
NAMEx variants on top of the ACMoE backbone for 100
epochs with batchsize 512.

Table 3 shows NAMEx-Mom outperforming all base-
lines, with NAMEx close behind; even without momen-
tum, NAMEx-Full matches NAMEx-Mom on clean bench-
marks, confirming the value of layer-wise Nash solutions.
Across distribution shifts (ImageNet-A/O/R (Hendrycks et al., 2021a;c)), NAMEx-Mom achieves
the best zero-shot accuracy, with momentum variants showing the strongest gains, especially on
ImageNet-A.

In Table 15 of Appendix Appendix F.4, across all ImageNet variants, the NAMEx-based models
consistently outperforms the ACMoE Top-1 and Top-2 baselines. In particular, NAMEx-Full and
NAMEx-Full-Mom set new best accuracies on both in-distribution metrics (Acc@1 and Acc@5) and
out-of-distribution benchmarks (INet-O, INet-A, INet-R). This underlines the strong generalization
ability of NAMEx. Even with the same parameter budget, NAMEx variants deliver better robustness to
corruptions and distribution shifts.

4.4 ZERO-SHOT AND FINETUNING ON DEEPSEEK-MOE (16B) AND QWEN1.5-MOE (14B)

We test NAMEx-Full at scale by integrating it into DeepSeek-MoE (Liu et al., 2024a) (16B parameters,
1 shared expert, and 63 routed experts) and Qwen1.5-MoE (14B parameters), evaluating in both
zero-shot and SmolTalk fine-tuned settings. As shown in Table 4 below (for DeepSeek-MoE) and
Table 10, 11 in Appendix E.1 (for Qwen1.5-MoE), NAMEx-Full consistently outperforms the baselines
and EP-CAMEx across routing strategies and benchmarks (MMLU (Hendrycks et al., 2021b), GSM8K
(Cobbe et al., 2021) and ARC (Clark et al., 2018)), demonstrating robust and generalizable gains in
expert collaboration.

5 EMPIRICAL ANALYSIS

Synthetic Example. To illustrate how NAMEx encourages balanced expert cooperation, we construct
a toy SMoE model with three experts per layer. Utility trade-offs are visualized in a 3D space, where
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Table 4: Performance comparison across routing strategies and models on MMLU, GSM8K, and ARC benchmarks.
Left: original results. Right: fine-tuned DeepSeek - MoE variants on SmolTalk.

Routing Strategy Model Zero-Shot Fine-tuned (SmolTalk)
MMLU GSM8K ARC MMLU GSM8K ARC

Linear
Deepseek-MoE 44.77 16.53 49.15 45.21 17.10 49.50
EP-CAMEx 44.85 16.63 49.26 45.33 17.24 49.62
NAMEx-Full (0 disagreement point) 44.92 16.77 49.51 45.47 17.36 49.85
NAMEx-Full (mean disagreement point) 44.93 16.75 49.52 45.47 17.39 49.84

Cosine
Deepseek-MoE 44.95 16.70 49.30 45.34 17.25 49.60
EP-CAMEx 45.05 16.81 49.40 45.45 17.32 49.73
NAMEx-Full (0 disagreement point) 45.10 16.88 49.60 45.66 17.53 49.92
NAMEx-Full (mean disagreement point) 45.09 16.89 49.58 45.67 17.52 49.92

Stable-MoE
Deepseek-MoE 45.80 17.50 49.90 46.17 17.63 50.28
EP-CAMEx 45.88 17.62 50.00 46.25 18.10 50.45
NAMEx-Full (0 disagreement point) 45.95 17.70 50.15 46.42 18.23 50.64
NAMEx-Full (mean disagreement point) 45.92 17.68 50.19 46.40 18.23 50.63

Table 6: Impact of varying the frequency of merging weight
update steps on the performance of NAMEx.

∆l SST-2 MRPC STS-B RTE Runtime (sec)

1 94.88 92.85 90.32 77.26 4.70
2 94.95 92.38 90.37 76.89 2.29
5 95.18 92.09 90.13 77.98 1.14
L 94.46 92.01 90.12 75.09 0.69

Table 7: Performance comparison between complex
momentum and quaternion momentum.

Model MRPC STS-B RTE

EP-CAMEx-Mom 92.47 90.07 76.17
NAMEx-Mom 93.02 90.06 77.62

EP-CAMEx-Q 92.52 90.35 77.12
NAMEx-Q 93.24 90.72 77.86

each axis represents the utility of one expert. Figure 11, Appendix F.4, shows that average-based expert
merging may fail to reach the Pareto set, whereas NAMEx tends to produce more Pareto-efficient
outcomes. This illustrates that NAMEx is not dominated by EP-CAMEx or linear average merging.

Number of Optimization Steps. Table 6 shows that smaller step frequencies (∆l = 1,2,5) often
improve or match baseline performance (∆l=L) but at the cost of higher runtime (0.69s → 4.70s),
underscoring a trade-off between accuracy and efficiency.

Impact of Momentum µ and Step size γ. The results in Table 5 demonstrate the impact
of varying the argument ϕ of β (fixed modulus 0.9). All tasks show declines at ϕ = 0
(real momentum), suggesting non-zero arguments are critical. NAMEx consistently outper-
forms EP-CAMEx, reaffirming its robustness. Optimal results require task-specific ϕ tuning.

Table 5: Impact of varying the argument of
β on the performance of EP-CAMEx and
NAMEx.

ϕ Model SST-2 MRPC STS-B RTE

π/6
EP-CAMEx 94.27 92.50 89.77 76.17

NAMEx 94.83 92.82 89.68 76.42

π/12
EP-CAMEx 94.61 92.42 89.53 76.23

NAMEx 93.92 92.69 89.55 76.53

0
EP-CAMEx 93.45 92.24 89.51 72.20

NAMEx 93.56 91.66 89.51 75.09

−π/12 EP-CAMEx 93.56 91.91 89.53 76.03
NAMEx 93.92 92.60 90.15 75.57

−π/6 EP-CAMEx 94.72 91.93 89.38 72.56
NAMEx 94.50 92.75 89.45 76.64

Finally, RTE exhibits higher sensitivity, peaking at ϕ =
π/12 and dropping sharply at ϕ=0 and ϕ=−π/6, high-
lighting task-specific ϕ dependencies. For analysis on step
size γ, please refer to Figure 10 in Appendix F.4.

Beyond Complex Momentum. Quaternions generalize
complex numbers with richer 4D dynamics, enabling a
quaternion momentum update zt+1 = βzt + ∇f(xt).
While more complex and harder to tune, quaternion mo-
mentum can better stabilize high-dimensional optimiza-
tion and handle rotations. As shown in Table 7, choosing
β=0.8+0.3i+0.3j+0.3k outperforms complex momen-
tum, suggesting multi-buffer momentum is a promising
direction with careful hyperparameter tuning.

Number of CCP iterations. Tab. 8 presents the bargaining budget ablation study. In the zero-shot
setting, performance varies within a very narrow band: MMLU stays between 44.8 and 45.2 with
a slight peak at 40 iterations (45.16); GSM8K edges up from 16.86 at 2-5 iterations to 16.93 at 40,
then dips to 16.77 at 60; ARC moves from 49.58 at 2 iterations to a modest best of 49.72 at 60. After
SmolTalk fine-tuning, the curves flatten further: MMLU is essentially tied at 5 and 40 iterations (45.73),
GSM8K peaks at 40 (17.55) with only a 0.09 spread across all budgets, and ARC peaks at 40 (50.03)
with minimal variation elsewhere. Overall, 20 and 40 iterations match or slightly outperform 2 and
5 on several metrics, while 60 offers no consistent gains and sometimes reduces performance (for
example on MMLU and GSM8K). Given the small gaps and likely run-to-run variance, we recommend
2 iterations when efficiency is a priority and 20 iterations when marginal gains matter.
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Table 8: Performance comparison across number of NBS solving iterations for the Linear router in NAMEx-Full
config (Qwen1.5-MoE and Deepseek-MoE). All results are slightly improved while maintaining marginal gaps.
Throughout experiments, we use 2 CCP iterations per layer for NAMEx-Full (chosen config below).

Model No. Iterations Zero-Shot Fine-tuned (SmolTalk)
MMLU GSM8K ARC MMLU GSM8K ARC

Qwen1.5-MoE

2 (Chosen Config) 61.87 60.55 50.95 62.10 61.00 51.35
5 61.70 60.55 50.94 62.20 61.05 51.31
20 61.94 60.57 50.96 62.14 61.03 51.34
40 61.92 60.62 51.01 62.22 61.05 51.46
60 61.81 60.48 51.08 62.15 60.98 51.39

Deepseek-MoE

2 (Chosen Config) 45.05 16.86 49.58 45.63 17.47 49.92
5 44.84 16.86 49.57 45.73 17.51 49.88
20 45.15 16.87 49.60 45.63 17.47 49.92
40 45.16 16.93 49.66 45.73 17.55 50.03
60 44.93 16.77 49.72 45.68 17.46 49.96

Roburtness to choices of disagreement point. In Tab. 4 and Tab. 17 in Appendix F.4, we tried
"mean" (standard average merging) as the disagreement point and compared it to 0. Across Linear,
Cosine, and Stable-MoE, the deltas are tiny (about 0.04 on any metric), with no consistent winner. This
shows the gains come from the bargaining weights, not the fallback choice. We keep 0 as the default
because it is conservative, stable, and easy to interpret, and it leaves compute unchanged.

6 RELATED WORK

Sparse Mixture of Experts. SMoE scales efficiently by activating only a subset of parameters per
token, favoring horizontal over deep expansion (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus
et al., 2022), and improves Transformer efficiency without loss. In parallel, model merging has gained
traction for combining open-source models (Yadav et al., 2023; Rame et al., 2023; Ilharco et al., 2022;
Lu et al., 2024; Matena & Raffel, 2022; Cai et al., 2023), with curvature-aware methods like Fisher
Information (Matena & Raffel, 2022; Jin et al., 2022) improving quality but at high cost. But, most
merging approaches assume shared initialization (Yadav et al., 2023; Ilharco et al., 2022), conflicting
with SMoE’s independently initialized experts and making merging more difficult.

Nash Bargaining Game. Originally introduced by (Nash, 1950; 1953), the Nash bargaining frame-
work has been widely studied (Kalai & Smorodinsky, 1975) and recently applied to multi-task learn-
ing (Navon et al., 2022; Shamsian et al., 2023). It has also shown success in diverse domains such
as multi-armed bandits (Baek & Farias, 2021), clustering (Rezaee et al., 2021), distributed comput-
ing (Penmatsa & Chronopoulos, 2011), and economics (Aumann & Hart, 1992; Muthoo, 1999).

Momentum in Deep learning. Momentum-based optimization has been widely studied, from its ori-
gins in classical methods (Polyak, 1964; Nesterov, 1983) to its adaptation for deep learning (Sutskever
et al., 2013; Zhang & Mitliagkas, 2017; Nguyen et al., 2022; Teo & Nguyen, 2024). Gidel et al. (2019)
explored negative momentum for games, while Lorraine et al. (2022) introduced complex momentum,
extending momentum methods to differentiable games using complex-valued updates.

7 LIMITATION AND CONCLUSION

In this work, we address expert merging through game theory by proposing NAMEx, a method
that integrates Nash Bargaining for equitable collaboration and complex momentum to accelerate
convergence with theoretical stability guarantees. Experiments across diverse tasks demonstrate
NAMEx’s consistent superiority over existing methods, highlighting its adaptability to diverse tasks.
While NAMEx could be extended to token-level momentum-based methods, such as (Teo & Nguyen,
2024) and (Puigcerver et al., 2024b), the computational cost of solving the Nash equilibrium per token
remains a challenge, leaving this as an avenue for future work.
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A NOTATION

Table 9: Notation

α=[α1,α2,...,αN ] The Nash coefficients for merging experts.
x,y,z,···∈Cn Vectors

X,Y ,Z,···∈Cn×n Matrices
X⊤ The transpose of matrix X
I The identity matrix

ℜ(z),ℑ(z) The real or imaginary component of z∈C
i The imaginary unit. z∈C=⇒ z=ℜ(z)+iℑ(z)
z̄ The complex conjugate of z∈C

|z| :=
√
zz̄ The magnitude or modulus of z∈C

arg(z) The argument or phase of z∈C=⇒ z= |z|exp(iarg(z))
E

(l)
m ∈Rd Parameters of the base experts at the l-th layer of the network
El

i∈Rd Parameters of the i-th experts at the l-th layer of the network
τ
(l)
i =E

(l)
i −E

(l)
m The domain-vector of the i-th experts at the l-th layer of the network

∆E∈Rd Aggregation of the domain-vector for updating the base expert.
E

(0)
m ∈Rd The initial base expert parameter at the first layer
γ∈R+ The step size for the base expert propagation
η∈R+ The step size for creating the Ê(l)

m expert that is responsible for processing input
β∈C The momentum coefficient
µ∈Cd The momentum buffer
λ∈C Notation for an arbitrary eigenvalue

B PROOFS OF THE MAIN RESULTS

Assumption B.1. We assume a SMoE architecture of infinite SMoE layers with
{E(l)

m ,E
(l)
1 ,E

(l)
2 ,...,E

(l)
N } being the epxerts parameters at l-th layer.

Assumption B.2. The norm of experts parameters is bounded, that is:

∥E(l)
i ∥≤B ∀l∈{1,2,...,∞} ∀i∈{m,1,...,N} (12)

B.1 LEMMA 3.2 PROOF SKETCH

Proof. The derivative of the objective function is
N∑
i=1

1

∆E⊤τi
τi.

For all ∆E such that ∆E⊤τi> 0 for all i, the utilities increase monotonically with the norm of ∆E .
Hence, by Nash’s Pareto optimality axiom, the optimal solution must lie on the boundary of Bϵ. At the
optimal point, the gradient

N∑
i=1

1

∆E⊤τi
τi

must be in the radial direction, i.e.,
N∑
i=1

1

∆E⊤τi
τi∝∆E.

Equivalently, there exists λ>0 such that
N∑
i=1

1

∆E⊤τi
τi=λ∆E.

Since the gradients τi are linearly independent, we can express ∆E as ∆E=
∑N

i=1αiτi. Substituting
this into the alignment condition, we obtain

1

∆E⊤τi
=λαi ∀i.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This implies ∆E⊤τi =
1

λαi
. As ∆E⊤τi > 0 for a descent direction, we deduce λ> 0. Setting λ=1

gives the direction of ∆E . Thus, finding the Nash bargaining solution reduces to finding α∈RN
+ such

that

∆E⊤τi=

N∑
j=1

αjτ
⊤
j τi=

1

αi
∀i.

This is equivalent to solving G⊤Gα=1/α, where 1/α is the element-wise reciprocal.

B.2 CONVERGENCE GUARANTEE FOR NAMEX-MOMENTUM

We first have that:

∆E(l)=

N∑
i=1

αi∗τ (l)i =

N∑
i=1

αiE
(l)
i −

(
N∑
i=1

αi

)
E(l)

m . (13)

Given the analogy between expert merging and gradient descent, we apply the formulation of momen-
tum into Eqn. 7: 

E
(l+1)
m =E

(l)
m +γ∆E(l)+β(E

(l)
m −E(l−1)

m ),

Ê
(l+1)
m =E

(l+1)
m +η

N∑
i=1

Mi ·(s(l+1)
i ∗τ (l+1)

i ).
(14)

Expanding the parameter updates with the Cartesian components of γ and β is key for Theorem B.3,
which characterizes the convergence rate:

µ(l+1)=βµ(l)+∆E(l)⇐⇒
ℜ(µ(l+1))=ℜ(β)ℜ(µ(l))−ℑ(β)ℑ(µ(l))+ℜ(∆E(l))

=ℜ(β)ℜ(µ(l))−ℑ(β)ℑ(µ(l))+

N∑
i=1

αiE
(l)
i −

(
N∑
i=1

αi

)
E(l)

m , (15)

ℑ(µ(l+1))=ℑ(β)ℜ(µ(l))+ℜ(β)ℑ(µ(l)) (16)

E(l+1)
m =E(l)

m +ℜ(γµ(l+1)) (17)

E(l+1)
m =E(l)

m +γ∆E(l)+ℜ(γβ)ℜ(µ(l))−ℑ(γβ)ℑ(µ(l))

=E(l)
m +γ

N∑
i=1

αiE
(l)
i −γ

(
N∑
i=1

αi

)
E(l)

m +ℜ(γβ)ℜ(µ(l))−ℑ(γβ)ℑ(µ(l)) (18)

Setting α=

N∑
i=1

αi, we have

R=

[ ℜ(β)I −ℑ(β)I −αI
ℑ(β)I ℜ(β)I 0
ℜ(γβ)I −ℑ(γβ)I I−γαI

]
and q(l)=

[
N∑
i=1

αiE
(l)
i 0 γ

N∑
i=1

αiE
(l)
i

]⊤
(19)

Our parameters evolve with expert-propagation merging via:

[ℜ(µ(l+1)),ℑ(µ(l+1)),E(l+1)]⊤=R[ℜ(µ(l)),ℑ(µ(l)),E(l)]⊤+q(l)⊤ (20)

We can bound convergence rates by looking at the spectral radius of R with Theorem B.3.

Theorem B.3 (Consequence of Prop. 4.4.1 (Bertsekas, 2008)). If the spectral radius ρ(R)<1, then,
for [µ,Em] in a neighborhood of [µ∗,E∗

m], the distance of [µ(l),E(l)] to the stationary point [µ∗,E∗
m]

converges at a linear rateO((ρ(R)+ϵ)l),∀ϵ>0.

Proof. We have: ℜ(µ(l+1))
ℑ(µ(l+1))
E(l+1)

=R

ℜ(µ(l))
ℑ(µ(l))
E(l)

+q(l) (21)
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By telescoping the recurrence for the lth layer:ℜ(µ(l))
ℑ(µ(l))
E(l)

=Rl

ℜ(µ(0))
ℑ(µ(0))
E(0)

+

l−1∑
i=0

Riq(i) (22)

We can compare µl and
l−1∑
i=0

Riq(i) with the values µ∗ and q∗ they converge to which exists if R is

contractive. We do the same with E. Because µ∗=Rµ∗+q∗=Rlµ∗+

∞∑
i=1

Riq(i):ℜ(µ(l))−ℜ(µ∗)
ℑ(µ(l))−ℑ(µ∗)

E(l)−E∗

=Rl

ℜ(µ(0))−ℜ(µ∗)
ℑ(µ(0))−ℑ(µ∗)

E(0)−E∗

+

l−1∑
i=0

Rlq(i)−
∞∑
l=1

Riq(i) (23)

By taking norms:∥∥∥∥∥∥
ℜ(µ(l))−ℜ(µ∗)
ℑ(µ(l))−ℑ(µ∗)

E(l)−E∗

∥∥∥∥∥∥=
∥∥∥∥∥∥Rl

ℜ(µ(0))−ℜ(µ∗)
ℑ(µ(0))−ℑ(µ∗)

E(0)−E∗

− ∞∑
i=l

Riq(i)

∥∥∥∥∥∥ (24)

=⇒

∥∥∥∥∥∥
ℜ(µ(l))−ℜ(µ∗)
ℑ(µ(l))−ℑ(µ∗)

E(l)−E∗

∥∥∥∥∥∥≤
∥∥∥Rl

∥∥∥
∥∥∥∥∥∥
ℜ(µ(0))−ℜ(µ∗)
ℑ(µ(0))−ℑ(µ∗)

E(0)−E∗

∥∥∥∥∥∥+
∥∥∥∥∥

∞∑
i=l

Riq(i)

∥∥∥∥∥ (25)

≤
∥∥∥Rl

∥∥∥
∥∥∥∥∥∥
ℜ(µ(0))−ℜ(µ∗)
ℑ(µ(0))−ℑ(µ∗)

E(0)−E∗

∥∥∥∥∥∥+
∥∥∥∥∥

∞∑
i=l

Ri

∥∥∥∥∥B (26)

With Lemma 11 from (Foucart, 2012), we have there exists a matrix norm ∀ϵ>0 such that:
∥Rl∥≤D(ρ(R)+ϵ)

l (27)
We also have

0<

∥∥∥∥∥
∞∑
i=0

Ri

∥∥∥∥∥<C (28)

if R is contractive. Combining Equation (27) and Equation (28) we have:∥∥∥∥∥∥
ℜ(µ(l))−ℜ(µ∗)
ℑ(µ(l))−ℑ(µ∗)

E(l)−E∗

∥∥∥∥∥∥≤D(ρ(R)+ϵ)
l

∥∥∥∥∥∥
ℜ(µ(0))−ℜ(µ∗)
ℑ(µ(0))−ℑ(µ∗)

E(0)−E∗

∥∥∥∥∥∥+BC (29)

So, we have: ∥∥∥∥∥∥
ℜ(µ(l))−ℜ(µ∗)
ℑ(µ(l))−ℑ(µ∗)

E(l)−E∗

∥∥∥∥∥∥=O((ρ(R)+ϵ)l) (30)

Thus, we converge linearly with a rate ofO(ρ(R)+ϵ).

B.3 PROPOSTION 3.5 PROOF SKETCH

Proposition 3.5(Convergence rate of NAMEx-Momentum). There exist γ∈R+,β∈C so Algorithm 2
converges for Expert-Propagation NAMEx Momentum.

Proof. We want to show that we can select γ>0 and β∈C so thatR is contractive. That is, the spectral
radius of R is less than 1. Recall that,

R=

[ ℜ(β)I −ℑ(β)I −αI
ℑ(β)I ℜ(β)I 0
ℜ(γβ)I −ℑ(γβ)I I−γαI

]
(31)

Set β=r+ui, we have:

det(R−xI)=det

([
r−x −u −α
u r−x 0
γr −u 1−γα−x

]
⊗I

)
=det

([
r−x −u −α
u r−x 0
γr −u 1−γα−x

])d

(32)
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Figure 4: Graph of system of inequality (37) when α=0.5 and γ=2.

∣∣∣∣∣r−x −u −α
u r−x 0
γr −u 1−γα−x

∣∣∣∣∣=r2+αu2−γαu2+u2−x3−γαx2+2rx2+x2−r2x+γαrx−2rx−u2x

(33)

=−x3+(−γα+2r+1)x2+(−r2+γαr−2r−u2)x+r2+(α−γα+1)u2

(34)

We can further simplify this by choosing γ=
γ̂

α
to get the following polynomial,

P (x)=−x3+(1+2r−γ̂)x2+(−r2+γ̂r−2r−u2)x+
(
r2+(1+α−γ̂)u2

)
(35)

Using Fujiwara’s bound (Fujiwara, 1916) we can determine one condition for ρ(R)<1, that is

|x|≤2max

{
|1+2r−γ̂|,

√
|−r2+γ̂r−2r−u2|, 3

√∣∣∣∣r2+(1+α−γ̂)u2

2

∣∣∣∣
}
<1 (36)

⇒



−1
2

<1+2r−γ̂ < 1

2

−1
4

<r2−γ̂r+2r+u2<
1

4

−1

4
<r2+(1+α−γ̂)u2<

1

4

(37)

⇔



−1
4

+
γ̂

2
− 1

2
<r<

1

4
+
γ̂

2
− 1

2

−1
4
−r2−γ̂r−2r<u2<

1

4
−r2−γ̂r−2r

−1−4r2

1+α−γ̂
<u2<

1−4r2

1+α−γ̂

(38)

We can consider the case when α=0.5 and γ=2. Figure 4 shows the region of (r,u) that satisfies
inequality system (37).
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C ADDITIONAL DETAILS ON DATASETS

This section outlines the datasets and evaluation metrics employed in the experiments discussed in
Section 4.

C.1 WIKITEXT-103 LANGUAGE MODELING

The WikiText-103 dataset contains a collection of Wikipedia articles designed to capture long-range
contextual dependencies. It includes a training set with 28,475 articles, amounting to around 103 million
words. The validation and test sets consist of 217,646 and 245,569 words, respectively, distributed
across 60 articles per set.

Model and baselines We use the small and medium size Transformer as the baseline SMoE models. Our
implementation is based on the codebase developed by (Pham et al., 2024) and (Teo & Nguyen, 2024).
All model variants—SMoE, CAMEx, and NAMEx—employ 16 experts per layer, with SMoE utilizing
top-1 (k=1) expert selection for each input. The models share a unified sparse routing mechanism,
consisting of a linear layer to process the input, followed by Top-K and Softmax functions. Training is
performed over 60 epochs for small models and 80 epochs for medium and large SMoE models.

C.2 GLUE TEXT CLASSIFICATION

The GLUE benchmark includes SST-2 (Socher et al., 2013) for sentiment analysis, MRPC (Dolan
& Brockett, 2005) for paraphrase detection and sentence similarity, CoLA (Warstadt et al., 2019) for
evaluating grammatical acceptability, STS-B (Cer et al., 2017) for sentence similarity measurement,
RTE (Dagan et al., 2006) for logical reasoning, QNLI (Wang et al., 2019) for question-answer
classification, and MNLI (Williams et al., 2018) for assessing entailment between sentence pairs.

Model and baselines We scale up T5 (Raffel et al., 2020) using SMoE upcycling (Komatsuzaki et al.,
2023). For each task, we conduct a comprehensive hyperparameter search, exploring batch sizes {8, 16,
32, 64} and learning rates {3e−4, 1e−4, 3e−5, 1e−5} to identify the optimal fine-tuned configuration.

C.3 IMAGENET-1K IMAGE CLASSIFICATION

ImageNet-1k, introduced by (Deng et al., 2009), is a widely used benchmark dataset comprising 1.28
million images for training and 50,000 images for validation across 1,000 categories. Performance is
evaluated using top-1 and top-5 accuracy metrics.

For robustness evaluation, we utilize several specialized subsets. ImageNet-A (Hendrycks et al.,
2021c) focuses on 200 challenging classes from ImageNet-1k, specifically curated to fool classifiers,
highlighting their vulnerability to real-world adversarial examples. ImageNet-O (Hendrycks et al.,
2021c) contains out-of-distribution (OOD) samples derived from ImageNet-22k, carefully selected as
instances that a ResNet-50 model misclassifies with high confidence. The primary evaluation metric for
ImageNet-O is the area under the precision-recall curve (AUPR). Lastly, ImageNet-R (Hendrycks et al.,
2021a) consists of 30,000 artistic renditions representing 200 classes from ImageNet-1k, designed to
assess model robustness to non-standard visual representations.

Model and baselines For each MoE layer, we use Algorithm 2 to merge all experts into a base expert,
except in the first MoE layer, where a base expert is initialized instead. Training configurations follow
Swin-MoE (Liu et al., 2021), and the code is publicly available on https://github.com/microsoft/Swin-
Transformer/. For NAMEx variants, we start with checkpoints pretrained on ImageNet-22k and
fine-tune them on ImageNet-1k for 30 epochs.

D MORE EXPERIMENTAL DETAILS

This section provides additional details on the experimental setup, including model configurations,
dataset processing, and training strategies used in our evaluation.

D.1 WIKITEXT-103 LANGUAGE MODELING

We follow the setup from (Pham et al., 2024) and (Teo & Nguyen, 2024), using both small and medium-
scale Transformer architectures with 16 experts per layer. All variants (SMoE, CAMEx, EP-CAMEx,
NAMEx) use Top-1 routing and share the same sparse gating mechanism. Training is conducted for 60
epochs (small) and 80 epochs (medium) with AdamW optimizer and cosine learning rate scheduling.

D.2 GLUE BENCHMARK FINE-TUNING

For text classification, we fine-tune T5-base models upcycled with SMoE layers. We conduct grid
searches over batch sizes 8, 16, 32, 64 and learning rates 3×10−5, 1×10−4, 3×10−4. Each result is
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averaged over five seeds to ensure statistical stability. All SMoE variants employ 8 experts per layer
and share the same routing logic.

D.3 IMAGENET-1K AND CORRUPTED VARIANTS

For vision experiments, we fine-tune Swin-MoE-Small on ImageNet-1k for 30 epochs using batch
size 96 and learning rate 1×10−4. NAMEx variants initialize Em in the first MoE layer and perform
merging across all others via Algorithm 1 or Algorithm 2. For robustness, we evaluate zero-shot
generalization on ImageNet-A, ImageNet-O, and ImageNet-R. All reported results are averaged over
three runs.

D.4 IMPLEMENTATION AND INFRASTRUCTURE

Experiments are implemented in PyTorch and trained on 4–8 A100 GPUs depending on model size. We
use automatic mixed precision (AMP) for memory efficiency. All hyperparameters, data augmentations,
and merging schedules are described in Appendix C.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ZERO-SHOT AND FINETUNING ON QWEN1.5-MOE (14B PARAMETERS)

To assess scalability, we integrate NAMEx-Full into Qwen1.5-MoE (14B) and evaluate it on three
challenging benchmarks: MMLU (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021), and ARC
(Clark et al., 2018) in both zero-shot and fine-tuned settings. In the fine-tuned setting, all models are
fine-tuned on the SmolTalk (allal et al., 2025) dataset before evaluation. As reported in Tables 10 and 11,
NAMEx-Full consistently outperforms both the baseline and EP-CAMEx across routing schemes and
tasks, highlighting its robustness, scalability, and architectural generality.

Table 10: Zero - shot results for Qwen1.5 - MoE variants.

Routing Strategy Model MMLU GSM8K ARC
Linear Qwen1.5 - MoE 61.28 60.12 50.77

EP - CAMEX 61.54 60.23 50.83
NAMEX - Full 61.87 60.55 50.95

Cosine Qwen1.5 - MoE 61.10 59.88 50.60
EP - CAMEX 61.40 60.00 50.68
NAMEX - Full 61.85 60.52 50.93

Stable - MoE Qwen1.5 - MoE 61.35 60.22 50.81
EP - CAMEX 61.60 60.35 50.89
NAMEX - Full 61.90 60.60 50.96

Table 11: Results after fine-tuning on SmolTalk.

Routing Strategy Model MMLU GSM8K ARC

Linear
Qwen1.5-MoE 61.50 60.52 51.12
EP-CAMEx 61.74 60.63 51.23
NAMEx-Full 62.10 61.00 51.35

Cosine
Qwen1.5-MoE 61.30 60.28 50.95
EP-CAMEx 61.60 60.50 51.10
NAMEx-Full 62.05 60.95 51.30

Stable-MoE Routing
Qwen1.5-MoE 61.60 60.65 51.20
EP-CAMEx 61.85 60.80 51.30
NAMEx-Full 62.15 61.10 51.45

F ADDITIONAL EMPIRICAL ANALYSIS

F.1 OVERHEAD AND SCALABILITY

In Tab. 12, we provide a detailed runtime cost analysis, “Mean Batch Runtime (sec)” includes the entire
forward/backward pass and NBS step. "% NBS Occupied" isolates the share of time spent solving
NBS.

In Tab. 13, we provide a comparison of training TFLOPs, inference TFLOPs, and training through-
put across baselines and our proposed variants in Table 2 below. Notably, NAMEx-Full achieves
competitive throughput (21,897 tokens/sec), closely matching CAMEx and EP-CAMEx despite the
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Table 12: Impact of NBS update frequency (∆ℓ). Per - batch wall - clock.

∆ℓ SST - 2 MRPC STS - B RTE Mean Batch (s) % NBS Time

1 94.88 92.85 90.32 77.26 4.70 85.96%
2 94.95 92.38 90.37 76.89 2.29 71.18%
5 95.18 92.09 90.13 77.98 1.14 42.11%

L (first layer) 94.46 92.01 90.12 75.09 0.69 4.35%

Table 13: Training compute and throughput. Inference is unchanged relative to baselines.

Model Train TFLOPs Infer TFLOPs Train Throughput (tok/s)

SMOE 13.95 4.65 22,236
SMOE (Top-2) 18.32 7.44 17,898
SMEAR 13.95 4.65 22,236
CAMEX 14.30 4.65 21,982
EP - CAMEX 14.25 4.65 21,982
NAMEX 14.25 4.65 21,995
NAMEX - Full 14.25 4.65 21,897
EP - CAMEx - Mom 14.25 4.65 21,872
NAMEX - Full - Mom 14.25 4.65 21,783

added complexity of solving the Nash system. While NAMEx and NAMEx-Mom show slightly lower
throughput due to the large number of NBS iterations (20 iters), NAMEx-Full-Mom restores much of
the efficiency by reducing the number of NBS iterations (2 iters per layer). Currently, the main overhead
arises from transferring data to the CPU for solving the Nash Bargaining update step. However, this
implementation detail is orthogonal to the algorithm itself and can be optimized via GPU-native solvers
or batching strategies. Overall, the results demonstrate that NAMEx introduces minimal overhead
and remains practical for large-scale MoE training, supporting its applicability to future deployments
involving more experts per layer.

F.2 CONVERGENCE ANALYSIS

1 2 3 4 5 6 7 8 9 10 11
Step

20

25

30

35

40

45

50

L2
 d

ist
an

ce

NAMEx-Mom
NAMEx
EP-CAMEx

Figure 5: L2 distance between expert updates across training steps (T5-Base, 12 MoE layers). Lower values
indicate better stability. The figure shows that NAMEx converges faster and more stably than EP-CAMEx.

To validate the motivation for complex momentum, we provide empirical convergence analysis in
Fig. 5, which tracks the L2 distance between updates of base experts across training steps (T5-Base,
12 MoE layers). As illustrated, NAMEx–with or without momentum–shows a noticeably steeper
decline in update distances, indicating faster convergence and more stable expert updates compared to
EP-CAMEx. This directly supports our hypothesis that complex momentum enhances convergence
stability and efficiency during expert merging.
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Table 14: ImageNet - 1K Top - 1 from epochs 86–90. Our best final performance is 85.046%.
Epoch NAMEX - Mom NAMEX EP - CAMEX - Mom EP - CAMEX NAMEX - Full NAMEX - Full - Mom Swin - MoE

86 84.466 84.264 83.862 82.238 84.722 85.022 83.435
87 84.504 84.252 83.868 82.286 84.728 85.028 83.400
88 84.502 84.240 83.854 82.234 84.734 85.034 83.379
89 84.540 84.228 83.860 82.282 84.740 85.040 83.413
90 84.518 84.216 83.806 82.230 84.746 85.046 83.415
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Figure 6: Cosine similarity between expert outputs in Switch-Transformers.
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Figure 7: 5-Period Moving Average of Perplexity of different Transformers-medium variants on WikiText-103

F.3 SWIN - MOE - S: 90 - EPOCH FINE - TUNING

Tab. 14 summarizes the top-1 accuracy on ImageNet-1K from epochs 86 to 90, these results confirm
that our models continue to improve with more training, and that Namex-full-Mom reaches a final top-1
accuracy of 85.046%. This demonstrates both competitive final performance and strong convergence
behavior. Note that due to the difference in number of GPU being used, it seems that we could not
reproduce the 84.5% result as reported by the official repo of Swin-MoE.

F.4 OTHER RESULTS

Figure 7 presents the evaluation perplexity on WikiText-103 during training. NAMEx-Mom achieves
the lowest validation and test perplexities in both small- and medium-scale pre-training, outperforming
SMoE and CAMEx-based methods. Across all settings, Nash variants, including NAMEx and NAMEx-
Mom, consistently surpass their counterparts, demonstrating the effectiveness of Nash bargaining and
momentum mechanisms.

Figure 6 and Figure 8 visualize the cosine similarity between experts ouput at all SMoE layers indicating
a complex dynamic of how experts at progressive layers interact with each other. This observation
suggests that the behavior of experts cannot be captured optimally by using simple averaging as of
the previous work. Instead, a more effective strategy for determining the merging coefficients should
account for the experts’ dynamics at each specific layer.
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Figure 8: Cosine similarity between expert outputs in Swin-MoE.

Figure 9: We compared expert interaction patterns under three settings: with Load Balancing loss, without Load
Balancing loss, and loss-free balancing (in the sense of (Wang et al., 2025)).
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Figure 10: Impact of different values of step-size γ on NAMEx and NAMEx-Mom performance. Overall, the
optimal setting lies within the range [0.5,2]. For γ>2, the performance drops significantly, which may indicate an
overshooting phenomenon.

As shown in Figure 9, the cooperative/competitive dynamics (as reflected in the off-diagonal correlation
values) are much more visible when expert load is balanced–either through Load Balancing loss or
loss-free mechanisms. In contrast, when training without Load Balancing loss, many experts appear
less specialized, and the interaction patterns become weaker and less structured.

One hypothesis is that, without balanced token routing, some experts may be underused or even
become inactive, which diminishes the emergence of meaningful cooperative or competitive behavior.
Therefore, balanced expert load is not only important for preventing dead experts but also plays a
crucial role in making such dynamics observable and analyzable.

In Table 15, across all ImageNet variants, the NAMEx-based models consistently outperform the
ACMoE Top-1 and Top-2 baselines. In particular, NAMEx-Full and NAMEx-Full-Mom set new best
accuracies on both in-distribution metrics (Acc@1 and Acc@5) and out-of-distribution benchmarks
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Figure 11: Visualization of expert utility trade-offs accross multiple SMoE layers. Each subplot corresponds to
a different layer, with arrows indicating merging directions in the 3D utility space. The blue arrow represents
the Nash Bargaining solution (NAMEx), while the red arrow denotes the average-based merging direction. The
hemispherical surface is uniformly sampled to illustrate the feasible utility region. Across layers, the Nash
direction consistently steers toward more balanced expert cooperation compared to the naive average.

Table 15: Pretraining and zero-shot results for NAMEx vs. ACMoE Top-1/Top-2 on ImageNet-1k and corrupted
variants.

Model Params Acc@1 Acc@5 INet-O INet-A INet-R
ACMoE-Top 1 280M 75.39 92.56 18.45 7.13 30.85
ACMoE-Top 2 280M 76.31 93.14 19.55 9.42 32.35

NAMEx 280M 76.85 93.40 20.11 9.90 32.93
NAMEx-Full 280M 77.42 93.85 20.69 10.46 33.44
NAMEx-Full-Mom 280M 78.15 94.23 21.16 11.02 33.95

Table 16: Performance comparison across number of NBS solving iterations for the Linear router in NAMEx-Full
config (Qwen1.5-MoE). All results to be filled; we keep the same marginal-gap setup. Throughout experiments,
use 2 CCP iterations per layer for NAMEx-Full (chosen config below).

Model No. Iterations Zero-Shot Fine-tuned (SmolTalk)
MMLU GSM8K ARC MMLU GSM8K ARC

Qwen1.5-MoE

2 (Chosen Config) 61.87 60.55 50.95 62.10 61.00 51.35
5 61.70 60.55 50.94 62.20 61.05 51.31
20 61.94 60.57 50.96 62.14 61.03 51.34
40 61.92 60.62 51.01 62.22 61.05 51.46
60 61.81 60.48 51.08 62.15 60.98 51.39

(INet-O, INet-A, INet-R). This underlines the strong generalization ability of NAMEx. Even with
the same parameter budget, NAMEx variants deliver better robustness to corruptions and distribution
shifts.

G BROADER IMPACTS

NAMEx proposes a principled, game-theoretic approach to expert merging in Sparse Mixture-of-
Experts (SMoE) models, addressing key limitations of heuristic and curvature-based methods. By
leveraging Nash Bargaining, it enables more balanced and interpretable parameter integration, par-
ticularly in settings with conflicting or specialized expert knowledge. This has direct implications
for scalable deployment, as NAMEx can reduce the memory and compute footprint of large SMoE
models while preserving performance. The addition of complex momentum enhances convergence
stability during expert propagation, offering a robust framework for layered expert interaction. These
contributions may prove valuable for future research in modular deep learning, federated optimization,
and transfer learning, where efficient and fair expert combination is critical.
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Table 17: Performance comparison across routing strategies and models on MMLU, GSM8K, and ARC bench-
marks for Qwen1.5 - MoE variants. Left: zero-shot results. Right: fine-tuned NAMEX - Full variants on SmolTalk.

toprule Routing Strategy Model Zero-Shot Fine-tuned (SmolTalk)
MMLU GSM8K ARC MMLU GSM8K ARC

Linear

Qwen1.5 - MoE 61.28 60.12 50.77 61.50 60.52 51.12
EP - CAMEX 61.54 60.23 50.83 61.74 60.63 51.23
NAMEX - Full (0 disagreement point) 61.87 60.55 50.95 62.10 61.00 51.35
NAMEX - Full (mean disagreement point) 61.78 60.57 51.23 61.67 61.04 51.25

Cosine

Qwen1.5 - MoE 61.10 59.88 50.60 61.30 60.28 50.95
EP - CAMEX 61.40 60.00 50.68 61.60 60.50 51.10
NAMEX - Full (0 disagreement point) 61.85 60.52 50.93 62.05 60.95 51.30
NAMEX - Full (mean disagreement point) 61.86 60.45 50.77 62.01 60.81 51.37

Stable-MoE

Qwen1.5 - MoE 61.35 60.22 50.81 61.60 60.65 51.20
EP - CAMEX 61.60 60.35 50.89 61.85 60.80 51.30
NAMEX - Full (0 disagreement point) 61.90 60.60 50.96 62.15 61.10 51.45
NAMEX - Full (mean disagreement point) 61.88 60.64 51.03 62.15 61.11 51.35
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