

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A FASTER PARAMETER-FREE REGRET MATCHING ALGORITHM

Anonymous authors

Paper under double-blind review

ABSTRACT

Regret Matching (RM) and its variants are widely employed to learn a Nash equilibrium (NE) in large-scale games. However, most existing research only establishes a theoretical convergence rate of $O(1/\sqrt{T})$ for these algorithms in learning an NE. Recent studies have shown that smooth RM⁺ variants, the advanced variants of RM, can achieve an improved convergence rate of $O(1/T)$. Despite this improvement, smooth RM⁺ variants lose the parameter-free property, i.e., no parameters that need to be tuned, a highly desirable feature in practical applications. In this paper, we propose a novel smooth RM⁺ variant called Monotone Increasing Smooth Predictive Regret Matching⁺ (MI-SPRM⁺), which retains the parameter-free property while still achieving a theoretical convergence rate of $O(1/T)$. To achieve these properties, MI-SPRM⁺ employs a technology called Adaptive Regret Domain (ARD), which ensures that the lower bound for the 1-norm of accumulated regrets increases monotonically by adjusting the decision space at each iteration. This design is motivated by the observation that the range of step sizes supporting the $O(1/T)$ convergence rate in existing smooth RM⁺ variants is contingent on the lower bound for the 1-norm of accumulated regrets. Experimental results confirm that MI-SPRM⁺ empirically attains an $O(1/T)$ convergence rate.

1 INTRODUCTION

Game theory serves as a powerful framework for modeling interactions among multiple agents. A widely studied solution concept in this context is the Nash equilibrium (NE), a state where no player can achieve a higher payoff by unilaterally deviating from their current strategy. This concept provides insight into the stability of decisions, as no player has an incentive to deviate from their chosen strategy once equilibrium is reached. NE is widely applicable across various fields such as economics, political science, business, and international relations, offering a theoretical framework for predicting behavior and optimizing decision-making in complex systems (Osborne, 1994).

To learn an NE in real-world games, compared to traditional NE learning algorithms like Fictitious Play (Brown, 1951), the algorithms based on the regret minimization framework (Zinkevich, 2003), also called regret minimization algorithms, are more popular, particularly given the recent breakthroughs in superhuman game AIs, which rely heavily on this framework (Bowling et al., 2015; Moravčík et al., 2017; Brown and Sandholm, 2018; 2019b; Pérolat et al., 2022). Among regret minimization algorithms, Regret Matching (RM) (Hart and Mas-Colell, 2000) and its variants (Gordon, 2006; Lanctot et al., 2009; Johanson et al., 2012; Lanctot, 2013; Tammelin, 2014; Brown and Sandholm, 2019a; Farina et al., 2021; Zhang et al., 2022; Xu et al., 2022; Farina et al., 2023; Xu et al., 2024b) stand out in practical applications due to their superior empirical performance compared to other regret minimization algorithms, such as those based on Online Mirror Descent (OMD) (Nemirovskij and Yudin, 1983) or Follow the Regularized Leader (FTRL) (Shalev-Shwartz and Singer, 2007). For example, RM variants are widely used in superhuman Poker AIs (Bowling et al., 2015; Moravčík et al., 2017; Brown and Sandholm, 2018; 2019b), while OMD/FTRL-based algorithms are not.

Numerous studies have shown that many advanced algorithms based on OMD and FTRL achieve an $O(1/T)$ theoretical convergence rate (Rakhlin and Sridharan, 2013a;b; Syrgkanis et al., 2015; Farina et al., 2019; Piliouras et al., 2022; Hsieh et al., 2021). Unfortunately, although several advanced RM variants have been proposed, such as Regret Matching⁺ (RM⁺) (Tammelin, 2014), Discounted Regret Matching (DRM) (Brown and Sandholm, 2019a), and Predictive Regret Matching⁺ (PRM⁺) (Farina et al., 2021), they only achieve an $O(1/\sqrt{T})$ theoretical convergence rate.

To address the problem that RM variants only achieve an $O(1/\sqrt{T})$ theoretical convergence rate, smooth RM⁺ variants like Smooth Predictive Regret Matching⁺ (SPRM⁺) (Farina et al., 2023) are introduced. These variants achieve an $O(1/T)$ theoretical convergence rate by ensuring that the lower bound for the 1-norm of accumulated regrets consistently exceeds a positive constant. However, smooth RM⁺ variants lose the parameter-free property of other RM⁺ variants like RM⁺ and PRM⁺, i.e., *no parameters need to be tuned* (Grand-Clément and Kroer, 2021), which is a highly desirable feature in practical applications. Specifically, one of the most significant obstacles in using regret minimization algorithms to learn an NE in games is the sensitivity to hyperparameters. As illustrated in our experiments (Section 4), even in the game considered in the original paper of SPRM⁺ (Farina et al., 2023), the convergence rate of SPRM⁺ varies significantly depending on the choice of step size η ¹. Specifically, after 10^5 iterations, S⁺PRM⁺ ($\eta = 0.1$) achieves a duality gap (the distance to NE; lower is better) that is 10 and 5 times smaller than S⁺PRM⁺ ($\eta = 0.01$) and S⁺PRM⁺ ($\eta = 1$), respectively. This sensitivity implies that extensive parameter tuning is required to identify a suitable parameter. In contrast, parameter-free algorithms eliminate the need for such tuning, allowing the algorithm to directly learn an NE without any tuning of parameters.

To recover the parameter-free property² for smooth RM⁺ variants, we propose a novel smooth RM⁺ variant called *Monotone Increasing Smooth Predictive Regret Matching*⁺ (MI-SPRM⁺), a parameter-free algorithm that achieves an $O(1/T)$ theoretical convergence rate. The key insight of MI-SPRM⁺, which enables the simultaneous achievement of the parameter-free property and an $O(1/T)$ theoretical convergence rate, is that the appropriate range of step sizes for achieving this rate in S⁺PRM⁺ depends on the lower bound for the 1-norm of accumulated regrets. Therefore, MI-SPRM⁺ employs a technology called *Adaptive Regret Domain* (ARD), which ensures this lower bound monotonically increases by adjusting the decision space at each iteration to achieve an $O(1/T)$ theoretical convergence rate with the parameter-free property.

Furthermore, we evaluate the empirical convergence rate of MI-SPRM⁺ on the games considered in the original paper of smooth RM⁺ variants (Farina et al., 2023) and randomly generated two-player zero-sum NFGs. The experimental results show that MI-SPRM⁺ consistently attains an $O(1/T)$ empirical convergence rate across all evaluated games. More interestingly, MI-SPRM⁺ outperforms all other tested algorithms, including existing RM variants and traditional non-parameter-free and parameter-free regret minimization algorithms.

2 RELATED WORK

Traditional parameter-free regret minimization algorithms. Although many results about the $O(1/T)$ theoretical convergence rate of traditional regret minimization algorithms based on OMD or FTRL have been proposed, these algorithms are highly sensitive to the choice of parameters. Specifically, as demonstrated in our experiments, these algorithms exhibit an empirical convergence rate of $O(1/T)$ with appropriate parameter tuning, while they either converge very slowly or may even diverge when the parameters are poorly chosen. To establish the parameter-free regret minimization algorithms, the most common method is the *doubling trick* (Auer et al., 1995). However, the doubling trick can only create parameter-free regret minimization algorithms with an $O(\log_2 T/T)$ convergence rate even if the original regret minimization algorithm theoretically guarantees an $O(1/T)$ convergence rate. Specifically, consider that the original regret minimization algorithm exhibits a regret bound of C for any number of iterations T , thus implying an $O(1/T)$ convergence rate. For a total of T iterations where there exists a positive constant M such that $2^M \leq T < 2^{M+1}$, the cumulative regret resulting from the application of the doubling trick is bounded by $\sum_{m=1}^{M+1} C$. This summation results in a regret bound of $O(\log_2 T)$, leading to a convergence rate of $O(\log_2 T/T)$. To achieve both the parameter-free property and a theoretical convergence rate of $O(1/T)$, Hsieh et al. (2021) propose an algorithm called *Dual Stabilized Optimistic Mirror Descent* (DS-OptMD), which achieves this goal by autonomously learning the step size. However, our experimental results reveal that the empirical convergence rate of DS-OptMD is significantly slower than $O(1/T)$.

¹Traditional regret minimization algorithms are even more sensitive to parameters than S⁺PRM⁺ as they will diverge without suitable parameters.

²Beyond being parameter-free, RM⁺ and PRM⁺ exhibits a property called stepsize-invariance (Chakrabarti et al., 2024), meaning that the algorithm's output remains unchanged regardless of the parameter choice. This property is also referred to as strongly parameter-free (Grand-Clément and Kroer, 2021). See details in Section 5. In this paper, we only focus on the parameter-free property since to the best of our knowledge, no algorithm simultaneously achieves both an $O(1/T)$ theoretical convergence rate and stepsize-invariance.

Regret Matching (RM) variants. The key distinction between RM variants and traditional regret minimization algorithms based on OMD or FTRL is that RM variants update within the (subset of the) non-negative orthant, whereas the latter update within the original strategy space of the game (Farina et al., 2021; 2023). These algorithms usually perform numerically better than traditional regret minimization algorithms. However, although many technologies have been proposed to improve these algorithms’ empirical convergence rate, these algorithms only achieve an $O(1/\sqrt{T})$ theoretical convergence rate. To provide an $O(1/T)$ convergence rate to RM⁺ variants, Farina et al. (2023) propose smooth RM⁺ variants like *Smooth Predictive RM⁺* (SPRM⁺). Although smooth RM⁺ variants achieve an $O(1/T)$ theoretical convergence rate, they drop a very appealing property in most other RM⁺ variants—the parameter-free property, which is extremely useful in practice as it avoids fine tuning the parameters.

To the best of our knowledge, we introduce the first parameter-free RM variant that achieves an $O(1/T)$ theoretical convergence rate, named *Monotone Increasing Smooth Predictive Regret Matching⁺* (MI-SPRM⁺). To achieve both the parameter-free property and a theoretical convergence rate of $O(1/T)$, MI-SPRM⁺ employs ARD, dynamically adjusting the decision space at each iteration, while SPRM⁺ maintains a fixed decision space throughout each iteration (a detailed comparison is shown in Section 4). In addition, unlike DS-OptMD, which theoretically has an $O(1/T)$ convergence rate but empirically demonstrates a much slower convergence rate, MI-SPRM⁺ achieves an $O(1/T)$ convergence rate both in theory and in practice.

3 PRELIMINARIES

Two-player zero-sum normal-form games (NFGs). In this paper, we study two-player zero-sum NFGs, which encompass many classic scenarios like Rock-Paper-Scissors. In these games, each player $i \in \mathcal{N} = \{0, 1\}$ simultaneously selects an action $a_i \in \mathcal{A}_i$ and receives a reward $r_i(a_i, a_{1-i})$, where \mathcal{A}_i denotes the action space of player i and \mathcal{N} is the set of players. We denote the strategy of player i by \mathbf{x}_i , which is the probability distribution over all actions $a_i \in \mathcal{A}_i$. The set of strategies is denoted as \mathcal{X}_i , which is a $(|\mathcal{A}_i| - 1)$ -dimensional simplex, i.e., $\forall \mathbf{x}_i \in \mathcal{X}_i, \mathbf{x}_i \geq \mathbf{0}$ and $\langle \mathbf{1}, \mathbf{x}_i \rangle = 1$, implying $\|\mathbf{x}_i\|_2 \leq \|\mathbf{x}_i\|_1 = 1$. Similarly, the strategy profile is represented by $\mathbf{x} = [\mathbf{x}_0; \mathbf{x}_1]$, and the set of strategy profiles is denoted as $\mathcal{X} = \mathcal{X}_0 \times \mathcal{X}_1$. The set \mathcal{X} is a compact set because each \mathcal{X}_i is a simplex, which is a compact set. The utility of player i when all players follow the strategy profile \mathbf{x} is given by $u_i(\mathbf{x}) = u_i(\mathbf{x}_i, \mathbf{x}_{1-i}) = \sum_{a_0 \in \mathcal{A}_0} \sum_{a_1 \in \mathcal{A}_1} r_i(a_0, a_1) \mathbf{x}_0(a_0) \mathbf{x}_1(a_1)$. The zero-sum property implies that $\sum_{i \in \mathcal{N}} u_i(\mathbf{x}) = 0$. The loss gradient for player i is denoted by $\ell_i^{\mathbf{x}} = -\nabla_{\mathbf{x}_i} u_i(\mathbf{x}_i, \mathbf{x}_{1-i})$. We assume that $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$,

$$\|\ell^{\mathbf{x}} - \ell^{\mathbf{x}'}\|_2 \leq L\|\mathbf{x} - \mathbf{x}'\|_2, \quad \|\ell^{\mathbf{x}}\|_1 \leq P, \quad (1)$$

where $\ell^{\mathbf{x}} = [\ell_0^{\mathbf{x}}; \ell_1^{\mathbf{x}}]$, and $L, P > 0$ are constants. The assumptions in Eq. (1) are among the most fundamental in game solving (Farina et al., 2023; Cai and Zheng, 2023; Cai et al., 2024; 2025). We also use D to denote $\max_{i \in \mathcal{N}} |\mathcal{A}_i|$.

Nash equilibrium (NE). To solve two-player zero-sum NFGs, a common goal is the NE where no player can benefit from deviating unilaterally from this equilibrium. In other words, for any player, her strategy is the best-response to the strategies of others. We use \mathcal{X}^* to denote the set of NE. As analyzed in Facchinei (2003), if $\mathbf{x}^* \in \mathcal{X}^*$, then $\langle \ell_i^{\mathbf{x}^*}, \mathbf{x}_i^* - \mathbf{x}_i \rangle \leq 0, \forall \mathbf{x}_i \in \mathcal{X}_i$. We use the duality gap as the metric to measure the distance from strategy profile \mathbf{x} to \mathcal{X}^* . Precisely, the duality gap of strategy profile \mathbf{x} is defined as $dg(\mathbf{x}) = \max_{\mathbf{x}' \in \mathcal{X}} \langle \ell^{\mathbf{x}}, \mathbf{x} - \mathbf{x}' \rangle = \sum_{i \in \mathcal{N}} \max_{\mathbf{x}_i \in \mathcal{X}_i} \langle \ell_i^{\mathbf{x}}, \mathbf{x}_i^t - \mathbf{x}_i \rangle$. If $dg(\mathbf{x}) \leq \delta$, then \mathbf{x} is a δ -approximate NE (δ -NE). If and only if \mathbf{x} is a NE, $dg(\mathbf{x}) = 0$.

Regret minimization framework. To learn an NE in a two-player zero-sum NFG, the most popular algorithms are the algorithms based on the regret minimization framework (Zinkevich, 2003), also called regret minimization algorithms (Zinkevich, 2003; Hart and Mas-Colell, 2000; Nemirovskij and Yudin, 1983; Rakhlin and Sridharan, 2013b; Syrgkanis et al., 2015; Farina et al., 2019; Piliouras et al., 2022; Hsieh et al., 2021; Gordon, 2006; Lanctot et al., 2009; Johanson et al., 2012; Lanctot, 2013; Tammelin, 2014; Brown and Sandholm, 2019a; Farina et al., 2021; Zhang et al., 2022; Xu et al., 2022; Farina et al., 2023; Xu et al., 2024b). In this framework, each player i selects a decision $\mathbf{x}_i^t \in \mathcal{X}_i$ according to feedback received from the game. In games solving, such feedback is set to the loss gradient $\ell_i^{t-1} = \ell^{\mathbf{x}^{t-1}}$. The goal of regret minimization algorithms is to enable the regret $\sum_{t=1}^T \langle \ell_i^t, \mathbf{x}_i^t - \mathbf{x}_i \rangle, \forall \mathbf{x}_i \in \mathcal{X}_i$ to grow sublinearly. After T iterations, let $\ell^t = [\ell_0^t; \ell_1^t]$, $\mathbf{x}^t = [\mathbf{x}_0^t; \mathbf{x}_1^t]$,

162 and $\mathbf{x} = [\mathbf{x}_0; \mathbf{x}_1]$, suppose the social regret $\sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle = \sum_{i \in \mathcal{N}} \sum_{t=1}^T \langle \ell_i^t, \mathbf{x}_i^t - \mathbf{x}_i \rangle$ satisfies
163 $\sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle / T \leq \varepsilon, \forall \mathbf{x} \in \mathcal{X}$. Then, the time-averaged strategy profile $\bar{\mathbf{x}}^T = \sum_{t=1}^T \mathbf{x}^t / T$
164 is an ε -NE. The $O(1/T)$ theoretical convergence rate of the regret minimization algorithms is that
165 $\sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle / T \leq O(1/T)$ after $T \geq 1$ iterations.
166

167 **Online Mirror Descent (OMD).** Among regret minimization algorithms, one of the most classic is
168 OMD (Nemirovskij and Yudin, 1983). Let $\phi(\cdot) : \mathcal{X}_i \rightarrow \mathbb{R}$, OMD generates decisions via

$$169 \quad \mathbf{x}_i^{t+1} \in \arg \min_{\mathbf{x}_i \in \mathcal{X}_i} \{ \langle \ell_i^t, \mathbf{x}_i \rangle + \frac{1}{\eta} \mathcal{B}_\phi(\mathbf{x}_i, \mathbf{x}_i^t) \}, \quad (2)$$

171 where the step size $\eta > 0$ is a constant, $\mathcal{B}_\phi(\mathbf{a}, \mathbf{b}) = \phi(\mathbf{a}) - \phi(\mathbf{b}) - \langle \nabla \phi(\mathbf{b}), \mathbf{a} - \mathbf{b} \rangle$ is the Bregman
172 divergence associated with $\phi(\cdot)$. In Eq. (2), $\phi(\cdot)$ can be any strongly convex function.
173

174 **Regret Matching⁺ (RM⁺).** To solve real-world games, RM variants are among the most widely used
175 regret minimization algorithms, as demonstrated by their success in superhuman Poker AIs (Bowling
176 et al., 2015; Moravčík et al., 2017; Brown and Sandholm, 2018; 2019b; Pérolat et al., 2022). In this
177 paper, we focus on RM⁺ variants (Tammelin, 2014; Farina et al., 2021; 2023; Meng et al., 2023) since
178 RM⁺ variants usually outperform vanilla RM (Hart and Mas-Colell, 2000; Gordon, 2006; Zinkevich
179 et al., 2007). At each iteration $t \geq 1$, RM⁺ updates its accumulated regret $\hat{\theta}_i^t$ via the *regret matching⁺*
180 *operator*: $\theta_i^{t+1} = [\theta_i^t + \eta \mathbf{F}_i^t(\mathbf{x}^t)]^+$, where the step size $\eta > 0$ is a constant, $\theta_i^0 = \mathbf{0}$, $\mathbf{x}_i^0 = \mathbf{1}/|\mathcal{A}_i|$,
181 $\mathbf{x}_i^t = \theta_i^t / \|\theta_i^t\|_1$ ($t \geq 1$), $\mathbf{F}_i^t(\mathbf{x}^t) = \mathbf{F}_i^t(\theta^t) = \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t$ ($\theta^t = [\theta_0^t; \theta_1^t]$) is the instantaneous
182 regret, and $[\cdot]^+ = \max(\cdot, \mathbf{0})$. From the analysis in Farina et al. (2021), RM⁺ is connected to an OMD
183 instance which performs updates in the non-negative orthant and sets $\phi(\cdot)$ as the quadratic regularizer
184 $\psi(\cdot) = \|\cdot\|_2^2/2$. Formally, RM⁺ can be rewritten as

$$184 \quad \theta_i^{t+1} \in \arg \min_{\theta_i \in \mathbb{R}_{\geq 0}^{|\mathcal{A}_i|}} \{ \langle -\mathbf{F}_i^t(\theta^t), \theta_i \rangle + \frac{1}{\eta} \mathcal{B}_\psi(\theta_i, \theta_i^t) \}, \quad (3)$$

185 where the step size $\eta > 0$ is a constant, and $\mathbb{R}_{\geq 0}^d = \{ \mathbf{y} | \mathbf{y} \in \mathbb{R}^d, \mathbf{y} \geq \mathbf{0} \}$. Notably, $\psi(\cdot)$ is the
186 quadratic regularizer $\|\cdot\|_2^2/2$ implying that $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^d, \mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \mathcal{B}_\psi(\mathbf{b}, \mathbf{a}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$.
187

188 **Predictive Regret Matching⁺ (PRM⁺).** To improve the empirical convergence rate of RM⁺, Farina
189 et al. (2021) propose PRM⁺, whose key insight is to make a prediction at each iteration t . PRM⁺
190 uses the feedback at the last iteration $t-1$ as the prediction at the current iteration t . Formally, at
191 each iteration $t \geq 1$, the update rule of PRM⁺ is

$$192 \quad \theta_i^t \in \arg \min_{\theta_i \in \mathbb{R}_{\geq 0}^{|\mathcal{A}_i|}} \{ \langle -\mathbf{F}_i^{t-1}(\theta^{t-1}), \theta_i \rangle + \frac{1}{\eta} \mathcal{B}_\psi(\theta_i, \hat{\theta}_i^t) \}, \quad (4)$$

$$193 \quad \hat{\theta}_i^{t+1} \in \arg \min_{\theta_i \in \mathbb{R}_{\geq 0}^{|\mathcal{A}_i|}} \{ \langle -\mathbf{F}_i^t(\theta^t), \theta_i \rangle + \frac{1}{\eta} \mathcal{B}_\psi(\theta_i, \hat{\theta}_i^t) \},$$

194 where the step size $\eta > 0$ is a constant, $\theta_i^0 = \mathbf{1}/|\mathcal{A}_i|$, $\hat{\theta}_i^1 = \mathbf{0}$, $\mathbf{x}_i^0 = \mathbf{1}/|\mathcal{A}_i|$, $\mathbf{F}_i^{t-1}(\theta^{t-1}) =$
195 $\langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1} - \ell_i^{t-1}$, $\mathbf{F}_i^t(\theta^t) = \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t$, $\theta^{t-1} = [\theta_0^{t-1}; \theta_1^{t-1}]$, $\theta^t = [\theta_0^t; \theta_1^t]$, and $\psi(\cdot)$ is
196 the quadratic regularizer defined in Eq. (3). In Eq. (4), $\mathbf{F}_i^{t-1}(\theta^{t-1})$ is the prediction at iteration t .
197 Note that the term $\langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} (\langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1})$ in $\mathbf{F}_i^t(\theta^t)$ ($\mathbf{F}_i^{t-1}(\theta^{t-1})$) is a $|\mathcal{A}_i|$ -dimensional vector
198 as ℓ_i^t (ℓ_i^{t-1}) in $\mathbf{F}_i^t(\theta^t)$ ($\mathbf{F}_i^{t-1}(\theta^{t-1})$) is a $|\mathcal{A}_i|$ -dimensional vector (from the definition of ℓ_i^t , the
199 shape of ℓ_i^t is consistent with that of \mathbf{x}_i). As analyzed in Farina et al. (2021), if $\|\mathbf{F}^{t-1}(\theta^{t-1}) -$
200 $\mathbf{F}^t(\theta^t)\|_2 = 0$ ($\mathbf{F}^{t-1}(\theta^{t-1}) = [\mathbf{F}_0^{t-1}(\theta^{t-1}); \mathbf{F}_1^{t-1}(\theta^{t-1})]$ and $\mathbf{F}^t(\theta^t) = [\mathbf{F}_0^t(\theta^t); \mathbf{F}_1^t(\theta^t)]$) holds,
201 PRM⁺ guarantees that its average strategy profile, $\bar{\mathbf{x}}^T = \sum_{t=1}^T \mathbf{x}^t / T$, converges to an approximate
202 NE with a theoretical convergence rate of $O(1/T)$, where $\mathbf{x}^t = [\mathbf{x}_0^t; \mathbf{x}_1^t]$. However, due to the
203 instability (Farina et al., 2023), i.e., rapid fluctuations of the instantaneous regret $\mathbf{F}_i^t(\theta^t)$ across
204 iterations, this assumption does not hold. Therefore, PRM⁺ only achieves an $O(1/\sqrt{T})$ theoretical
205 convergence rate. Notably, RM⁺ and PRM⁺ are parameter-free algorithms, as the sequence of
206 strategy profiles they generate remains invariant under any choice of η (Farina et al., 2021; 2023).
207 For further details, refer to Section 5.
208

209 **Smooth Regret Matching⁺ variants (Farina et al., 2023).** Smooth RM⁺ variants are designed to
210 address the instability of PRM⁺ and obtain an $O(1/T)$ theoretical convergence rate. Our algorithms
211 are based on *Smooth Predictive Regret Matching⁺* (SPRM⁺) (Farina et al., 2023) as SPRM⁺ is a
212 single-call algorithm, which only calls loss gradients once at each iteration, while other smooth RM⁺

variants are not. To address the instability of PRM^+ and achieve an $O(1/T)$ theoretical convergence rate, SPRM^+ performs updates in the space $\mathbb{R}_{\geq R}^{|\mathcal{A}_i|}$, whereas PRM^+ performs updates in the space $\mathbb{R}_{\geq 0}^{|\mathcal{A}_i|}$. This modification ensures $\|\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}) - \mathbf{F}^t(\boldsymbol{\theta}^t)\|_2^2 \leq O(\|\boldsymbol{\theta}^{t-1} - \boldsymbol{\theta}^t\|_2^2)$ to reduce the instability. More precisely, Farina et al. (2023) employ the property that $\|\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}) - \mathbf{F}^t(\boldsymbol{\theta}^t)\|_2^2 \leq O(\|\boldsymbol{\theta}^{t-1} - \boldsymbol{\theta}^t\|_2^2)$ to prove the $O(1/T)$ theoretical convergence rate. See Appendix B for the details of the proof. Formally, the update rule of SPRM^+ at iteration $t \geq 1$ is

$$\begin{aligned} \boldsymbol{\theta}_i^t &\in \underset{\boldsymbol{\theta}_i \in \mathbb{R}_{\geq R}^{|\mathcal{A}_i|}}{\operatorname{argmin}} \{ \langle -\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}), \boldsymbol{\theta}_i \rangle + \frac{1}{\eta} \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \}, \quad \mathbf{x}_i^t = \frac{\boldsymbol{\theta}_i^t}{\|\boldsymbol{\theta}_i^t\|_1}, \\ \hat{\boldsymbol{\theta}}_i^{t+1} &\in \underset{\boldsymbol{\theta}_i \in \mathbb{R}_{\geq R}^{|\mathcal{A}_i|}}{\operatorname{argmin}} \{ \langle -\mathbf{F}_i^t(\boldsymbol{\theta}^t), \boldsymbol{\theta}_i \rangle + \frac{1}{\eta} \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \}, \end{aligned} \quad (5)$$

where $R > 0$ is a constant, the step size $\eta > 0$ is a constant, $\boldsymbol{\theta}_i^0 = \mathbf{1}/|A_i|$, $\hat{\boldsymbol{\theta}}_i^1 = \mathbf{1}/|A_i|$, $\mathbf{x}_i^0 = \mathbf{1}/|A_i|$, $\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}) = \langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1} - \ell_i^{t-1}$, $\mathbf{F}_i^t(\boldsymbol{\theta}^t) = \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t$, $\boldsymbol{\theta}^{t-1} = [\boldsymbol{\theta}_0^{t-1}; \boldsymbol{\theta}_1^{t-1}]$, $\boldsymbol{\theta}^t = [\boldsymbol{\theta}_0^t; \boldsymbol{\theta}_1^t]$, and $\psi(\cdot)$ is the quadratic regularizer defined in Eq. (3).

4 OUR ALGORITHM

Although SPRM^+ is a powerful algorithm, it is not parameter-free, as it requires the fine-tuning of the parameter η to achieve an $O(1/T)$ theoretical convergence rate. This dependency on parameter tuning diminishes its practical appeal. To avoid the parameter tuning, we propose a novel RM^+ variant called *Monotone Increasing Smooth Predictive Regret Matching*⁺ (MI-SPRM⁺), a parameter-free algorithm that achieves an $O(1/T)$ theoretical convergence rate.

MI-SPRM⁺ is inspired by the convergence results of SPRM^+ , which achieves an $O(1/T)$ theoretical convergence rate with $0 < \eta < RC_0$, where $C_0 = 1/\sqrt{8D(2L^2 + 4DL^2 + 4DP^2)}$ is a game-dependent constant and R is defined in Eq. (5) (the formal convergence result of SPRM^+ is detailed in Theorem B.1). It is evident that for any $\eta > 0$, if $R > \eta/C_0$, SPRM^+ guarantees an $O(1/T)$ theoretical convergence rate. To achieve this convergence rate with the parameter-free property, a viable approach is to adaptively increase the value of R , the lower bound for the 1-norm of accumulated regrets, so that R exceeds η/C_0 . We call this approach *Adaptive Regret Domain* (ARD).

Existing OMD-based algorithms like DS-OptMD (Hsieh et al., 2021), achieve the parameter-free property and an $O(1/T)$ theoretical convergence rate by adaptively reducing the step size η . However, the reduction method employed in DS-OptMD is too conservative, thereby resulting in a poor empirical convergence rate, as shown in our experiments. In contrast, ARD exploits the convergence property of SPRM^+ , which simultaneously depend on the lower bound of the 1-norm of accumulated regrets and the value of η . Instead of reducing η , ARD adopts a more aggressive approach for increasing the lower bound of the 1-norm of accumulated regrets, maintaining a faster empirical convergence rate. Building on ARD, we propose MI-SPRM⁺, whose updates follow the recursion:

$$\begin{aligned} \boldsymbol{\theta}_i^t &\in \underset{\boldsymbol{\theta}_i \in \mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}}{\operatorname{argmin}} \{ \langle -\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}), \boldsymbol{\theta}_i \rangle + \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \}, \quad \mathbf{x}_i^t = \frac{\boldsymbol{\theta}_i^t}{\|\boldsymbol{\theta}_i^t\|_1}, \\ \hat{\boldsymbol{\theta}}_i^{t+1} &\in \underset{\boldsymbol{\theta}_i \in \mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}}{\operatorname{argmin}} \{ \langle -\mathbf{F}_i^t(\boldsymbol{\theta}^t), \boldsymbol{\theta}_i \rangle + \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \}, \quad R^{t+1} = \begin{cases} R^t + 1 & \text{if } \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 \\ & \quad - \frac{\mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^{t-1}) + \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^t)}{2} > 0, \\ R^t & \text{else} \end{cases} \end{aligned} \quad (6)$$

where $R^1 = 1$, $\boldsymbol{\theta}_i^0 = \mathbf{1}/|A_i|$, $\hat{\boldsymbol{\theta}}_i^1 = \mathbf{1}/|A_i|$, $\mathbf{x}_i^0 = \mathbf{1}/|A_i|$, $\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}) = \langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1} - \ell_i^{t-1}$, $\mathbf{F}_i^t(\boldsymbol{\theta}^t) = \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t$, $\boldsymbol{\theta}^{t-1} = [\boldsymbol{\theta}_0^{t-1}; \boldsymbol{\theta}_1^{t-1}]$, $\boldsymbol{\theta}^t = [\boldsymbol{\theta}_0^t; \boldsymbol{\theta}_1^t]$, $\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}) = [\mathbf{F}_0^{t-1}(\boldsymbol{\theta}^{t-1}); \mathbf{F}_1^{t-1}(\boldsymbol{\theta}^{t-1})]$, $\mathbf{F}^t(\boldsymbol{\theta}^t) = [\mathbf{F}_0^t(\boldsymbol{\theta}^t); \mathbf{F}_1^t(\boldsymbol{\theta}^t)]$, and $\psi(\cdot)$ is the quadratic regularizer. The pseudocode for MI-SPRM⁺ is in Algorithm 1.

The primary distinction between MI-SPRM⁺ and SPRM^+ lies in the adaptive adjustment of the decision space (denoted as $\mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}$) that MI-SPRM⁺ performs at each iteration t . This adaptation ensures that the lower bound for the 1-norm of accumulated regrets increases monotonically and exceeds $1/C_0$, since R^t serves as such lower bound (from the definition of $\mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}$) and increases monotonically to a constant that exceeds $1/C_0$. According to these properties, MI-SPRM⁺ obtains the $O(1/T)$ theoretical convergence rate, as shown in Theorem 4.1. See details in Appendix A.

270 **Algorithm 1** MI-SPRM⁺

```

272 1: Initialize:  $R^1 = 1$ ,  $\boldsymbol{\theta}_i^0 \leftarrow \frac{1}{|A_i|}$ ,  $\hat{\boldsymbol{\theta}}_i^1 \leftarrow \frac{1}{|A_i|}$ ,  $\mathbf{x}_i^0 \leftarrow \frac{1}{|A_i|}$ ,  $\forall i \in \mathcal{N}$ 
273 2:  $\mathbf{x}^0 = [\mathbf{x}_0^0; \mathbf{x}_1^0]$ 
274 3: for  $t = 1, 2, \dots, T$  do
275 4:   for  $i \in \mathcal{N}$  do
276 5:      $\ell_i^{t-1} = -\nabla_{\mathbf{x}_i^{t-1}} u_i(\mathbf{x}^{t-1})$ ,  $\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}) = \langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1} - \ell_i^{t-1}$ 
277 6:      $\boldsymbol{\theta}_i^t \in \arg \min_{\boldsymbol{\theta}_i \in \mathbb{R}^{|A_i|} \geq R^t} \left\{ \langle -\mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1}), \boldsymbol{\theta}_i \rangle + \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \right\}$ ,  $\mathbf{x}_i^t = \frac{\boldsymbol{\theta}_i^t}{\|\boldsymbol{\theta}_i^t\|_1}$ 
278 7:   end for
279 8:   for  $i \in \mathcal{N}$  do
280 9:      $\ell_i^t = -\nabla_{\mathbf{x}_i^t} u_i(\mathbf{x}^t)$ ,  $\mathbf{F}_i^t(\boldsymbol{\theta}^t) = \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t$ 
281 10:     $\hat{\boldsymbol{\theta}}_i^{t+1} \in \arg \min_{\boldsymbol{\theta}_i \in \mathbb{R}^{|A_i|} \geq R^t} \left\{ \langle -\mathbf{F}_i^t(\boldsymbol{\theta}^t), \boldsymbol{\theta}_i \rangle + \mathcal{B}_\psi(\boldsymbol{\theta}_i, \hat{\boldsymbol{\theta}}_i^t) \right\}$ 
282 11:   end for
283 12:    $\boldsymbol{\theta}^{t-1} = [\boldsymbol{\theta}_0^{t-1}; \boldsymbol{\theta}_1^{t-1}]$ ,  $\boldsymbol{\theta}^t = [\boldsymbol{\theta}_0^t; \boldsymbol{\theta}_1^t]$ ,  $\mathbf{x}^t = [\mathbf{x}_0^t; \mathbf{x}_1^t]$ 
284 13:    $\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}) = [\mathbf{F}_0^{t-1}(\boldsymbol{\theta}^{t-1}); \mathbf{F}_1^{t-1}(\boldsymbol{\theta}^{t-1})]$ ,  $\mathbf{F}^t(\boldsymbol{\theta}^t) = [\mathbf{F}_0^t(\boldsymbol{\theta}^t); \mathbf{F}_1^t(\boldsymbol{\theta}^t)]$ 
285 14:    $R^{t+1} = \begin{cases} R^t + 1 & \text{if } \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\boldsymbol{\theta}^t, \boldsymbol{\theta}^{t-1}) + \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^t)}{2} > 0 \\ R^t & \text{else} \end{cases}$ ,
286
287 15: end for
288 16: return  $\bar{\mathbf{x}}^T = \frac{\sum_{t=1}^T R^t \mathbf{x}^t}{\sum_{t=1}^T R^t}$ 
289

```

291 **Theorem 4.1.** [Proof is in Appendix A.] In a two-player zero-sum NFG, if all players employ MI-
292 SPRM⁺, then the weighted average strategy profile $\bar{\mathbf{x}}^T = \frac{(\sum_{t=1}^T R^t \mathbf{x}^t)}{(\sum_{t=1}^T R^t)}$ converges to an approximate
293 NE with a rate of $O(1/T)$.

294 **Discussion.** We now discuss whether our MI-SPRM⁺ can be extended to multi-player general-sum
295 NFGs or extensive-form games (EFGs). Firstly, regarding multi-player general-sum NFGs, it is
296 crucial to clarify that, the complexity of computing a NE for multi-player general-sum NFGs belongs
297 to the PPAD complexity class (Daskalakis et al., 2009). Therefore, no algorithm can achieve a
298 polynomial-time convergence to an NE in such games. Our experiments further corroborate that none
299 of the tested algorithms exhibited any convergence to NE when applied to multi-player general-sum
300 NFGs. In fact, the original paper of SPRM⁺ (Farina et al., 2023) only provides a social regret bound
301 of $O(1)$ for multi-player general-sum NFGs, and does not offer any convergence rate to an NE in such
302 games. As shown in Lemma A.1, we establish a similar social regret bound of $O(1)$ for multi-player
303 general-sum NFGs: $(\sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle) / (\sum_{t=1}^T R^t) \leq O(1)$. Secondly, for EFGs, the design of
304 MI-SPRM⁺ can be directly extended to this domain. However, its $O(1/T)$ convergence rate does not
305 hold. Specifically, RM variants are typically integrated with the Counterfactual Regret Minimization
306 (CFR) framework to address EFGs. Unfortunately, to the best of my knowledge, only Clairvoyant
307 CFR (Farina et al., 2023) achieves an $O(1/T)$ convergence rate when learning an NE of EFGs, albeit
308 at the cost of an $O(\log T)$ per-iteration complexity (such complexity of our MI-SPRM⁺ is $O(1)$).
309 Experimental results show that the combination of MI-SPRM⁺ and the CFR framework significantly
310 outperforms other tested algorithms. In fact, such combination demonstrates an $O(1/T)$ or even
311 faster empirical convergence rate.

313 **5 EXPERIMENTS**

314 **Configurations.** We now evaluate MI-SPRM⁺ by comparing to RM⁺ (Tammelin, 2014), PRM⁺ (Fa-
315 rina et al., 2021), SPRM⁺ (Farina et al., 2023), OGDA (Popov, 1980), OMWU (Rakhlin and
316 Sridharan, 2013a), and DS-OptMD (Hsieh et al., 2021) (unless otherwise stated). Among them,
317 MI-SPRM⁺, RM⁺, PRM⁺, and DS-OptMD are parameter-free algorithms. Notably, although the
318 update rules for RM⁺ and PRM⁺ include the step size η , the sequence of the strategy profiles
319 $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^T$ that they generate remains unaffected by the value of η (Farina et al., 2021), which
320 is referred to as stepsize-invariance, also known as the strongly parameter-free property in Grand-
321 Clément and Kroer (2021). This is why RM⁺ and PRM⁺ are referred to as parameter-free algorithms.
322 MI-SPRM⁺, SPRM⁺, OGDA, and DS-OptMD achieve an $O(1/T)$ theoretical convergence rate
323 while other tested algorithms only exhibit an $O(1/\sqrt{T})$ theoretical convergence rate. We use the

324 duality gap as the metric to measure the distance to equilibrium. For non-parameter-free algorithms
 325 (SPRM⁺ and OGDA), we choose step size η from $[0.01, 0.1, 1]$. We do not use linear averaging and
 326 alternating updates. All experiments are conducted on a computer equipped with one Xeon(R) Gold
 327 6444Y CPU and 256 GB of memory.

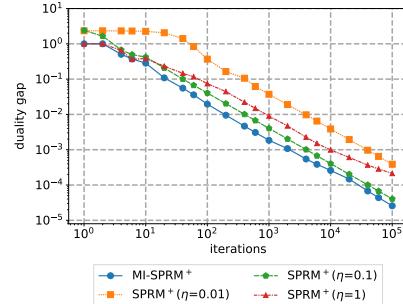
328 **Results on convergence rates in two-player zero-sum NFGs.** Now, we present the convergence
 329 results in two-player zero-sum NFGs. We conduct experiments on the 3×3 two-player zero-sum
 330 NFGs considered in the original paper of S^{PRM}⁺ (Farina et al., 2023), whose payoff matrix is
 331 $[[3, 0, -3], [0, 3, -4], [0, 0, 1]]$, and randomly generated two-player zero-sum NFGs of varying sizes:
 332 $[10, 30, 50, 100]$. For each size, we generate 60 independent instances to ensure the robustness of
 333 our results. Specifically, for each set of 20 instances, the payoff matrices are drawn from distinct
 334 Gaussian distributions. The first group uses a Gaussian distribution with a mean of 0 and a standard
 335 deviation of 1, the second group employs a Gaussian distribution with a mean of 0 and a standard
 336 deviation of 10, and the final group uses a Gaussian distribution with a mean of 0 and a standard
 337 deviation of 100. We present the average duality gaps across the 20 instances for each group and
 338 report the corresponding confidence intervals.

339 The convergence rates on the 3×3 two-player
 340 zero-sum NFGs considered in the original paper of
 341 S^{PRM}⁺ (Farina et al., 2023) are demonstrated in Fig.
 342 1. The experimental results demonstrate that S^{PRM}⁺
 343 is highly sensitive to the step size parameter, with
 344 performance variations of up to tenfold depending on
 345 the chosen value. In contrast, MI-SPRM⁺ eliminates
 346 the need for parameter tuning and achieves a faster
 347 convergence rate compared to S^{PRM}⁺. The con-
 348 vergence results on randomly generated two-player
 349 zero-sum NFGs are shown in Figs. 2, 4, and 5 (due
 350 to page limitations, Figs. 4 and 5 are included in
 351 Appendix C). MI-SPRM⁺ achieves an $O(1/T)$ em-
 352 pirical convergence rate across all tested games. No-
 353 tably, MI-SPRM⁺ outperforms all other algorithms.
 354 Additionally, our findings indicate that the traditional
 355 regret minimization algorithms, such as OGDA and
 356 OMWU, are more sensitive compared to RM⁺ vari-
 357 ants. Specifically, in games where payoff matrices
 358 are sampled from a Gaussian distribution with mean 0 and standard deviation 1, as well as a Gaussian
 359 distribution with mean 0 and standard deviation 10, OGDA and OMWU only converge when η is
 360 sufficiently small. In games where payoff matrices are sampled from a Gaussian distribution with
 361 mean 0 and standard deviation 100, OGDA and OMWU only converges when η is 0.001 and the
 362 dimension of the game is less than 10.

363 It is important to note that the results in Fig. 5 may exhibit slight scale distortion. In fact, in terms of
 364 the average reduction in duality gap, MI-SPRM⁺ demonstrates approximately a 37% improvement
 365 compared to S^{PRM}⁺ (the best-performing algorithm excluding our MI-SPRM⁺). This reduction
 366 is comparable to the 42% improvement in Xu et al. (2024a) (which also investigate RM variants).
 367 Furthermore, in the games considered in Figs. 2 and 4, MI-SPRM⁺ achieves a remarkable reduction
 368 of 92% and 74%, respectively, relative to S^{PRM}⁺. These reductions significantly surpass the
 369 reductions in Xu et al. (2024a).

370 Moreover, although DS-OptMD theoretically guarantees an $O(1/T)$ convergence rate, it fails to
 371 empirically demonstrate this rate. We argue that this is because it achieves an $O(1/T)$ theoretical
 372 convergence rate through adaptive step size reduction. However, a substantial number of iterations is
 373 necessary to sufficiently reduce the step size and fully realize the $O(1/T)$ convergence rate. For a
 374 more detailed discussion on the empirical convergence rate of DS-OptMD, refer to the paragraph
 375 titled “Results on the dynamics of the values of R^t ” in Appendix C.

376 **Results on convergence rates in multi-player general-sum NFGs.** We also evaluate the per-
 377 formance of MI-SPRM⁺, RM⁺, PRM⁺, S^{PRM}⁺, OGDA, OMWU, and DS-OptMD in multi-player
 378 general-sum NFGs. The results are show in Appendix C (Fig. 6). Consistent with theory, no algorithm
 379 can learn an NE in all tested multi-player general-sum NFGs. See more details in Appendix C.



377 Figure 1: Convergence rates of MI-SPRM⁺
 378 and S^{PRM}⁺ with different step sizes η in the
 379 3×3 two-player zero-sum NFGs considered
 380 in the original paper of S^{PRM}⁺. The duality
 381 gaps at iteration 1e5 for MI-SPRM⁺, S^{PRM}⁺
 382 ($\eta = 0.01$), S^{PRM}⁺ ($\eta = 0.1$), and S^{PRM}⁺
 383 ($\eta = 1$) are 2.6e-5, 3.9e-4, 4.0e-5, and 2.1e-4,
 384 respectively.

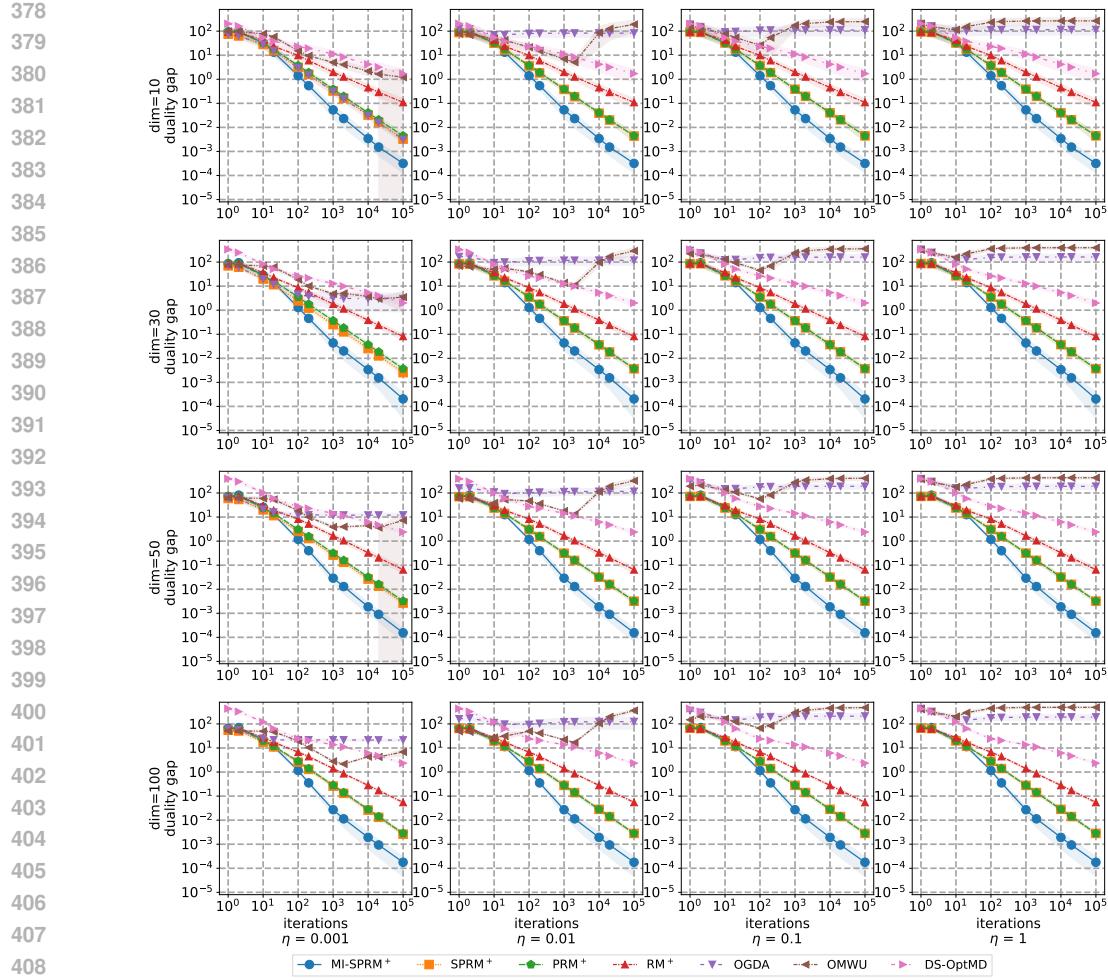


Figure 2: Convergence rates of different algorithms in randomly generated two-player zero-sum NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard deviation 100. Note that the value of η only involves the performance of SPRM⁺ and OGDA as other algorithms are parameter-free algorithms.

Results on convergence rates in EFGs. Now, we evaluate the performance of MI-SPRM⁺ in EFGs. We test on eight instances of four standard EFG benchmarks: Kuhn Poker, Leduc Poker, Liar’s Dice, and Goofspiel. These EFGs are implemented using OpenSpiel (Lanctot et al., 2019). For Kuhn Poker, we examine the two-player, three-player, and four-player versions, denoted as “Kuhn Poker”, “3-Player Kuhn Poker”, and “4-Player Kuhn Poker”, respectively. In the case of Leduc Poker, only its two-player version is tested due to the size constraints of the three-player variant. For Liar’s Dice, OpenSpiel’s limitations prevent testing of versions with three or more players; therefore, we analyze the versions with 3 and 4 sides, denoted as “Liar’s Dice (3)” and “Liar’s Dice (4)”, respectively. Lastly, for Goofspiel, we set the number of cards to 3 and test both the two-player and three-player versions, referred to as “Goofspiel (3)” and “3-Player Goofspiel (3)”. As RM variants are typically integrated with the CFR framework to address EFGs, we integrate MI-SPRM⁺ with the CFR framework and get MI-SPCFR⁺. We compare MI-SPCFR⁺ against the combination of SPRM⁺ with the CFR framework, referred to as SPCFR⁺, and the combination of PRM⁺ with the CFR framework, known as PCFR⁺ (Farina et al., 2021). We do not to compare with other algorithms tested in our NFGs experiments as they consistently underperform MI-SPRM⁺, SPRM⁺, and PRM⁺. The results are shown in Fig. 3. We observe that MI-SPCFR⁺ significantly surpasses SPCFR⁺ in all eight tested games. In addition, although PCFR⁺ outperforms MI-SPCFR⁺ in Leduc Poker, MI-SPCFR⁺ significantly outperforms PCFR⁺ in the remaining seven tested games. Moreover, the experimental results demonstrate that our algorithm achieves an $O(1/T)$ or even faster empirical convergence rate even on multi-player EFGs. Interestingly, while an $O(1/T)$ or even faster empirical convergence rate

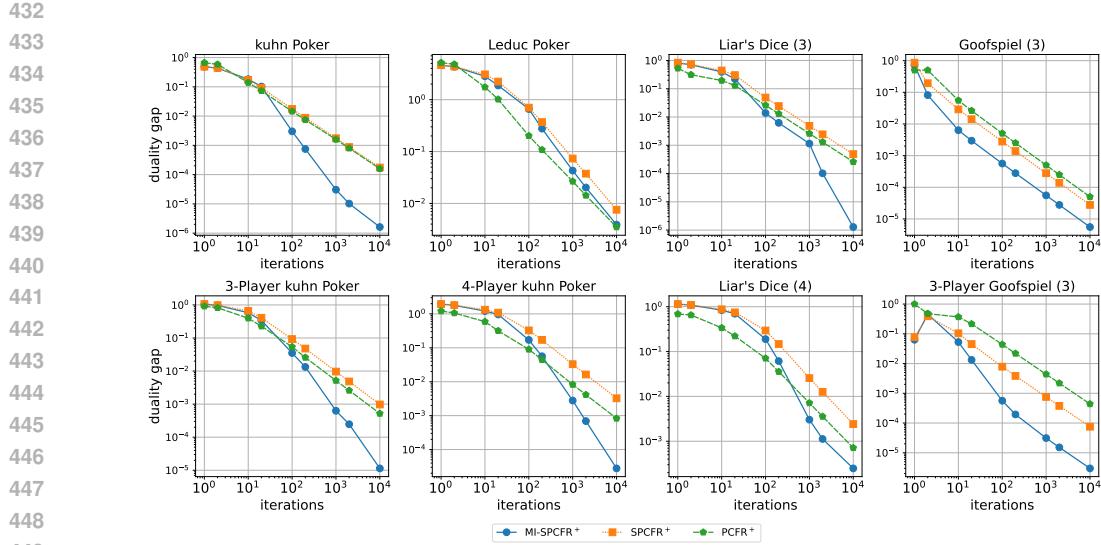


Figure 3: Convergence rates of different algorithms in standard EFG benchmarks.

Table 1: Comparison of the runtime (in minutes) between MI-SPRM⁺, SPRM⁺, and DS-OptMD for randomly generated two-player zero-sum NFGs. It is important to highlight that theoretical per-iteration complexity for MI-SPRM⁺, SPRM⁺, and DS-OptMD remains $O\left(\sum_{i \in \mathcal{N}} |\mathcal{A}_i| \log |\mathcal{A}_i|\right)$.

	MI-SPRM ⁺	SPRM ⁺	DS-OptMD
dim=10	0.1105±0.0007	0.0751±0.0016	0.1746±0.0007
dim=30	0.1367±0.0009	0.0858±0.0007	0.2001±0.0011
dim=50	0.1642±0.0016	0.1023±0.0016	0.2462±0.0005
dim=100	0.2398±0.0014	0.1562±0.0013	0.3717±0.0018

is observed in multi-player EFGs, no such empirical convergence is noted in multi-player NFGs. We hypothesize that this arises due to the unique characteristics of the CFR framework and the tested EFGs—Kuhn Poker and Goofspiel. However, this remains an open question, as no existing work has provided a theoretical explanation to date.

Results on runtimes. We compare the runtimes of MI-SPRM⁺, SPRM⁺, and DS-OptMD, as shown in Table 1, in randomly generated two-player zero-sum NFGs. For each game dimension, we average the runtimes over 60 instances. Although all three algorithms have the same theoretical per-iteration complexity, $O\left(\sum_{i \in \mathcal{N}} |\mathcal{A}_i| \log |\mathcal{A}_i|\right)$, both MI-SPRM⁺ and DS-OptMD require parameter learning to achieve their parameter-free properties, resulting in longer runtimes compared to SPRM⁺. Specifically, the runtime of MI-SPRM⁺ is approximately 1.5 times that of SPRM⁺, while DS-OptMD’s runtime is about 2.5 times longer. We hypothesize that the significantly higher runtime of DS-OptMD stems from its requirement for individual parameter learning for each player, a step that is circumvented in both MI-SPRM⁺ and SPRM⁺. A key direction for future research is to reduce the time required for parameter learning while preserving the parameter-free property.

6 CONCLUSIONS

In this paper, we investigate parameter-free RM variants. To the best of our knowledge, we propose the first parameter-free RM variant that achieves an $O(1/T)$ theoretical convergence rate, named MI-SPRM⁺. To achieve the parameter-free property and $O(1/T)$ theoretical convergence rate simultaneously, MI-SPRM⁺ ensures that the lower bound for the 1-norm of accumulated regrets monotonically increases by adjusting the decision space at each iteration. The empirical results indicate that MI-SPRM⁺ attains an empirical convergence rate of $O(1/T)$ in all tested games, and MI-SPRM⁺ outperforms all other tested algorithms, including existing RM variants, and traditional regret minimization algorithms. By combining MI-SPRM⁺ with the CFR framework, we get MI-SPCFR⁺, which outperforms other classical CFR algorithms like PCFR⁺, as shown in our experimental results.

486 REFERENCES
487

488 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a rigged casino:
489 The adversarial multi-armed bandit problem. In *Proceedings of IEEE 36th annual foundations of
490 computer science*, pages 322–331. IEEE, 1995.

491 Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
492 poker is solved. *Science*, 347(6218):145–149, 2015.

493 George W Brown. Iterative solution of games by fictitious play. *Activity analysis of production and
494 allocation*, 13(1):374–376, 1951.

495 Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
496 top professionals. *Science*, 359(6374):418–424, 2018.

497 Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
498 minimization. In *Proceedings of the 33rd AAAI Conference on Artificial Intelligence*, pages
499 1829–1836, 2019a.

500 Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. *Science*, 365(6456):
501 885–890, 2019b.

502 Yang Cai and Weiqiang Zheng. Doubly optimal no-regret learning in monotone games. In *Proceedings
503 of the 40th International Conference on Machine Learning*, 2023.

504 Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Accelerated algorithms for monotone inclu-
505 sion and constrained nonconvex-nonconcave min-max optimization. In *Proceedings of the 41st
506 International Conference on Machine Learning*, 2024.

507 Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo,
508 and Weiqiang Zheng. Last-iterate convergence properties of regret-matching algorithms in games.
509 In *Proceedings of the 14th International Conference on Learning Representation*, 2025.

510 Darshan Chakrabarti, Julien Grand-Clément, and Christian Kroer. Extensive-form game solving via
511 blackwell approachability on treeplexes. In *Proceedings of the 38th International Conference on
512 Neural Information Processing Systems*, 2024.

513 Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity of
514 computing a nash equilibrium. *Communications of the ACM*, 52(2):89–97, 2009.

515 F Facchinei. Finite-dimensional variational inequalities and complementarity problems, 2003.

516 Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Optimistic regret minimization for extensive-
517 form games via dilated distance-generating functions. In *Proceedings of the 33rd International
518 Conference on Neural Information Processing Systems*, pages 5221–5231, 2019.

519 Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive blackwell
520 approachability: Connecting regret matching and mirror descent. In *Proceedings of the 35th AAAI
521 Conference on Artificial Intelligence*, pages 5363–5371, 2021.

522 Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, and Haipeng Luo. Regret
523 matching+:(in) stability and fast convergence in games. *arXiv preprint arXiv:2305.14709*, 2023.

524 Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear and
525 stochastic programming. *Mathematical Programming*, 156(1):59–99, 2016.

526 Geoffrey J. Gordon. No-regret algorithms for online convex programs. In *Proceedings of the 19th
527 International Conference on Neural Information Processing Systems*, pages 489–496. MIT Press,
528 2006.

529 Julien Grand-Clément and Christian Kroer. Conic Blackwell algorithm: Parameter-free convex-
530 concave saddle-point solving. In *Proceedings of the 35th International Conference on Neural
531 Information Processing Systems*, volume 34, 2021.

540 Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
 541 *Econometrica*, 68(5):1127–1150, 2000.
 542

543 Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive learning in
 544 continuous games: Optimal regret bounds and convergence to nash equilibrium. In *Conference on*
 545 *Learning Theory*, pages 2388–2422, 2021.

546 Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract strategies
 547 in extensive-form games. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 548 volume 26, pages 1371–1379, 2012.
 549

550 Marc Lanctot. *Monte Carlo Sampling and Regret Minimization for Equilibrium Computation and*
 551 *Decision-Making in Large Extensive Form Games*. University of Alberta (Canada), 2013.

552 Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte carlo sampling for
 553 regret minimization in extensive games. In *Proceedings of the 22nd International Conference on*
 554 *Neural Information Processing Systems*, pages 1078–1086, 2009.
 555

556 Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien
 557 Pérrolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. Openspiel:
 558 A framework for reinforcement learning in games, 2019.

559 Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. *arXiv preprint*
 560 *arXiv:1910.09529*, 2019.
 561

562 Linjian Meng, Youzhi Zhang, Zhenxing Ge, Shangdong Yang, Tianyu Ding, Wenbin Li, Tianpei
 563 Yang, Bo An, and Yang Gao. Efficient last-iterate convergence algorithms in solving games, 2023.

564 Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
 565 Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
 566 intelligence in heads-up no-limit poker. *Science*, 356(6337):508–513, 2017.
 567

568 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 569 efficiency in optimization. 1983.

570 Martin J Osborne. *A course in game theory*. MIT Press, 1994.
 571

572 Julien Pérrolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul
 573 Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of Stratego
 574 with model-free multiagent reinforcement learning. *Science*, 378(6623):990–996, 2022.

575 Georgios Piliouras, Ryann Sim, and Stratis Skoulakis. Beyond time-average convergence: Near-
 576 optimal uncoupled online learning via clairvoyant multiplicative weights update. *Advances in*
 577 *Neural Information Processing Systems*, 35:22258–22269, 2022.
 578

579 Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle points.
 580 *Mat. Zametki*, 28(5):777–784, 1980.

581 Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In *Conference*
 582 *on Learning Theory*, pages 993–1019, 2013a.

583 Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
 584 sequences. In *Proceedings of the 26th International Conference on Neural Information Processing*
 585 *Systems*, pages 3066–3074, 2013b.
 586

587 Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algorithms.
 588 *Machine Learning*, 69(2):115–142, 2007.
 589

590 Eric Steinberger. Pokerrl. <https://github.com/TinkeringCode/PokerRL>, 2019.
 591

592 Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence of
 593 regularized learning in games. In *Proceedings of the 28th International Conference on Neural*
 594 *Information Processing Systems*, pages 2989–2997, 2015.

594 Oskari Tammelin. Solving large imperfect information games using CFR+. *arXiv preprint*
595 *arXiv:1407.5042*, 2014.

596

597 Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate convergence
598 in constrained saddle-point optimization. In *Proceedings of the 9th International Conference on*
599 *Learning Representations*, 2021.

600 Hang Xu, Kai Li, Haobo Fu, Qiang Fu, and Junliang Xing. Autocfr: learning to design counterfactual
601 regret minimization algorithms. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
602 volume 36, pages 5244–5251, 2022.

603

604 Hang Xu, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Dynamic discounted
605 counterfactual regret minimization. In *Proceedings of the 12th International Conference on*
606 *Learning Representations*, 2024a.

607 Hang Xu, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Minimizing
608 weighted counterfactual regret with optimistic online mirror descent. *arXiv preprint*
609 *arXiv:2404.13891*, 2024b.

610 Hugh Zhang, Adam Lerer, and Noam Brown. Equilibrium finding in normal-form games via greedy
611 regret minimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
612 pages 9484–9492, 2022.

613

614 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
615 *Proceedings of the 20th International Conference on Machine Learning*, pages 928–936, 2003.

616 Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
617 in games with incomplete information. In *Proceedings of the 20th International Conference on*
618 *Neural Information Processing Systems*, pages 1729–1736, 2007.

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A PROOF OF THEOREM 4.1
649650 To prove Theorem 4.1, we introduce Lemma A.1.
651652 **Lemma A.1.** [Proof is in Appendix A.1.] In a multi-player general-sum NFG, if all players employ
653 MI-SPRM⁺, then the weighted social regret bound is bounded by
654

655
$$\frac{\sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle}{\sum_{t=1}^T R^t} \leq O(1).$$

656

657 *Proof.* According to folk theorem, Lemma A.1 implies that the weighted average strategy profile
658 $\bar{\mathbf{x}}^T = (\sum_{t=1}^T R^t \mathbf{x}^t) / (\sum_{t=1}^T R^t)$ converges to an approximate NE with a rate of $O(1/T)$ since
659 $\sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle$ can be interpreted as the social regret over a newly sequence of strategy profiles,
660 $\{\mathbf{x}^1, \dots, \underbrace{\mathbf{x}^t, \dots, \mathbf{x}^t}_{R^t}, \dots\}$. It completes the proof. \square
661662 A.1 PROOF OF LEMMA A.1
663664 *Proof.* To prove Lemma A.1, we first prove that for any initial R^1 (defined in Eq. (6) with $t = 1$), R^t increases monotonically to a constant as $t \rightarrow \infty$. By using this property, we show that $\sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \leq O(1)$ for any $T \geq 1$.
665666 Before starting our proofs, we introduce Lemmas A.2 and A.3, which are very important for our
667 proofs.
668669 **Lemma A.2** (Adapted from Lemma 10 of Wei et al. (2021)). Let \mathcal{A} as a convex set and $\mathbf{a}' \in$
670 $\arg \min_{\mathbf{a}' \in \mathcal{A}} \{ \langle \mathbf{a}', \mathbf{g} \rangle + \mathcal{B}_\psi(\mathbf{a}', \mathbf{a}) \}$. Then for any $\mathbf{a}^* \in \mathcal{A}$, we have
671

672
$$\langle \mathbf{a}' - \mathbf{a}^*, \mathbf{g} \rangle \leq \mathcal{B}_\psi(\mathbf{a}^*, \mathbf{a}) - \mathcal{B}_\psi(\mathbf{a}^*, \mathbf{a}') - \mathcal{B}_\psi(\mathbf{a}', \mathbf{a}),$$

673

674 where $\psi(\cdot)$ is the quadratic regularizer defined in Eq. (3).
675676 **Lemma A.3** (Proof is in Appendix A.2). Suppose $\|\theta_i^t\|_1$ and $\|\theta_i^{t-1}\|_1$ are greater than a constant
677 C_1 for all player i , we have
678

679
$$\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 \leq \frac{2C_2}{C_1^2} \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right),$$

680

681 where $\psi(\cdot)$ is the quadratic regularizer defined in Eq. (3), and $C_2 = 2D(2L^2 + 4DL^2 + 4DP^2)$.
682683 Now, we first prove that for initial R^1 (not only 1), R^t increases monotonically to a constant as
684 $t \rightarrow \infty$. By using Lemma A.3 with $C_1 = R^{t-1}$, we have (from the update rule of MI-SPRM⁺ as
685 shown in Eq. (6), $R^t \geq R^{t-1}$)
686

687
$$\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 \leq \frac{2C_2}{(R^{t-1})^2} \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right).$$

688

689 If $R^{t-1} \geq 2\sqrt{C_2}$, we can obtain
690

691
$$\begin{aligned} \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 &\leq \frac{2C_2}{(R^{t-1})^2} \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right) \leq \frac{2C_2}{4C_2} \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right) \\ &\leq \frac{1}{2} \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right), \end{aligned} \quad (7)$$

692

693 implying that $\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \left(\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^t) \right) / 2 \leq 0$ always holds. There-
694 fore, from Eq. (6) and (7), we have that R^t increases monotonically and once $R^{t-1} \geq 2\sqrt{C_2}$, for any
695 $t' \geq t-1$, $R^{t'} = R^{t-1}$. Therefore, for any R^1 , R^t increases monotonically to a constant C_3 as $t \rightarrow \infty$.
696 Note that $C_3 \geq \max(R_1, 2\sqrt{C_2}) = \max(R_1, \sqrt{8D(2L^2 + 4DL^2 + 4DP^2)}) = \max(R_1, 1/C_0)$
697 (since $C_0 = 1/\sqrt{8D(2L^2 + 4DL^2 + 4DP^2)}$) as $t \rightarrow \infty$.
698699 Considering the third line of Eq. (6), and using Lemma A.2 with $\mathbf{a} = \hat{\theta}^t = [\hat{\theta}_0^t; \hat{\theta}_1^t]$, $\mathbf{a}' = \hat{\theta}^{t+1} =$
700 $[\hat{\theta}_0^{t+1}; \hat{\theta}_1^{t+1}]$, $\mathbf{a}^* = \theta = [\theta_0; \theta_1]$ and $\mathbf{g} = -\mathbf{F}^t(\theta^t) = [-\mathbf{F}_0^t(\theta^t); -\mathbf{F}_1^t(\theta^t)]$ (in this case, \mathcal{A} is
701 $\times_{i \in \mathcal{N}} \mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}$, which means $\theta \in \times_{i \in \mathcal{N}} \mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}$), we have
702

703
$$\langle -\mathbf{F}^t(\theta^t), \hat{\theta}^{t+1} - \theta \rangle \leq \mathcal{B}_\psi(\theta, \hat{\theta}^t) - \mathcal{B}_\psi(\theta, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \hat{\theta}^t). \quad (8)$$

704

702 Similarly, considering the first line of Eq. (6), and using Lemma A.2 with $\mathbf{a} = \hat{\theta}^t = [\hat{\theta}_0^t; \hat{\theta}_1^t]$, $\mathbf{a}' = \theta^t = [\theta_0^t; \theta_1^t]$, $\mathbf{a}^* = \hat{\theta}^{t+1} = [\hat{\theta}_0^{t+1}; \hat{\theta}_1^{t+1}]$ and $\mathbf{g} = -\mathbf{F}^{t-1}(\theta^{t-1}) = [-\mathbf{F}_0^{t-1}(\theta^{t-1}); -\mathbf{F}_1^{t-1}(\theta^{t-1})]$, we get

$$706 \quad \langle -\mathbf{F}^{t-1}(\theta^{t-1}), \theta^t - \hat{\theta}^{t+1} \rangle \leq \mathcal{B}_\psi(\hat{\theta}^{t+1}, \hat{\theta}^t) - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t). \quad (9)$$

707 Summing up Eq. (8) and (9), and adding $\langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle$ to both sides, we get

$$708 \quad \begin{aligned} \langle -\mathbf{F}^t(\theta^t), \theta^t - \theta \rangle &\leq \mathcal{B}_\psi(\theta, \hat{\theta}^t) - \mathcal{B}_\psi(\theta, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 709 &\quad + \langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle. \end{aligned} \quad (10)$$

710 For the term $\langle \mathbf{F}^t(\theta^t), \theta^t \rangle$, we get

$$712 \quad \begin{aligned} \langle \mathbf{F}^t(\theta^t), \theta^t \rangle &= \sum_{i \in \mathcal{N}} \langle \mathbf{F}_i^t(\theta^t), \theta_i^t \rangle = \sum_{i \in \mathcal{N}} (\langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t, \theta_i^t) = \sum_{i \in \mathcal{N}} (\langle \ell_i^t, \mathbf{x}_i^t \rangle \langle \mathbf{1}, \theta_i^t \rangle - \langle \ell_i^t, \theta_i^t \rangle) \\ 714 &= \sum_{i \in \mathcal{N}} \left(\langle \ell_i^t, \frac{\theta_i^t}{\|\theta_i^t\|_1} \rangle \|\theta_i^t\|_1 - \langle \ell_i^t, \theta_i^t \rangle \right) = 0, \end{aligned} \quad (11)$$

717 where the last equality is from $\mathbf{x}_i^t = \theta_i^t / \|\theta_i^t\|_1$ (as stated in Eq. (6)). Arranging the terms of Eq. (10) and using the fact in Eq. (11), we have

$$720 \quad \begin{aligned} \mathcal{B}_\psi(\theta, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(\theta, \hat{\theta}^t) \\ 721 &\leq -\langle \mathbf{F}^t(\theta^t), \theta \rangle + \langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t). \end{aligned} \quad (12)$$

722 Substituting $\theta = R^t \mathbf{x}$, $\mathbf{x} \in \mathcal{X}$ (note that $\theta \in \times_{i \in \mathcal{N}} \mathbb{R}_{\geq R^t}^{|\mathcal{A}_i|}$) into Eq. (12), we have

$$724 \quad \begin{aligned} \mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) \\ 725 &\leq -\langle \mathbf{F}^t(\theta^t), R^t \mathbf{x} \rangle + \langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 726 &\leq -R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle + \langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t), \end{aligned} \quad (13)$$

728 where the last inequality comes from $\langle \mathbf{F}^t(\theta^t), R^t \mathbf{x} \rangle = \sum_{i \in \mathcal{N}} \langle \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \ell_i^t, R^t \mathbf{x}_i \rangle = R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle$ ($\mathbf{x}_i \in \mathcal{X}_i$ implies $\langle \mathbf{1}, \mathbf{x}_i \rangle = 1$, as stated around Eq.(1)). Arranging the terms in Eq. (13), we get

$$730 \quad \begin{aligned} R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle + \mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) \\ 731 &\leq \langle \mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1}), \hat{\theta}^{t+1} - \theta^t \rangle - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 732 &\leq \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2 \|\hat{\theta}^{t+1} - \theta^t\|_2 - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 733 &\leq \frac{2 \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2}{2} + \frac{\|\hat{\theta}^{t+1} - \theta^t\|_2^2}{2 \times 2} - \mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t) - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 734 &= \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t)}{2} - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t) \\ 735 &\leq \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t)}{2} - \frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2}, \end{aligned} \quad (14)$$

741 where the third inequality is from that $ab \leq \rho b^2/2 + c^2/(2\rho)$, $\forall b, c, \rho > 0$ (here, $b = \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2$, $c = \|\hat{\theta}^{t+1} - \theta^t\|_2$, and $\rho = 2$), and the last equality is from $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$ ($\psi(\cdot)$ is the quadratic regularizer as stated around Eq. (6), as well as $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$ if $\psi(\cdot)$ is the quadratic regularizer as stated around Eq. (3)). Summing up Eq. (14) from $t = 1$ to T , we have

$$745 \quad \begin{aligned} 746 &\sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle + \mathcal{B}_\psi(R^T \mathbf{x}, \hat{\theta}^{T+1}) - \mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1) + \sum_{t=2}^T \left(-\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) + \mathcal{B}_\psi(R^{t-1} \mathbf{x}, \hat{\theta}^t) \right) \\ 747 &\leq \sum_{t=1}^T \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\hat{\theta}^{T+1}, \theta^T)}{2} - \sum_{t=1}^T \left(\frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2} + \frac{\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})}{2} \right) + \frac{\mathcal{B}_\psi(\hat{\theta}^1, \theta^0)}{2} \\ 748 &\leq \sum_{t=1}^T \|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \sum_{t=1}^T \left(\frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2} + \frac{\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})}{2} \right) + \frac{\mathcal{B}_\psi(\hat{\theta}^1, \theta^0)}{2}, \end{aligned} \quad (15)$$

754 where the first line is from that $\sum_{t=1}^T (\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t)) = \mathcal{B}_\psi(R^T \mathbf{x}, \hat{\theta}^{T+1}) - \mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1) + \sum_{t=2}^T (-\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) + \mathcal{B}_\psi(R^{t-1} \mathbf{x}, \hat{\theta}^t))$, and the first inequality is from

that $\sum_{t=1}^T (-\mathcal{B}_\psi(\hat{\theta}^{t+1}, \theta^t)/2 - \mathcal{B}_\psi(\theta^t, \hat{\theta}^t)/2) = -\mathcal{B}_\psi(\hat{\theta}^{T+1}, \theta^T)/2 - \sum_{t=1}^T (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)/2 + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})/2) + \mathcal{B}_\psi(\hat{\theta}^1, \theta^0)/2$. In addition, for the term $\sum_{t=2}^T (-\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) + \mathcal{B}_\psi(R^{t-1} \mathbf{x}, \hat{\theta}^t))$, as $\psi(\cdot)$ is the quadratic regularizer (as stated around Eq. (6)), we get

$$\begin{aligned} & \sum_{t=2}^T (-\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) + \mathcal{B}_\psi(R^{t-1} \mathbf{x}, \hat{\theta}^t)) \\ &= \sum_{t=2}^T ((R^{t-1})^2 - (R^t)^2) \frac{\|\mathbf{x}\|_2^2}{2} + \sum_{t=2}^T (R^t - R^{t-1}) \langle \mathbf{x}, \hat{\theta}^t \rangle \\ &\geq \sum_{t=2}^T ((R^{t-1})^2 - (R^t)^2) \frac{\|\mathbf{x}\|_2^2}{2} = ((R^1)^2 - (R^T)^2) \frac{\|\mathbf{x}\|_2^2}{2}, \end{aligned} \quad (16)$$

where the first equality is from that $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2 = \|\mathbf{a}\|_2^2/2 - \langle \mathbf{a}, \mathbf{b} \rangle + \|\mathbf{b}\|_2^2/2$ if $\psi(\cdot)$ is the quadratic regularizer (as stated around Eq. (3)), as well as the inequality is from the facts that $R^t \geq R^{t-1}$ (from the update rule of MI-SPRM⁺ as shown in Eq. (6)) and $\langle \mathbf{x}, \hat{\theta}^t \rangle \geq 0$ (as $\mathbf{x} \geq \mathbf{0}$ and $\hat{\theta}^t \geq \mathbf{0}$). From the fact that for any R^1 , R^t increases monotonically to a constant C_3 as $t \rightarrow \infty$ (as stated around Eq. (7)), we have $(R^T)^2 \leq C_3^2$. From Eq. (16), as well as combining $(R^T)^2 \leq C_3^2$ and $\|\mathbf{x}\|_2^2 = \sum_{i \in \mathcal{N}} \|\mathbf{x}_i\|_2^2 \leq |\mathcal{N}|$ (since $\|\mathbf{x}_i\|_2^2 \leq 1$ as stated around Eq. (1)), we get

$$\sum_{t=2}^T (-\mathcal{B}_\psi(R^t \mathbf{x}, \hat{\theta}^t) + \mathcal{B}_\psi(R^{t-1} \mathbf{x}, \hat{\theta}^t)) \geq ((R^1)^2 - (R^T)^2) \frac{\|\mathbf{x}\|_2^2}{2} \geq -(R^T)^2 \frac{\|\mathbf{x}\|_2^2}{2} \geq -C_3^2 |\mathcal{N}|. \quad (17)$$

Then, for the term $\mathcal{B}_\psi(R^T \mathbf{x}, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1)$, we have

$$\mathcal{B}_\psi(R^T \mathbf{x}, \hat{\theta}^{t+1}) - \mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1) \geq -\mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1). \quad (18)$$

Let $\mathcal{B}_\psi(R^1 \mathbf{x}, \hat{\theta}^1) \leq C_4$ with C_4 is a constant (such C_4 must exists since (i) R^1 and $\hat{\theta}^1$ are given, as well as (ii) $\mathbf{x} \in \mathcal{X}$ with \mathcal{X} is a compact set as stated around Eq.(1)). Then, combining Eq. (15), (17), and (18), we have

$$\begin{aligned} & \sum_{t=1}^T R^t \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle - C_3^2 |\mathcal{N}| - C_4 \\ & \leq \sum_{t=1}^T (\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2) + \frac{\mathcal{B}_\psi(\hat{\theta}^1, \theta^0)}{2} - \sum_{t=1}^T \left(\frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2} + \frac{\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})}{2} \right). \end{aligned} \quad (19)$$

To bound the value of $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2)$, we show that $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2) > 0$ only appears

$$T_r = \lceil 2\sqrt{C_2} - R^1 \rceil$$

times, where $\lceil \cdot \rceil$ is the ceiling integer of a number and C_2 is defined in Lemma A.3. Formally, $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2) > 0$ implies $R^{t+1} = R^t + 1$. Also, we have that once $R^{t-1} \geq 2\sqrt{C_2}$, for any $t' \geq t-1$, $R^{t'} = R^{t-1}$ (as stated around Eq. (7)). Thus, we have that MI-SPRM⁺ only updates the value of R^t within T_r times ($R^{t+1} = R^t + 1$) to ensure $R^{t-1} \geq 2\sqrt{C_2}$ since

$$R^1 + T_r = R^1 + \lceil 2\sqrt{C_2} - R^1 \rceil \geq 2\sqrt{C_2}.$$

Therefore, from the facts that (i) $R^{t+1} = R^t + 1$ only appears $T_r = \lceil 2\sqrt{C_2} - R^1 \rceil$ times and (ii) $R^{t+1} = R^t + 1$ appears if and only if $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2) > 0$ (as shown in Eq. (6)), we have that $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2) > 0$ only appears T_r times. Let these T_r times be denoted by the set \mathcal{T} , we have

$$\begin{aligned} & \sum_{t=1}^T \left(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2} - \frac{\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})}{2} \right) \\ & \leq \sum_{t \in \mathcal{T}} \left(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\theta^t, \hat{\theta}^t)}{2} - \frac{\mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1})}{2} \right), \end{aligned} \quad (20)$$

where the inequality is from the fact that the time t , which is not included in \mathcal{T} , ensures that $(\|\mathbf{F}^t(\theta^t) - \mathbf{F}^{t-1}(\theta^{t-1})\|_2^2 - (\mathcal{B}_\psi(\theta^t, \hat{\theta}^t) + \mathcal{B}_\psi(\hat{\theta}^t, \theta^{t-1}))/2) \leq 0$. Continuing from Eq. (20), we

810 have

$$\begin{aligned}
& \sum_{t \in \mathcal{T}} \left(\|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \frac{\mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t)}{2} - \frac{\mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^{t-1})}{2} \right) \\
& \leq \sum_{t \in \mathcal{T}} \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 \\
& \leq \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{N}} \|\langle \boldsymbol{\ell}_i^t, \mathbf{x}_i^t \rangle \mathbf{1} - \boldsymbol{\ell}_i^t - \langle \boldsymbol{\ell}_i^{t-1}, \mathbf{x}_i^t \rangle \mathbf{1} + \boldsymbol{\ell}_i^{t-1} \|_2^2 \\
& \leq 4 \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{N}} \left(\|\langle \boldsymbol{\ell}_i^t, \mathbf{x}_i^t \rangle \mathbf{1}\|_2^2 + \|\boldsymbol{\ell}_i^t\|_2^2 + \|\langle \boldsymbol{\ell}_i^{t-1}, \mathbf{x}_i^t \rangle \mathbf{1}\|_2^2 + \|\boldsymbol{\ell}_i^{t-1}\|_2^2 \right) \\
& \leq 4 \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{N}} \left(|\mathcal{A}_i|^2 \|\langle \boldsymbol{\ell}_i^t, \mathbf{x}_i^t \rangle \mathbf{1}\|_2^2 + \|\boldsymbol{\ell}_i^t\|_2^2 + |\mathcal{A}_i|^2 \|\langle \boldsymbol{\ell}_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1}\|_2^2 + \|\boldsymbol{\ell}_i^{t-1}\|_2^2 \right) \\
& \leq 4 \sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{N}} \left(D^2 \|\boldsymbol{\ell}_i^t\|_2^2 \|\mathbf{x}_i^t\|_2^2 + \|\boldsymbol{\ell}_i^t\|_2^2 + D^2 \|\boldsymbol{\ell}_i^{t-1}\|_2^2 \|\mathbf{x}_i^t\|_2^2 + \|\boldsymbol{\ell}_i^{t-1}\|_2^2 \right) \\
& \leq 4 \sum_{t \in \mathcal{T}} (D^2 P^2 + P^2 + D^2 P^2 + P^2) = 8T_r P^2 (D^2 + 1),
\end{aligned} \tag{21}$$

827 where the third inequality comes from that $\forall \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^d$, $\|\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}\|_2^2 \leq 4(\|\mathbf{a}\|_2^2 + \|\mathbf{b}\|_2^2 + \|\mathbf{c}\|_2^2 + \|\mathbf{d}\|_2^2)$, the fourth inequality is from that $\langle \boldsymbol{\ell}_i^t, \mathbf{x}_i^t \rangle \mathbf{1}$ and $\langle \boldsymbol{\ell}_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1}$ are $|\mathcal{A}_i|$ -dimensional vectors (as stated around Eq. (4)), the fifth inequality is from that $D = \max_{i \in \mathcal{N}} |\mathcal{A}_i|$, as well as the last inequality comes from the facts that $\|\mathbf{x}_i\|_2^2 \leq \|\mathbf{x}_i\|_1^2 = 1$ (as stated around Eq.(1)) and $\sum_{i \in \mathcal{N}} \|\boldsymbol{\ell}_i\|_2^2 = \|\boldsymbol{\ell}\|_2^2 \leq P^2$ (Eq.(1)). Combining Eq. (19), (20), (21), and the fact that $\mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^1, \boldsymbol{\theta}^0)/2 \leq C_5$ (C_5 is a constant and must exists as $\hat{\boldsymbol{\theta}}^1$ and $\boldsymbol{\theta}^0$ are given), $\forall \mathbf{x} \in \mathcal{X}$ and $T \geq 1$, we get

$$\frac{\sum_{t=1}^T R^t \langle \boldsymbol{\ell}^t, \mathbf{x}^t - \mathbf{x} \rangle}{\sum_{t=1}^T R^t} \leq \frac{8T_r P^2 (D^2 + 1) + C_3^2 |\mathcal{N}| + C_4 + C_5}{\sum_{t=1}^T R^t}.$$

837 It finishes the proof. \square

A.2 PROOF OF LEMMA A.3

840 *Proof.* To prove Lemma A.3, we first introduce Lemma A.4.

841 **Lemma A.4.** (*Proof is in Appendix A.3*) $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}_{\geq 0}^d$, $\|\mathbf{a}\|_1 \geq C_1$, $\|\mathbf{b}\|_1 \geq C_1$, $\left\| \frac{\mathbf{a}}{\|\mathbf{a}\|_1} - \frac{\mathbf{b}}{\|\mathbf{b}\|_1} \right\|_2 \leq \frac{\sqrt{d}}{C_1} \|\mathbf{a} - \mathbf{b}\|_2$.

845 From the definition of $\|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2$ (as stated around Eq. (6)), we get

$$\begin{aligned}
\|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 &= \sum_{i \in \mathcal{N}} \|\mathbf{F}_i^t(\boldsymbol{\theta}^t) - \mathbf{F}_i^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 \\
&= \sum_{i \in \mathcal{N}} \|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle \mathbf{1} - \boldsymbol{\ell}_i^t - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle \mathbf{1} + \boldsymbol{\ell}_i^{t-1} \|_2^2.
\end{aligned} \tag{22}$$

851 Continuing from the above equality, we have

$$\begin{aligned}
& \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 \\
&= \sum_{i \in \mathcal{N}} \|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle \mathbf{1} - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle \mathbf{1} - \boldsymbol{\ell}_i^t + \boldsymbol{\ell}_i^{t-1} \|_2^2 \\
&\leq \sum_{i \in \mathcal{N}} (2\|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle \mathbf{1} - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle \mathbf{1}\|_2^2 + 2\|\boldsymbol{\ell}_i^t - \boldsymbol{\ell}_i^{t-1}\|_2^2) \\
&= \sum_{i \in \mathcal{N}} (2|\mathcal{A}_i| \|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle\|_2^2 + 2\|\boldsymbol{\ell}_i^t - \boldsymbol{\ell}_i^{t-1}\|_2^2) \\
&\leq 2 \sum_{i \in \mathcal{N}} 2D \|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle\|_2^2 + 2\|\boldsymbol{\ell}^t - \boldsymbol{\ell}^{t-1}\|_2^2 \\
&\leq 2 \sum_{i \in \mathcal{N}} D \|\langle \mathbf{x}_i^t, \boldsymbol{\ell}_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \boldsymbol{\ell}_i^{t-1} \rangle\|_2^2 + 2L^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2,
\end{aligned} \tag{23}$$

864 where the third line is from the fact that $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^d, \|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$, the fourth line
 865 is from the fact that $\langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1}$ and $\langle \ell_i^{t-1}, \mathbf{x}_i^{t-1} \rangle \mathbf{1}$ are $|\mathcal{A}_i|$ -dimensional vectors (as stated around Eq.
 866 (4)), the fifth line is from $D = \max_{i \in \mathcal{N}} |\mathcal{A}_i|$ (as stated around Eq. (1)), and the last inequality is from
 867 $\|\ell^x - \ell^{x'}\|_2 \leq L\|\mathbf{x} - \mathbf{x}'\|_2$ (Eq. (1)). For the term $\sum_{i \in \mathcal{N}} D\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2$, we get
 868

$$\begin{aligned} 869 \sum_{i \in \mathcal{N}} D\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2 &= \sum_{i \in \mathcal{N}} D\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^t \rangle + \langle \mathbf{x}_i^{t-1}, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2 \\ 870 &\leq 2D \sum_{i \in \mathcal{N}} \left(\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^t \rangle\|_2^2 + \|\langle \mathbf{x}_i^{t-1}, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2 \right) \\ 871 &= 2D \sum_{i \in \mathcal{N}} \left(\|\langle \mathbf{x}_i^t - \mathbf{x}_i^{t-1}, \ell_i^t \rangle\|_2^2 + \|\langle \mathbf{x}_i^{t-1}, \ell_i^t - \ell_i^{t-1} \rangle\|_2^2 \right), \\ 872 \\ 873 \\ 874 \\ 875 \end{aligned}$$

876 where the first inequality comes from the fact that $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^d, \|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$. Then,
 877 we get

$$\begin{aligned} 878 \sum_{i \in \mathcal{N}} D\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2 &\leq 2D \sum_{i \in \mathcal{N}} \left(\|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 \|\ell_i^t\|_2^2 + \|\mathbf{x}_i^{t-1}\|_2^2 \|\ell_i^t - \ell_i^{t-1}\|_2^2 \right) \\ 879 &\leq 2D \sum_{i \in \mathcal{N}} \left(P^2 \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 + \|\ell_i^t - \ell_i^{t-1}\|_2^2 \right) \\ 880 &= 2D \sum_{i \in \mathcal{N}} P^2 \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 + 2D \sum_{i \in \mathcal{N}} \|\ell_i^t - \ell_i^{t-1}\|_2^2 \\ 881 \\ 882 \\ 883 \\ 884 \\ 885 \end{aligned} \tag{24}$$

886 where the second inequality comes from $\|\ell_i^t\|_2 \leq \|\ell_i^t\|_1 \leq \|\ell^t\|_1 \leq P$ (Eq. (1)) with $\|\mathbf{x}_i^{t-1}\|_2^2 \leq$
 887 $\|\mathbf{x}_i^{t-1}\|_1^2 = 1$ (as stated around Eq. (1)). Then, continuing from Eq. (24), we have

$$\begin{aligned} 888 \sum_{i \in \mathcal{N}} D\|\langle \mathbf{x}_i^t, \ell_i^t \rangle - \langle \mathbf{x}_i^{t-1}, \ell_i^{t-1} \rangle\|_2^2 &\leq 2D \sum_{i \in \mathcal{N}} P^2 \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 + 2D \sum_{i \in \mathcal{N}} \|\ell_i^t - \ell_i^{t-1}\|_2^2 \\ 889 &\leq 2DP^2 \sum_{i \in \mathcal{N}} \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 + 2D\|\ell^t - \ell^{t-1}\|_2^2 \\ 890 &\leq 2DP^2 \sum_{i \in \mathcal{N}} \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 + 2DL^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 \\ 891 &= 2DP^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 + 2DL^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2, \\ 892 \\ 893 \\ 894 \\ 895 \end{aligned} \tag{25}$$

896 where the third inequality is from $\|\ell^x - \ell^{x'}\|_2 \leq L\|\mathbf{x} - \mathbf{x}'\|_2$ (Eq. (1)), the last equality is from
 897 $\|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 = \sum_{i \in \mathcal{N}} \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2$. Combining Eq. (22), (23), and (25), we get

$$\begin{aligned} 898 \|\mathcal{F}^t(\boldsymbol{\theta}^t) - \mathcal{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 &\leq 4DP^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 + 4DL^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 + 2L^2 \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 \\ 899 &= (2L^2 + 4DL^2 + 4DP^2) \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2. \\ 900 \\ 901 \end{aligned} \tag{26}$$

902 Then, we get

$$\begin{aligned} 903 (2L^2 + 4DL^2 + 4DP^2) \|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 &= (2L^2 + 4DL^2 + 4DP^2) \sum_{i \in \mathcal{N}} \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2 \\ 904 &\leq (2L^2 + 4DL^2 + 4DP^2) \frac{\sum_{i \in \mathcal{N}} |\mathcal{A}_i| \|\boldsymbol{\theta}_i^t - \boldsymbol{\theta}_i^{t-1}\|_2^2}{C_1^2} \\ 905 &\leq D(2L^2 + 4DL^2 + 4DP^2) \frac{\|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\|_2^2}{C_1^2} \\ 906 &= D(2L^2 + 4DL^2 + 4DP^2) \frac{\|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t + \hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}\|_2^2}{C_1^2} \\ 907 &\leq 2D(2L^2 + 4DL^2 + 4DP^2) \frac{\|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 + \|\hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}\|_2^2}{C_1^2} \\ 908 &= 4D \frac{2L^2 + 4DL^2 + 4DP^2}{C_1^2} \left(\mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) + \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^{t-1}) \right), \\ 909 \\ 910 \\ 911 \\ 912 \\ 913 \\ 914 \\ 915 \end{aligned} \tag{27}$$

916 where the first equality is from $\|\mathbf{x}^t - \mathbf{x}^{t-1}\|_2^2 = \sum_{i \in \mathcal{N}} \|\mathbf{x}_i^t - \mathbf{x}_i^{t-1}\|_2^2$, the third inequality is from
 917 the assumption that $\|\boldsymbol{\theta}_i^{t-1}\|_1$ and $\|\boldsymbol{\theta}_i^t\|_1$ are greater than C_1 with Lemma A.4, the third inequality

918 comes from the fact that $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^d$, $\|\mathbf{a} + \mathbf{b}\|_2^2 \leq 2\|\mathbf{a}\|_2^2 + 2\|\mathbf{b}\|_2^2$ (in this case, $\mathbf{a} = \boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t$ and
919 $\mathbf{b} = \hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}$), as well as the last line is from the facts that $\psi(\cdot)$ is the quadratic regularizer (as
920 stated around Eq. (6)) and $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$ if $\psi(\cdot)$ is the quadratic regularizer (as stated
921 around Eq. (3)). Therefore, combining Eq. (26) and (27), we obtain
922

$$923 \|F^t(\boldsymbol{\theta}^t) - F^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 \leq 2 \frac{2D(2L^2 + 4DL^2 + 4DP^2)}{C_1^2} \left(\mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) + \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^t, \boldsymbol{\theta}^{t-1}) \right).$$

925 It completes the proof. \square

927 A.3 PROOF OF LEMMA A.4

929 *Proof.* To prove Lemma A.4, we first introduce Lemma A.5.

930 **Lemma A.5.** (Adapted from Proposition 1 in Farina et al. (2023)) $\forall \mathbf{c}, \mathbf{f} \in \mathbb{R}_{\geq 0}^d$, $\|\mathbf{c}\|_1 \geq 1$, $\|\mathbf{f}\|_1 \geq 1$,
931 $\left\| \frac{\mathbf{c}}{\|\mathbf{c}\|_1} - \frac{\mathbf{f}}{\|\mathbf{f}\|_1} \right\|_2 \leq \sqrt{d} \|\mathbf{c} - \mathbf{f}\|_2$.
932

934 Now, let $\mathbf{a} = C_1 \mathbf{c}$ and $\mathbf{b} = C_1 \mathbf{f}$, where $\mathbf{c}, \mathbf{f} \in \mathbb{R}_{\geq 0}^d$, $\|\mathbf{c}\|_1 \geq 1$, and $\|\mathbf{f}\|_1 \geq 1$. From these
935 conditions, we deduce that

$$936 \|\mathbf{a}\|_1 \geq C_1 \quad \text{and} \quad \|\mathbf{b}\|_1 \geq C_1.$$

937 Therefore, clearly, \mathbf{a} and \mathbf{b} satisfy the assumptions of Lemma A.4, i.e., $\mathbf{a}, \mathbf{b} \in \mathbb{R}_{\geq 0}^d$, $\|\mathbf{a}\|_1 \geq C_1$, and
938 $\|\mathbf{b}\|_1 \geq C_1$. Then, we have

$$940 \left\| \frac{\mathbf{a}}{\|\mathbf{a}\|_1} - \frac{\mathbf{b}}{\|\mathbf{b}\|_1} \right\|_2 = \left\| \frac{C_1 \mathbf{c}}{\|C_1 \mathbf{c}\|_1} - \frac{C_1 \mathbf{f}}{\|C_1 \mathbf{f}\|_1} \right\|_2 \\ 941 = \left\| \frac{\mathbf{c}}{\|\mathbf{c}\|_1} - \frac{\mathbf{f}}{\|\mathbf{f}\|_1} \right\|_2. \quad (28)$$

945 By Lemma A.5, we have

$$946 \left\| \frac{\mathbf{c}}{\|\mathbf{c}\|_1} - \frac{\mathbf{f}}{\|\mathbf{f}\|_1} \right\|_2 \leq \sqrt{d} \|\mathbf{c} - \mathbf{f}\|_2. \quad (29)$$

948 Additionally, we have

$$949 \|\mathbf{a} - \mathbf{b}\|_2 = \|C_1 \mathbf{c} - C_1 \mathbf{f}\|_2 = C_1 \|\mathbf{c} - \mathbf{f}\|_2 \\ 950 \Leftrightarrow \|\mathbf{c} - \mathbf{f}\|_2 = \frac{1}{C_1} \|\mathbf{a} - \mathbf{b}\|_2. \quad (30)$$

953 Combining Eq. (29) and (30), we obtain

$$955 \left\| \frac{\mathbf{c}}{\|\mathbf{c}\|_1} - \frac{\mathbf{f}}{\|\mathbf{f}\|_1} \right\|_2 \leq \frac{\sqrt{d}}{C_1} \|\mathbf{a} - \mathbf{b}\|_2. \quad (31)$$

957 Finally, combining Eq. (28) and (31), we obtain

$$959 \left\| \frac{\mathbf{a}}{\|\mathbf{a}\|_1} - \frac{\mathbf{b}}{\|\mathbf{b}\|_1} \right\|_2 \leq \frac{\sqrt{d}}{C_1} \|\mathbf{a} - \mathbf{b}\|_2.$$

962 This completes the proof. \square

963
964
965
966
967
968
969
970
971

972 B CONVERGENCE RESULT OF SPRM⁺
973

974
975 **Theorem B.1.** SPRM⁺ with $0 < \eta < R\sqrt{\frac{1}{8D(2L^2+4DL^2+4DP^2)}}$ ensures that the average strategy
976 profile $\bar{\mathbf{x}}^T = \frac{\sum_{t=1}^T \mathbf{x}^t}{T}$ converges to an approximate NE with a rate of $O(\frac{1}{T})$.
977

980 *Proof.* We would like to clarify that this proof is adapted from the proof of Theorem 4.2 of Farina
981 et al. (2023). Considering the second line of Eq. (5), and using Lemma A.2 with $\mathbf{a} = \hat{\boldsymbol{\theta}}^t = [\hat{\boldsymbol{\theta}}_0^t; \hat{\boldsymbol{\theta}}_1^t]$,
982 $\mathbf{a}' = \hat{\boldsymbol{\theta}}^{t+1} = [\hat{\boldsymbol{\theta}}_0^{t+1}; \hat{\boldsymbol{\theta}}_1^{t+1}]$, $\mathbf{a}^* = \boldsymbol{\theta} = [\boldsymbol{\theta}_0; \boldsymbol{\theta}_1]$ and $\mathbf{g} = -\mathbf{F}^t(\boldsymbol{\theta}^t) = [-\mathbf{F}_0^t(\boldsymbol{\theta}^t); -\mathbf{F}_1^t(\boldsymbol{\theta}^t)]$ (here, \mathcal{A}
983 is $\times_{i \in \mathcal{N}} \mathbb{R}_{\geq R}^{|\mathcal{A}_i|}$, implying $\boldsymbol{\theta} \in \times_{i \in \mathcal{N}} \mathbb{R}_{\geq R}^{|\mathcal{A}_i|}$), we have
984

$$985 \eta \langle -\mathbf{F}^t(\boldsymbol{\theta}^t), \hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta} \rangle \leq \mathcal{B}_\psi(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \hat{\boldsymbol{\theta}}^t). \quad (32)$$

988 Similarly, considering the first line of Eq. (5), and using Lemma A.2 with $\mathbf{a} = \hat{\boldsymbol{\theta}}^t = [\hat{\boldsymbol{\theta}}_0^t; \hat{\boldsymbol{\theta}}_1^t]$,
989 $\mathbf{a}' = \boldsymbol{\theta}^t = [\boldsymbol{\theta}_0^t; \boldsymbol{\theta}_1^t]$, $\mathbf{a}^* = \hat{\boldsymbol{\theta}}^{t+1} = [\hat{\boldsymbol{\theta}}_0^{t+1}; \hat{\boldsymbol{\theta}}_1^{t+1}]$ and $\mathbf{g} = -\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}) =$
990 $[-\mathbf{F}_0^{t-1}(\boldsymbol{\theta}^{t-1}); -\mathbf{F}_1^{t-1}(\boldsymbol{\theta}^{t-1})]$, we get
991

$$992 \eta \langle -\mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}), \boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^{t+1} \rangle \leq \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t). \quad (33)$$

994 Summing up Eq. (32) and (33), and adding $\eta \langle \mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}), \hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t \rangle$ to both sides, we
995 get
996

$$997 \eta \langle -\mathbf{F}^t(\boldsymbol{\theta}^t), \boldsymbol{\theta}^t - \boldsymbol{\theta} \rangle \leq \mathcal{B}_\psi(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) \\ 998 + \eta \langle \mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}), \hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t \rangle.$$

1000 From Eq. (11), we have $\langle \mathbf{F}^t(\boldsymbol{\theta}^t), \boldsymbol{\theta}^t \rangle = 0$. In addition, we have $\langle \mathbf{F}^t(\boldsymbol{\theta}^t), R\mathbf{x} \rangle = \sum_{i \in \mathcal{N}} \langle \langle \ell_i^t, \mathbf{x}_i^t \rangle \mathbf{1} -$
1001 $\ell_i^t, R\mathbf{x} \rangle = R \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle$ ($\mathbf{x}_i \in \mathcal{X}_i$ implies $\langle \mathbf{1}, \mathbf{x}_i \rangle = 1$, as stated around Eq.(1)). Thus, by setting
1002 $\boldsymbol{\theta} = R\mathbf{x}$ (notably, $\boldsymbol{\theta} \in \times_{i \in \mathcal{N}} \mathbb{R}_{\geq R}^{|\mathcal{A}_i|}$), we get
1003

$$1004 \eta R \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \leq \mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) \\ 1005 + \eta \langle \mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}), \hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t \rangle,$$

1008 which implies
1009

$$1010 R \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \\ 1011 \leq \frac{1}{\eta} \left(\mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) \right) + \langle \mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1}), \hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t \rangle \\ 1012 \leq \frac{1}{\eta} \left(\mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) \right) + \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2 \|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2 \\ 1013 \leq \frac{1}{\eta} \left(\mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^t) - \mathcal{B}_\psi(R\mathbf{x}, \hat{\boldsymbol{\theta}}^{t+1}) - \mathcal{B}_\psi(\hat{\boldsymbol{\theta}}^{t+1}, \boldsymbol{\theta}^t) - \mathcal{B}_\psi(\boldsymbol{\theta}^t, \hat{\boldsymbol{\theta}}^t) \right) + 2*\eta \frac{\|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2}{2} + \frac{\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2}{2*2*\eta} \\ 1014 \leq \frac{1}{2\eta} \left(\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^t\|_2^2 - \|R\mathbf{x} - \hat{\boldsymbol{\theta}}^{t+1}\|_2^2 - \|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2 - \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) + \eta \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 + \frac{\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2}{4\eta} \\ 1015 \leq \frac{1}{2\eta} \left(\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^t\|_2^2 - \|R\mathbf{x} - \hat{\boldsymbol{\theta}}^{t+1}\|_2^2 \right) - \frac{1}{4\eta} \left(\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) + \eta \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2,$$

1022 where the third inequality comes from the fact that $ab \leq \rho b^2/2 + c^2/(2\rho)$, $\forall b, c, \rho > 0$ (in this case,
1023 $b = 2\|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2$, $c = \|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2$, and $\rho = 2\eta$), and the penultimate inequality
1024 comes from $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$ ($\psi(\cdot)$ is the quadratic regularizer as stated around Eq. (5), as
1025 well as $\mathcal{B}_\psi(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2^2/2$ if $\psi(\cdot)$ is the quadratic regularizer as stated around Eq. (3)). Then,

1026 we have

$$\begin{aligned}
 & R \sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \\
 & \leq \sum_{t=1}^T \frac{1}{2\eta} \left(\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^t\|_2^2 - \|R\mathbf{x} - \hat{\boldsymbol{\theta}}^{t+1}\|_2^2 \right) + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{4\eta} \left(\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) \\
 & \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{4\eta} \left(\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) \\
 & \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{4\eta} \left(\|\hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) - \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^{T+1} - \boldsymbol{\theta}^T\|_2^2 + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2 \\
 & \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{4\eta} \left(\|\hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2 \right) + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2 \\
 & \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{8\eta} \|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\|_2^2 + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2,
 \end{aligned}$$

1044 where the third inequality is from $-\sum_{t=1}^T (\|\hat{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|_2^2 + \|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2) = -\sum_{t=1}^T (\|\hat{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^{t-1}\|_2^2 +$
1045 $\|\boldsymbol{\theta}^t - \hat{\boldsymbol{\theta}}^t\|_2^2) - \|\hat{\boldsymbol{\theta}}^{T+1} - \boldsymbol{\theta}^T\|_2^2 + \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2$. Then, we have

$$R \sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T \|\mathbf{F}^t(\boldsymbol{\theta}^t) - \mathbf{F}^{t-1}(\boldsymbol{\theta}^{t-1})\|_2^2 - \sum_{t=1}^T \frac{1}{8\eta} \|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\|_2^2 + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2.$$

1049 According to the proof of Lemma A.3 (Eq. (26) and the first three lines of Eq. (27)) with $C_1 = R$
1050 (from the update rule of SPRM⁺, as shown in Eq. (5)), we get

$$\begin{aligned}
 R \sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle & \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \eta \sum_{t=1}^T D(2L^2 + 4DL^2 + 4DP^2) \frac{\|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\|_2^2}{R^2} \\
 & \quad - \sum_{t=1}^T \frac{1}{8\eta} \|\boldsymbol{\theta}^t - \boldsymbol{\theta}^{t-1}\|_2^2 + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2.
 \end{aligned}$$

1057 According to above equation, if

$$\eta \frac{D(2L^2 + 4DL^2 + 4DP^2)}{R^2} \leq \frac{1}{8\eta} \Rightarrow \eta \leq R \sqrt{\frac{1}{8D(2L^2 + 4DL^2 + 4DP^2)}},$$

1062 then

$$R \sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \leq \frac{\|R\mathbf{x} - \hat{\boldsymbol{\theta}}^1\|_2^2}{2\eta} + \frac{1}{4\eta} \|\hat{\boldsymbol{\theta}}^1 - \boldsymbol{\theta}^0\|_2^2,$$

1065 which implies

$$\sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle \leq O(1), \quad \forall \mathbf{x} \in \mathcal{X}.$$

1069 In other words, we have

$$\frac{\sum_{t=1}^T \langle \ell^t, \mathbf{x}^t - \mathbf{x} \rangle}{T} \leq O\left(\frac{1}{T}\right),$$

1072 which implies an $O(1/T)$ theoretical convergence rate. It completes the proof. \square

1073
1074
1075
1076
1077
1078
1079

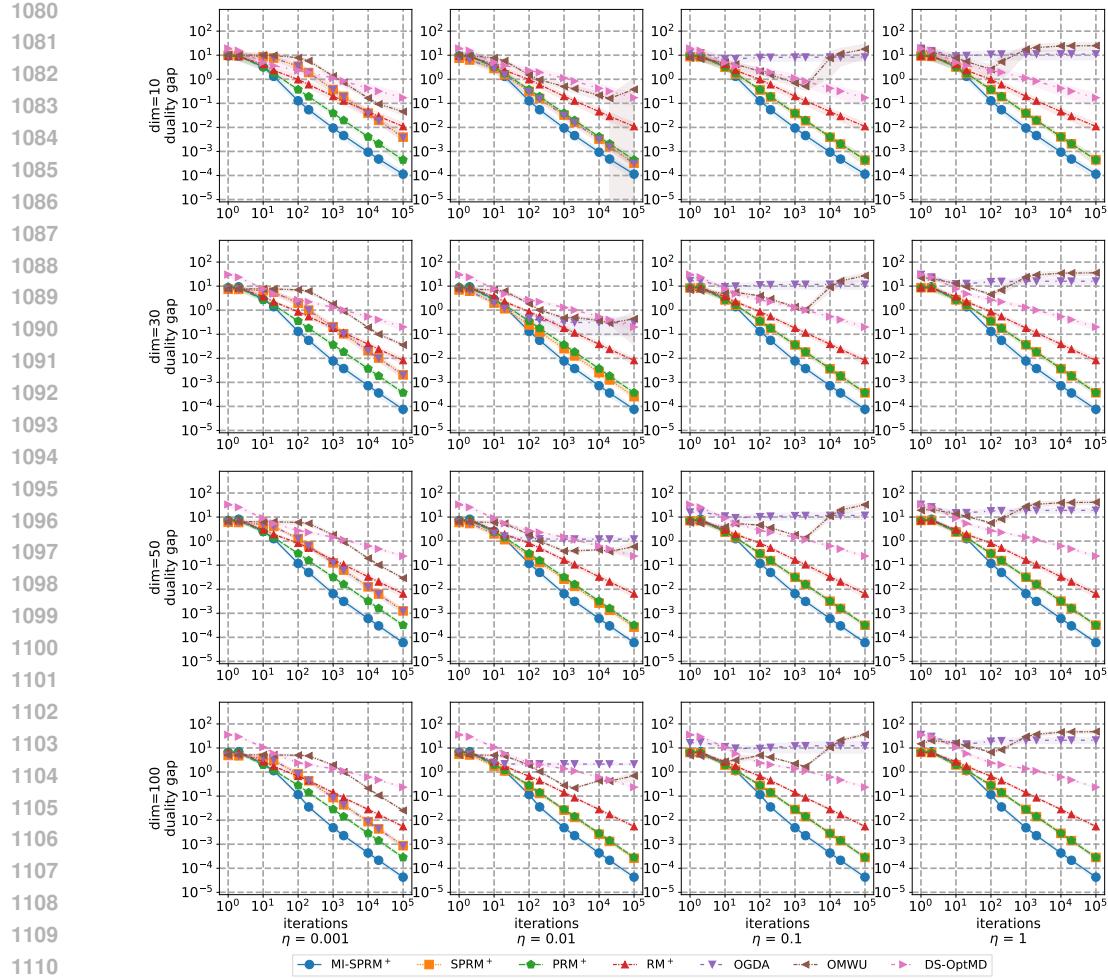


Figure 4: Convergence rates of different algorithms in randomly generated two-player zero-sum NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard deviation 10.

C FULL EXPERIMENTAL RESULTS

Results on convergence rates in two-player zero-sum NFGs. We now present the experimental results omitted from Section 5. Specifically, the convergence results for randomly generated two-player zero-sum NFGs, where the payoff matrices are sampled from a Gaussian distribution with mean 0 and standard deviation 10, as well as a Gaussian distribution with mean 0 and standard deviation 1, are illustrated in Figs. 4 and 5, respectively.

Results on convergence rates in multi-player general-sum NFGs. Now, we evaluate the performance of MI-SPRM⁺, RM⁺, PRM⁺, SPRM⁺, OGDA, OMWU, and DS-OptMD in multi-player general-sum NFGs. Specifically, we conduct experiments on three-player general-sum NFGs of varying sizes: [10, 30, 50]. Due to computational constraints, we do not include results for size 100 as did in two-player zero-sum NFGs, since three-player general-sum NFGs of size 100 require computation that is 100 times greater than that for two-player zero-sum NFGs of the same size. For convenience, we generate 20 instances for each size, where the payoff matrices are drawn from a Gaussian distribution with a mean of 0 and a standard deviation of 100. Notably, similar to our experiments in two-player zero-sum NFGs, we also test a range of Gaussian distributions with varying standard deviations. However, we observe that the results do not differ significantly from those obtained with a standard deviation of 1. Consequently, this paper focuses on and reports results derived from a Gaussian distribution with a mean of 0 and a standard deviation of 1. The results are shown in Fig. 6: no algorithm successfully learns an NE in all tested three-player general-sum NFGs.

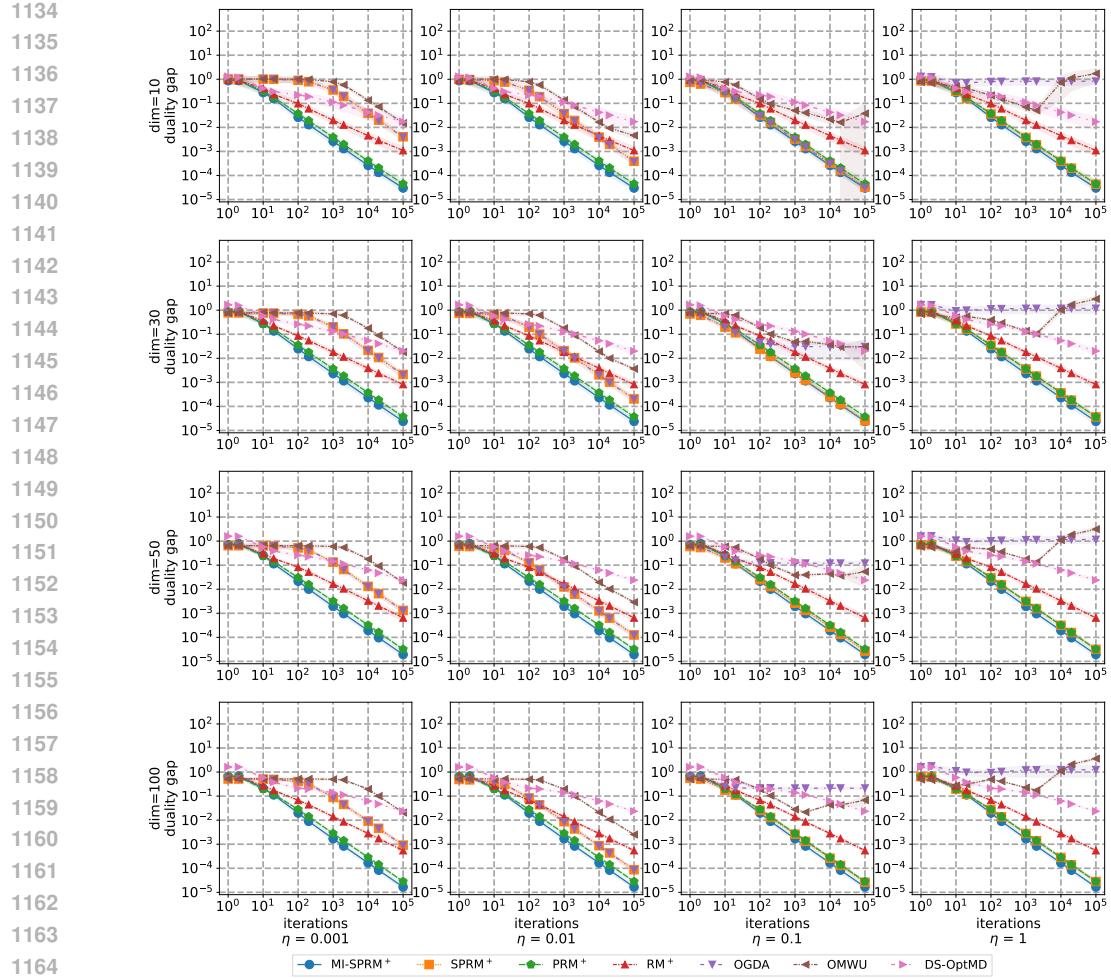


Figure 5: Convergence rates of different algorithms in randomly generated two-player zero-sum NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard deviation 1.

Results on dynamics of the values of R^t . To validate our theoretical analysis, we examine the dynamics of R^t over iterations. The results, shown in Fig. 7, align well with the theoretical analysis, showing that as the game’s dimension and the standard deviation of the Gaussian sampling increase, the final value to which R^t converges also increases. Specifically, theoretical analysis predicts that R^t will converge near C_2 , which is positively correlated with L , P , and D . As the game’s dimension increases, D necessarily increases. Similarly, as the standard deviation of the Gaussian sampling increases, the maximum standard value of the elements in the payoff matrix also rises, implying an increase in both L and P . This suggests that MI-SPRM⁺ is implicitly learning L and P . Therefore, one of our future directions is to apply techniques for adaptively learning unknown Lipschitz constants (Malitsky and Mishchenko, 2019; Ghadimi and Lan, 2016), *i.e.*, L , from the field of optimization to MI-SPRM⁺. Note that the techniques for adaptively learning unknown Lipschitz constants are related to the unconstrained strategy space while MI-SPRM⁺ is related to the constrained strategy space. Additionally, to investigate why MI-SPRM⁺ achieves a faster empirical convergence rate than DS-OptMD, we also present the dynamics of the step size η in DS-OptMD³, as shown in Fig. 8. By comparing the growth rate of R^t in MI-SPRM⁺ (Fig. 7) with the decay rate of the step size η in DS-OptMD, it is evident that R^t in MI-SPRM⁺ grows significantly faster than the decrease in η . Therefore, we argue that the faster empirical convergence rate of MI-SPRM⁺ compared to DS-OptMD is attributed to the step size η in DS-OptMD. Its decay rate is too slow, requiring more iterations than MI-SPRM⁺ to achieve the $O(1/T)$ convergence rate.

³The original paper of DS-OptMD denotes the reciprocal of the step size as λ_t^i , *i.e.*, $\lambda_t^i = 1/\eta_t^i$, where η_t^i is the step size of player i at iteration t , we present the average step size for all players.

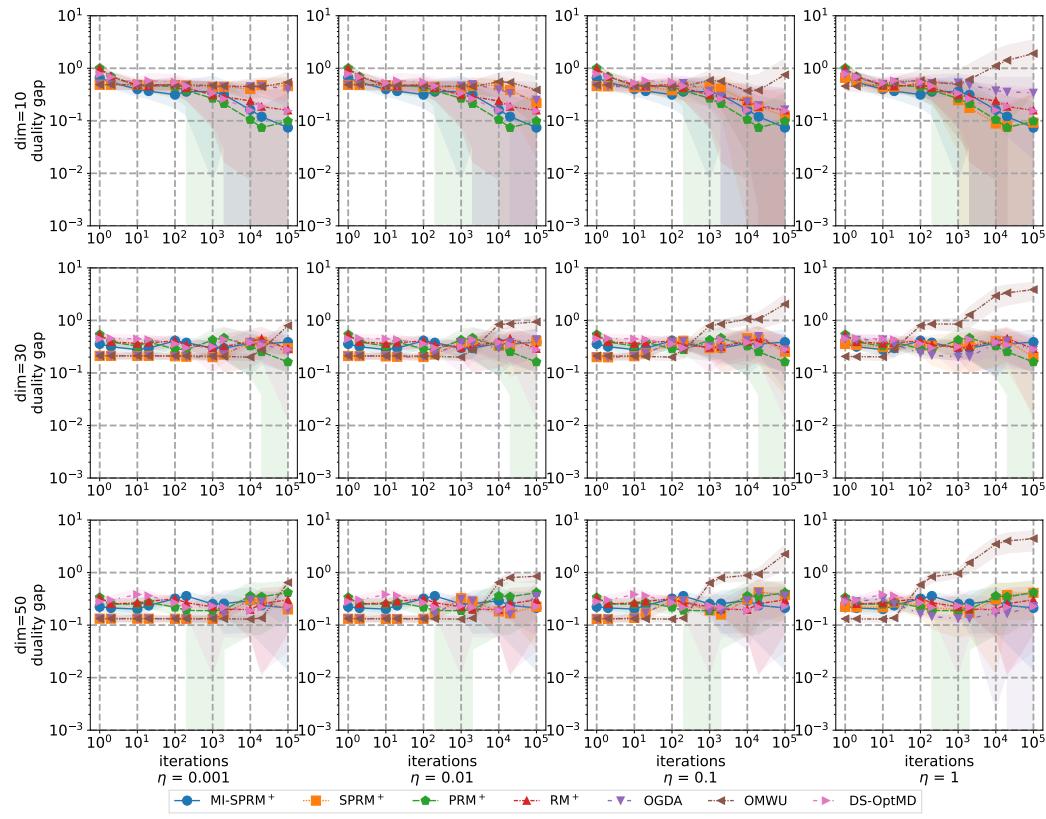


Figure 6: Convergence rates of different algorithms in randomly generated three-player general-sum NFGs, where payoff matrices are sampled from a Gaussian distribution with mean 0 and standard deviation 1.

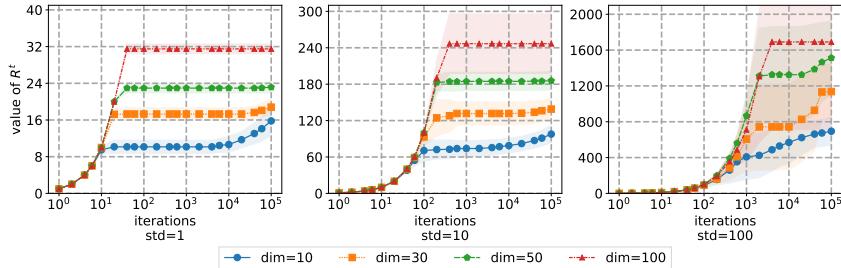


Figure 7: Dynamics of R^t in two-player zero-sum NFGs. The notation "std=x" represents the standard deviation of a Gaussian distribution is x.

Results on convergence rates in standard EFG benchmarks when quadratic averaging and alternating updates are used. Now, we provide the results on convergence rates in standard EFG benchmarks when quadratic averaging and alternating updates are used. Firstly, as did in Section 5, we test on eight instances of four standard EFG benchmarks: Kuhn Poker, Leduc Poker, Liar’s Dice, and Goofspiel. We compare MI-SPCFR⁺ with SPCFR⁺, PCFR⁺, CFR⁺, and DCFR. The results in Fig. 9 illustrate that, within two-player EFGs, all algorithms demonstrate improved performance when compared to scenarios where quadratic averaging and alternating updates are not used. In addition, it is important to highlight that our algorithm, MI-SPCFR+, outperforms other algorithms in 3 of 4 tested games, such as Kuhn Poker, Leduc Poker, and Goofspiel (3). Unfortunately, in multi-player EFGs, the performance of all algorithms may significantly diminish compared to their performance without quadratic averaging and alternating updates. For example, in 3-Player Kuhn Poker and 4-Player Kuhn Poker, decreases in performance surpass a factor of 1000. In fact, in multi-player EFGs, our algorithm performs similarly to the baseline overall. No single algorithm consistently demonstrates superior performance across most games compared to others.

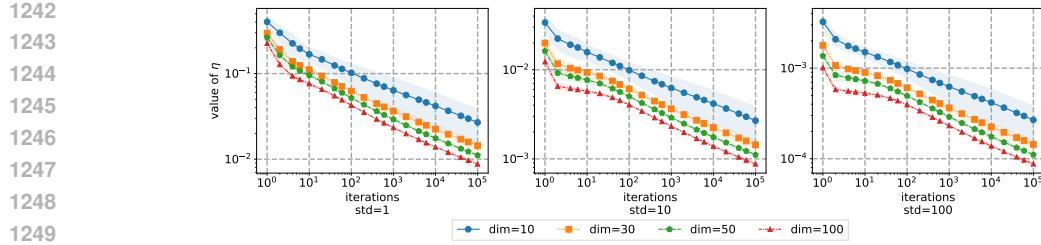
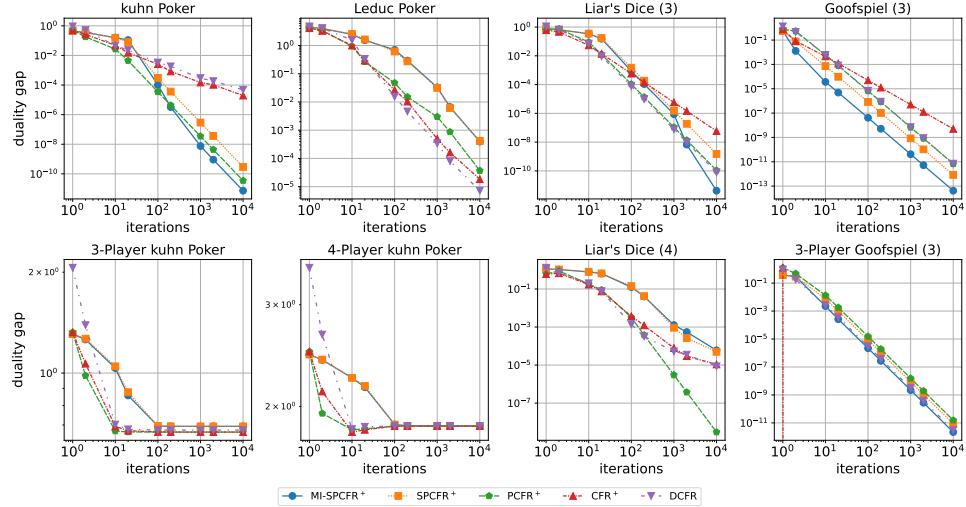
Figure 8: Dynamics of the step size η of DS-OptMD in two-player zero-sum NFGs.

Figure 9: Convergence rates of different algorithms in standard EFG benchmarks when quadratic averaging and alternating updates are used.

Table 2: Final exploitability for the tested algorithms in HUNL Subgames. The lowest exploitability is highlighted in red.

	CFR ⁺	PCFR ⁺	SPCFR ⁺	PDCFR ⁺	MI-SPCFR ⁺
Subgame3	4.64e-4	5.14e-4	5.12e-4	4.35e-4	3.10e-4
Subgame4	3.63e-4	4.15e-4	4.04e-4	3.89e-4	2.70e-4

Empirical convergence rates in HUNL Subgames. To assess the performance of our MI-SPCFR⁺ in addressing real-world games, we also conduct evaluations in HUNL Subgames, which are considerably larger than standard IIG benchmarks. Despite the presence of code related to HUNL Subgames in Openspiel, we have not successfully executed it. Therefore, we utilize HUNL Subgames implemented by Poker RL (Steinberger, 2019). Precisely, our code is based on the code from Xu et al. (2024b). The code in Xu et al. (2024b) supports only Subgame 3 and Subgame 4, so we conduct experiments solely on these two HUNL Subgames. We compare with CFR⁺, PCFR⁺, SPCFR⁺, and PDCFR⁺. We use alternating updates for each tested algorithms. Following the settings in the original version of PCFR⁺ (Farina et al., 2021), we employ quadratic averaging for SPCFR⁺ and MI-SPCFR⁺. The results are shown in Table 2: MI-SPCFR⁺ consistently outperform all baselines in both subgames.

D USE OF LARGE LANGUAGE MODELS

We promise that large language models are used only for editing, e.g., grammar, spelling, word choice.