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Abstract

Retrieval augmented Question Answering (QA) helps QA models overcome knowledge gaps
by incorporating retrieved evidence, typically a set of passages, alongside the question at
test time. Previous studies show that this approach improves QA performance and reduces
hallucinations, without, however, assessing whether the retrieved passages are indeed useful
at answering correctly. In this work, we propose to quantify the uncertainty of a QA
model via estimating the utility of the passages it is provided with. We train a lightweight
neural model to predict passage utility for a target QA model and show that while simple
information theoretic metrics can predict answer correctness up to a certain extent, our
approach efficiently approximates or outperforms more expensive sampling-based methodsE]

1 Introduction

Retrieval augmented Question Answering (QA) allows QA models to overcome knowledge gaps at test time
through access to evidence in the form of retrieved passages (Lewis et al., [2020; |Guu et al., [2020; [[zacard
et al. 2024). Recent work leverages external retrievers (Chen et al.l 2017} [zacard & Grave, [2021) and the
language understanding and generation capabilities of Large Language Models (LLMs; Brown et al.||[2020;
Ouyang et al.|[2024)) to predict answers based on questions and retrieved passages which are provided as input
context. In Figure |1} we show an example of a question (Who sings Does He Love Me with Reba?), retrieved
passages, and predicted answers.

Retrieval augmented QA architectures have proven beneficial in increasing LLM performance on tail knowledge
(Izacard et al., |2024; Mallen et al., [2023]), reducing hallucinations in the generated answers (Shuster et al.,
2021)), and even improving model calibration (Jiang et all 2021)). However, there are various ways in which
retrieval augmented QA can go wrong. The set of retrieved passages is far from perfect (Sciavolino et al.l
2021} [Yoran et al.| [2024; [Kasai et al.; [2024) containing irrelevant, incomplete, or misleading evidence, the
model might be under-trained to read certain passages and reason over these and the question (Izacard et al.|
2024; [Liu et all, 2024b; [Sun et al, 2025), and the question can be ambiguous or unanswerable (Kasai et al.,
2024). Ultimately, QA models may not follow the provided passages (Xie et al., 2024} |Joren et al., |2025)).
When faced with uncertainty, QA models should ideally acknowledge it (e.g., by communicating it) rather
than risk an incorrect response.

A good deal of previous work has focused on quantifying answer uncertainty in the context of closed-book QA
tasks, where the answer is predicted based on a question and the model’s encoded knowledge. Sampling-based
methods rely on output discrepancies among multiple predictors of the same input (Gal & Ghahramani, 2016
Lakshminarayanan et al., |2017). They measure diversity on a set of answers (Kuhn et al., 2023; |Chen &
Mueller} 2024)) sampled via temperature scaling (Guo et all 2017)), with larger variance indicating higher

1Code and data are available at https://github.com/lauhaide/ragu
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[ Who sings does he love me with Reba? ]

Does He Love You. Does He Love You "Does He Love You" is a song written by Sandy Knox and Billy Stritch, and recorded as a
duet by American country music artists Reba McEntire and Linda Davis. It was released in August 1993 as the first single from
Reba’s album "Greatest Hits Volume Two"”. It is one of country music’s several songs [cont.] 2.77

Patti LaBelle

Does He Love You. on Patti LaBelle’s album, Flame: The song features a vocal battle between two female narrators who are in
love with the same man. Both women know that the man is being unfaithful to them and are wondering who he truly loves. The
big-budget, Jon Small-directed video was filmed over 3 days in mid-1993. It begins with Reba in her dressing room wearing a
lilac feather gown, where she sees a picture of her lover, which she glances at. [cont.] -0.10

Figure 1: Example question from Natural Questions dataset (Kwiatkowski et al.|7 |2019[) with two top-retrieved
passages using Contriever-MSMARCO (Izacard et al., 2022). On top of each passage, we show the answer
generated by GEMMA2-9B when prompted with that passage and the question. The QA model answers
correctly (green) only when prompted with the first passage. Numbers at the bottom right of each passage
are utility scores predicted by our model (higher values indicate more useful passages).

uncertainty. LLM-based methods rely on the QA model’s own judgment of uncertainty (Kadavath et al., 2022}
[Lin et al., 2022; Tian et al., 2023). Through prompting, the model is encouraged to express its uncertainty
(e.g., 0.5 or ‘almost certain’), either alongside the predicted answer (Lin et al., 2022} |Tian et al.l [2023) or
after generating it (Kadavath et al., 2022; Tian et al., |2023). None of these approaches has been applied in
the context of retrieval augmented QA (Shorinwa et al.| [2025)).

In this paper, we focus on answer uncertainty estimation in the context of retrieval augmented QA. We
hypothesize that a passage is useful, if a model can correctly answer questions based on it. If passages are
informative and prime the QA model towards appropriate knowledge |Geva et al| (2021)), we expect it to
produce a correct answer. On the contrary, if passages are irrelevant or misleading and the question falls
outside the QA model’s knowledge, it is likely to produce an incorrect answer, either factually inaccurate or
entirely fabricated. Importantly, this notion of utility is based on how the target QA model will answer with
the provided passages and not on what an external judge (e.g., entailment model) thinks about them. We
quantify the utility of a retrieved passage with a small neural model trained on utility judgments obtained by
observing the target QA model’s answering behavior. We borrow ideas from direct uncertainty quantification
approaches (Van Amersfoort et al., [2020; [Lahlou et al.,2023) but do not decompose uncertainty or outline
shifts in the input distribution. We make utility predictions for each retrieved passage which we then use to
estimate the uncertainty of the QA model when prompted with a set thereof.

We evaluate our approach on short-form information-seeking QA tasks (Rodriguez & Boyd-Graber} 2021))
(see Figure [1] for an example). Results on six datasets show that our uncertainty estimator is comparable or
outperforms existing sampling-based methods while being more test-time efficient. Sampling-based solutions
are expensive for in-production QA systems, in terms of latency and cost (e.g., QA engines built on top of
proprietary language models would need to process relatively long prompts). Moreover, our experiments
reveal that variation is less prominent in model answers in the context of retrieval augmented QA (e.g., the
QA model is more confident on incorrect answers supported by retrieved passages in the prompt). Our
contributions can be summarized as follows:

¢« We quantify QA model uncertainty via estimating the utility of the passages it is provided with.

o We (contrastively) train a small neural model on utility scores obtained through combining accuracy
(is the generated answer correct?) and entailment (is the generated answer supported by the passage?)
metrics.

e Qur approach is lightweight, improves upon more expensive sampling-based methods, and is not tied
to the retriever (and passages) used to prompt the QA model.
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2 Related Work

Uncertainty Quantification for Question Answering Several methods have been proposed to predict
answer uncertainty in the context of closed-book QA; however, none of them has analysed uncertainty in
retrieval augmented QA models. Many of these methods rely on the assumption that variation in the model’s
output is an expression of its uncertainty (Kuhn et al., |2023; [Farquhar et al., [2024; |Chen & Mueller} 2024)).
For example, some approaches (Kuhn et all 2023; |[Farquhar et al., [2024)) first cluster answers with similar
meaning (in a sample) via Natural Language Inference (NLI) before computing entropy while other work
(Chen & Mueller, [2024)) focuses on black-box models; they also compute similarities in the set of answers but
associate them with the model’s self-judgement of confidence. In a recent study, [Soudani et al.| (2025|) show
that, in the context of retrieval augmented QA, these methods tend to exhibit overconfidence and sensitivity
to the input context. Indeed, our experiments corroborate their analysis. We find that sampling-based
methods exhibit less variation in a retrieval setting, and do not offer a significant advantage over methods such
as perplexity or LLM prompting for self-assessment (Kadavath et al., |2022)), unlike in closed-book settings.

Sequence entropy methods (Kuhn et al., [2023; [Farquhar et all 2024) focus on detecting incorrect answers
stemming from arbitrary fluctuations in model outputs (referred to as confabulations). Our approach extends
to additional error sources, including incorrect training data or misleading evidence. [Hou et al.| (2024)) focus on
quantifying aleatoric uncertainty (i.e., uncertainty in the data) caused by ambiguous questions, an approach
that could be combined with ours. Sampling-based methods are expensive to run at inference time for a
production QA system; they require several inference steps in addition to performing similarity computations,
which can become more complex with longer answers (Zhang et al., [2024b)). In contrast, our approach is
light-weight at inference time, but requires training data with observations pertaining to the accuracy of
the target model. Our approach optionally uses an NLI model at training time, depending on the chosen
objective. In Section [6] we further summarise key differences between our approach and existing uncertainty
estimation methods in the context of retrieval augmented QA.

Judging the Quality of Retrieved Passages Previous work has analysed the quality of retrieved
passages (Yu et al., [2023} |Asai et al.l [2024; [Wang et al., [2024; [ Xu et al., [2024} [Yoran et al., [2024)) as they
can be irrelevant or misleading. |Asai et al.| (2024) make use of an external critic model to create training
data exemplifying cases where a question requires retrieval (or not) and, in the case that retrieval is needed,
whether retrieved passages contain the information (or not) to formulate the answer. Note that the usefulness
judgment is made by an external critic. Then, a QA model (i.e., the Self-RAG model) is trained on this
data to learn to reflect by itself whether passages are supportive and relevant and to predict special tokens
indicating this. While it is possible to derive uncertainty from those special tokens’ probabilities, they only
reflect Self-RAG’s uncertainty state. Our proposal is more general and aims at predicting answer uncertainty
in zero-shot QA models (e.g., instruction fine-tuned LLMs). Thus, using Self-RAG special tokens would
be like using an off-the-shelf sophisticated classifier (i.e., a specialized textual entailment) to predict the
uncertainty of a zero-shot QA model (Yoran et all [2024). In contrast, we predict uncertainty by observing the
errors of the target QA model (in a zero-shot setting). Other work creates auxiliary tasks around retrieved
passages enforcing the QA model to reason on them; e.g., by taking notes about each passage (Yu et al.,
2023) or generating passage summaries (Xu et al.| [2024). These methods also use extreme-scale LLMs to
generate training data for fine-tuning a retrieval augmented QA model. [Park et al.| (2024])) select low and
high quality in-context examples in order to instruct the LLM to reason on input passages. Concurrent
work by |Joren et al.| (2025) defines the concept of context sufficiency, i.e., whether the content in the set of
retrieved passages is sufficient to answer the question and uses an external judge to assess this. However, the
external judgment might not agree with the answering behavior of the target QA model (i.e., the judge may
indicate that the context is sufficient but the model may still incorrectly answer). All these approaches aim
at improving QA performance while our primary goal is modeling QA uncertainty.

Using a Separate Model to Predict Confidence Our passage utility predictor is related to methods
aiming to estimate error directly (Lahlou et all 2023), e.g., by training a secondary model to estimate target
model loss; instead, our predictor is trained with sequence-level metrics, i.e., accuracy and entailment, which
measure error indirectly. Some work (Kamath et al. 2020; [Zhang et al., 2021) predicts answer correctness
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in the context of Reading Comprehension (the task of generating an answer based on a single supportive
passage). However, as there is no retrieval involved, the input passage is by default useful, and the main goal
is to detect answer uncertainty due to the QA model being under-trained. In our setting, the number and
quality of passages varies leading to additional sources of uncertainty (e.g., misleading information). Some
approaches train a specific model to predict answer confidence scores (Dong et al., 2018; [Kamath et al., 2020;
Zhang et al., 2021} Mielke et al., [2022) by incorporating various features from the input and model output.
Our approach predicts answer uncertainty directly from individual passage utilities and its predictions could
also be combined with other features (e.g., output sequence probability).

3 Modeling Answer Uncertainty

We formally define retrieval augmented QA as follows. Given question z and a set of retrieved passages
R = {p1,p2,--- ,pr|} obtained with retriever R, an LLM-based QA model M is prompted to generate
answer ¥y to question x token-by-token according to its predictive distribution:

lyl

P(y|lz, R M) = HP(yt|y1..t—17$aR§M)- (1)

t=1
We wish to estimate M’s uncertainty (i.e., chance of error) of generating y given x and R.

When a retrieved passage is useful to answer a given question (such as the first passage in Figure [1| for the
question Who sings Does He Love Me with Reba?), the QA model is likely to be confident when generating
the answer (Linda Davis). When the passage is not useful (such as the second passage in Figure[I), the QA
model is likely to be uncertain and provide an incorrect answer (Patti LaBelle). Our hypothesis is that the
utility of each passage p in R is indicative of the QA model’s uncertainty in generating y, when prompted
with R. If there are passages in R with high utility (e.g., in Figure [l the first passage is useful to answer
the question), it is likely that the QA model will be confident when generating answer y. In contrast, if all
passages in R have low utility, it is likely that the QA model will be uncertain when generating the answer.

The core of our approach is estimating the utility va, of individual passages for a target QA model M.
Specifically, we develop an estimator {z,p} — v ({z,p}) for each passage p € R (Section . We then
leverage the predicted passage utility v to estimate M’s uncertainty when generating answer y to question x
based on evidence R, {z, R} — un({z, R}) (Section [3.2).

3.1 Passage Utility Prediction

Intuitively, a retrieved passage p is useful for a QA model M if M can correctly answer question = when
prompted with p. However, the model’s dependence on p may vary. In some cases, M may generate the
correct answer even if p does not explicitly contain it, instead it positively primes the model to draw upon its
memorized knowledge. In Figurell] the first passage has high utility because the QA model generates a correct
answer when prompted with it, and explicitly states that “Linda Davis sings alongside Reba McEntire”. In
contrast, the second passage, while related to the question’s topic, is not useful. The QA model struggles to
answer correctly when prompted with it, suggesting uncertainty. Since this passage does not provide helpful
information and leads to incorrect answers, its utility is low.

We estimate the utility of passage p in answering question x for QA model M by combining two key measures,
accuracy and entailment:

(2)

Accuracy, denoted as a(y), indicates whether the generated answer y is correct, while entailment, denoted
as e(y), measures the degree to which p supports y. Accuracy is determined by an evaluator A, and entailment
is assessed using an NLI model E. The combined passage utility vaq ranges between 0 and 1, given that a
takes values in {0,1} and e falls within the [0, 1] interval. The intuition behind this composite term v a4 is to
encourage a ranking of passages that spans a broad spectrum: from highly useful ones (producing correct
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answers with strong entailment), through more ambiguous cases (e.g., correct answers with weak entailment
or incorrect answers with strong entailment), to clearly unhelpful passages (producing incorrect answers with
weak entaihnent)ﬂ

We train a lightweight neural model on dataset Dy = {(z,p,vrm)} to predict passage utility scores,
{z,p} = vpm({z,p}), We construct D by pairing input questions z and passages p with utility scores v
which we obtain after running M on examples (z, p) and computing observed answer accuracy and entailment
scores from the QA model M. We retrieve |R| > 1 passages per question to ensure a diverse range of
usefulness and create training instances {(z, p;, v;) |p; € R} under model M. We leverage this data to train
the passage utility predictor with a contrastive learning scheme. Specifically, if two passages p; and p; belong
to R and p; is more useful than p; for answering question x, the predicted utility score v; should be higher
than v; by margin m, ensuring that p; is ranked above p;. We train the utility predictor with the following
ranking objective:

Lrank = Z max (0, —z(v; — v;) +m)), (3)
((@,p:):(z,p;)) ERX R,i#]

where z controls the gold order between p; and p; (e.g., if z = 1, p; has higher utility, and conversely z = —1
indicates the opposite ordering) and m is a hyper-parameter.

We train the passage utility predictor with a Siamese neural network consisting of a BERT-based encoder
(Devlin et all 2019) followed by pooling and two MLP layers stacked on top of BERT outputs (Fang et al.,
2024). The output layer computes the utility score as v; = W,h" + b, where h” is the vector representation
for (z,p;) from the last hidden layer (the L-th layer) of the network. At inference time, we compute a single
utility score for each passage. We provide implementation and training details in Section [4]

To strengthen the role of accuracy prediction as a training signal and regularize the range of utility values
learned by the ranking scheme, we combine the ranking objective in Equation with the following Binary
Cross Entropy (BCE; [Sculley||2010) objective:

Lpcr = Z [a x log(p(x,pi)) + (1 —a) x log(1 — p(x,p;))]
((@,ps);(w,p;)) ERX R,i#] (4)

+la x log(p(z, p;)) + (1 — a) x log(1 — p(z, p;))],

where p(z,p;) = sigmoid(v;) and a is the target accuracy label a(y) under model M taking values in the set
{0,1}. We train the utility predictor with the following combined objective where A is a hyper-parameter to
adjust the Lpcg penalty:

L= £rank: + ALBC’E~ (5)

Both ranking and BCE objectives are compatible with gold annotations that could be provided in active
learning or interactive settings (Simpson et al., [2020; [Fang et al.l [2024). For example, moderators of the QA
system would provide judgments on the accuracy of the answers it predicts (e.g., correct/incorrect) and the
extent to which these are supported by the retrieved passages (e.g., not supported to fully supported).

3.2 Answer Uncertainty Estimation

For our QA task, we want to define an estimator {z, R} — ua({z, R}) which quantifies the uncertainty
of model M when generating answer y for question x based on a prompt with passages R. We propose
estimating u directly from the utility scores of individual passages in R. The key intuition is that the higher
the utility of one (or more) passages, the less uncertain M will be when generating answer y. Conversely, if
all passage utilities in R are low, it is more likely that M will be uncertain about the answer. Specifically, we
estimate answer uncertainty uaq by taking the maximum utility score among the passages in R:

upm({z, R}) = max(vm({z,p}) |p € R). (6)

?Note that for the pairwise ranking loss, using the sum v = a(y) + e(y) would be equivalent. In Appendix |Al we include
ablation experiments with different implementations of the Passage Utility score vag.
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Our approach to aggregating passage utilities is intuitive and simple. However, QA models might be sensitive
to factors relating to how they are prompted, such as the number or order of passages (Liu et al., |2024b;
Xie et al 12024). In Appendix [C] we examine such confounds more closely, comparing question answering
accuracy when models are prompted with individual passages in R (our aggregation approach) versus the
entire set R. The study shows that there is little disagreement between the two methods and that it is possible
to approximate answer uncertainty when prompting with |R| passages while avoiding the combinatorial
complexity of estimating uncertainty over all possible combinations of input passages.

4 Experimental Setup

4.1 QA Tasks and Models

We evaluate our approach to predicting answer uncertainty on short-form question answering tasks. Specifically,
on the following six datasets: Natural Questions (Kwiatkowski et al,, 2019)), TriviaQA (Joshi et al. [2017)),
WebQuestions (Berant et al., 2013)), SQuAD (Rajpurkar et al., [2016), and PopQA (Mallen et al., |2023).
We also evaluate on RefuNQ (Liu et al., [2024a)), a dataset with unanswerable questions about non-existing
entities. In Appendix we describe each dataset, provide example questions, and make available details
about the splits used in our experiments which follow Lee et al.| (2019)).

We consider backbone instruction fine-tuned LLMs from different families of similar size. These are Llama-
3.1-8B-Instruct (Al@Meta, 2024), Mistral-7B-Instruct-v0.3 (Jiang et al.l |2023), and Gemma2-9B-it (Riviere
et al.l [2024). We also assess answer uncertainty quantification performance on QA models of the same
family but with different sizes. To this end, we additionally evaluate on Gemma2-27B-it. For all QA models,
we use a simple prompt including the retrieved passages and the question in the context; the prompt is
shown in Table [I4] in the Appendix. The QA models’ answer is the most likely answer generated with
greedy sampling at temperature equal to 0. Following previous work on retrieval augmented QA, we use
Contriever-MSMARCO (Izacard et al., 2022)) as our external retriever (Asai et al., 2024) and the target
QA models are prompted with |R| = 5 passages (Yu et al. 2023} |Asai et al., |2024} [Xu et all, [2024). In
Appendix [F-2] we provide more details about inference and passage retrieval.

4.2 Evaluation

QA Accuracy A precise metric for measuring accuracy is key when evaluating the quality of uncertainty
estimation. Token overlap metrics are imprecise and can over- or under-estimate accuracy (e.g., 5 will not
match five). Thus, we rely on a LLM-based accuracy evaluator to create training data for the Passage
Utility predictor (i.e., A in Section and to evaluate retrieval augmented QA performance. We use
Qwen2-72B-Instruct (Yang et al., 2024) and the prompt proposed by [Sun et al.|(2024]) to obtain accuracy
judgments. Details about the LLM evaluator can be found in Appendix

Uncertainty Estimation To assess the quality of answer uncertainty prediction, we follow [Farquhar et al.
(2024)) and report the Area Under the Receiver Operator Curve (AUROC) on detecting incorrect answers
(i.e., answers with high uncertainty). In Appendix we also report the area under the ‘rejection accuracy’
curve (AURAC) which captures the accuracy a model would have if it refused to answer questions with
highest uncertainty. Rejection accuracy is essentially the model’s accuracy on the remaining questions. In
the main results section, we focus on selective answering performance when models answer 80% of the least
uncertain questions versus when always answering. We provide implementation details in Appendix

4.3 Methods

Passage Utility Predictor We train a Passage Utility predictor per QA model and QA task. For each
task, we curate dataset Daq = {(x,p,vr)} to train and evaluate a Passage Utility predictor for QA model
M. We use the training (and development) questions available for each QA task, considering the top five
retrieved passages for each question (i.e., |R| = 5). Note that |R| is a hyper-parameter and other values
would be also possible. Larger sizes of |R| would yield more training data, since the Utility predictor takes
individual passages (together with the question) as input. The target QA model M is first prompted with
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passage p € R and question z to generate answer y. Then, we annotate passages p with a utility score
computed with the accuracy evaluator A and entailment judge F on generated answer y (Section. We use
an ALBERT-xlarge model (Lan et al., |2020)) optimized on MNLI (Williams et al., [2018) and the VitaminC
dataset (Schuster et al., [2021)). We provide more details about the curated datasets and training of the
Passage Utility predictor training in Appendix [F-2]

Comparison Approaches and Baselines There exist several uncertainty estimation methods which we
group in two categories based on whether they require access to logits or simply model outputs (see Fadeeva,
et al.||2023 for additional methods). We choose the highest scoring ones to compare with here and include
additional results in Appendix [G.3] for completeness.

Information-Theoretic Measures. We compare against uncertainty estimation methods that are based on the
predictive probabilities of the target QA model. Let y denote an answer generated with probability p(y|z, R; M)
which is computed as:

ly|

plylz, B M) = [ pwilyr -1, 2, B; M) (7)

t=1

The Perplexity (PPL) of model M boils down to calculating token-level entropy as it is based on the average
negative log-likelihood of the generated tokens:

[yl

PPL(Ia RvM) = eXp{_ m Z log p(yt|y1..t—17x7 RvM)}a (8)
t=1

Regular entropy, on the other hand, is computed over sequences, quantifying the entropy of the answers.
It is defined as E[—log P(Y |z, R; M)] where the expected value, E, is computed on sequences y sampled
from the conditional distribution P(Y|z, R; M), where random variable Y denotes the answer sequences,
and =z and R are the input question and retrieved passages, respectively. In practice, regular entropy is
approximated via Monte-Carlo integration, i.e., sampling N random answers from P(Y |z, R; M):

N
1 .
RE(xz, R, M) = - E log P(y" | =, R; M), (9)
n=1

where P(y" |z, R; M) is the length normalised version of P(y"|x, R; M).

Kuhn et al.| (2023) propose Semantic Entropy, a variant of regular entropy that disregards uncertainty
related to the surface form of the generated answers. The method works by sampling several possible answers
to each question and grouping the set of N samples into M clusters (with M < N) that have similar meanings
(which are determined on the basis of whether answers in the same cluster entail each other bidirectionally).
The average answer probability within each cluster is:

M
SE(z, R, M) = - P (z, M)log P, (x, M), (10)

m=1
where P,,(x, M) is estimated as follows:

Zyecm p(y‘vaaM)
Sy Y yec,, Plyle, Ry M)

Po(z, M) = (11)

LLM-based Measures. We compare with p(true) which uses the same LLM-based target QA model to assess
whether the answers it produces are correct (Kadavath et al., 2022). We follow the p(true) variant used in
previous work (Kuhn et al., 2023). The QA model is prompted with the question and a set of candidate
answers (consisting of the most likely answer and a sample of N answers) and is instructed to respond whether
the most likely answer is true or false (i.e., correct/incorrect). The score produced by this approach is the
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probability of model M generating the token True. This method needs several in-context examples to work
well; following |Kuhn et al.| (2023)), we use 20 in-context examples. Note that since our backbone LLMs are
recent models with a large context (unlike [Kuhn et al.[2023), all 20 examples are fed in the context making
p(true) an expensive but very strong approach. In the context of retrieval augmented QA, we modify p(true)
to include in the prompt the set of retrieved passages for the question of interest. We provide the prompt
used by p(true) in Appendix Note that p(true) can be considered as a specialized powerful entailment
model and thus we do not include entailment based methods relying on off-the-shelf NLI models which have
been shown to perform poorly (Yoran et al. 2024).

For approaches that require sampling, we follow previous work (Farquhar et al.| 2024) and take N = 10 samples,
which we generate with multinomial sampling. We set the sampling temperature to 1, with nucleus sampling
(P = 0.9; Holtzman et al|2020) and top— K sampling (K = 50; Fan et al.|[2018]), and use a different random
seed to draw each sample. We provide further details about inference in Appendix and report inference
costs for each approach in Appendix

5 Results and Analysis

Passage Utility is effective across model families, sizes, and QA tasks. Table[[] summarizes our
uncertainty estimation results (test set) with four QA models (GEMMA2-9B/27B, LLAMA-3.1-8B, and
MISTRAL-7B-v0.3) across six QA datasets (results on the development set are included in Appendix.
We boldface the highest AUROC value for each QA model and dataset pair and mark with * the next best
value that is significantly different from it at p < 0.05. We use the paired De Long test (DeLong et al., [L988)
to compute whether two AUROC values are significantly differentﬂ

In general, answer perplexity (PPL) performs rather poorly, especially with GEMMA2-9B/27B. Perplexity is
likely to underperform with less calibrated models, such as those which have undergone instruction tuning
(Tian et al., 2023)). Regular Entropy shows little improvement upon PPL but by ignoring surface form choices
and focusing on meaning, Semantic Entropy improves AUROC scores. p(true) performs well at detecting
answer uncertainty matching or surpassing Semantic Entropy. Overall, we observe that the gap among these
methods’ performance is lower than in the context of closed-book QA studied in previous work (Farquhar
et al., [2024). We hypothesize that, on one hand, our recent QA models admitting more in-context examples
benefiting p(true) and, on the other hand, that retrieved passages in the prompt make QA models’ outputs
less varied. Our Passage Utility approach performs on par or outperforms all other methods with a single
small-model inference step on each input passage.

Passage Utility performs particularly well on challenging question answering tasks represented by datasets
like PopQA and RefuNQ. In these cases, our light-weight uncertainty estimation model works better than
p(true) which requires the same QA model (i.e., the same backbone LLM) to judge the correctness of its own
generated answers. We speculate that for questions with high uncertainty, i.e., where the model does not have
the knowledge to answer (e.g., questions about non-existing concepts in RefuNQ), it confidently generates a
response and also fails at assessing it. We attribute the Passage Utility’s success to the fact that it has been
specifically trained to detect situations where the target QA model is prone to answer incorrectly (i.e., when
provided with retrieved passages of lower relevance). The six QA tasks pose different retrieval challenges.
On TQA, retrieval results are often of good quality: for 73% of the questions, the top-5 retrieved passages
contain the gold answer string. In contrast, on PopQA the percentage reduces to 63% and on RefuNQ the
quality of retrieval is deliberately low (as it consists of unanswerable questions). Across models (Table , our
approach is comparable to p(true) when retrieved passages contain the answer and excels in cases of low
quality retrieval.

Passage Utility also performs well with different QA model sizes (within the same family), i.e., GEMMA2-9B
and 27B (Table . We observe a noticeable decrease in performance for most information-theoretic models
when using the biggest GEMMA model (27B). We attribute this to the fact that the 27B model more confidently
makes less errors and its calibration may be affected more by the fine-tuning step (Tian et al., 2023)). p(true),
on the other hand, benefits from the largest model’s context understanding and memorized knowledge.

3We use the library in https://github.com/Brritany/MLstatkit to compute significance scores.
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GEMMA2-9B

GEMMA2-27B

NQ TQA WebQ SQuAD PopQA RefuNQ AVG ‘ NQ TQA WebQ SQuAD PopQA RefuNQ AVG
PPL 0.64 0.68 0.52 0.53 0.59 0.51 0.58 0.64 0.50 0.53 0.59 0.58 0.51 0.56
p(true) 0.73 0.75* 0.67 0.63 0.81* 0.62 0.70 0.77 0.83 0.67 0.68* 0.78* 0.60* 0.72
Regular Entropy 0.66 0.69 0.54 0.56 0.61 0.51  0.60 0.67 0.54 0.55 0.59 0.62 0.51 0.58
Semantic Entropy 0.70 0.73 0.57* 0.64* 0.73 0.59* 0.66 0.69 0.62* 0.59* 0.63 0.66 0.58 0.63
Passage Utility 0.76 0.85 0.69 0.78 0.86 0.79 0.79 0.73* 0.82 0.69 0.80 0.85 0.78 0.78

LrAMA-3.1-8B MISTRAL-7B-v0.3

NQ TQA WebQ SQuAD PopQA RefuNQ AVG ‘ NQ TQA WebQ SQuAD PopQA RefuNQ AVG
PPL 0.75 0.80 0.68 0.74 0.83 0.60 0.73 0.63 0.71 0.57 0.65 0.64 0.62 0.64
p(true) 0.79 0.88 0.74 0.77 0.85 0.67* 0.78 0.73 0.82 0.68 0.74* 0.75* 0.68* 0.73
Regular Entropy 0.76* 0.81 0.71* 0.78 0.83* 0.65 0.76 0.64 0.75 0.62* 0.65 0.66 0.60 0.65
Semantic Entropy 0.72 0.82* 0.66 0.78* 0.81 0.59 0.73 0.66* 0.78* 0.66 0.73 0.74 0.61 0.70
Passage Utility 0.77 0.82 0.72 0.83 0.87 0.81 0.80 0.74 0.83 0.68 0.82 0.85 0.80 0.79

Table 1: AUROC values for QA models based on GEMMA2-9B/27B, LLAMA-3.1-8B, and MISTRAL-7B-v0.3
on Natural Questions (NQ), TriviaQA (TQA), WebQuestions (WebQ), SQuAD, PopQA, and RefuNQ test
sets. The best values (per model and dataset) are highlighted in bold; we also mark with * next best
values which are significantly different using the paired De Long test (p < 0.05). For example, on TQA with
GEMMA2-9B, p(true), the second best performing is significantly different from the Passage Utility which
performs best and by extension models with lesser values than p(true) are also significantly different.
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Figure 2: Average AUROC across our six development GoB G278 L8B M7B

sets (y-axis) with respect to number of input tokens at
inference time (x-axis) and number of parameters (size
of the circles). We present results for perplexity (PPL),
Semantic Entropy (SE), p(true), and Passage Utility
(PU). We exclude Entropy (which is close to SE) for
readability. We compare the smaller GEMMA2-9B
and its bigger version 27B. Thinner circles positioned
in the left corner are better.

Model variants

Figure 3: Average accuracy (across our six test
sets) with GEMMA2 sizes 9B and 27B (GYB,
G27B), LLAMA-3.1-8B (L8B), and MISTRAL-7B-
v0.3 (MT). Black dots: QA models always answer;
colour dots: QA models answer 80% of the cases
they are most confident about.

It is important to note that our approach is lite-weight at inference time. In Figure [2] we report average
AUROC per method with respect to the number of input tokens at inference time and the number of
parameters involved in uncertainty estimation. We report scores for GEMMA2-9B and its bigger version
GEMMA2-27B. As can be seen, our approach which is based on a BERT encoder (Devlin et al., |2019)) with
110M parameters and a small number of input tokens achieves on aggregate better performance than more
expensive approaches. For the 27B QA model, p(true) edges closer to passage utility, however, at the expense
of thousands of input tokens and ~26 billions more parameters. This indicates that p(true) will be less
efficient in QA settings where latency and cost are critical. In Appendix [Bl we provide a cost analysis in
terms of model calls.
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Passage Utility leads to selective answering. Model uncertainty can be used to decide whether to
provide an answer to a question or not. Figure [3| shows average accuracy when the target QA models choose
to answer 80% of the cases they are most confident about. For comparison, we also show QA accuracy when
always answering, i.e., black bold dots. All uncertainty quantification approaches improve model accuracy.
Across different LLM QA backbones, Passage Utility performs on par with or better than more expensive
uncertainty estimation approaches such as p(true). For instance, when looking at selective performance
according to Passage Utility, the biggest GEMMA2-27B model improves by +9 points (0.74 vs 0.65). In
Appendix we report the full set of selective accuracies at different thresholds.

Passage Utility shows potential for retrieval reranking. To further assess the quality of the Passage
Utility scores and to highlight their potential for retrieval reranking we carry out the following ablation study.
Since most previous work (Asai et al., |2024; Xie et al., 2024} Yoran et al.l [2024)) on retrieval augmented QA
prompts the QA model with the top-5 (or less) input passages, we hypothesize that our passage utility score
could be an effective reranking method after retrieval (Nogueira et al., [2019; Ma et al., 2024; [Yao et al., 2024)).
We test this hypothesis by computing the accuracy of the GEMMA2-9B QA model when prompted with the
top-k passages (with & in the range of {5, 3, 1}) out of a sample of |R| = 10 passages provided by an external
retriever.

In Figure [4] we compare performance under two passage-ranking strategies: one based on relevance scores
from an external retriever (gray), and the other based on the QA model’s self-assessed utility of individual
passages, following Yao et al.| (2024)). We report two self-assessment variants, one using the predictions of
the Passage Utility model (red) and another one based on the perplexity of the QA model when answering
with individual retrieved passages (blue). Passages that yield answers with lower perplexity should be ranked
first. Figure [4] shows average accuracy values across five development sets (NQ, TQA, WebQ, SQuAD, and
PopQA), at different cutoff values (k). As can be seen, the QA model achieves higher accuracy when passages
are ranked according to their utility. This finding suggests that Passage Utility scores indeed reflect which
passages are useful for the target QA model.

Passage Utility struggles with multi-hop questions. Our approach estimates uncertainty by predicting
individual passage utility and selecting the maximum utility score from a set of retrieved passages. A potential
limitation of this method emerges in multi-hop questions that require evidence from multiple passages (Yang
et al |2018; [Pal et al., [2022)). Specifically, the QA model is unable to answer correctly when prompted with
any individual passage (resulting in uniformly low utility scores), yet succeeds when given the complete set
of passages (in which case the maximum utility score over individual passages fails to reflect this outcome).
To quantify this limitation, we evaluate our approach on the widely used HotPotQA dataset (Yang et al.|
2018)), using the splits as provided by [Trivedi et al.| (2023]), and the same retrieval settings as defined above
(Section . Table |2[ shows AUROC values for all uncertainty estimation methods. In Appendix we provide
an analysis on a small set of multi-hop questions making use of synthetic HotPotQA data.

Across models, our approach is on par with p(true) and sequence entropy, and better than perplexity (Table .
Manual inspection of 100 examples from the development set with GEMMA2-9B as the target QA model,
reveals two major trends. Firstly, the QA model frequently (48 cases) manages to correctly answer multi-hop
questions using only one of the required ’hop’ passages, often not needing the entire set. This observation
aligns with recent findings in [Joren et al.| (2025]). Secondly, in numerous instances (29 cases), the retrieved
passages did not contain any useful evidence, leading the model to answer incorrectly even when prompted
with the full set. This underscores the inherent difficulty of effective retrieval for complex questions. Many
studies (Jeong et al., [2024; Trivedi et al.l 2023; Lin et al., |2025|) tackle this challenge through sophisticated QA
pipelines. Notably, certain approaches decompose complex questions into sub-questions that can be answered
independently. In such multi-hop pipelines, our approach could be naturally applied at the sub-question level.

6 Discussion
Key Properties and Usability Scenarios Each uncertainty quantification approach comes with its own

advantages and limitations. This entails that the choice of a specific method depends on criteria like available
resources, desired latency, and the necessary level of control and trustworthiness for the QA system. For
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Table 2: AUROC values for QA models
Figure 4: Average RAG accuracy with GEMMA2-9B based on GEMMA2-9B/27B, LLAMA-3.1-
across the five QA development sets. Points on the 8B, and MISTRAL-7B-v0.3 on HotPotQA
x-axis correspond to different context sizes, when test set. Best values per model are high-
taking the top-k, passages according to query rele- lighted in bold; we also mark with* next
vance (gray) and self-assessment via perplexity (PPL; best values which are significantly different
blue), and Passage Utility (PU; red). using the paired De Long test (p < 0.05).
Low latency = No Training Data No Fine-tuning Recognises Mitigates over-
Erroneous Evi- confidence
dence
PPL v v v
p(true) v v 4
Semantic Entropy v v
Passage Utility v v v

Table 3: Categorization of the uncertainty estimation approaches studied in Section |5 according to different
properties (table headers).

example, in high-stakes applications, a method that favours higher rates of false positives (thereby allowing
human intervention) and reduces the chance of overconfident false negatives would be better, even if it
requires training data and regular updates.

In Table 3] we summarise existing features (and limitations) of various uncertainty estimation approaches
as we compare them to our work. The first column reports latency, as previously discussed in Figure
Retrieval augmented QA models can err as a result of being exposed to erroneous sources such as misleading
passages (Xie et al., [2024) or inaccurate training data (Vu et al.l |2024]). Information-theoretic methods are
not equipped with an explicit mechanism to deal with these cases (Farquhar et al., 2024} [Soudani et al., 2025).
Moreover, these methods are also known to suffer from over-confidence (Simhi et al., |2025; |[Soudani et al.|
2025; Sung et al., [2025)). While p(true) may be able to detect these challenging cases to a certain extent,
Passage Utility can be specifically trained to recognise them. In terms of supervision, both p(true) and
Passage Utility require task-specific training examples, and the performance of both approaches deteriorates
on out-of-distribution examples (Table [§).

Training Data Requirements Our approach requires question-answer pairs to curate a dataset with
retrieved passages and utility scores for training. However, general or task specific training datasets could
be generated semi-automatically [Li & Zhang) (2024); [Wei et al.| (2024). Moreover, in experiments we show
that in some QA tasks such as WebQ or PopQA this training data can be relatively small, i.e., in the region
of 2.5k or 10k respectively.

Fine-Tuning Requirements Our approach, by design, requires fine-tuning to adapt to new QA tasks or
models, as its core aim is to model the accuracy behavior of the target QA model. To enhance versatility
across QA tasks, a unified training set encompassing diverse QA tasks could be compiled to train a single
passage utility predictor. More practically, advanced training schemes promoting generalization, such as
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meta-learning with a varied set of QA tasks and QA model examples, could be employed to develop a single
passage utility predictor.

In addition, while the utility predictor may necessitate recalibration for distinct QA models or tasks, its
performance on out-of-distribution scenarios (Appendix E[) establishes it as a robust warm-up base model.
This allows for subsequent fine-tuning with a reduced number of target examples (Kamath et al.,|2020; |Zhang
et al., |2021). Finally, as the utility predictor relies on a small model, the cost of fine-tuning in terms of
resources and time is low.

7 Conclusions

In this work we address uncertainty estimation in the context of retrieval augmented QA with a method
that relies on individual passage utilities. Key in our approach is the definition of utility in terms of the
behaviour of the QA model and whether it is able to provide a correct answer given a retrieved passage. We
train a small neural model on passage utility judgements elicited from the QA model’s responses and use
utility predictions to estimate answer uncertainty. Experimental results show that our uncertainty estimator
is competitive or better than existing strong methods while being light-weight. Future work could extend
this approach to long-form generation tasks (Stelmakh et al. 2022; |Gao et al., |2023; [Min et al., [2023; |Zhang
et al.l |2024al) where evaluating whether answer correctness is more challenging (Zhang et al., |2024b) and to
multi-modal QA scenarios (Borszukovszki et al., |2025]).
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A Ablation of the Passage Utility Predictor Training Objective

Table [4] shows AUROC results on answer uncertainty prediction with Passage Utility estimators trained with
different variants of the objective in Equation . The first row shows the full objective (see training details
in Section , the second row shows a variant where the ranking objective uses only entailment utility
annotations (e), and in the third row the objective is solely based on accuracy prediction (Lpcg). As can be
seen, there is a drop in performance when the pairwise ranking loss is not used (i.e., last line of Table ;
this component of the objective provides a smoother signal on passage utility, which is empirically beneficial.
However, when the pairwise ranking loss is only based on entailment, performance drops by several points,
highlighting the importance of combining both to model QA answering behaviour.

Table [5| reports various ablation studies (with GEMMA2-9B on the WebQ development set) with different
instantiations of the Passage Utility score vas and our training objective. We present different ways to
combine accuracy (a) and entailment (e) scores to induce utility rankings with the pairwise ranking loss
Lyank, (+) (Equation [3)). These include average (a + €)/2 as in Equation [2} addition (a + €), addition but
inverting the entailment score ((e|l — e) 4+ a) when the passage yields an inaccurate answer (a = 0), or
when one of the two is given a zero weight, i.e., (a) or (e) alone. We asses these ranking variants when
using the ranking objective alone (rightmost block) as well as when combined with the binary cross-entropy
objective Lpcr (Equation |5) (middle block); we also report performance when only the Lpcg objective is
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Objective Terms G9B L8B MT7B
Lrank,(e+a)/2+XLece 0.80 0.81 0.80
Lorank, (6) +AXLBcE 0.73 0.73 0.71
LpcE 0.78 0.78  0.80

Table 4: Answer uncertainty estimation with Passage Utility predictors trained with different variants
of the objective in Equation (§)). AUROC values for GEMMA2-9B (G9B), LLaMA3.1-8B (L8B), and
MISTRAL-7B-v0.3 (M7B) are averaged over development sets.

LBCE L'rank + AEBCE ﬁ'runk
(e+a)/2 (e+a) ((e]l—€e)+a) (e) | (e+a)/2 (e+a) ((e]ll—€)+a) (e) (a)
0.71 ‘ 0.75 0.74 0.72 0.63 ‘ 0.65 0.63 0.62 0.61 0.53

Table 5: Answer uncertainty estimation with Passage Utility predictors trained with different variants of the
objective in Equation . AUROC values are for GEMMA2-9B and the WebQ development set.

used (leftmost block). All model variants are trained with rank-based model selection and A = 0.25 following
training details in Section [F.2}

When looking at the pairwise ranking objective alone (rightmost block), entailment dominates the ranking
and the utility scores learnt; (e) pairwise ranking as well as (a + e) variants yield utility scores that have
similar discriminative power. The (a) variant exhibits the worst performance, given that many pairs are
discarded due to having the same utility. AUROC values improve when the pairwise ranking is combined
with the cross-entropy objective (middle block). In this case, in addition to enforcing the pairwise ranking
with Lrgnk, (+), the utility scores are regularised. In other words, the utility scores of a pair of passages with
the same accuracy (i.e., only ordered by entailment) will end up closer (differ less) than the utility scores of
a pair of passages with different accuracies (differ more). This is reminiscent of the Bradley-Terry model
(Bradley & Terry, (1952)): in the first case, one passage is better than the other with a small probability,
while in the second case the probability of one being better than the other is higher. The exception here is
the Lyank, (€) + A Lpcg variant where the pairwise ranking by entailment may often contradict the binary
cross-entropy signal.

B Test Time Cost of Uncertainty Estimation Methods

Table [6] shows the cost of estimating uncertainty for question x, measured by the number of inference calls
required. Simple information theoretic methods (e.g., PPL) require a single call to the target QA model
with the retrieval augmented QA prompt (i.e., |R| retrieved passages and question x). However, approaches
that estimate uncertainty based on diversity (e.g., Regular Entropy, Semantic Entropy, and p(true)) require
generating N answers, i.e., N inference calls with the retrieval augmented QA prompt. In addition, Semantic
Entropy requires the computation of answer clusters (i.e., grouping answers with the same meaning), so
additional calls to an entailment model are required to compare the set of sampled answers. p(true) requires
one additional LLM call to elicit a True/False answer but with a very long prompt including in-context
examples and the assessment question with the |R| retrieved passages, sampled and most likely answers, and
question z (see Table . In contrast, our approach requires |R| utility predictions with a BERT-sized model.
For instance, in our experimental setup with N = 10 samples and retrieval augmented QA with |R| = 5, the
Semantic Entropy approach would require 11 forward passes with the QA model prompted with 5 passages
(one the greedy candidate and 10 random samples) plus 45 calls to the entailment model. Our approach
requires 5 forward passes with the BERT-based model.
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Methods Inference Calls at Test Time
PPL 1G
p(true) (N+1)G+1E

Regular Entropy (N+1)G
Semantic Entropy (N +1)G + (1;7) E
Passage Utility |R| BERT-F

Table 6: Number and type of inference calls required to estimate answer uncertainty for question x and
set of retrieved passages R. G means inference is performed with a retrieval augmented QA model, i.e., an
LLM forward pass with the prompt including the set of |R| retrieved passages and question z to generate
a candidate answer y. E is inference with an evaluation model, e.g., a forward pass to ask an LLM for
correctness in p(true) or a forward pass with an entailment model in Semantic Entropy. Bert-F is an inference
call to predict passage utility for passages p in R and question x.

G9B G27B L8B MTB

a 012 013 0.15 0.15
a+e 0.04 0.04 0.05 0.06

RAcct INDACcc), a 0.01 0.01 0.01 0.01

RAcc |INnDAcCCt

Table 7: Average proportion of cases (five development sets) where at least one individual passage in R leads
a correct answer (INDAcc?) but the QA model prompted with R yields an incorrect one (RAcc]) (and vice
versa RAcct INDAcCC ).

C Generality of the Uncertainty Aggregation Strategy

To validate the intuition behind our uncertainty estimation step (Section , we compare the behaviour
of the QA model when prompted with individual passages in R versus when prompted with R (i.e., the
top-|R| passages). In particular, we want to inspect the proportion of cases where our stratege of taking the
maximum uitility score among the passages in R does not agree with the entire set accuracy. In other words,
we are interested in cases where the QA model is accurate with at least one individual passage (INDACCT)
but answers incorrectly when promtped with R and vice versa. In this study, we consider two individual
passage accuracy variants (related to the combined definition of Passage Utility Section . One is based on
accuracy a (see Section [4]) and is either 0 or 1. The other one is also based on accuracy but smoothed by
entailment e (computed by an off-the-shelf entailment model; see Section {4)) and downgrades cases where
a =1 into a = 0 if e < 0.5. The latter occurs in cases where the QA model produces an answer that is
accurate but not entailed by the passage.

We analyse the behaviour of four QA models (LLMs) across five datasets in our experimental setup. Table
shows the proportion of model disagreements across development sets. We can see that such disagreements
amount to a relatively small number in both settings, i.e., when at least one individual passage in R yields a
correct answer (INDAcC1T) but the QA model prompted with R yields an incorrect answer (RAcc /) and
vice versa (RAcc?t INDAcc ). The results in Table [7| confirm that our aggregation approach based on
individual passages is fairly general. It approximates answer uncertainty when prompting with |R| passages
while avoiding the complexity of estimating uncertainty over all possible combinations of input passages in
terms of number and order.

Our study is related to the issue of understanding LLM sensitivity to external evidence (Xie et al.| [2024;
Liu et al.; 2024b)), i.e., how the type of evidence (supportive, contradictory, irrelevant, or misleading), the
amount, and order of presentation affect LLM predictions and interact with parametric knowledge. The
Passage Utility predictor is trained to predict the error of a target QA model (LLM) on answering questions,
independent of the type of passage or any memorized knowledge. Given a question-passage pair, if the LLM
relies on its memorized knowledge rather than adapting to the passage and still produces the correct answer,
or conversely, adapts to the passage but produces an incorrect answer, then the Passage Utility predictor
should reflect this outcome by predicting a correct or incorrect answer accordingly [Xie et al.| (2024).
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Note that the Passage Utility predictor is meant to be synchronized with the target QA model and judgments
of what is (or not) a correct answer. If an answer to a question changes, the target QA model answer
correctness on this question may also change, and the Passage Utility predictor should also reflect this (i.e.,
it should be adapted with new examples). Multiple passage interactions studied in datasets with synthetic
evidence (Longpre et al., [2021; Xie et al.| [2024) are observed to a lesser extent in our experiments with six
datasets and external retrievers. This has also been recently pointed out in [Hagstrom et al.| (2025). Our
approach could be combined with additional features to capture more complex interactions (Dong et al.,
2018)). Investigating and understanding the relation between QA model uncertainty and (improving) context
utilization is an interesting topic on its own right (Xie et al., [2024; [Longpre et al. |2021; Hagstrom et al.,
2025)) but out of scope for this paper.

D Out-of-distribution Generalization of Uncertainty Estimation

We assess the generalization ability of our Passage Utility estimator both in terms of new QA tasks and QA
models. We train a unique Passage Utility predictor for the GEMMA2-9B model. Following previous work on
question answering and out-of-distribution (0.0.d) scenarios (Kamath et al., 2020; Zhang et al 2021)), we
train it on the SQuAD dataset and then use it to predict zero-shot (i.e., without further fine-tuning) passage
utilities on all other datasets (test set). As p(true) relies on 20 in context training examples, we also evaluate
its ability to generalise in out-of-distribution settings.

Table [8] (QA Task block) shows AUROC for answer uncertainty estimation in 0.0.d scenarios. As an upper
bound, the i.i.d block of the table shows AUROC values in the in-distribution scenario for Passage Utility
and p(true). We compare 0.0.d performance w.r.t. PPL and Semantic Entropy which do not rely on training
examples. Although Passage Utility performance decreases in o.0.d settings, it remains competitive in four
out of five datasets. In these four cases, it is always statistically significantly different from the PPL method
and comparable to p(true) and Semantic Entropy. Interestingly, p(true)’s performance also drops in all o.0.d
test sets showing that relying on a fixed number of in-context learning examples is neither a robust nor
scalable adaptation method.

To understand the observed performance drop, we conducted a comparative analysis of passage utility
predictions for 50 question-passage pairs. We examined predictions from a utility predictor trained on WebQ
data (i.i.d) versus one trained on SQuAD (0.0.d). We sampled 10 WebQ test questions: 5 for which the
predicted utility decreased from high under i.i.d. conditions to low under o0.0.d. conditions (changing from
true negative to false positive), and 5 for which it increased in the opposite direction (changing from true
positive to false negative). In both scenarios, the o.0.d predictions were predominantly influenced by token
overlap and similarity. We hypothesize that when faced with o.0.d questions (e.g., in terms of type, length,
or topic), the prediction mechanism defaults to predictions based on a general notion of question-passage
similarity, disregarding whether the QA model can answer the question with the given passages. For passages
with low (high) similarity to the question, it will predict low (high) utility scores. This behaviour may be a
consequence of under-training, suggesting that the Passage Utility predictor cannot predict the accuracy of
the target QA model on these 0.0.d questions and their corresponding retrieved passages.

To empirically validate these observations, we calculate Spearman’s p correlation coefficients between the
predicted Passage Utility scores and the corresponding retriever relevance scores (as computed by Contriever-
MSMARCO; [Izacard et al.[2022) for each passage, examining correlations separately for both i.i.d and o.0.d
predictions. We use the Retriever Score because it measures the semantic relation between questions and
retrieved passages. In agreement with our manual inspection, there is a positive correlation between Passage
Utility and Retriever Score in the o.0.d setting (0.536 with p-value < 0.01), suggesting that Passage Utility
falls back to textual similarity. In contrast, the i.i.d setting exhibits a negative and weaker correlation (-0.318
with p-value < 0.05), indicating that training successfully aligns Passage Utility predictions with the target
QA model’s actual performance rather than superficial retriever similarity scores.

We also evaluate generalisation to a new QA model, by training the Passage Utility predictor on utility labels
observed for GEMMA2-9B and use its predictions to estimate uncertainty for the bigger GEMMA2-27B model.
We also evaluate p(true) in this 0.0.d setting, i.e., we create p(true) prompts as usual with GEMMA2-27B
generated answers (greedy and sampling), but ask GEMMA2-9B to judge the probability of the most likely
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GEMMA2-9B NQ TQA WebQ PopQA RefuNQ
< p(true) 0.73 0.75 0.67 0.81 —
e = Passage Utility 0.76 0.85 0.69 0.86 —
&
= PPL 0.64 0.68™ 0.52 0.59" 0.51
g, = Semantic Entropy 0.70 0.73 0.58" 0.73 0.59*
S p(true) (SQUAD) 0.67 063 0.63  0.72 0.62
Passage Utility (SQuAD) 0.65 0.79 0.60 0.72 0.79
GEMMA2-27B NQ TQA  WebQ PopQA RefuNQ
< p(true) 0.77 0.83 0.67 0.79 0.60
g % Passage Utility 0.73 0.82 0.69 0.87 0.80
EO PPL 0.64" 0.50 0.53 0.53 0.51
< < Semantic Entropy 0.68 0.62 0.59 0.66 0.58
C 2 pirue) (GEMMA2-OB) 073 071%  064* 075" 059

Passage Utility (GEMMA2-9B) 0.75 0.80 0.68 0.87 0.79

Table 8: Out-of-domain performance of Passage Utility predictor for GEMMA2-9B both in terms of QA task
and QA model. ii.d blocks report AUROC values from our main in-distribution experiments (Table ;
0.0.d blocks contain the o.0.d comparison. Best values are highlighted in bold; we also mark with * next
best values which are significantly different using the paired De Long test (p < 0.05). For the QA task,
Passage Utility and p(true) are supervised with SQuAD data and evaluated on NQ, TQA, WebQ, PopQA,
and RefuNQ test data. For the QA model, Passage Utility predictors are trained on GEMMA2-9B and used
to estimate uncertainty for GEMMA2-27B; p(true) assessment is provided by GEMMA2-9B.

answer being true. Table[§| (QA Model block) shows AUROC results; for reference, we include in-distribution
values (i.i.d block) and compare the 0.0.d results with comparison methods. Passage Utility outperforms all
other methods across the board, and while still competitive, p(true) exhibits a higher decrease in performance.
These preliminary results suggest that in the context of retrieval augmented QA, models behave alike (also
suggested by the distribution of observed correct/incorrect individual passage utilities in Table . This
highlights practical benefits of our approach, such as training a base Passage Utility predictor using data
generated by a less expensive model or developing a more general predictor applicable across multiple QA
models.

Finally, we train a unique Passage Utility predictor for all QA tasks and assess its generalisation capabilities.
To this end, we train a predictor for the GEMMA2-9B model on a random sample drawn from the five training
sets of size equivalent to the training sets of the individual QA task predictors. Specifically, we took 10k from
NQ, TQA, and SQuAD, 3k from PopQA, all WebQ), totalling 35,474 instances for training and 500 instances
from each for validation; the number of pairwise instances in the final curated training set is 354,379. For
p(true), we mixed 4 randomly sampled examples from each dataset as in-context training examples. We
follow the same training procedure as described in Section (with combined model selection and A = 1).
We show AUROC results in Table[J] Across the six test sets, the unique Passage Utility predictor trained
on a mix of QA tasks (bottom block) achieves similar performance to the individual predictors trained on
per-task datasets (top block). The unique predictor keeps comparable or better performance than p(true)
and outperforms PPL and Semantic Entropy. This preliminary study suggests that is feasible to train a more
general predictor for various QA tasks.

E Synthetic Qualitative Analysis of Passage Utility in Multi-hop QA

In multi-hop QA Passage Utility may fail at cases where the QA model cannot answer when prompted
with any individual "hop’ passage, but answers correctly when prompted with the full set. To analyse this
limitation, we carry out a qualitative analysis. As discussed in Section [b| there are two scenarios in retrieval
augmented multi-hop QA (given existing datasets and current LLMs). Either models can answer with one
passage (thus no multi-hop) or retrieval completely fails. Thus, to be able to pinpoint actual multi-hop QA
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NQ TQA WebQ SQuAD PopQA RefuNQ

= p(true) 0.73 0.75 0.67 0.68 0.81 0.62
& Passage Utility 0.76 0.85 0.69 0.80 0.86 0.79
» PPL 0.64* 0.68 0.52 0.59 0.59 0.51
2. Semantic Entropy 0.70 0.73" 0.58™ 0.63" 0.73 0.59
g p(true) 0.71 0.70 0.68 0.63* 0.75* 0.66*

Passage Utility 0.69 0.83 0.68 0.79 0.85 0.79

Table 9: Generalisation of a Unique Passage Utility predictor for GEMMA2-9B trained on a mix of QA tasks
and evaluated on the six test sets (lower block). Best values are highlighted in bold; we also mark with *
next best values which are significantly different using the paired De Long test (p < 0.05). The upper block
reports AUROC values for the Passage Utility from predictors trained for GEMMA2-9B on indiviual QA
tasks’ training datasets. We also compare p(true) when in-context learning examples are all from the same
QA task (upper block) versus from a mix of tasks (lower block).

cases and expose the limitations of our approach, we make use of synthetic HotPotQA data (Yang et al.l
2018]).

First, we use the sets of gold passages provided in the HotPotQA dataset to categorise question types as
follows. We prompt the QA model with individual gold passages and with combinations thereof, measuring
accuracy. Out of the 500 test questions, 475 are answerable with only one gold 'hop’ passage, 13 require
multiple passages, and 12 are unanswerable. Secondly, we focus on the 13 requiring multi-hop questions and
insert gold 'hop’ passages within the retrieved set for those where retrieval completely fails. Then, we run QA
and uncertainty estimation. In 6 of 13 cases, our approach fails to predict that the QA model’s answer will be
correct. It is important to note, however, that these 13 cases represent only 2.6% of the total (13 out of 500).

F Experimental Details

F.1 Datasets and Splits

In our experiments, we use six QA tasks which we describe below. Table [I0] shows dataset statistics and
example question-answers pairs.

Natural Questions (NQ; Kwiatkowski et al[2019) is a QA dataset compiled from real user questions
submitted to the Google search engine. As part of the dataset curation process, annotators judge the quality
of questions and associate them with a short answer that can be extracted from a related Wikipedia page.

TriviaQA (TQA; Joshi et al.[2017)) is a question answering dataset designed for training and evaluating
machine learning models on open-domain question answering tasks. The dataset was created by gathering
questions from trivia websites, along with their corresponding answers, to provide a broad range of factual
questions.

WebQuestions (WebQ; Berant et al.[2013]) was mined off questions generated with the Google Suggest
API. The answers to the questions are defined as Freebase entities (i.e., their string label) and were elicited
by Amazon Mechanical Turk (AMT) annotators.

SQuAD (Rajpurkar et al., |2016) contains questions formulated by AMT annotators based on a given
Wikipedia paragraph, with the answer being a short span in that paragraph. Annotators were encouraged to
use paraphrasing when writing the question. The answer types not only cover named entities but also other
categories such as noun- and verb-phrases.

PopQA [Mallen et al.|(2023) is an open-domain QA dataset, focusing on popular culture topics, such as
movies, TV shows, music, and sports. It contains question-answer pairs derived from (subject, relation,
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Dataset Train Dev Test Example Question Example Answer
NQ 79,168 8,757 3,610 Who plays Letty in Bring it on all  Francia Raisa
or nothing?
TQA 78,785 8,837 11,313 Who was the first artistic director Lord Laurence Olivier
of the National Theatre in London?
WebQ 2,474 361 2,032  What party was Andrew Jackson?  Democratic-Republican
Party

SQuAD 78,713 8,886 10,570 What is the Grotto at Notre Dame? A Marian place of prayer
and reflection
PopQA 10,000 1,267 3,000  Who was the director of Champion? Rabi Kinagi
RefuNQ — — 2,173  Who does the voice over in the Re- —
quirtion?

Table 10: Dataset statistics, number of instances per Train/Development(Dev)/Test sets, and example
question-answer pairs (all taken from the Dev set except for RefulNQ).

object) triples in Wikidata . Triples were translated into natural language and the object entity was taken to
be the gold answer. The collection process focused on gathering questions about subject entities of varying
popularity.

RefuNQ |Liu et al. (2024a)) is derived from NQ and consists of answerable and unanswerable questions.
Unanswerable questions are created by replacing entities in the original NQ question by non-existing concepts.

We follow previous work (Lee et al., 2019)) and use only the question and gold answers, i.e., the open versions
of NQ, TQA, and SQuAD. We use the unfiltered TQA dataset. We follow the train/dev/test splits as
used in previous work [Lee et al. (2019)) and randomly split PopQA. RefuNQ only provides a test set so our
experiments on this dataset are zero-shot from a Passage Utility predictor trained on SQuAD. We follow
Farquhar et al.| (2024) and use 400 test examples randomly sampled from the original larger test datasets for
evaluation of uncertainty quantification.

F.2 Implementation Details

QA Models For all question answering tasks, we use the off-the-shelf Contriever-MSMARCO tool (Izacard
et al., [2022) to retrieve sets of passages R for question x from Wikipedia and the official Wikipedia embeddings
based (2018 snapshot) as our document knowledge-base. For PopQA, we follow the work of Mallen et al.
(2023) who also use the full 2018 English Wikipedia dump.

The QA prompt used for all models (embedded in the corresponding chat templates) is shown in Table
For inference, we set the maximum number of generated tokens to 50 for both the greedy (most likely answer)
as well as temperature scaled (sampled candidates) decoding. We use vLLM for inference (Kwon et al.l [2023)).
For all models, inference was run on a single A100-80GB GPU.

Curated Passage Utility Dataset We train our passage utility predictor on a dataset D a4 curated from
benchmark D, e.g., WebQ, consisting of question and gold answer pairs (z,y). For each question we retrieve
the top-k passages. Then, we pair question z and retrieved passages p with utility scores vy which we
obtain after running the QA model M on inputs (z,p) and computing the generated answer accuracy and
entailment scores (Section 7 i.e., we create tuples (x,p,vr). From the set of k tuples for question z, we
derive (g) instances for our pairwise ranking loss.

In experiments, we use k = 5 retrieved passages per question. Table [L1| reports the size (number of training
instances) of the curated datasets for each QA task and model. From each question and set of top-5 retrieved
passages, we derive 10 pairwise ranking instances, discarding those that have equal utilities (e.g., from the
WebQ training split with 2,474 question-answer pairs, we curate 24,720 instances with MISTRAL-7B-v0.3).
As our top-5 passages are obtained via a real retrieval module, i.e., not synthetically assembled, there are
questions for which all passages in the top-5 set lead to a correct (incorrect) answer. In these cases, the
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Models NQ TQA Web@Q SQuAD PopQA
GEMMA2-9B 395,438 393,475 24,721 393,285 99,770
GEMMA2-27B 395,426 393,477 24,723 393,293 99,778
LrLAMA-3.1-8B 790,862 393,465 24,713 393,288 99,787

MISTRAL-7B-v0.3 395,397 393,474 24,720 393,271 99,772

Table 11: Number of pairwise training instances in the curated datasets to train the Passage Utility predictor
with the combined pairwise ranking and binary cross-entropy losses (Section [5)).

Incorrect Mixed Correct

GEMMAZ2-9B 21% 52% 27%
GEMMA2-27B 20% 53% 27%
LLAMA-3.1-8B 22% 55% 23%
MISTRAL-7B-v0.3 21% 56% 23%

Table 12: Number of training instances in curated datasets to train the passage utility predictor with the
combined pairwise ranking and binary cross-entropy losses (Section .

pairwise ranking is dominated by the entailment score (i.e., accuracy is the same). Table shows the
distribution of questions with all retrieved passages leading to the same accuracy (Correct/Incorrect) or
mixed (Mixed) accuracies in the curated dataset for each QA task and model.

Passage Utility Predictor Training Details We train a different predictor for each target QA model
and QA task. Given the large number of predictors required in our experiments, we initially tested the
hyper-parameters used in [Fang et al.| (2024]) on the NQ dataset and choose a set thereof for all predictor
instances. We train each predictor for 3 epochs, with a batch size of 32 examples, learning rate equal to
2¢75 and weight decay 0.001 (with the exception of LLAMA-3.1-8B and WebQ where we used 0.01). For
each predictor we performed search on values for A, i.e., the contribution of the Lgcg loss (Equation ,
and different criteria for model selection, i.e., the best at pairwise ranking or at both pairwise ranking and
accuracy prediction (combined).

Table [13| shows the configuration for each predictor. Table cells show selection criteria (R for ranking and C
for combined) and the value for A. At inference time we predict a single Passage Utility score given by the
selected best checkpoint. For all predictor instances (except for all WebQ and PopQA predictors and the
predictor for LLAMA-3.1-8B and NQ), we use half of the available training data to speed up experiments.
Training and inference was run on a single A100-40GB GPU; training ranges from 2 to 12 hours depending
on the dataset.

Comparison Approaches In this section, we describe additional answer uncertainty estimation methods
(for which we present supplementary results in Section . Maximum Sequence Probability (MSP) is based
on the probability of the most likely answer and is computed as:

MSP(z, R, M) =1 — P(y|z, R; M). (12)

Note that, in contrast to PPL(z, R, M) reported in the main section of the paper, this metric is biased by
answer length, i.e., identifying an answer to have low probability (low confidence) because of its length. Despite
the fact that QA models are instructed to produce short answers, they do not always follow instructions.
For this reason, we consider perplexity a more accurate metric. Indeed, answer length could indicate that
the model is uncertain about the answer. Thus, we also estimate answer uncertainty from the Average
Answer Length (AvgAnsLen) as the average number of words in the sampled answers. As seen in Section
Table 20, MSP and AvgAnsLen perform similarly across the board.
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Models NQ TQA WebQ  SQuAD PopQA HotPotQA
GEMMA2-9B C,025 C,025 R,025 C,1 C, 1 C, 0.25
GEMMA2-27B C, 025 C,1 C, 1 C,025 R,025 C,1
LLaMmAa-3.1-8B C,025 C,025 C,025 C,1 C 1 C, 0.25

MisTRAL-7TB-v0.3 R, 0.25 C,1 C,025 C,025 C,025 C,1

Table 13: This table shows the A value and selection criteria (R for pairwise ranking or C for combined
pairwise ranking and accuracy prediction) for each Passage Utility predictor in our experiments.

We also report Cluster Assignment (CA) which is a variant of SE without answer probabilities where the
probability of each generated meaning (i.e., a cluster) is approximated from the number of answers in the
cluster. We found that in general CA estimations are very close to Semantic Entropy ones.

Another uncertainty estimation approach is the negative mean Point-wise Mutual Information (PMI;|Takayama
& Arase|2019)) over tokens; i.e., it compares the probability of answer sequence y given a prompt with question
and passages R w.r.t the probability given by M to y without any context. Intuitively, the higher the
point-wise mutual information, the more certain the QA model is on generating y (i.e., the answer is related
to or depends on z and R). PMI is computed as:

[yl
1 p(yely1.e—1, 2, Ry M)
PMI(z, R, M) = — — Y lo . (13)
( ) lyl = S b (elyr a1 M)

We also report Retriever Score as a baseline for Passage Utility. Instead of using the predicted Passage Utility
we use the original relevance score assigned by the external retriever (i.e., Contriever MS-MARCO).

We use the implementation provided in [Farquhar et al.| (2024)) to compute Regular Entropy, Semantic Entropy,
Cluster Assignment, and p(true). Note that we do not include the supervised baseline reported in [Farquhar
et al|(2024) as the authors show that it underperforms simple information-theoretic metrics and in addition
only works for white-box models. Note that while AvgAnsLen and Retriever Score do not strictly provide
scores in the [0, 1] interval, the package that computes AUROC finds ranking decision thresholdsﬁ

Metrics We use the implementation provided in [Farquhar et al.| (2024)) to compute AUROC, Accuracy at
X% of rejection, and AURAC metrics.

We use Qwen2-72B-Instruct (Yang et al., [2024) to obtain accuracy judgments (i.e., A judge, Section ;
specifically, we use the Activation-aware Weight Quantization (Lin et al.l [2024), version Qwen2-72B-Instruct-
AWQ. We prompt the accuracy evaluator with the prompt proposed in |Sun et al.| (2024)), as we found it to
perform well on our datasets. The accuracy evaluation (AccLM) prompt is shown in Table In a sample of
840 generated answers human and LLM-based judgment of correctness agreed 98% of the time (Sun et al.)
2024)).

F.3 Prompts

The prompt we use for our QA models is shown in Table [I4] Table [TF] illustrates the prompt used for the
p(true) baseline. Table [16|shows the prompt used for the LLM-based accuracy metric.

G Additional Results

G.1 Reference Retrieval Augmented QA Accuracy

Table [1§] shows retrieval augmented QA performance for the five QA models on the development and test
sets of our six tasks. We report accuracy based on token overlap (Acc) as computed in previous work, i.e.,

4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.det_curve.html
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Retrieval augmented QA prompt

Knowledge:
[1] passage
[2] passage

[IRl] passage
Answer the following question with a very short phrase.

Question: question

Table 14: Prompt designed as user turn for QA models.

p(true) prompt

Question: question
Brainstormed Answers: most likely answer
sampled answer 1

sampled answer N

Possible answer: most likely answer
Is the possible answer:

A) True

B) False

The possible answer is: correct choice

Knowledge:
[1] passage
[2] passage

[[RI] passage

Question: question
Brainstormed Answers: most likely answer
sampled answer 1

sampled answer N

Possible answer: most likely answer
Is the possible answer:

A) True

B) False

The possible answer is:

Table 15: Prompt used for p(true) approach. Items in blue are filled with in-context examples from the
training set and the current example being evaluated. N represents the number of sampled answers. The
“sequence of in-context examples” prefix is a sequence of examples taken from the training split with the same
question format but with the answer to The possible answer is: resolved.

whether the gold answer is contained in the generated answer (Mallen et al.l 2023} |Asai et al., 2024} Xie et al.|
2024) and accuracy using an LLM as a judge (AccLM). Note that AccLM is much higher than Acc across the
board, which highlights the importance of using a better accuracy metric, especially when the target QA
models are not fine-tuned.

30



Published in Transactions on Machine Learning Research (09/2025)

Accuracy evaluation prompt.

You need to check whether the prediction of a question-answering system to a question is correct. You should make the
judgment based on a list of ground truth answers provided to you. Your response should be "correct" if the prediction is
correct or "incorrect" if the prediction is wrong.

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"|

Prediction: W Shakespeare

Correctness: correct

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"|

Prediction: Roma Gill and W Shakespeare

Correctness: correct

Question: Who authored The Taming of the Shrew (published in 2002)?
Ground truth: ["William Shakespeare", "Roma Gill"]"

Prediction: Roma Shakespeare

Correctness: incorrect

Question: What country is Maharashtra Metro Rail Corporation Limited located in?
Ground truth: ["India"]

Prediction: Maharashtra

Correctness: incorrect

Question: What’s the job of Song Kang-ho in Parasite (2019)7

Ground truth: ["actor"]

Prediction: He plays the role of Kim Ki-taek, the patriarch of the Kim family.
Correctness: correct

Question: Which era did Michael Oakeshott belong to?
Ground truth: ["20th-century philosophy"]

Prediction: 20th century."

Correctness: correct

Question: Edward Tise (known for Full Metal Jacket (1987)) is in what department?
Ground truth: ["sound department']

Prediction: 2nd Infantry Division, United States Army

Correctness: incorrect

Question: What wine region is Finger Lakes AVA a part of?
Ground truth: ["New York wine']

Prediction: Finger Lakes AVA

Correctness: incorrect

Question: question

Ground truth: gold answer
Prediction: generated answer
Correctness:

Table 16: Prompt used for LLM-based accuracy evaluation.

G.2 Results on Individual Passage Utility Prediction

Beyond using Passage Utility to estimate uncertainty in retrieval augmented QA, we evaluate how it performs
on its own. Table [I7 shows AUROC scores when using Passage Utility to predict accuracy for individual
passages. We evaluate on the same samples from the test sets in Section [5| and Table [I] but per passage.
We also include a perplexity baseline (PPL). Overall, results in Table [17|follow a similar pattern as those
in the QA setting with top-5 passages (Table . Across the board, Passage Utility demonstrates strong
performance in predicting the usefulness of individual passages. Moreover, these results highlight that the
quality of uncertainty estimation strongly depends on the quality of individual Passage Utility predictions.
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GEMMA2-9B GEMMA2-27B
| NQ TQA WebQ SQuUAD PopQA RefuNQ AVG | NQ TQA WebQ SQuAD PopQA RefuNQ AVG

0.64 0.62 0.53 0.56 0.45 0.50 0.55| 0.61 0.61 0.53 0.57 0.52 0.54 0.56
0.77 0.80 0.71 0.74  0.90 0.71 0.77] 0.74 0.8 0.69 0.76  0.90 0.72  0.77

PPL
Passage Utility

LrAMA-3.1-8B MISTRAL-7B-v0.3
| NQ TQA WebQ SQuAD PopQA RefuNQ AVG | NQ TQA WebQ SQuAD PopQA RefuNQ AVG

PPL 0.69 0.78 0.67 0.67  0.65 0.68 0.69 | 0.64 0.71 0.59 0.64 0.62 0.68 0.65
Passage Utility | 0.74 0.80 0.71 0.78  0.91 0.75 0.78 | 0.75 0.77 0.70 0.78 0.88 0.78 0.78

Table 17: AUROC values for the Passage Utility and perplexity baseline on individual passages on the six
test sets (NQ, TQA, WebQ, SQuAD, PopQA, and RefuNQ).

NQ TQA WebQ SQuAD PopQA RefuNQ
Development Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM
GEMMA2-9B 0.48 0.66 0.74 0.80 0.46 0.66 0.38 0.60 0.51 0.52 — —
GEMMA2-27B 0.48 0.66 0.75 0.81 0.49 0.67  0.38 0.60 0.52 0.52 — —
Lrama-3.1-8B 0.48 0.62 0.71 0.77 0.53 0.64 0.39 0.57 0.51 0.49 — —

MISTRAL-7TB-v0.3  0.48 0.62 0.72 0.76 0.52 0.69 0.37 0.58 0.53 0.51 — —

NQ TQA WebQ SQuAD PopQA RefuNQ
Test Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM Acc AccLM
GEMMA2-9B 0.49 0.65 0.74 0.80 0.40 0.66 0.43 0.60 0.50 0.52 0.26 0.40
GEMMA2-27B 0.48 0.65 0.76 0.81 0.41 0.66 0.42 0.61 0.51 0.53 0.26 0.39
Lrama-3.1-8B 0.49 0.61 0.71 0.77 0.44 0.63 0.43 0.58 0.50 0.49 0.27 0.36

MISTRAL-7B-v0.3  0.49 0.62 0.72 0.77 0.47  0.66 0.41 0.58 0.51 0.50 0.26 0.35

Table 18: QA model performance (with |R| = 5) on the development and test sets. We report token- and
model-based accuracy (Acc and AccLM). AccLM is computed by Qwen2-72B-Instruct.

G.3 Detailed Uncertainty Estimation Results

Table [19] shows AURAC scores on the test sets. Table [20] shows the performance of uncertainty quantification
approaches on the development set. We report AUROC and AURAC.

H Examples of False Positives and Negatives

Tables illustrate the working of Passage Utility for answer uncertainty estimation. As we report
AUROC scores, we do not set any correct/incorrect decision threshold; for the purpose of this discussion, we
assume a decision point at 0.5 and analyze clear success and failure cases. For each example, we show the
question, gold, and generated answers in the top block. Then, we show three retrieved passages with their
estimated Passage Utility and a final block with ten sampled answers, their grouping into clusters, and the
Cluster Assignment entropy.

Table shows an example for a SQuAD question and the LLAMA-3.1-8B QA model. In this case, the
QA model correctly answers and the Passage Utility estimate is high (i.e., indicating the answer is correct).
Table [22] illustrates a case where LLAMA-3.1-8B’s answer is incorrect and all Passage Utilities are very low
(i.e., indicating the answer is incorrect). The example from NQ in Table [23| shows a case where all Passage
Utilities are low but the QA model (GEMMA2-9B) answers correctly. The first passage is not useful, the
second does not explicitly mention the answer but still primes the QA model to answer correctly, while the
third passage mentions the answer.
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GEMMA2-9B GEMMA2-27B
| NQ TQA WebQ SQuAD PopQA RefuNQ| NQ TQA WebQ SQuAD PopQA RefuNQ
PPL 0.69 0.84 0.63 0.57 0.56 0.45 0.67 0.78 0.63 0.62 0.56 0.45
p(true) 0.75 0.85 0.71 0.63 0.71 0.53 0.76 0.89 0.73 0.67 0.70 0.54

Regular Entropy 0.70 0.84 0.63 0.59  0.57 0.46 0.69 0.79 0.64 0.61 0.58 0.45
Semantic Entropy | 0.71 0.85 0.64 0.65 0.64 0.51 0.69 0.81 0.67 0.63 0.61 0.50
Passage Utility 0.76 0.90 0.72 0.74 0.73 0.64 0.72 0.88 0.73 0.74 0.73 0.64

LrLAamA-3.1-8B MISTRAL-7B-v0.3
| NQ TQA WebQ SQuAD PopQA RefuNQ| NQ TQA WebQ SQuAD PopQA RefuNQ
PPL 0.73 0.87 0.71 0.68 0.69  0.54 0.67 0.83 0.66 0.66 0.61  0.54
p(true) 0.76 0.89 0.75 0.70 0.71  0.59 0.71 0.86 0.70 0.69 0.65 0.56

Regular Entropy 0.73 0.87 0.72 0.70  0.69 0.56 0.67 0.84 0.69 0.65 0.62 0.51
Semantic Entropy | 0.71 0.87 0.71 0.70  0.67 0.54 0.68 0.85 0.71 0.69 0.66 0.51
Passage Utility 0.74 0.87 0.73 0.73 0.71 0.65 0.72 0.87 0.71 0.75 0.71 0.66

Table 19: AURAC values for QA models based on GEMMA2-9B/27B, LLAMA-3.1-8B, and MISTRAL-7B-v0.3
on Natural Questions (NQ), TriviaQA (TQA), WebQuestions (WebQ), SQuAD, PopQA, and RefuNQ test
sets.

In Table Passage Utility scores are high estimating a correct answer for the TQA test question; however,
GEMMA2-9B answers with the incorrect magazine name. Note that none of the passages corresponds to the
National Geographic magazine but have high token overlap with the question (in particular the first and
second passages).
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AUROC AURAC
GEMMA2-9B NQ TQA WebQ SQuAD PopQA | NQ TQA WebQ SQuAD PopQA
PPL 0.61 052 058 066 056 | 0.67 0.78 0.67 065  0.52
MSP 0.64 0.60 064 071 061 | 069 080 0.69 067  0.56
PMI 0.53 0.46 052 050 048 | 0.64 0.75 0.64 057  0.50
p(true) 0.70 0.71 0.66 073 083 | 0.72 0.84 070 069 0.71

Regular Entropy 0.64 0.54 0.60 0.70 0.58 0.69 0.78 0.68 0.67 0.54
Cluster Assignment 0.68 0.65 0.65 0.70 0.68 0.71 0.82 0.70 0.67 0.60
Semantic Entropy ~ 0.67 0.69 0.64 0.72 0.69 0.71 0.84 0.69 0.68 0.61

AvgAnsLen 0.61 0.64 0.65 0.63 068 | 068 083 071 065 061
Retriever Score 0.53 0.62 053 0.67 064 | 065 082 063 067 061
Passage Utility 0.72 0.84 0.75 0.85 0.85 | 0.75 0.89 0.77 0.77 0.71
AUROC AURAC
CEMMA2-27B NQ TQA WebQ SQuAD PopQA | NQ TQA WebQ SQuAD PopQA
PPL 0.61 056 055 063 053 | 068 0.79 065 067 052
MSP 0.64 0.66 059 0.67 060 | 0.70 0.82 0.67 069  0.56
PMI 0.51 052 056 054 056 | 0.64 0.78 0.67 062  0.56
p(true) 0.76 0.73 0.69 0.69 079 | 0.78 084 074 071  0.70

Regular Entropy 0.65 0.53 0.56 0.64 0.53 0.71 0.78 0.66 0.67 0.52
Cluster Assignment 0.66 0.67 0.59 0.66 0.66 0.71 0.82 0.67 0.68 0.60
Semantic Entropy  0.64 0.67 0.59 0.68 0.66 0.69 0.82 0.68 0.69 0.60

AvgAnsLen 0.63 0.68 0.65 0.60 0.69 0.69 0.83 0.72 0.66 0.61
Retriever Score 0.56 0.60 0.51 0.69 0.65 0.67 0.81 0.64 0.71 0.62
Passage Utility 0.73 0.75 0.72 0.84 0.87 0.75 0.86 0.75 0.78 0.73
AUROC AURAC
LLAaMA-3.1-8B NQ TQA WebQ SQuAD PopQA | NQ TQA WebQ SQuAD PopQA
PPL 0.75 0.78 0.68 0.75 0.81 0.76 0.85 0.71 0.71 0.68
MSP 0.77 0.80 0.71 0.76 0.85 0.76 0.85 0.72 0.72 0.70
PMI 0.55 0.52 0.48 0.54 0.58 0.64 0.73 0.60 0.61 0.53
p(true) 0.80 0.86 0.72 0.82 0.85 0.78 0.87 0.74 0.75 0.71

Regular Entropy 0.77 0.80 0.69 0.76 0.83 0.76 0.85 0.71 0.72 0.69
Cluster Assignment 0.75 0.83 0.69 0.75 0.82 0.75 0.85 0.71 0.71 0.67
Semantic Entropy ~ 0.74 0.83 0.70  0.74 0.81 0.75 0.86 0.72 0.71 0.68

AvgAnsLen 0.73 0.73 0.69 0.69 084 | 0.73 0.82 071 067  0.69
Retriever Score 0.58 0.63 054 0.68 066 | 065 0.79 0.62 0.66  0.60
Passage Utility 078 0.85 0.74 0.82 0.86 | 0.75 0.87 0.75 0.75 0.71
AUROC AURAC
MISTRAL-7TB-v0.3 NQ TQA WebQ SQuAD PopQA | NQ TQA WebQ SQuAD PopQA
PPL 0.66 0.70 0.60 063 0.66 | 069 084 0.72 063 063
MSP 070 0.75 0.65 071 077 | 070 0.85 0.73 0.68  0.67
PMI 0.38 0.33 042 042 030 | 053 0.68 062 052  0.39
p(true) 072 0.82 071 075 074 | 0.71 0.87 0.76 0.71  0.64

Regular Entropy 0.67 0.71 0.63 0.66 0.68 0.69 0.85 0.73  0.66 0.63
Cluster Assignment 0.72 0.81 0.68  0.73 0.76 0.71 0.87 0.75 0.68 0.66
Semantic Entropy  0.72 0.80 0.68 0.73 0.76 0.71 0.87 0.76 0.69 0.66

AvgAnsLen 0.66 0.75 0.65 0.68 0.81 0.69 0.85 0.73 0.67 0.70
Retriever Score 0.55 0.63 0.55 0.65 0.68 0.63 0.81 0.67 0.64 0.63
Passage Utility 0.76 081 0.75 0.85 0.85 0.74 0.87 0.78 0.75 0.71

Table 20: Answer uncertainty estimation for QA models GEMMA2-9/27B, LLAMA-3.1-8B, and MISTRAL-
7B-v0.3 on NQ, TQA, WebQ, SQuAD, and PopQA development sets. We report AUROC and AURAC.
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r Question: How many platforms does Manchester Oxford Road have? "
Generated Answer: Four through platforms and one terminating bay platform.

‘ Gold Answer: 5. J

Originally one, later expanded.

Manchester Oxford Road railway station. Gloucester Street (now Whitworth Street West) to reach their north front. There was a single
platform on the north side of the line through to Manchester London Road (now "Manchester Pic adilly”) and a second platform on a
west-facing siding. To allow for extra trains in connection with the Manchester Art Treasures Exhibition in 1857, extra platforms and
sidings were bui 1t, but afterwards removed. A meeting of MSJAR contract ticket holders in 1863 included in its list of complaints
the want of punctuality "especially as at Oxford Road station there is only one platform used for both passengers and milk". -0.42

Twelve terminating, two through.

Transport in Manchester. platforms are planned as part of the Northern Hub project however in 2017 the construction was not confirmed.
At present there are twelve terminating platforms but just two through platforms. Congestion is common at peak times and trains
often incur delays for following trains down the line at Oxford Road. The new proposals will provide up to 700 more trains per day
with space for 44 million more people to travel by train each year. Victoria station has undergone a series of upgrades. The station
was rated as the worst in the UK following a 2009 study and plans for -0.26

~
Five platforms.

Manchester Oxford Road railway station. Manchester Oxford Road railway station is a railway station in Manchester, England, at the
junction of Whitworth Street West and Oxford Street. It opened in 1849 and was rebuilt in 1960. It is the second busiest of the four
stations in Manchester city centre. The station serves the southern part of Manchester city centre, the University of Manchester
and Manchester Metropolitan University, on the line from westwards towards Warrington, Chester, Llandudno, Liverpool, and Blackpool.
Eastbound trains go beyond Piccadilly to , and . The station consists of four through platforms and one terminating bay platform.
1.34

[’Four through platforms and one terminating bay platform.’, ’Four through platforms and one terminating bay.’, ’Four through
platforms and one terminating bay platform.’], [’Four through and one terminating.’, ’Four through platforms and one terminating
bay.’, ’Four through and one bay.’], [’Five platforms.’, ’Five platforms.’, ’Five platforms.’, ’Five platforms.’] 1.09

Table 21: True negative example (from NQ development set): Passage Utility predicts the right answer as
well as the QA model (GEMMA2-9B).
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r Question: Which company was targeted by the NAACP for not having fair practices? i’
Generated Answer: Target Corporation.

‘ Gold Answer: Lockheed Aircraft Corporation. 4‘

Target Corporation.

Target Corporation. of Colored People has repeatedly given Target failing grades on its annual Economic Reciprocity Initiative
report card, a measure of the company’s “commitment to the African-American citizenry”. In 2003 and 2005, the NAACP has rated Target

an “F” on this report; in 2004, Target was rated a “D-”. In 2006, when Target was asked why it didn’t participate in the survey
again, a representative explained, “Target views diversity as being inclusive of all people from all different backgrounds, not just
one group.” In February 2006, the National Federation of the Blind (NFB) filed a class action [cont.] -2.64

None, the NAACP was involved in the Duke lacrosse case.

Reactions to the Duke lacrosse case. formed an opinion on the case. North Carolina NAACP Legal Redress Chair, Al McSurely, explained
that “The NAACP stands for fair play for all parties, zealous investigation and deep concern for the survivors of racist/sexist
attacks.” At the same time, some have criticized the NAACP for making statements that portrayed the players as racist despite
evidence to the contrary, using the case to promote the group’s cause, and implying guilt. McSurely stated that “[wl]ithin five
minutes, the men threatened the women with racial and misogynist verbal assaults, [cont.] -2.77

( Philadelphia Transit Company (PTC).

Philadelphia transit strike of 1944. (PRTEU), Frank Carney, proved to be equally reticent and claimed that he was not authorized by
the union members to consider a request to allow promotions of black employees. The black PTC employees enlisted the help of the NAACP
and started lobbying the federal authorities, particularly the Fair Employment Practices Commission (FEPC), to intervene. The Fair
Employment Practices Commission, created by an executive order of the President in 1941, was charged with ensuring non-discrimination

employment practices by government contractors. [cont.] -2.60
[’Target.’], [’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’,
’Target Corporation.’, ’Target Corporation.’, ’Target Corporation.’], [’Target Corporation and the National Federation of the Blind
filed a lawsuit against Michigan.’] 0.33

Table 22: True positive example (from SQuAD development set): Passage Utility predicts the answer provided
by the QA model (LLAMA-3.1-8B) which is incorrect.
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r Question: What do Alfred Newman, John Williams, Johnny Green, Andr Previn, John Barry and Alan Menken have in ’
common?
Generated Answer: They are all Oscar-winning film composers.

‘ Gold Answer: Winning the Academy award for Best Original Score. J

They all won multiple Academy Awards for film scores.

Alan Menken. his other film musicals were also nominated: Alan Menken Alan Irwin Menken (born July 22, 1 949) is an American musical
theatre and film score composer and pianist. Menken is best known for his scores for films produced by Walt Disney Animation Studios.
His scores for "The Little Mermaid” (1989 ), "Beauty and the Beast” (1991), "Aladdin” (1992), and "Pocahontas” (1995) have each won
him two Academy Awards. He also composed the scores for "Little Shop of Horrors” (1986), "Newsies” (1992), "The Hunchback of Notre
Dame"” (1996), "Hercules” (1997), "Home on the Range” (2004), "Enchanted” (2007), "Tangled” (2010), and "Sausage Party" (2016) -2.22

They are all prolific Oscar winners in music categories.

Alan Menken. hi s work on musical theatre works for Broadway and elsewhere. Some of these are based on his Disney films, but other
stage hits include "Little Shop of Horrors” (1982), "A Christmas Carol” (1994) and "S ister Act” (2009). Menken has collaborated
with such lyricists as Howard Ashman, Tim Rice, Glenn Slater, Stephen Schwartz and David Zippel. With eight Academy Award wins (four
each for Best Score and Best Song), Menken is the second most prolific Oscar winner in the music categories after Alfred Newman, who
has nine Oscars. He has also won eleven Grammy Awards, a Tony Award and other honors. -2.30

They are all Academy Award-winning composers.

Alan Menken. the Beast”, with the so ngs from the 1991 film and new material by Menken and Rice. , Menken is collaborating on
writing new songs with Benj Pasek and Justin Paul for a live-action film version of "Aladdin” and is also working with Lin-Manuel
Miranda on new music for a live-action film adaptation of "The Little Mermaid”. Menken will also once again be working with Stephen
Schwartz to write new songs for Disenchanted; the s equel to "Enchanted”. With eight Academy Awards (four each for best score and
best song), only composer Alfred Newman (nine wins) and Walt Disney (22 wins) have -2.31

[’They are all Academy Award-winning composers.’, ’They are all Academy Award-winning composers.’, ’They are all Oscar-winning
film composers.’, ’'They are all Oscar-winning film composers.’], [’They are all multiple-time Oscar winners for music.’, ’They are
prolific Academy Award-winning composers.’], [’They are all multi-Oscar winning film composers.’, ’They are all multiple Oscar-winning
composers.’, ’They are prolific Oscar-winning film composers.’], [’They are all prolific film music composers.’] 1.28

Table 23: False positive example (from TQA development set): Passage Utility predicts a wrong answer
whereas the prediction of the QA model (GEMMA2-9B) is correct.
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r Question: One Step Behind’ is a tribute act to which band? "
Generated Answer: Furniture.

‘ Gold Answer: North London Invaders. J

Def L eppard.

Two Steps Behind. Two Steps Behind "Two Steps Behind” is a 1993 song by English hard rock band Def Leppard from their album "Retro
Active" and "Last Action Hero” Soundtrack. It reached #5 on the "Billboard” Hot Mainstream Rock Tracks chart, and #12 on the
BillboardHot 100. Though the band did manage to chart a few more songs in the following years, this is generally considered to be
the band’s last major hit in the US. In the 1993 "Metal Edge” Readers’ Choice Awards, the song was voted "Song of the Year"” and
"Best Song From a Movie Soundtrack.”. Def Leppard have 3.29

Def Leppard.

Two Steps Behind. and a live footage. The video was aired on August 19 93. Filipino-Chinese singer Rachelle Ann Go covered the
song for her 2007 album "Obsession”. Two Steps Behind "Two Steps Behind” is a 1993 song by English hard rock band Def Leppard from
their album "Retro Active” and "Last Action Hero"” Soundtrack. It reached #5 on the "Billboard” Hot Mainstream Rock Tracks chart,
and #12 on the "Billboard” Hot 100. Though the band did manage to chart a few more songs in the following years, this is generally
considered to be the band’s last major hit in the US. In the 2.42

Split Enz.

One Step Ahead (Split Enz song). unavailable to Australasian markets until 2007 when it became available on iTunes). The video clip
to "One Step Ahead” has keyboardist Eddie Rayner performing "Marche sur place”, the pantomime illusion walk created by Decroux and
Barrault (seen in the 1945 French film Child ren of Paradise) that is the technique Michael Jackson would base his moonwalk on in
1983. One Step Ahead (Split Enz song) "One Step Ahead” is a 1980 song by New Zealand art rock group Split Enz from the ir studio

album "Waiata”. The song continued the group’s success in their move towards their own version of new wave -2.93
[’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’, ’Furniture’]
4

Table 24: False negative (from TQA development set): Passage Utility predicts a correct answer, and the
answer by the QA model (GEMMA2-9B) is wrong.
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