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ABSTRACT

Regret Matching (RM) and its variants are widely employed to learn a Nash
equilibrium (NE) in large-scale games. However, most existing research only
establishes a theoretical convergence rate of O(1/+/T) for these algorithms in
learning an NE. Recent studies have shown that smooth RM™ variants, the advanced
variants of RM, can achieve an improved convergence rate of O(1/T). Despite
this improvement, smooth RM™ variants lose the parameter-free property, i.e., no
parameters that need to be tuned, a highly desirable feature in practical applications.
In this paper, we propose a novel smooth RM™ variant called Monotone Increasing
Smooth Predictive Regret Matching™ (MI-SPRM™), which retains the parameter-
free property while still achieving a theoretical convergence rate of O(1/T). To
achieve these properties, MI-SPRM ™ employs a technology called Adaptive Regret
Domain (ARD), which ensures that the lower bound for the 1-norm of accumulated
regrets increases monotonically by adjusting the decision space at each iteration.
This design is motivated by the observation that the range of step sizes supporting
the O(1/T') convergence rate in existing smooth RM™ variants is contingent on the
lower bound for the 1-norm of accumulated regrets. Experimental results confirm
that MI-SPRM™ empirically attains an O(1/T") convergence rate.

1 INTRODUCTION

Game theory serves as a powerful framework for modeling interactions among multiple agents.
A widely studied solution concept in this context is the Nash equilibrium (NE), a state where no
player can achieve a higher payoff by unilaterally deviating from their current strategy. This concept
provides insight into the stability of decisions, as no player has an incentive to deviate from their
chosen strategy once equilibrium is reached. NE is widely applicable across various fields such as
economics, political science, business, and international relations, offering a theoretical framework
for predicting behavior and optimizing decision-making in complex systems (Osborne, 1994).

To learn an NE in real-world games, compared to traditional NE learning algorithms like Ficti-
tious Play (Brown, 1951), the algorithms based on the regret minimization framework (Zinkevich,
2003), also called regret minimization algorithms, are more popular, particularly given the recent
breakthroughs in superhuman game Als, which rely heavily on this framework (Bowling et al.,
2015; Moravcik et al., 2017; Brown and Sandholm, 2018; 2019b; Pérolat et al., 2022). Among
regret minimization algorithms, Regret Matching (RM) (Hart and Mas-Colell, 2000) and its vari-
ants (Gordon, 2006; Lanctot et al., 2009; Johanson et al., 2012; Lanctot, 2013; Tammelin, 2014,
Brown and Sandholm, 2019a; Farina et al., 2021; Zhang et al., 2022; Xu et al., 2022; Farina et al.,
2023; Xu et al., 2024b) stand out in practical applications due to their superior empirical performance
compared to other regret minimization algorithms, such as those based on Online Mirror Descent
(OMD) (Nemirovskij and Yudin, 1983) or Follow the Regularized Leader (FTRL) (Shalev-Shwartz
and Singer, 2007). For example, RM variants are widely used in superhuman Poker Als (Bowling
et al., 2015; Moravcik et al., 2017; Brown and Sandholm, 2018; 2019b), while OMD/FTRL-based
algorithms are not.

Numerous studies have shown that many advanced algorithms based on OMD and FTRL achieve an
O(1/T) theoretical convergence rate (Rakhlin and Sridharan, 2013a;b; Syrgkanis et al., 2015; Farina
et al., 2019; Piliouras et al., 2022; Hsieh et al., 2021). Unfortunately, although several advanced RM
variants have been proposed, such as Regret Matching™ (RM™) (Tammelin, 2014), Discounted Regret
Matching (DRM) (Brown and Sandholm, 2019a), and Predictive Regret Matching™ (PRM™) (Farina

et al., 2021), they only achieve an O(1/+/T) theoretical convergence rate.
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To address the problem that RM variants only achieve an O(1/+/T') theoretical convergence rate,
smooth RM™ variants like Smooth Predictive Regret Matching™ (SPRM™) (Farina et al., 2023) are
introduced. These variants achieve an O(1/T") theoretical convergence rate by ensuring that the lower
bound for the 1-norm of accumulated regrets consistently exceeds a positive constant. However,
smooth RM™ variants lose the parameter-free property of other RM™ variants like RM*+ and PRM T,
i.e., no parameters need to be tuned (Grand-Clément and Kroer, 2021), which is a highly desirable
feature in practical applications. Specifically, one of the most significant obstacles in using regret
minimization algorithms to learn an NE in games is the sensitivity to hyperparameters. As illustrated
in our experiments (Section 4), even in the game considered in the original paper of SPRM™ (Farina
et al., 2023), the convergence rate of SPRM™ varies significantly depending on the choice of step
size n'. Specifically, after 10° iterations, SPRM™T (1 = 0.1) achieves a duality gap (the distance to
NE; lower is better) that is 10 and 5 times smaller than SPRM™ ( = 0.01) and SPRM™ (n = 1),
respectively. This sensitivity implies that extensive parameter tuning is required to identify a suitable
parameter. In contrast, parameter-free algorithms eliminate the need for such tuning, allowing the
algorithm to directly learn an NE without any tuning of parameters.

To recover the parameter-free property” for smooth RM* variants, we propose a novel smooth
RM™ variant called Monotone Increasing Smooth Predictive Regret Matching™ (MI-SPRM™), a
parameter-free algorithm that achieves an O(1/T) theoretical convergence rate. The key insight
of MI-SPRM™, which enables the simultaneous achievement of the parameter-free property and
an O(1/T) theoretical convergence rate, is that the appropriate range of step sizes for achieving
this rate in SPRM™ depends on the lower bound for the 1-norm of accumulated regrets. Therefore,
MI-SPRM ™ employs a technology called Adaptive Regret Domain (ARD), which ensures this lower
bound monotonically increases by adjusting the decision space at each iteration to achieve an O(1/T)
theoretical convergence rate with the parameter-free property.

Furthermore, we evaluate the empirical convergence rate of MI-SPRM™ on the games considered in
the original paper of smooth RM™ variants (Farina et al., 2023) and randomly generated two-player
zero-sum NFGs. The experimental results show that MI-SPRM™ consistently attains an O(1/7)
empirical convergence rate across all evaluated games. More interestingly, MI-SPRM™ outperforms
all other tested algorithms, including existing RM variants and traditional non-parameter-free and
parameter-free regret minimization algorithms.

2 RELATED WORK

Traditional parameter-free regret minimization algorithms. Although many results about the
O(1/T) theoretical convergence rate of traditional regret minimization algorithms based on OMD
or FTRL have been proposed, these algorithms are highly sensitive to the choice of parameters.
Specifically, as demonstrated in our experiments, these algorithms exhibit an empirical convergence
rate of O(1/T) with appropriate parameter tuning, while they either converge very slowly or may even
diverge when the parameters are poorly chosen. To establish the parameter-free regret minimization
algorithms, the most common method is the doubling trick (Auer et al., 1995). However, the
doubling trick can only create parameter-free regret minimization algorithms with an O(log, T'/T)
convergence rate even if the original regret minimization algorithm theoretically guarantees an
O(1/T) convergence rate. Specifically, consider that the original regret minimization algorithm
exhibits a regret bound of C' for any number of iterations 7', thus implying an O(1/7T") convergence
rate. For a total of 7' iterations where there exists a positive constant M such that oM < T < oM+,

the cumulative regret resulting from the application of the doubling trick is bounded by Z]\mirll C
This summation results in a regret bound of O (log, T'), leading to a convergence rate of O(log, T'/T).
To achieve both the parameter-free property and a theoretical convergence rate of O(1/T), Hsieh
et al. (2021) propose an algorithm called Dual Stabilized Optimistic Mirror Descent (DS-OptMD),
which achieves this goal by autonomously learning the step size. However, our experimental results

reveal that the empirical convergence rate of DS-OptMD is significantly slower than O(1/T).

'Traditional regret minimization algorithms are even more sensitive to parameters than SPRM™ as they will
diverge without suitable parameters.

Beyond being parameter-free, RM* and PRM™ exhibits a property called stepsize-invariance (Chakrabarti
et al., 2024), meaning that the algorithm’s output remains unchanged regardless of the parameter choice. This
property is also referred to as strongly parameter-free (Grand-Clément and Kroer, 2021). See details in Section 5.
In this paper, we only focus on the parameter-free property since to the best of our knowledge, no algorithm
simultaneously achieves both an O(1/T") theoretical convergence rate and stepsize-invariance.
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Regret Matching (RM) variants. The key distinction between RM variants and traditional regret
minimization algorithms based on OMD or FTRL is that RM variants update within the (subset of the)
non-negative orthant, whereas the latter update within the original strategy space of the game (Farina
et al., 2021; 2023). These algorithms usually perform numerically better than traditional regret
minimization algorithms. However, although many technologies have been proposed to improve
these algorithms’ empirical convergence rate, these algorithms only achieve an O(1/ VT ) theoretical
convergence rate. To provide an O(1/T') convergence rate to RM™ variants, Farina et al. (2023)
propose smooth RM™ variants like Smooth Predictive RM™ (SPRM™). Although smooth RM*
variants achieve an O(1/T') theoretical convergence rate, they drop a very appealing property in most
other RM™ variants—the parameter-free property, which is extremely useful in practice as it avoids
fine tuning the parameters.

To the best of our knowledge, we introduce the first parameter-free RM variant that achieves
an O(1/T) theoretical convergence rate, named Monotone Increasing Smooth Predictive Regret
Matching™ (MI-SPRM™). To achieve both the parameter-free property and a theoretical conver-
gence rate of O(1/T), MI-SPRM™ employs ARD, dynamically adjusting the decision space at
each iteration, while SPRM* maintains a fixed decision space throughout each iteration (a detailed
comparison is shown in Section 4). In addition, unlike DS-OptMD, which theoretically has an
O(1/T) convergence rate but empirically demonstrates a much slower convergence rate, MI-SPRM™
achieves an O(1/T") convergence rate both in theory and in practice.

3 PRELIMINARIES

Two-player zero-sum normal-form games (NFGs). In this paper, we study two-player zero-sum
NFGs, which encompass many classic scenarios like Rock-Paper-Scissors. In these games, each
player i € A" = {0, 1} simultaneously selects an action a; € A; and receives a reward 7;(a;, a1—;),
where A; denotes the action space of player 7 and NV is the set of players. We denote the strategy of
player i by x;, which is the probability distribution over all actions a; € A;. The set of strategies is
denoted as X';, which is a (].4;| — 1)-dimensional simplex, i.e., V&; € X;, &; > 0and (1, x;) = 1,
implying ||x;||2 < ||z;||1 = 1. Similarly, the strategy profile is represented by = [x; x1], and
the set of strategy profiles is denoted as X = Xy x X';. The set X is a compact set because
each X; is a simplex, which is a compact set. The utility of player ¢ when all players follow the
strategy profile x is given by u;(x) = wi(®i, T1-i) = D, ca, 2a,ea, Ti(00, a1)To(ao)z1(ar).
The zero-sum property implies that ) -\, u;(x) = 0. The loss gradient for player 4 is denoted by
0?7 = —V g, u;i(x;, ©1—;). We assume that Ve, x’ € X,

[ —€|l> < Lilz — ', [[€%]|x < P, (M
where €% = [£%; £7], and L, P > 0 are constants. The assumptions in Eq. (1) are among the most

fundamental in game solving (Farina et al., 2023; Cai and Zheng, 2023; Cai et al., 2024; 2025). We
also use D to denote max; e |A;.

Nash equilibrium (NE). To solve two-player zero-sum NFGs, a common goal is the NE where no
player can benefit from deviating unilaterally from this equilibrium. In other words, for any player,
her strategy is the best-response to the strategies of others. We use X™ to denote the set of NE. As
analyzed in Facchinei (2003), if z* € X", then (K'f sof —x;) <0,Ve; € X;. We use the duality
gap as the metric to measure the distance from strategy profile  to X'*. Precisely, the duality gap of
strategy profile  is defined as dg(x) = maxgex (€%, — x') = >, \y Maxg, cx, (€, x} — x;).
If dg(«) < 4, then x is a §-approximate NE (§-NE). If and only if « is a NE, dg(x) = 0.

Regret minimization framework. To learn an NE in a two-player zero-sum NFG, the most popular
algorithms are the algorithms based on the regret minimization framework (Zinkevich, 2003), also
called regret minimization algorithms (Zinkevich, 2003; Hart and Mas-Colell, 2000; Nemirovskij
and Yudin, 1983; Rakhlin and Sridharan, 2013b; Syrgkanis et al., 2015; Farina et al., 2019; Piliouras
et al., 2022; Hsieh et al., 2021; Gordon, 2006; Lanctot et al., 2009; Johanson et al., 2012; Lanctot,
2013; Tammelin, 2014; Brown and Sandholm, 2019a; Farina et al., 2021; Zhang et al., 2022; Xu
et al., 2022; Farina et al., 2023; Xu et al., 2024b). In this framework, each player 7 selects a decision
x! € X, according to feedback received from the game. In games solving, such feedback is set to

the loss gradient 6271 = E?’t_l. The goal of regret minimization algorithms is to enable the regret
SO (8 ®t—x;), Ve, € X to grow sublinearly. After T iterations, let £ = [£4; £1], ' = [x}; =],
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and & = [@o; 1], suppose the social regret 3", (€, ! — &) = 3,0\ SO (€4, b — x;) satisfies
S (8, xt — x)/T < ¢, Yz € X. Then, the time-averaged strategy profile 27 = "/, &!/T
is an e-NE. The O(1/T) theoretical convergence rate of the regret minimization algorithms is that
Z?:1<£t, xt —x)/T < O(1/T) after T > 1 iterations.

Online Mirror Descent (OMD). Among regret minimization algorithms, one of the most classic is
OMD (Nemirovskij and Yudin, 1983). Let ¢(-) : X; — R, OMD generates decisions via

1

@i € argmin{(£, @) + By (@i )} @
T eX;

where the step size > 0 is a constant, By(a,b) = ¢(a) — ¢(b) — (Vo(b), a — b) is the Bregman

divergence associated with ¢(-). In Eq. (2), ¢(-) can be any strongly convex function.

Regret Matching™ (RM™). To solve real-world games, RM variants are among the most widely used
regret minimization algorithms, as demonstrated by their success in superhuman Poker Als (Bowling
et al., 2015; Moravcik et al., 2017; Brown and Sandholm, 2018; 2019b; Pérolat et al., 2022). In this
paper, we focus on RM™ variants (Tammelin, 2014; Farina et al., 2021; 2023; Meng et al., 2023) since
RM™ variants usually outperform vanilla RM (Hart and Mas-Colell, 2000; Gordon, 2006; Zinkevich
etal., 2007). At each iteration ¢t > 1, RM™ updates its accumulated regret éf via the regret matching™
operator: 017" = [0 4+ nF}(x')]*, where the step size ) > 0 is a constant, 89 = 0, ¥ = 1/|4;],
xt = 0!/)16!, (t > 1), F(xt) = F}(0') = (€', xt)1 — £ (8" = [0}; 6Y)) is the instantaneous
regret, and [-]* = max(-, 0). From the analysis in Farina et al. (2021), RM™ is connected to an OMD
instance which performs updates in the non-negative orthant and sets ¢(-) as the quadratic regularizer

(-) = || - |3/2. Formally, RM+ can be rewritten as
. 1 0;&1
05“6argrﬁ}r_l‘{<—Ff(9t),0i>+53w(01',9?)}, = s 3)
o'ieRZO[ i

where the step size n > 0 is a constant, and R%o = {yly € R4y > 0}. Notably, ¥(-) is the
quadratic regularizer || - ||3/2 implying that Va, b € R%, By (a,b) = By(b,a) = |la — b||3/2.

Predictive Regret Matching™ (PRM™). To improve the empirical convergence rate of RM™, Farina
et al. (2021) propose PRM™, whose key insight is to make a prediction at each iteration . PRM™
uses the feedback at the last iteration ¢ — 1 as the prediction at the current iteration ¢. Formally, at
each iteration ¢ > 1, the update rule of PRM™ is
t
0! argmin {(—F/ "1 (0'1),0,) + - B, (0:,00)}, wl=—
o;erl il U 116111
A N 1 R “
6;"' cargmin {(—F/(6").0:)+—B4(6:,67)},
0;erl}! K

where the step size 7 > 0 is a constant, 89 = 1/|4;], 6! = 0, 0 = 1/|A,|, FI~'(6"") =
(€71 )1 = 47 FH0") = (€, @)1 — £, 01 = [651:0,], 0 = [6(; 01], and v() is
the quadratic regularizer defined in Eq. (3). In Eq. (4), Ff*1 (8'1) is the prediction at iteration t.
Note that the term (€%, /)1 ((¢:~', 2!1)1) in F!(6*) (F/~'(6""')) is a |.A;|-dimensional vector
as £ (£.71) in F}(6") (F/~'(6'~1)) is a |.A;|-dimensional vector (from the definition of £¢, the
shape of £! is consistent with that of ;). As analyzed in Farina et al. (2021), if | Ft~1(6*~1) —
Fi(0")2=0F ~H(0'") = [Fy~(0'"); F{~(0'~")] and F*(8") = [F{("); F{(6"))) holds,
PRM™ guarantees that its average strategy profile, 27 = Ethl x! /T, converges to an approximate
NE with a theoretical convergence rate of O(1/T), where ' = [zf;z!]. However, due to the
instability (Farina et al., 2023), i.e., rapid fluctuations of the instantaneous regret Ff(@t) across
iterations, this assumption does not hold. Therefore, PRM™ only achieves an O(1/ ﬁ ) theoretical
convergence rate. Notably, RMT and PRM™ are parameter-free algorithms, as the sequence of
strategy profiles they generate remains invariant under any choice of n (Farina et al., 2021; 2023).
For further details, refer to Section 5.

Smooth Regret Matching™ variants (Farina et al., 2023). Smooth RM™ variants are designed to
address the instability of PRM™ and obtain an O(1/T) theoretical convergence rate. Our algorithms
are based on Smooth Predictive Regret Matching™ (SPRM™) (Farina et al., 2023) as SPRM™ is a
single-call algorithm, which only calls loss gradients once at each iteration, while other smooth RM™
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variants are not. To address the instability of PRM™ and achieve an O(1/T) theoretical convergence

rate, SPRM™ performs updates in the space Rlz"lé', whereas PRM™ performs updates in the space
Rlﬁ)"". This modification ensures ||F!~1(0'=1) — F1(6%)]]3 < O(||0'~! — 6||3) to reduce the
instability. More precisely, Farina et al. (2023) employ the property that || F'=1(0'~1) — F(6)||3 <
O(]|0'=* — 6]|3) to prove the O(1/T) theoretical convergence rate. See Appendix B for the details
of the proof. Formally, the update rule of SPRM™ at iteration t > 1 is
t
Ofeargmin{(—Fit_l(Ot_l)ﬂi)—!—l&p (0i7é-€)}7 wf:#,
0,erlAil Ui 1671]1
R - 1 R &)
6;"' cargmin {(—F/(6"),0:)+ B, (6:,6,)},
9:€R‘Ai| Ui
i ERYE

where R > 0 is a constant, the step size 7 > 0 is a constant, 80 = 1/|4;|, 8} = 1/|A,|, =¥ =
LA, N0 = (01— £ FL0Y) = (eatl - £ 0t = [0y ey,

0! = [6};6%], and ¢)(-) is the quadratic regularizer defined in Eq. (3).

4 OUR ALGORITHM

Although SPRM™ is a powerful algorithm, it is not parameter-free, as it requires the fine-tuning of the
parameter 7 to achieve an O(1/T) theoretical convergence rate. This dependency on parameter tuning
diminishes its practical appeal. To avoid the parameter tuning, we propose a novel RM™ variant
called Monotone Increasing Smooth Predictive Regret Matching™ (MI-SPRM™), a parameter-free
algorithm that achieves an O(1/T') theoretical convergence rate.

MI-SPRM ™ is inspired by the convergence results of SPRM ™, which achieves an O(1/T') theoretical
convergence rate with 0 < 7 < RCy, where Co = 1/1/8D(2L% + 4DL? + 4DP?) is a game-
dependent constant and R is defined in Eq. (5) (the formal convergence result of SPRM™ is detailed
in Theorem B.1). It is evident that for any > 0, if R > 7/Cy, SPRM™ guarantees an O(1/7T)
theoretical convergence rate. To achieve this convergence rate with the parameter-free property,
a viable approach is to adaptively increase the value of R, the lower bound for the 1-norm of
accumulated regrets, so that R exceeds 1/Cy. We call this approach Adaptive Regret Domain (ARD).

Existing OMD-based algorithms like DS-OptMD (Hsieh et al., 2021), achieve the parameter-free
property and an O(1/T) theoretical convergence rate by adaptively reducing the step size n. However,
the reduction method employed in DS-OptMD is too conservative, thereby resulting in a poor
empirical convergence rate, as shown in our experiments. In contrast, ARD exploits the convergence
property of SPRM™, which simultaneously depend on the lower bound of the 1-norm of accumulated
regrets and the value of 7. Instead of reducing n, ARD adopts a more aggressive approach for
increasing the lower bound of the 1-norm of accumulated regrets, maintaining a faster empirical
convergence rate. Building on ARD, we propose MI-SPRM™, whose updates follow the recursion:

1t A 6!
o;?eargmin{<—F; 0k 1),0i>+3w(9i,e§)},w§:9+,
eieR‘;‘él 16: 111
R4+ if|FY(6)-F e 3 ©
éf“eargmin <_Fit(6t)79i>+8w(0i’éf)}7 Rt1— 7Bw(ét19t—1;+5w(ét7ot)>O’
eiek‘;ﬁt‘ R! else

where R' = 1, 67 = 1/|Ail, 6] = 1/|4;, ¥ = 1/|Ail, F{~1(0"") = (¢ " a1 — 477,
F(6') = (€,xh)1 — £, 6" = [957:6,7"]. 0 = [0}:61). 0' = [6f:0]). F'"'(6'") =
[Fi=H(01Y); Fi1(6'1)), FY(0') = [F{(6"); F}(0")], and 9(-) is the quadratic regularizer. The
pseudocode for MI-SPRM™ is in Algorithm 1.

The primary distinction between MI-SPRM™ and SPRM™ lies in the adaptive adjustment of the
decision space (denoted as R|>A ;lt) that MI-SPRM™ performs at each iteration ¢. This adaptation
ensures that the lower bound for the 1-norm of accumulated regrets increases monotonically and

exceeds 1/Cy, since R serves as such lower bound (from the definition of RLAIQL) and increases

monotonically to a constant that exceeds 1/Cp. According to these properties, MI-SPRM ™ obtains
the O(1/T) theoretical convergence rate, as shown in Theorem 4.1. See details in Appendix A.



Under review as a conference paper at ICLR 2026

Algorithm 1 MI-SPRM ™

1: Initialize: R' =1, 69 + ——, éll — 2 L VieN

[A;] [A;]? [A;]?
2 20— [of) o)
3: fort=1,2,...,7T do
4:  fori € N do
S ET =V et B0 = (6 el -

~ t

6: 0; € argmin, exl {<7Ff‘1(0t’1),9i> +3w(9¢793)}, xf = Heetul
7 end for
8: foric N do
9 2= —Vmgui(wt), Fl(0") = (£, x)1 — £}
10: 0! c arg minGiER‘;‘gt‘ {<7Ff(01), 0;) + By (6, Of)}
11:  end for B

122 671 =051 0171, 0" = [65; 0], = = [xh; x!]

13:  F'7H(6 l)f[Ft HO) FUTH(O)), FU(6") = [F(6"); Fi(6")]
WUAN ’

RE41 f|[FH(0) — P2 (9|3 — B0 B 0000

R else

14: R =

I

15: end for

T t, .t
_ R
16: return &% = 2 Rz’

Theorem 4.1. [Proof is in Appendix A.] In a two-player zero-sum NFG, if all players employ MI-
SPRM™, then the weighted average strategy profile &' %

NE with a rate of O(1/T).

converges to an approximate

Discussion. We now discuss whether our MI-SPRM™ can be extended to multi-player general-sum
NFGs or extensive-form games (EFGs). Firstly, regarding multi-player general-sum NFGs, it is
crucial to clarify that, the complexity of computing a NE for multi-player general-sum NFGs belongs
to the PPAD complexity class (Daskalakis et al., 2009). Therefore, no algorithm can achieve a
polynomial-time convergence to an NE in such games. Our experiments further corroborate that none
of the tested algorithms exhibited any convergence to NE when applied to multi-player general-sum
NFGs. In fact, the original paper of SPRM™ (Farina et al., 2023) only provides a social regret bound
of O(1) for multi-player general-sum NFGs, and does not offer any convergence rate to an NE in such
games. As shown in Lemma A.1, we establish a similar social regret bound of O(1) for multi-player
general-sum NFGs: (3°1_, R (¢!, &' — x))/(3°]_, R) < O(1). Secondly, for EFGs, the design of
MI-SPRM™ can be directly extended to this domain. However, its O(1/7T') convergence rate does not
hold. Specifically, RM variants are typically integrated with the Counterfactual Regret Minimization
(CFR) framework to address EFGs. Unfortunately, to the best of my knowledge, only Clairvoyant
CFR (Farina et al., 2023) achieves an O(1/T') convergence rate when learning an NE of EFGs, albeit
at the cost of an O(log T') per-iteration complexity (such complexity of our MI-SPRM™ is O(1)).
Experimental results show that the combination of MI-SPRM™ and the CFR framework significantly
outperforms other tested algorithms. In fact, such combination demonstrates an O(1/T") or even
faster empirical convergence rate.

5 EXPERIMENTS

Configurations. We now evaluate MI-SPRM™ by comparing to RM* (Tammelin, 2014), PRM™ (Fa-
rina et al., 2021), SPRM™ (Farina et al., 2023), OGDA (Popov, 1980), OMWU (Rakhlin and
Sridharan, 2013a), and DS-OptMD (Hsieh et al., 2021) (unless otherwise stated). Among them,
MI-SPRM™, RM™*, PRM™, and DS-OptMD are parameter-free algorithms. Notably, although the
update rules for RM* and PRM™ include the step size 7, the sequence of the strategy profiles
al,x? ... T that they generate remains unaffected by the value of 7 (Farina et al., 2021), which
is referred to as stepsize-invariance, also known as the strongly parameter-free property in Grand-
Clément and Kroer (2021). This is why RMT and PRM™ are referred to as parameter-free algorithms.
MI-SPRM™*, SPRM™, OGDA, and DS-OptMD achieve an O(1/T') theoretical convergence rate

while other tested algorithms only exhibit an O(1/y/T) theoretical convergence rate. We use the
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duality gap as the metric to measure the distance to equilibrium. For non-parameter-free algorithms
(SPRM™ and OGDA), we choose step size 1 from [0.01, 0.1, 1]. We do not use linear averaging and
alternating updates. All experiments are conducted on a computer equipped with one Xeon(R) Gold
6444Y CPU and 256 GB of memory.

Results on convergence rates in two-player zero-sum NFGs. Now, we present the convergence
results in two-player zero-sum NFGs. We conduct experiments on the 3 x 3 two-player zero-sum
NFGs considered in the original paper of SPRM™ (Farina et al., 2023), whose payoff matrix is
[[3,0,-3],0,3,—4],[0,0, 1]], and randomly generated two-player zero-sum NFGs of varying sizes:
[10, 30, 50, 100]. For each size, we generate 60 independent instances to ensure the robustness of
our results. Specifically, for each set of 20 instances, the payoff matrices are drawn from distinct
Gaussian distributions. The first group uses a Gaussian distribution with a mean of 0 and a standard
deviation of 1, the second group employs a Gaussian distribution with a mean of 0 and a standard
deviation of 10, and the final group uses a Gaussian distribution with a mean of 0 and a standard
deviation of 100. We present the average duality gaps across the 20 instances for each group and
report the corresponding confidence intervals.

The convergence rates on the 3 x 3 two-player
zero-sum NFGs considered in the original paper of 10°
SPRM™ (Farina et al., 2023) are demonstrated in Fig.
1. The experimental results demonstrate that SPRM ™
is highly sensitive to the step size parameter, with
performance variations of up to tenfold depending on
the chosen value. In contrast, MI-SPRM™ eliminates
the need for parameter tuning and achieves a faster R TE
convergence rate compared to SPRM™. The con- iterations

vergence results on randomly generated two-player - ;ﬂ;ﬁ;wﬂ;ow - iEESiIZiS;“
zero-sum NFGs are shown in Figs. 2, 4, and 5 (due :

to page limitations, Figs. 4 and 5 are included in Figure 1: Con\fergefnce rates of MI'SP_RM+
Appendix C). MI-SPRM™ achieves an O(1/T) em- and SPRM™ with different step sizes 7 in the
pirical convergence rate across all tested games. No- 3 X 3 two-player zero-sum NFGs considered
tably, MI-SPRM™* outperforms all other algorithms. in the original paper of SPRM*. The duality
Additionally, our findings indicate that the traditional ~gaps at iteration le5 for MI-SPRM™, SPRM™*
regret minimization algorithms, such as OGDA and (n = 0.01), SPRM* (1 = 0.1), and SPRM™*
OMWU, are more sensitive compared to RM™ vari- (n= 1)~ are 2.6e-5, 3.9¢-4, 4.0e-5, and 2.1e-4,
ants. Specifically, in games where payoff matrices respectively.

are sampled from a Gaussian distribution with mean 0 and standard deviation 1, as well as a Gaussian
distribution with mean 0 and standard deviation 10, OGDA and OMWU only converge when 7 is
sufficiently small. In games where payoff matrices are sampled from a Gaussian distribution with
mean 0 and standard deviation 100, OGDA and OMWU only converges when 7 is 0.001 and the
dimension of the game is less than 10.
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It is important to note that the results in Fig. 5 may exhibit slight scale distortion. In fact, in terms of
the average reduction in duality gap, MI-SPRM™ demonstrates approximately a 37% improvement
compared to SPRM™ (the best-performing algorithm excluding our MI-SPRM™). This reduction
is comparable to the 42% improvement in Xu et al. (2024a) (which also investigate RM variants).
Furthermore, in the games considered in Figs. 2 and 4, MI-SPRM™ achieves a remarkable reduction
of 92% and 74%, respectively, relative to SPRM™. These reductions significantly surpass the
reductions in Xu et al. (2024a).

Moreover, although DS-OptMD theoretically guarantees an O(1/7T) convergence rate, it fails to
empirically demonstrate this rate. We argue that this is because it achieves an O(1/T') theoretical
convergence rate through adaptive step size reduction. However, a substantial number of iterations is
necessary to sufficiently reduce the step size and fully realize the O(1/T") convergence rate. For a
more detailed discussion on the empirical convergence rate of DS-OptMD, refer to the paragraph
titled “Results on the dynamics of the values of R*” in Appendix C.

Results on convergence rates in multi-player general-sum NFGs. We also evaluate the perfor-
mance of MI-SPRM*, RMT, PRM*, SPRMT, OGDA, OMWU, and DS-OptMD in multi-player
general-sum NFGs. The results are show in Appendix C (Fig. 6). Consistent with theory, no algorithm
can learn an NE in all tested multi-player general-sum NFGs. See more details in Appendix C.
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Figure 2: Convergence rates of different algorithms in randomly generated two-player zero-sum
NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard
deviation 100. Note that the value of 7 only involves the performance of SPRM™ and OGDA as other
algorithms are parameter-free algorithms.

Results on convergence rates in EFGs. Now, we evaluate the performance of MI-SPRM™ in EFGs.
We test on eight instances of four standard EFG benchmarks: Kuhn Poker, Leduc Poker, Liar’s
Dice, and Goofspiel. These EFGs are implemented using OpenSpiel (Lanctot et al., 2019). For
Kuhn Poker, we examine the two-player, three-player, and four-player versions, denoted as “Kuhn
Poker”, “3-Player Kuhn Poker”, and “4-Player Kuhn Poker”, respectively. In the case of Leduc
Poker, only its two-player version is tested due to the size constraints of the three-player variant. For
Liar’s Dice, OpenSpiel’s limitations prevent testing of versions with three or more players; therefore,
we analyze the versions with 3 and 4 sides, denoted as “Liar’s Dice (3)” and “Liar’s Dice (4)”,
respectively. Lastly, for Goofspiel, we set the number of cards to 3 and test both the two-player and
three-player versions, referred to as “Goofspiel (3)” and “3-Player Goofspiel (3)”. As RM variants
are typically integrated with the CFR framework to address EFGs, we integrate MI-SPRM ™ with the
CFR framework and get MI-SPCFR™". We compare MI-SPCFR™ against the combination of SPRM™
with the CFR framework, referred to as SPCFRt, and the combination of PRM™ with the CFR
framework, known as PCFR ™ (Farina et al., 2021). We do not to compare with other algorithms tested
in our NFGs experiments as they consistently underperform MI-SPRM™, SPRM™, and PRM™*. The
results are shown in Fig. 3. We observe that MI-SPCFR™ significantly surpasses SPCFR™ in all eight
tested games. In addition, although PCFR* outperforms MI-SPCFR* in Leduc Poker, MI-SPCFR ™
significantly outperforms PCFR™ in the remaining seven tested games. Moreover, the experimental
results demonstrate that our algorithm achieves an O(1/T") or even faster empirical convergence rate
even on multi-player EFGs. Interestingly, while an O(1/T") or even faster empirical convergence rate
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Figure 3: Convergence rates of different algorithms in standard EFG benchmarks.

Table 1: Comparison of the runtime (in minutes) between MI-SPRM™, SPRM™, and DS-OptMD
for randomly generated two-player zero-sum NFGs. It is important to highlight that theoretical per-
iteration complexity for MI-SPRM™*, SPRM™, and DS-OptMD remains O (>, v |A;| log |4;]).

MI-SPRM " SPRM* DS-OptMD
dim=10 0.110540.0007 0.075140.0016 0.174640.0007
dim=30 0.136740.0009 0.0858+0.0007 0.20014-0.0011
dim=50 0.164240.0016 0.102340.0016 0.246240.0005
dim=100 0.239840.0014 0.156240.0013 0.371740.0018

is observed in multi-player EFGs, no such empirical convergence is noted in multi-player NFGs. We
hypothesize that this arises due to the unique characteristics of the CFR framework and the tested
EFGs—Kuhn Poker and Goofspiel. However, this remains an open question, as no existing work has
provided a theoretical explanation to date.

Results on runtimes. We compare the runtimes of MI-SPRM*, SPRM™, and DS-OptMD, as
shown in Table 1, in randomly generated two-player zero-sum NFGs. For each game dimension, we
average the runtimes over 60 instances. Although all three algorithms have the same theoretical per-
iteration complexity, O (3, - |4s] log |4;]), both MI-SPRM™ and DS-OptMD require parameter
learning to achieve their parameter-free properties, resulting in longer runtimes compared to SPRM ™.
Specifically, the runtime of MI-SPRM™ is approximately 1.5 times that of SPRM™, while DS-
OptMD’s runtime is about 2.5 times longer. We hypothesize that the significantly higher runtime of
DS-OptMD stems from its requirement for individual parameter learning for each player, a step that
is circumvented in both MI-SPRM™ and SPRM™. A key direction for future research is to reduce the
time required for parameter learning while preserving the parameter-free property.

6 CONCLUSIONS

In this paper, we investigate parameter-free RM variants. To the best of our knowledge, we propose
the first parameter-free RM variant that achieves an O(1/T') theoretical convergence rate, named
MI-SPRM™. To achieve the parameter-free property and O(1/T) theoretical convergence rate
simultaneously, MI-SPRM™ ensures that the lower bound for the 1-norm of accumulated regrets
monotonically increases by adjusting the decision space at each iteration. The empirical results
indicate that MI-SPRM™ attains an empirical convergence rate of O(1/7') in all tested games, and MI-
SPRM™ outperforms all other tested algorithms, including existing RM variants, and traditional regret
minimization algorithms. By combining MI-SPRM™ with the CFR framework, we get MI-SPCFR ™,
which outperforms other classical CFR algorithms like PCFR™T, as shown in our experimental results.
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A PROOF OF THEOREM 4.1

To prove Theorem 4.1, we introduce Lemma A.1.

Lemma A.1. [Proofis in Appendix A.1.] In a multi-player general-sum NFG, if all players employ
MI-SPRM™, then the weighted social regret bound is bounded by

S, Rzt —x)
S R

Proof. According to folk theorem, Lemma A.1 implies that the weighted average strategy profile

zl = (Zthl Rtalr,'t)/(ZtT=1 R') converges to an approximate NE with a rate of O(1/T) since

ZtT:1 R, ' — x) can be interpreted as the social regret over a newly sequence of strategy profiles,

{z',...,x" ... 2% ...} It completes the proof. O
——

<0(1).

Rt
A.1 PROOF OF LEMMA A.1

Proof. To prove Lemma A.1, we first prove that for any initial R (defined in Eq. (6) with ¢t =
1), R? increases monotonically to a constant as ¢ — co. By using this property, we show that

ST RN at — ) < O(1) forany T > 1.

Before starting our proofs, we introduce Lemmas A.2 and A.3, which are very important for our
proofs.

Lemma A.2 (Adapted from Lemma 10 of Wei et al. (2021)). Let A as a convex set and a' €
argming c 4{(a’, g) + By(a',a)}. Then for any a* € A, we have

(@' —a",g) < By(a”,a) — By(a®,a’) — By(a', a),
where (+) is the quadratic regularizer defined in Eq. (3).

Lemma A.3 (Proof is in Appendix A.2). Suppose 0|1 and ||0}~" |, are greater than a constant
C1 for all player i, we have

1t 2C N .
|F(0")—F' (0" )B< 57 (B (66" +B,(6".6")
1

where 1(-) is the quadratic regularizer defined in Eq. (3), and Co = 2D(2L* + 4DL? + 4D P?).

Now, we first prove that for initial R' (not only 1), R? increases monotonically to a constant as
t — oo. By using Lemma A.3 with C; = R'~!, we have (from the update rule of MI-SPRM* as
shown in Eq. (6), Rt > R!~1)

IF'(6) ~ F' N0 B < ot (Bu(6',6°) + B.(6",6Y).
)
If R*~1 > 2,/C5, we can obtain
t t t—1 t—1 2 202 At ot—1 At ot 202 At pt—1 At ot
IF'(0)=F' 0" < s (Bul@'.0')+50(8',0%) <75 (Bu(@'.0")+50(68".0)

)
<5 (B0 0" ) +5.(0"0"),

implying that || F*(8%) — F'(6'~1)||3 — (Bw(ét, 0'1) + B, (6", Ot)) /2 < 0 always holds. There-

fore, from Eq. (6) and (7), we have that R? increases monotonically and once R~! > 2,/C5, for any
t>t—1, R = Rt-1, Therefore, for any R, R! increases monotonically to a constant C's as t — 00.
Note that C3 > max(Ry,2v/Cs) = max(Ry,/8D(2L2 +4DL? + 4DP?)) = max(Ry,1/Cp)
(since Co = 1/4/8D(2L2 + 4DL? + 4DP?)) as t — oo.

Considering the third line of Eq. (6), and using Lemma A 2 with @ = ' = [0};0!], o/ = 0"+ =

(657,617, a* = 0 = [8p;60,] and g = —F*(0") = [—FL(6"); —F}(8")] (in this case, A is
xieNRLAéL, which means 8 € xieNR‘;télt), we have
(—F'(8"),0'1 — 0) <B,(0,6") — B,(0,0"") — B,(8"*,8"). ®)

13
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Similarly, considering the first line of Eq. (6), and using Lemma A.2 with a = 0t =

65:01], o = 6 = [04;60], a* = 6 = [0/ and g = —F'"1(9"!

{ OFt ]1(0t b, Ft 1(0£ 01)] 1v]veget (66 1] g ( )
<_Ft 1(0t 1)’015 _ ét+1> §B¢(9t+17ét) _ Bw(ét+1,0t) _ Bw(et,ét). )

Summing up Eq. (8) and (9), and adding (F(6%) — F'=1(0'~1), §+! — @) to both sides, we get
<_Ft(et)aot_9>SB'¢(03ét)_Bw(07ét+1)_61/1(ét+179t)_61/1(0t7ét)

—|—<Ft(0t)—Ft_1(Bt_l),ét+1—0t>. (10)
For the term (F(0?), 8%), we get
<Ft<et>,et>=§j<1~?<0f>,02>=2<<e§,wf>1—ez,ef>=§j(<e§7w§><1,ef>—<£§,ef>)
iEN iEN iEN
/AR eg,ef):o,
ZN( Het” )16¢11—(€:.01)
(1D

where the last equality is from ! = 0! /||6!||; (as stated in Eq. (6)). Arranging the terms of Eq. (10)
and using the fact in Eq. (11), we have

Bw(& 6"+ — B,(6,0")
— (F'(6"),0) + (F'(6") — F'~'(6"™"), 0" — 0") — B,(6""",6") — B, (6",6").
Substltutmg 0 = R'z,x € X (note that @ € XzeNRLRt) into Eq. (12), we have
By(R'®,0) By (R'x,0)
<7<Ft(0t)’Rtm>+<Ft(0t)7Ft71(etfl)’ét+170t>78¢(ét+l70t)78¢(0t7ét) (13)
S_Rt<£t,mt_w>+<Ft(0t)_Ft71(otfl)’ét+1_0t>_Bw(ét+170t)_8w(0t7ét)7

where the last inequality comes from (F*(6*), R'x) = >, \ (€}, x)1 — £}, R'x;) = R (€', x" —
x) (x; € X; implies (1, x;) = 1, as stated around Eq.(1)). Arranging the terms in Eq. (13), we get
R (€' xt—x)+ By (R'z,0" 1)~ By (R'x,0")

§<Ft(0t)_Ft71(0tfl)’ét+l_0t>_Bw(ét+1’0t)_Bw(Bt’ét)
<|[F'(0")—F'=1(6"")|2]6"" —6"[|,—B, (0" ,6")~B,(6",0")
<2||Ft(9t)*Ft*1(9t*1)||§Jr\lé”l*@tllg
- 2 2%2

B..(9tt1 gt R

1/)( 5 ) )—B¢(0t76t)

By (671.6") B, (6",6"

g\\Ft(Gt)—Ft_l(Gt_1)||§— ¢( 5 ) )_ ¢( . ) ),

where the third inequality is from that ab < pb?/2 + ¢*/(2p), Vb, c, p > 0 (here, b = || F(8") —
Fi=1(0" 1|2, c = ||0"T! — 6%||5, and p = 2), and the last equality is from By (a, b) = |ja — b||3/2
(¢(+) is the quadratic regularizer as stated around Eq. (6), as well as By (a, b) = |la — b||3/2if ¢ (-)
is the quadratic regularizer as stated around Eq. (3)). Summing up Eq. (14) from ¢ = 1 to T', we have

(12)

~By(6'11,6")-B,(6".6") (14)

=|F'(6")-F'(0' )5~

ZRt ! —x)+ By (RT 2,07~ By (R ®,0") +Z( R'z,0")+B, (R Ot))

B (0T+1 07) (B af 0*) B,(04.071)\  B,(6',6°
< FtoH —Ft—1(gt=1)|12— w Pp\Y A
_;H (6") CanallF t; 5 +=

T - )
> e a-3" (B 0',0")  B,(66'"")\  By(6"6°
<Y ||F'6H—-F'H (e )|2— < w(2 )+ y( 2 )>+ ¢(2 )7
t=1 t=1

15)
where the first line is from that 3., (By(R'@, 0"1) — By(Rz,0') = By(RTx,0T+!) —
By(R'z,0") + S|, (~By(R'z,0") + By(R'"'z,0"), and the first inequality is from

14
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that 3=, (~By(0"11,6")/2 — B,(6",6%)/2) = —B,(67+1,07)/2 — >/ (B,(6",6")/2 +
By (6",0"1)/2)+B,(6",6°)/2. In addition, for the term 3", (— By (R', ")+ By (R 'z, ")),
as ¥ (+) is the quadratic regularizer (as stated around Eq. (6)), we get

T

Z(—Bw(Rtm,ét)—i—Bw(Rt_lsc,ét))

t=2

:Z((Rt—l)z_(Rz)z) HQ;HZ_'_Z(Rt_Rt—I)(m’ét) (16)

Zi <(Rt*1)27(Rt)2) ||:2H§ :((Rl)Qi(RT)2> %7

where the first equality is from that B (a, b) = ||a — b||3/2 = |lal|3/2 — {(a,b) + ||b]|3/2 if () is
the quadratic regularizer (as stated around Eq. (3)), as well as the inequality is from the facts that
R! > R'~! (from the update rule of MI-SPRM™* as shown in Eq. (6)) and (x,8") > 0 (asx > 0
and 6! > 0). From the fact that for any R', R! increases monotonically to a constant C3 as t — 0o
(as stated around Eq. (7)), we have (RT)? < C2. From Eq. (16), as well as combining (RT)? < O3
and [|z[]3 = 3", 123 < |V (since [|2;]|3 < 1 as stated around Eq. (1)), we get

- t.. At t—1_. At 12 oy 2013 e llzl3 2
> (<Bu (R0 +B, (R 2.0 ) = (R —(RT)?) S5 =~ (R )2 =GN,
t=2

a7
Then, for the term By, (RTx,0' ') — By (R'z, 6), we have

By(RTx,0Y) — By(R'x, ') > —By(R'x,0"). (18)

Let By (R'z, 6') < C4 with Cy is a constant (such C, must exists since (i) R* and 0 are given, as
well as (ii) ¢ € X with X is a compact set as stated around Eq.(1)). Then, combining Eq. (15), (17),
and (18), we have

ZRf V—C2|N|-Cy
(19)

T 0 T t ot at pgt—1
<Y (176 o)+ B Z(B” 2) B >>-

To bound the value of (|| F*(6*) — Ft_l(Bt 1)H2 (B (6", 8") + B, (6",6'1))/2, we show that
(IF*(6*) — F*=1(0"1)[13 — (B (6",6") + B, (6',6'1))/2)

T, = [21/Cy — RY]
times, where [-] is the ceiling integer of a number and C5 is defined in Lemma A.3. Formally,
(IF*(0") — F*=1(6 1) |2 — (B, (6", 6") + By(0',6'1))/2) > 0 implies R+ = R! + 1. Also,
we have that once R'~! > 2,/Cs, forany ¢/ >t — 1, Rt = R'~! (as stated around Eq. (7)). Thus,
we have that MI-SPRM™ only updates the value of R within T, times (R**! = R* + 1) to ensure

R*~! > 2,/C} since

R'+T. = R'+[2\/C; — R'] > 2,/Cs.
Therefore, from the facts that (i) R*T! = R* + 1 only appears T, = [2y/Cy — R'] times and (ii)
R'"! = R'41 appears if and only if (|| F*(8%)— F'~1 (8"~ 1)||2— (B,(6",0")+B,(6",6'1))/2) >
0 (as shown in Eq. (6)), we have that (|| F*(8%) — F*~1(6'~1)||2— (B, (8", 8")+ B, (6",6'1))/2) >

0 only appears T;. times. Let these 7;. times be denoted by the set 7, we have
T

> (1@ - B0 B0 070

t=1 t ot At pt—1 (20)
SZ (HFf(gi)_Ft—l(gz_l)Hg_Bw(GQ ,0%) _Bw(ﬁ’é@ _ )) |

teT

where the inequality is from the fact that the time ¢, which is not included in 7, ensures that

(|IFt(8") — F*=1(0""1)|13 — (B, (6, 8") + B, (6",6'1))/2) < 0. Continuing from Eq. (20), we

> 0 only appears

15
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have . .
t t t t—1

Z(|\Ff(ef>—Ft—l(et-l>||§—Bw(‘;’9)—Bw(”f ))
teT

<STIF () -F (o)
teT

DN e a1 a1+ 3
tETIEN

<a0 3 (eIl e @i+ ) D
tETIEN

<Y (\Ai|2ll<€§,m5>||§+|I£§H§+|Ail2|\<f§‘1,m§‘1>||§+\l1f§‘1H%)
tETiEN

U3 (DU Bl I+ DM Bt e )
teTieN
<4 (D*P*+P°+D*P*+P*)=8T, P*(D*+1),
teT
where the third inequality comes from that Va, b, c,d € R%, |la + b+ ¢+ d||3 < 4(||a||? + ||b]]2 +
llcll3 + ||d||3), the fourth inequality is from that (€%, )1 and (€;~', 2!~')1 are | 4;|-dimensional
vectors (as stated around Eq. (4)), the fifth inequality is from that D = max;ecn | A;|, as well

as the last inequality comes from the facts that ||z;||3 < ||z;]|2 = 1 (as stated around Eq.(1))
and ), 14ill3 = [[€]|3 < P? (Eq.(1)). Combining Eq. (19), (20), (21), and the fact that
Bw(él, 6°)/2 < Cs (Cs is a constant and must exists as @' and 0 are given), V& € X and T > 1,
we get
S Rz — x) < 8T, P?(D? +1) + C3IN| + Cs + Cs
SR T i B '
It finishes the proof. O

A.2 PROOF OF LEMMA A.3

Proof. To prove Lemma A.3, we first introduce Lemma A .4.

a b

Lemma A4. (Proofis in Appendix A.3) Va,b € R%, |lall1 > C4, ||b]l1 > C4, s — ol <
= 2
Lla—bl..
From the definition of || F(%) — F'=1(6*~1)||3 (as stated aroud Eq. (6)), we get
|F"(6)—F' = (6" )|3=)_IIF(6")-F/"(6' |3
iEN 22)
=) I )1 — (i e 1.
ieN
Continuing from the above equality, we have
IF"(8")—F" 1 (6" )3
= It )1 (i 1L
PiEN
<> (2l e 1— (@ a2l — €+ 3)
iEN
=D~ (20l )~ (it e B2l -+ 3) @3
iEN
<> 2Dl ) — (a2 —€ )3
iEN
<2 " DI[(@ ) — (@ e 2L 2~ 3,
iEN
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where the third line is from the fact that Va, b € R?, ||a + b||3 < 2||a||% + 2||b||3, the fourth line
is from the fact that (€¢, x!)1 and (€.~ ", x!~ 1>1 are | A;|-dimensional vectors (as stated around Eq.
(4)), the fifth line is from D= max;e |A \ (as stated around Eq. (1)), and the last inequality is from
€= — £%'||y < L||@ — 2'||2 (Eq. (1)). For the term >ien DIt ey — (!~ L 113, we get

2
ZD‘|<CC:7£E> t 1et 1 ||27ZDH mue> < i 17e5> <mg—17ez>_<mz—1,e§—l>“§
ieN €N
§2DZ(H<mf,£§>—<m§_1,£§>H§+|l<w§_1,€§>—<mf L >H2>
iEN

—2pY" (H<m£—m§-1,z5>||3+||<m2—1,ez—ez—1>||§),

iEN

where the first inequality comes from the fact that Va, b € R?, ||a + b||2 < 2||a||? + 2||b]|2. Then,
we get

> Dl ) — (i £ )|E<2D (Hmﬁfﬂvf’l H%Hﬁll%ﬂlmfl||§||€§fl§71|\§>

ieEN ieN
<Dy (PPlet-at 166 ) ey
ieEN
=2D) P?|ai—a; ' [3+2D)_[€i—£ "3
iEN ieEN

where the second inequality comes from ||£%||s < ||€¢]|1 < |[€!]]; < P (Eq. (1)) with ||=}~!(|2 <

Hmf Y12 = 1 (as stated around Eq. (1)). Then, continuing from Eq. (24), we have

> Dl &) — (@ 73 <2D Y PPl — 2 3 +2D ) ||€F - £

iEN iEN iEN
<2DP*} |loi —ai s + 2D — £
ieN (25)
<2DP* Y ||at — @i} + 20172’ — '3
iEN

=2DP?||x" — 2" 1|3 + 2DL?||x" — '3,

where the third inequality is from |[£* — £%'||; < L|jx — #'||2 (Eq. (1)), the last equality is from
! — @13 = 3,cp lzt — 2|3, Combining Eq. (22), (23), and (25), we get

IF*(8") = F*1(0" )5 <4DP?||l2" — &' || + 4DL?||z" — &' |3 +2L%|la" —a' |3

(26)
=(2L° 4+ 4DL* + 4DP?)|jz" — 2" *|3.
Then, we get
(2L*+4DL*+4DP?)|ja' —2' " |3=(2L*+4DL*+4DP*)> "|lai—x; "' |3
iEN
] A; 9;&_9?—1 2
<(@L*44DI 44D P?) 2] |(|Jﬁ i s
1
2 2 2, [0° =613
<DQL*+4DL*+4DP*) =2
1
) ) ) Het*ét+ét70t_1”§ (27)
=D(2L*+4DL*+4DP?) 7
1
t_pt)2 At _pt—112
<op(r*+4pL*+4pp?) 190 ”fgﬂf Iz
1
21°4+4D[*44DP? . ot
—4D o (Bw(ef,et)+3¢(0*,ef 1)),

where the first equality is from |z’ — 2!~ 1|3 = >, |2t — x! 1|2, the third inequality is from

the assumption that |0 ! ||, and |@?|; are greater than C'; with Lemma A .4, the third inequality
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comes from the fact that Va,b € R?, |la + b3 < 2[|a|3 + 2[[b]3 (in this case, @ = 6" — 6 and
b = 0" — 0" 1), as well as the last line is from the facts that ¥(+) is the quadratic regularizer (as
stated around Eq. (6)) and By (a,b) = |la — b||3/2 if ¢(-) is the quadratic regularizer (as stated
around Eq. (3)). Therefore, combining Eq. (26) and (27), we obtain

2D(2L*+4DL*4+4DP?)

|F(0)-F' " (0" )3<2 =
1

(Bu(6°.0)+B,(6'6")).
It completes the proof. O

A.3 PROOF OF LEMMA A .4

Proof. To prove Lemma A.4, we first introduce Lemma A.S5.
Lemma A. 5 (Adapted from Proposition 1 in Farina et al. (2023))Ve, f € ]R>0,
| < Ve~ fll2

Now, let a = Cicand b = Cy f, where ¢, f € R, [lc[li > 1, and |[f]l; > 1. From these
conditions, we deduce that

> 1,

cll >

c
Telr —

HaH1 > Cl and Hb||1 > Cl
Therefore, clearly, a and b satisfy the assumptions of Lemma A .4,i.e., a,b € R>0,
|bl]x > C4. Then, we have

ally > Cy, and

‘ a b ‘ Cic Cif
b C IIC
Ha'Hl H ||1 2 || lc”l | 1-f”1 2 (28)
_ f
||6||1 £l 1],
By Lemma A.5, we have
c i
—~ < Vdlle = fla- (29)
’ lellr Ifll 1o I I

Additionally, we have
la —bllz = [|Cic = C1f|2 = Cille = f2

1 30
Slle =~ flla = -lla ~ bl o
Combining Eq. (29) and (30), we obtain
c f Vd
e < e b G1)
el Iflllly = G
Finally, combining Eq. (28) and (31), we obtain
a b \f
- = lla = bl
lally bl =
This completes the proof. O
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B CONVERGENCE RESULT OF SPRM™

ensures that the average strategy

Theorem B.1. SPRM* with 0 < 1 < R\ | sporrbrrmrs

t
profile &7 %q} converges to an approximate NE with a rate of O(%)

Proof. We would like to clarify that this proof is adapted from the proof of Theorem 4.2 of Farina
et al. (2023). Considering the second line of Eq. (5), and using Lemma A .2 with a = 8" = [8}; 6],
o/ = 611 = (05710171, a* = 0 = [8y; 6] and g — —F'(6") = [~ FL(6"); — F{(6)] (here, A

il

is XieNRleR , implying 6 € xieNRlz"lél), we have
n(—F"(8"),0""" — 0) <B,(0,0") — B,(0,6"") — B,(6""",6"). (32)

Similarly, considering the first line of Eq. (5), and using Lemma A.2 with a = 0 =
05,01, o/ = 0 = (06}, a* = 01 = (651617 and g = —F(0') =
[—Fy~ 1(9t D)y —F{ (0], we get

n(—F'1(0171), 0" — 0'+1) <B, (0, 0") — B, (6", 60%) — B, (6, 8Y). (33)

Summing up Eq. (32) and (33), and adding n(F*(8") — F*=1(8'1),§'*+! — 0") to both sides, we
get

n(—F'(6"),0" — 0) <B,(0,6") — B,(0,6™") - B,(0"",0") — B,(6",6")
+ n<Ft(0t) _ Ft71(9t71)79t+1 _ 9t>

From Egq. (11), we have (F*(6"),6") = 0. In addition, we have (F*(0"), Rz) = >, \ (€}, xl)1 —
Lt Rx) = R(€', x' — ) (x; € X; implies (1, x;) = 1, as stated around Eq.(1)). Thus, by setting
6 = Rx (notably, 8 € XZGN’R‘ l') we get
nR(€, xt — x) <B,(Rz,8') — By(Rx,0') — B,(6'+,0') — B, (8,6
+ 77<Ft(0t) o thl(atfl% ét+1 o ‘9t>7

which implies

=

<£t7mt_m>

< (Bu(Rw6)-Bu (w6~ B,(6"1.6) -5, (6,6 +(F'(6)~F'"~(6'™").6''-8)
n
<1 (Bu(Rm.0)~Bu(Re.0')~B,(0'*" 0')5,(0'.0) )+\|Ft (6)=F'"' (6" )26 ~0"]
1 Nt At+1 At+1 pt t At |Ft 015 Ft71(0t71)|‘§ ||ét+l_0t||%
<= _
777(61&(3.@,9) By (Rz,0') B, (6" ,0")—B,(6",6") )+2* 5 o
‘ét+1_9t|‘§

(||Rm 0|3~ Ro—6""" 3 uét“—ofu%—nef—étn%)+n||Ff<et>—F“(0H>u3+' i

|6 3= Fa=0"[3) ~ 1 (160" [3-+]10' 6" 2) 4] (6)—F' (0"~ 3

S’\H

where the third inequality comes from the fact that ab < pb?/2 + % /(2p), Vb, ¢, p > 0 (in this case,
b=2|F"8") — F'=1(8"1)||2, c = ||8"+! — 6|2, and p = 2), and the penultimate inequality
comes from By (a, b) = |la — b||3/2 (¥ (-) is the quadratic regularizer as stated around Eq. (5), as
well as By (a,b) = ||a — b||3/2 if ¢(-) is the quadratic regularizer as stated around Eq. (3)). Then,
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we have
T
RZ(Zt x'—
t=1

T T
1 A %)
SZ%(||Rm_0t||§_\|Rm—0‘“\|§)+n§ |F'(6")—F
t=1

t=1 t=1

HRQB—éng = t ot t—1/pt—1y(2 d 1 At+1l  pt)2 t At)2
<2 O S et o) F o B0 - (167 -6 B0 -6°)3)
n t=1 t=1 n
Re—0'|3 < e N . .
MO S 1 0)- P 0 B3 o (100 500" )~ - 167 07 [+
n t=1 t=1 n
Ra—6" A
MBA==0E | Sy (0 24 (166" I3 +16"~6"1E) + 116" 6"
n t=1
T
HRmeng t/pt t—1,pnt—1y 2 1 t pt—1y2, 1451 012
R i R Ty P D e A M P UL SRE T TS
o ;H (6°) O )2 ;817“ 12 477“ 12
where the third inequality is from — 37, (|01 — 07|12 + (|6 — 6%]12) = — S°7_, (1|6 — 6"~ 1|3 +

" — 6"]13) — _9T||§+||91

RY (¢'a' —a) < + ZHFt CB)

t=1 t=1

16T +1 — 0°|2. Then, we have

HR:c T

T
t—1/pgt—1y)2 i at+1_ pgt)2 t_ At)2
(6" =", (16" ~'l13+]l6'~6'I13)

According to the proof of Lemma A.3 (Eq. (26) and the first three lines of Eq. (27)) with C; =

(from the update rule of SPRM™, as shown in Eq. (5)), we get

S | R — 63 >\ D12 2\ 6° — 073
£ < D(2L* +4DL” +4DP°)"—F——=
R;< @' — x) o +n; +4DL* +4DP*) =g
t t—12 1 Al 012
—Z |9 -0 IIZ)Jr@Hi9 -6
According to above equation, if
2 2 2
D(2L* +4DL +4DP)§L:>17§R 1 7
R2 8 8D(2L? + 4DL? + 4DP?)
then
T Al 12
Rx — 6| 1,41 012
Bt <] NP
Dot - o) SIS L - )

which implies

T
Z ,x' —x) <O(1), Ve € X.

t=1
In other words, we have

T
Dima <£;mt - <

which implies an O(1/T") theoretical convergence rate. It completes the proof.
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Figure 4: Convergence rates of different algorithms in randomly generated two-player zero-sum
NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard
deviation 10.

C FuLL EXPERIMENTAL RESULTS

Results on convergence rates in two-player zero-sum NFGs. We now present the experimental
results omitted from Section 5. Specifically, the convergence results for randomly generated two-
player zero-sum NFGs, where the payoff matrices are sampled from a Gaussian distribution with
mean 0 and standard deviation 10, as well as a Gaussian distribution with mean 0 and standard
deviation 1, are illustrated in Figs. 4 and 5, respectively.

Results on convergence rates in multi-player general-sum NFGs. Now, we evaluate the perfor-
mance of MI-SPRM*, RM™, PRM*, SPRM™, OGDA, OMWU, and DS-OptMD in multi-player
general-sum NFGs. Specifically, we conduct experiments on three-player general-sum NFGs of
varying sizes: [10,30,50]. Due to computational constraints, we do not include results for size
100 as did in two-player zero-sum NFGs, since three-player general-sum NFGs of size 100 require
computation that is 100 times greater than that for two-player zero-sum NFGs of the same size. For
convenience, we generate 20 instances for each size, where the payoff matrices are drawn from a
Gaussian distribution with a mean of 0 and a standard deviation of 100. Notably, similar to our
experiments in two-player zero-sum NFGs, we also test a range of Gaussian distributions with varying
standard deviations. However, we observe that the results do not differ significantly from those
obtained with a standard deviation of 1. Consequently, this paper focuses on and reports results
derived from a Gaussian distribution with a mean of 0 and a standard deviation of 1. The results are
show in Fig. 6: no algorithm successfully learns an NE in all tested three-player general-sum NFGs.
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Figure 5: Convergence rates of different algorithms in randomly generated two-player zero-sum
NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard
deviation 1.

Results on dynamics of the values of R'. To validate our theoretical analysis, we examine the
dynamics of R! over iterations. The results, shown in Fig. 7, align well with the theoretical analysis,
showing that as the game’s dimension and the standard deviation of the Gaussian sampling increase,
the final value to which R’ converges also increases. Specifically, theoretical analysis predicts
that R will converge near Cs, which is positively correlated with L, P, and D. As the game’s
dimension increases, D necessarily increases. Similarly, as the standard deviation of the Gaussian
sampling increases, the maximum standard value of the elements in the payoff matrix also rises,
implying an increase in both L and P. This suggests that MI-SPRM™ is implicitly learning L and
P. Therefore, one of our future directions is to apply techniques for adaptively learning unknown
Lipschitz constants (Malitsky and Mishchenko, 2019; Ghadimi and Lan, 2016), i.e., L, from the
field of optimization to MI-SPRM™. Note that the techniques for adaptively learning unknown
Lipschitz constants are related to the unconstrained strategy space while MI-SPRM™ is related to the
constrained strategy space. Additionally, to investigate why MI-SPRM™ achieves a faster empirical
convergence rate than DS-OptMD, we also present the dynamics of the step size 7 in DS-OptMD?,
as shown in Fig. 8. By comparing the growth rate of Rf in MI-SPRM™ (Fig. 7) with the decay
rate of the step size 1 in DS-OptMD, it is evident that R! in MI-SPRM™ grows significantly faster
than the decrease in 7). Therefore, we argue that the faster empirical convergence rate of MI-SPRM™
compared to DS-OptMD is attributed to the step size 7 in DS-OptMD. Its decay rate is too slow,
requiring more iterations than MI-SPRM™ to achieve the O(1/T) convergence rate.

3The original paper of DS-OptMD denotes the reciprocal of the step size as Af, i.e., \i = 1/ni, where n; is
the step size of player ¢ at iteration ¢, we present the average step size for all players.
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Figure 6: Convergence rates of different algorithms in randomly generated three-player general-sum
NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard
deviation 1.
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Figure 7: Dynamics of R! in two-player zero-sum NFGs. The notation “’std=x" represents the
standard deviation of a Gaussian distribution is X.

Results on convergence rates in standard EFG benchmarks when quadratic averaging and
alternating updates are used. Now, we provide the results on convergence rates in standard EFG
benchmarks when quadratic averaging and alternating updates are used. Firstly, as did in Section 5,
we test on eight instances of four standard EFG benchmarks: Kuhn Poker, Leduc Poker, Liar’s Dice,
and Goofspiel. We compare MI-SPCFR™ with SPCFR™, PCFR*, CFR*, and DCFR. The results
in Fig. 9 illustrate that, within two-player EFGs, all algorithms demonstrate improved performance
when compared to scenarios where quadratic averaging and alternating updates are not used. In
addition, it is important to highlight that our algorithm, MI-SPCFR+, outperforms other algorithms
in 3 of 4 tested games, such as Kuhn Poker, Leduc Poker, and Goofspiel (3). Unfortunately, in
multi-player EFGs, the performance of all algorithms may significantly diminish compared to their
performance without quadratic averaging and alternating updates. For example, in 3-Player Kuhn
Poker and 4-Player Kuhn Poker, decreases in performance surpass a factor of 1000. In fact, in
multi-player EFGs, our algorithm performs similarly to the baseline overall. No single algorithm
consistently demonstrates superior performance across most games compared to others.
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Figure 8: Dynamics of the step size 1 of DS-OptMD in two-player zero-sum NFGs.
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Table 2: Final exploitability for the tested algorithms in HUNL Subgames. The lowest exploitability
is highlighted in red.

CFR™ PCFRT™  SPCFR*  PDCFR"™  MI-SPCFR™

Subgame3 4.64e-4 5.14e-4 5.12e-4 4.35e-4 3.10e-4
Subgame4 3.63e-4 4.15¢e-4 4.04e-4 3.89e-4 2.70e-4

Empirical convergence rates in HUNL Subgames. To assess the performance of our MI-SPCFR ™
in addressing real-world games, we also conduct evaluations in HUNL Subgames, which are con-
siderably larger than standard IIG benchmarks. Despite the presence of code related to HUNL
Subgames in Openspiel, we have not successfully executed it. Therefore, we utilize HUNL Subgames
implemented by Poker RL (Steinberger, 2019). Precisely, our code is based on the code from Xu et al.
(2024b). The code in Xu et al. (2024b) supports only Subgame 3 and Subgame 4, so we conduct
experiments solely on these two HUNL Subgames. We compare with CFR*, PCFR*, SPCFR™,
and PDCFR™. We use alternating updates for each tested algorithms. Following the settings in the
original version of PCFR™ (Farina et al., 2021), we employ quadratic averaging for SPCFR™ and
MI-SPCFR ™. The results are shown in Table 2: MI-SPCFR™ consistently outperform all baselines in
both subgames.

D USE OF LARGE LANGUAGE MODELS

We promise that large language models are used only for editing, e.g., grammar, spelling, word
choice.
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