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Abstract

Despite the established convergence theory of Optimistic Gradient Descent As-
cent (OGDA) and Extragradient (EG) methods for the convex-concave minimax
problems, little is known about the theoretical guarantees of these methods in
nonconvex settings. To bridge this gap, for the first time, this paper establishes the
convergence of OGDA and EG methods under the nonconvex-strongly-concave
(NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis
through the lens of single-call extra-gradient methods. We further establish lower
bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of
our analysis. We also conduct experiments supporting our theoretical results. We
believe our results will advance the theoretical understanding of OGDA and EG
methods for solving complicated nonconvex minimax real-world problems, e.g.,
Generative Adversarial Networks (GANs) or robust neural networks training.

1 Introduction

In this paper, we consider the following minimax problem:

min
x2Rd

max
y2Y

f(x,y) (1)

where Y could be a bounded convex or unbounded set, and the function f : Rd ⇥ Y ! R is smooth
and strongly-concave/concave with respect to y, but possibly nonconvex in x. Minimax optimization
(Problem 1) has been explored in a variety of fields, including classical game theory, online learning,
and control theory [2, 50, 21]. Minimax has emerged as a key optimization framework for machine
learning applications such as generative adversarial networks (GANs) [14], robust and adversarial
machine learning [46, 37, 15], and reinforcement learning [54, 43].

Gradient descent ascent (GDA) is a well-known algorithm for solving minimax problems, and it
is widely used to optimize generative adversarial networks. GDA performs a gradient descent step
on the primal variable x and a gradient ascent step on the dual variable y simultaneously in each
iteration. GDA with equal step sizes for both variables converges linearly to Nash equilibrium under
the strongly-convex strongly-concave (SC-SC) assumption [28, 12], but diverges even under the
convex-concave (C-C) setting for functions such as bilinear [22, 38].

Given the high nonconvexity of practical applications such as GANs, exploring convergence guar-
antees of minimax optimization algorithms beyond the convex-concave (C-C) setting is one of the
canonical research directions in minimax optimization. Several algorithms with convergence guaran-
tees beyond the C-C domain have been explored in the literature. Alternating Gradient Descent Ascent

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Algorithm NC-C NC-SC
Deterministic Stochastic Deterministic Stochastic

PG-SVRG [44] - Õ(✏�6) - -
HiBSA [36] O(✏�8) - - -

Prox-DIAG [48] Õ(✏�3) - - -
Minimax-PPA [31] O(✏�4) - O(

p


✏2
) -

ALSET [4] - - O(
3

✏2
) O(

3

✏4
)

Smoothed-AGDA [52] - - O( 
✏2
) O(

2

✏4
)

GDA [30] O(✏�6) O(✏�8) O(
2

✏2
) O(

3

✏4
)

OGDA/EG (Theorems 4.2, 4.4, 4.8, 4.9) O(✏�6) O(✏�8) O(
2

✏2
) O(

3

✏4
)

Table 1: A summary of prior and our convergence rates in nonconvex-concave (NC-C) and nonconvex-
strongly-concave (NC-SC) minimax optimization. For NC-C, we assume f(x,y) is `-smooth, G-
Lipschitz in x, and concave in y, and for NC-SC we assume `-smoothness, and µ-strong concavity
in y, where  = `/µ denote the condition number.

(AGDA) is one of these methods demonstrated to have excellent convergence properties beyond the
C-C setting [51, 52, 6]. Additionally, two alternative powerful algorithms are Extragradient (EG) and
Optimistic GDA (OGDA), which have recently acquired prominence due to their superior empirical
performance in optimizing GANs compared to other minimax optimization algorithms [28, 8, 38].
Spurred by the empirical success of EG and OGDA methods, there has been a tremendous amount
of work in theoretical understanding of their convergence rate under different sets of assumptions.
Specifically, recently the convergence properties of EG and OGDA were investigated for SC-SC and
C-C settings, where it has been shown that they tend to converge significantly faster than GDA in both
deterministic and stochastic settings [39, 12, 40]. Despite these remarkable advances, there is a dearth
of theoretical understanding of the convergence of OGDA and EG methods in the nonconvex setting.
This naturally motivates us to rigorously examine the convergence of these methods in nonconvex
minimax optimization that we aim to investigate. Thus, we emphasize that our focus is on vanilla
variants of OGDA/EG, and improved rates in NC-C and NC-SC problems have already been obtained
with novel algorithms as mentioned in Section 2.

Contributions. We propose a unified framework for analyzing and establishing the convergence
of OGDA and EG methods for solving NC-SC and NC-C minimax problems. To the best of our
knowledge, our analysis provides the first theoretical guarantees for such problems. Our contribution
can be summarized as follows:

• For NC-SC objectives, we demonstrate that OGDA and EG iterates converge to the
✏�stationary point, with a gradient complexity of O(

2

✏2 ) for deterministic case, and O(
3

✏4 )
for the stochastic setting, matching the gradient complexity of GDA in [30].

• For NC-C objectives, we establish the gradient complexity of O(✏�6) for the deterministic
and O(✏�8) for stochastic oracles, respectively. Compared to the most analogous work on
GDA [30], our rate matches the gradient complexity of GDA our results show that OGDA
and EG have the advantage of shaving off a significant term related to primal function gap
(�̂0 = �(x0)�minx �(x)).

• We establish impossibility results on the achievable rates by providing an ⌦(
2

✏2 ), and
⌦(✏�6) lower bounds based on the common choice of parameters for both OGDA and EG
in deterministic NC-SC and NC-C settings, respectively, thus demonstrating the tightness of
our analysis of upper bounds.

• By carefully designing hard instances, we establish a general lower bound of O( 
✏2 ), inde-

pendent of the learning rate, for GDA/OGDA/EG methods in deterministic NC-SC setting–
demonstrating the optimality of obtained upper bound up to a factor of .

2 Related Work

Extra-gradient (EG), and OGDA methods. Under smooth SC-SC assumption, deterministic OGDA
and EG have been shown to converge to an O(✏) neighborhood of the optimal solution with rate of
O( log( 1✏ )) [39, 49]. Fallah et al. [12] improved upon the previous rates by proposing multistage
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OGDA, which achieved the best-known rate of O(max( log( 1✏ ),
�2

µ2✏2 )) for the stochastic OGDA in
SC-SC setting. Under monotone and gradient Lipschitzness assumption (a slightly weaker notion
of smooth convex-concave problems), Cai et al. [3] established the tight last iterate convergence of
O( 1p

T
) for OGDA and EG, and similar results for EG has been achieved in [17, 16]. Furthermore, To

the best of our knowledge, OGDA and EG methods have not been extensively explored in nonconvex-
nonconcave settings except in a few recent works on structured nonconvex-nonconcave problems in
which the analysis is done through the lens of a variational inequality. This line of work is discussed in
the Nonconvex-nonconcave section. Moreover, recently, Guo et al. [18] established the convergence
rate of OGDA in NC-SC, however, they have µ-PL assumption on �(x), which is a strong assumption
and further allows them to show the convergence rate in terms of the objective gap. However, we
did not make such an assumption on the primal function, and hence unlike [18], we measure the
convergence by the gradient norm of the primal function.

Nonconvex-strongly-concave (NC-SC) problems. In deterministic setting, Lin et al. [30] demon-
strated the first non-asymptotic convergence of GDA to ✏-stationary point of �(x), with the gradient
complexity of O(

2

✏2 ). Lin et al. [31] and Zhang et al. [55] proposed triple loop algorithms achieving
gradient complexity of O(

p


✏2 ) by leveraging ideas from catalyst methods (adding ↵kx� x0k2 to
the objective function), and inexact proximal point methods, which nearly match the existing lower
bound [27, 55, 20]. Approximating the inner loop optimization of catalyst idea by one step of GDA,
Yang et al [52] developed a single loop algorithm called smoothed AGDA, which provably con-
verges to ✏-stationary point, with gradient complexity of O( 

✏2 ). For stochastic setting, Lin et al [30]
showed that Stochastic GDA, with choosing dual and primal learning rate ratio of O( 1

2 ), converges
to ✏-stationary point with gradient complexity of O(

3

✏4 ). Chen et al. [4] proposed a double loop
algorithm whose outer loop performs one step of gradient descent on the primal variable, and inner
loop performs multiple steps of gradient ascent. Using this idea, they achieved gradient complexity of
O(

3

✏4 ) with fixed batch size. However, their algorithm is double loop, and the iteration complexity of
the inner loop is O(). Yang et al [52] also introduced the stochastic version of smoothed AGDA we
mentioned earlier. They showed gradient complexity of O(

2

✏4 ), using fixed batch size. They achieved
the best-known rate for NC-PL problems, which is an even weaker assumption than NC-SC.

Nonconvex-concave. Recently, due to the surge of GANs [14] and adversarially robust neural network
training, a line of researches are focusing on nonconvex-concave or even nonconvex-nonconcave
minimax optimization problems [36, 29, 41, 44, 48, 13, 32, 33, 24]. For nonconvex-concave
setting, to our best knowledge, Rafique et al [44] is the pioneer to propose provable nonconvex-
concave minimax algorithm, where they proposed Proximally Guided Stochastic Mirror Descent
Method, which achieves O(✏�6) gradient complexity to find stationary point. Nouiehed et al [41]
presented a double-loop algorithm to solve nonconvex-concave with constraint on both x and y, and
achieved O(✏�7) rate. Lin et al [30] provided the first analysis of the classic algorithm (S)GDA on
nonconvex-strongly-concave and nonconvex-concave functions, and in nonconvex-concave setting
they achieve O(✏�6) for GDA and O(✏�8) for SGDA. Zhang et al [53] proposed smoothed-GDA and
also achieve O(✏�8) rate. Thekumparampil et al. [48] proposed Proximal Dual Implicit Accelerated
Gradient method and achieved the best known rate O(✏�3) for nonconvex-concave problem. Kong
and Monteiro [26] proposed an accelerated inexact proximal point method and also achieve O(✏�3)
rate. Lin et al [31] designed near-optimal algorithm using an acceleration method with O(✏�3) rate.
However, their algorithms require double or triple loops and are not as easy to implement as GDA,
OGDA, or EG methods.

Nonconvex-nonconcave. Minimax optimization problems can be cast as one of the special cases
of variational inequality problems (VIPs) [1, 34]. Thus, one way of studying the convergence in
Nonconvex-nonconcave problems is to leverage some variants of Variational Inequality properties
such as Monotone variational inequality, Minty variational inequality (MVI), weak MVI, and negative
comonotone, which are weaker assumptions compared to convex-concave problems. For instance,
Loizou et al. [35] showed the linear convergence of SGDA under expected co-coercivity, a condition
that potentially holds for the non-monotone problem. Moreover, it has been shown that deterministic
EG obtains gradient complexity of O( 1

✏2 ) for the aforementioned settings [7, 10, 47, 42]. Alternatively,
another line of works established the convergence under the weaker notions of strong convexity such
as the Polyak-Łojasiewicz (PL) condition, or ⇢-weakly convex. Yang et al [51] established the linear
convergence of the AGDA algorithm assuming the two-sided PL condition. Hajizadeh et al [19]
achieved the same results for EG under the weakly-convex, weakly-concave assumption.

3



3 Problem setup and preliminaries

We use lower-case boldface letters such as x to denote vectors and let k · k denote the `2-norm of
vectors. In Problem 1, we refer to x as the primal variable and to y as the dual variable. For a function
f : Rm⇥Rn ! R, we userxf(x,y) to denote the gradient of f(x,y) with respect to primal variable
x, and ryf(x,y) to denote the gradient of f(x,y) with respect to dual variable y. In stochastic
setting, we let gx,t to be the unbiased estimator ofrxf(xt,yt), computed by a minibatch of size Mx

and gy,t to be the unbiased estimator of ryf(xt,yt), computed by a minibatch of size My, where
xt and yt are the tth iterates of the algorithms. Particularly, gx,t = 1

Mx

PMx

i=1rxf(xt,yt, ⇠
x
t,i),

and gy,t =
1

My

PMy

i=1ryf(xt,yt, ⇠
y
t,i), where {⇠xt,i}

Mx
i=1, and {⇠yt,i}

My

i=1 are i.i.d minibatch samples
utilized to compute stochastic gradients at each iteration t 2 {1, . . . , T}.

Definition 3.1 (Primal Function). We introduce �(x) = maxy f(x,y) as the primal function, and
define y⇤(x) = argmaxy2Y f(x,y) as the optimal dual variable at a point x.

Definition 3.2 (Smoothness). A function f(x,y) is `-smooth in both x, and y, if it is differentiable,
and the following inequalities hold: krf(x1,y1)�rf(x2,y2)k2  `

2kx1�x2k2+`
2ky1�y2k2.

Definition 3.3. A function g is µ-strongly-convex, if for any x1,x2 2 Rd the following holds:
g(x2) � g(x1) + hrg(x1),x2 � x1i+ µ

2 kx1 � x2k2.

Definition 3.4. We say x is is an ✏-stationary point for a differentiable function � if kr�(x)k  ✏.

We note that ✏-stationary point is a common optimality criterion used in the NC-SC setting. As
pointed out in [30], considering �(x) as convergence measure is natural since in many application
scenarios, we mainly care about the value of the objective f(x,y) under the maximized y, e.g.,
adversarial training or distributionally robust learning.

When f(x,y) is merely concave in y, �(x) could be non-differentiable. Hence, following the routine
of nonsmooth nonconvex minimization [9], we consider the following Moreau envelope function:

Definition 3.5 (Moreau envelope). A function �p(x) is the p-Moreau envelope of a function � if
�p(x) := minx02Rd{�(x0) + 1

2pkx
0 � xk2}.

We will utilize the following property of the Moreau envelope of a nonsmooth function:

Lemma 3.6 (Davis and Drusvyatskiy [9]). Let x̂ = argminx02Rd �(x0) + 1
2pkx

0 � xk2, then the
following inequalities hold: kx̂� xk  pkr�p(x)k, minv2@�(x̂) kvk  kr�p(x)k.

Lemma 3.6 suggests that, if we can find a x with a small kr�p(x)k, then x is near some point
x̂ which is a near-stationary point of �. We will use 1/2`-Moreau envelope of �, following the
setting in [30, 45], and establish the convergence rates in terms of kr�1/2`(x)k. We also define two
quantities �̂� = �1/2`(x0)�minx2Rd �1/2`(x) and �̂0 = �(x0)�minx2Rd �(x) that appear in
our convergence bounds. Before presenting our results on EG and OGDA, we briefly revisit the most
related algorithm, Gradient Descent Ascent (GDA).

3.1 Gradient Descent Ascent (GDA) algorithm
Algorithm 1 GDA

Input: (x0,y0), stepsizes (⌘x, ⌘y)
for t = 1, 2, . . . , T do
xt  xt�1 � ⌘xrxf(xt�1,yt�1) ;
yt  PY(yt�1 + ⌘yryf(xt�1,yt�1)) ;

end for
Randomly choose x̄ from x1, . . . ,xT

Output:x̄

The GDA method, as detailed in Algorithm 1, per-
forms simultaneous gradient descent and ascent
updates on primal and dual variables, respectively.
This simple algorithm has been deployed exten-
sively for minimax optimization applications such
as Generative Adversarial Networks (GANs). Un-
der Assumptions 4.1, and 4.3, Lin et al. [30] es-
tablished the convergence of GDA by choosing
⌘x = ⇥( 1

2` ), and ⌘y = ⇥( 1` ). In particular, they showed that deterministic GDA requires O(
2

✏2 )

calls to a gradient oracle, and stochastic GDA requires O(
3

✏4 ) calls using the minibatch size of O( 
✏2 )

to find an ✏-stationary point of the primal function.
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3.2 Optimistic Gradient Descent Ascent (OGDA) and Extra-gradient (EG) Method

We now turn to reviewing the algorithms we study in this paper: Optimistic GDA (OGDA) and
Extra-gradient (EG) methods. To optimize Problem (1), at each iteration t = 1, 2, . . . , T , OGDA
performs the following updates on the primal and dual variables:

xt+1 = xt � ⌘xrxf(xt,yt)� ⌘x(rxf(xt,yt)�rxf(xt�1,yt�1))

yt+1 = PY
�
yt + ⌘yryf(xt,yt) + ⌘y(ryf(xt,yt)�ryf(xt�1,yt�1))

� (OGDA)

where correction terms (e.g. rxf(xt,yt)�rxf(xt�1,yt�1)) are added to the updates of the GDA.
EG method performs the following updates:

xt+1/2 = xt � ⌘xrxf(xt,yt)

xt+1 = xt � ⌘xrxf(xt+1/2,yt+1/2)
;
yt+1/2 = PY (yt + ⌘yryf(xt,yt))

yt+1 = PY

⇣
yt + ⌘yryf(xt+1/2,yt+1/2)

⌘ (EG)

where the gradient at the current point is used to find a mid-point, and then the gradient at the
mid-point is used to find the next iterate. We also consider stochastic variants of the two algorithms
where we replace full gradients with unbiased stochastic estimations. The detailed versions of these
algorithms are provided in Algorithm 2 , and Algorithm 3 in Appendix A.

4 Main Results

We provide upper bounds on the gradient complexity and iteration complexity of OGDA and EG
methods for NC-C and NC-SC objectives in both deterministic and stochastic settings. We also
show the tightness of obtained bounds for the choice of learning rates made. We will derive general
stepsize-independent lower bounds in Section 5.

4.1 Nonconvex-strongly-concave minimax problems

We start by establishing the convergence of deterministic OGDA/EG in the NC-SC setting by making
the following standard assumption on the loss function.
Assumption 4.1. We assume f : Rm ⇥ Rn ! R is `-smooth, and f(x, .) is µ-strongly-concave.

Moreover, we assume the initial primal optimality gap is bounded. i.e., �� = max(�(x1),�(x0))�
minx �(x).
Theorem 4.2. Let x̄ be output of OGDA/EG algorithms and choose ⌘x  c1

2` , ⌘y = c2
` . For OGDA,

let c1 = 1
50 , c2 = 1

6 , and for EG, let c1 = 1
75 , c2 = 1

4 . Then under Assumption 4.1, OGDA/EG
converges to an ✏-stationary point, i.e., kr�(x̄)k2  ✏

2, with iteration number T bounded by:

O

✓

2
`�� + `

2
D0

✏2

◆
,

where D0 = max
�
kx1 � x0k2, ky1 � y0k2, ky1 � y⇤

1k2, ky0 � y⇤
0k2
�
.

To establish the convergence rate in stochastic setting, we will make the following assumption on the
stochastic gradient oracle.
Assumption 4.3. Let rxf(x,y, ⇠x) and ryf(x,y, ⇠y) to be the unbiased estimator of the
rxf(x,y) andryf(x,y), respectively. Then, the stochastic gradient oracle satisfies the following:

• Unbiasedness: E⇠x [rxf(x,y, ⇠x)] = rxf(x,y) and E⇠y [ryf(x,y, ⇠y)] = ryf(x,y).
• Bounded variance: We assume the variance of stochastic gradients

are bounded, i.e., E⇠x
⇥
krxf(x,y, ⇠x)�rxf(x,y)k2

⇤
 �

2 and
E⇠y

⇥
kryf(x,y, ⇠y)�ryf(x,y)k2

⇤
 �

2.

We now turn to establishing the convergence rate in stochastic setting.
Theorem 4.4. Let x̄ be output of stochastic OGDA/EG algorithms and let ⌘x and ⌘y to be chosen
as in Theorem 4.2. For EG, choose minibatch size M = max

n
1, �2

✏2

o
, and for OGDA choose
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primal minibatch size Mx = max{1, �2

✏2 }, and dual minibatch size My = max{1, �2

✏2 }. Then under
Assumptions 4.1, and 4.3, OGDA/EG converges to an ✏-stationary point, i.e., Ekr�(x̄)k2  ✏

2, with
the iteration number T bounded by:

O

✓

2
`�� + `

2
D0

✏2

◆
,

where D0 = max
�
kx1 � x0k2, ky1 � y0k2, ky1 � y⇤

1k2, ky0 � y⇤
0k2
�
.

The proofs of Theorems 4.2 and 4.4 are deferred to Appendix A. Our iteration complexity matches
with the complexity of two-scale GDA obtained in [30]. However, we improve primal gradient
oracle complexity for OGDA by a factor of  as our analysis works for smaller primal batch size Mx

compared to GDA [30]. This paper establishes primal gradient oracle complexity of O(
2

✏4 ), while
the analysis for GDA in [30], requires gradient oracle complexity of O(

3

✏4 ) for primal variable.

In previous theorems, we established upper bounds on the convergence of OGDA and EG algorithms.
In the following results, we turn to examining the tightness of obtained rates. To this end, we first
consider a simple GDA algorithm and will extend the analysis to OGDA/EG. Note that in this section,
we only consider the stepsize choice in our upper bound results.
Theorem 4.5 (Tightness of GDA). Consider GDA method (Algorithm 1) with step sizes chosen as
in Theorem 4.4 in [30], and let x̄ be the returned solution after T iterations. Then, there exists a
function f(·, ·) that is `-gradient Lipschitz and µ-strongly concave in y, and an initialization (x0,y0),
such that Algorithm 1 requires at least T = ⌦

⇣
2��
✏2

⌘
iterations to guarantee kr�(x̄)k  ✏.

Theorem 4.6 (Tightness of EG/OGDA). Consider deterministic EG and OGDA methods with step
sizes chosen as in Theorem 4.2 and let x̄ be the returned solution after T iterations. Then, there exists a
function f(·, ·) that is `-gradient Lipschitz and µ-strongly concave in y, and an initialization (x0,y0),
such that both methods require at least T = ⌦

⇣
2��
✏2

⌘
iterations to guarantee kr�(x̄)k  ✏.

The proofs of Theorems 4.5 and 4.6 are deferred to Appendix A.3.1 and A.3.2, respectively. Theo-
rems 4.6 show that to achieve ✏ stationary point of �, EG and OGDA need at least O(

2

✏2 ) gradient
evaluations, which match with our upper bound results (Theorems 4.2). These impossibility results
demonstrate the tightness of our analysis. It would also be interesting to see such analysis for
stochastic setting, which we leave as a valuable future work.

4.2 Nonconvex-concave minimax problems

We now turn to establishing the convergence rate of (stochastic) OGDA/EG in the NC-C setting. We
make the following assumption throughout this subsection:
Assumption 4.7. We assume f : Rm ⇥ Y ! R is `-smooth in x,y, G-Lipschitz in x and Y is
bounded convex set with diameter D, and also f(x, .) is concave.

From the above assumption, we note when f is merely concave in y, we have to assume the dual
variable domain is bounded since otherwise, the Moreau envelope function will not be well-defined
(This is shown in Lemma 3.6 in [30]). Therefore, the update rule for y requires projection as follows:

yt = PY
�
yt�1 + ⌘yryf(xt�1,yt�1) + ⌘y(ryf(xt�1,yt�1)�ryf(xt�2,yt�2))

�
(OGDA)

yt+1/2 = PY (yt + ⌘yryf(xt,yt)) , yt+1 = PY

⇣
yt + ⌘yryf(xt+1/2,yt+1/2)

⌘
(EG)

The following theorem establishes the convergence of OGDA/EG for NC-C objectives.

Theorem 4.8. Let ⌘x = O

⇣
min

n
✏
`G ,

✏2

`G2 ,
✏4

D2G2`3

o⌘
, and ⌘y = 1

2` . By convention, we set
x�1/2 = x0, y�1/2 = y0. Under Assumption 4.7, OGDA/EG converges to an ✏-stationary point, i.e.,

1
T+1

PT
t=0 kr�1/2`(xt)k2  ✏

2 for OGDA and 1
T+1

PT
t=0 kr�1/2`(xt�1/2)k2  ✏

2 for EG, with
the gradient complexity bounded by:

O

 
`G

2�̂�

✏4
max

⇢
1,

D
2
`
2

✏2

�!
.
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Theorem 4.9. Let ⌘x = O(min{ ✏2

`(G2+�2) ,
✏4

D2`3G
p
G2+�2 ,

✏6

D2`3�2G
p
G2+�2 }), and ⌘y =

O(min{ 1
4` ,

✏2

`�2 }). By convention, we set x�1/2 = x0, y�1/2 = y0. Under Assump-
tions 4.3 and 4.7, stochastic OGDA/EG algorithms converge to an ✏-stationary point, i.e.,

1
T+1

PT
t=0 Ekr�1/2`(xt)k2  ✏

2 for OGDA and 1
T+1

PT
t=0 Ekr�1/2`(xt�1/2)k2  ✏

2 for EG,
with the gradient complexity bounded by:

O

 
D

2
`
3
G
p
G2 + �2�̂�

✏6
max

⇢
1,

�
2

✏2

�!
.

The proofs of Theorems 4.8 and 4.9 are deferred to Appendix B. Here we show that OGDA/EG need
at most O

⇣
D2`3G2�̂�

✏6

⌘
gradient evaluations in deterministic setting and O

⇣
D2`3�2G

p
G2+�2�̂�

✏8

⌘

gradient evaluations in stochastic setting to visit an ✏-stationary point.

Our stepsize choices for dual variable match the optimal analysis in convex-concave setting, ⇥( 1` ) in
deterministic setting [40] and ⇥( 1

✏2 ) in stochastic setting [23], so we suppose our dual stepsize choice
is optimal. The stepsize ratio is ⌘x

⌘y
= O(✏4) in both settings, same as Lin et al. [30]’s results on apply-

ing GDA to a nonconvex-concave objective, which reveals some connection and similarity between
OGDA and GDA. However, compared to GDA [30], where they get an O

⇣
D2`3G2�̂�

✏6 + `3D2�̂0
✏4

⌘

rate in deterministic setting, and O

⇣
D2`3�2G

p
G2+�2�̂�

✏8 + `3D2�̂0
✏6

⌘
in stochastic setting, we shave

off the significant terms with dependency on �̂0. As we will show in the proof, this acceleration is
mainly due to the fact that OGDA/EG enjoys an inherent nice descent property on concave function,
which is more elaborated in Section 4.3. In the stochastic setting, we observe similar superiority.

Now, we switch to examining the tightness of obtained rates. Similar to the NC-SC setting, we first
consider a simple GDA algorithm and will extend the analysis to OGDA/EG.
Theorem 4.10 (Tightness of GDA ). Consider GDA that runs T iterations on solving (1), and let
xT be the returned solution. Then, there exists a function f that is G-Lipschitz in x, `-gradient
Lipschitz and concave in y, and an initialization point (x0,y0) such that GDA requires at least
T = ⌦

⇣
`3G2D2�̂�

✏6

⌘
iterations to guarantee k�1/2`(xT )k  ✏.

Theorem 4.11 (Tightness of OGDA/EG). Consider OGDA/EG that runs T iterations on solving
(1), and let xT be the returned solution. Then, there exists a function f that is G-Lipschitz in x,
`-gradient Lipschitz and concave in y, and an initialization point (x0,y0) such that to achieve
k�1/2`(xT )k  ✏, OGDA/EG requires at least T = ⌦

⇣
`3G2D2�̂�

✏6

⌘
.

The proof of Theorems 4.10 and 4.11 are deferred to Appendix B.3.1 and B.3.2, respectively.
Theorems 4.11 demonstrates that to find an ✏ stationary point of �1/2`, OGDA and EG with our
stepsize choices need at least O( 1

✏6 ) gradient evaluations, which verifies the tightness of upper bound.

4.3 Discussion

Key technical challenges. Here, we present the key technical challenges that arise in the nonconvex
setting, which makes the analysis much more involved compared to the previous analysis of these
algorithms in convex settings. Our proofs are mainly based on NC-C and NC-SC GDA analysis
in [30], and SC-SC OGDA/EG analysis in [39]. In the nonconvex-strongly-concave setting, finding
an upper bound for

PT
i=1 kyi � y⇤(xi)k2 is one of the key steps to establish the convergence rate,

however bounding this term is much more complicated for OGDA and EG than GDA due to difference
in updating rules. Note that in GDA analysis [30],

PT
i=1 kyi�y⇤(xi)k2 can be bounded by deriving

simple recursive equation for kyt � y⇤(xt)k2, while extending it to OGDA is quite complicated.
Hence, we propose to bound rt = kzt+1 � y⇤(xt)k2 + 1

4kyt � yt�1k2, and establish the upper
bound on

Pt
i=1 kyi � y⇤(xi)k2 in terms of

Pt
i=1 ri. In nonconvex-concave setting, we have to

bound kyt � yt�1k2, so we reduce it to the primal function gap: �(xt)� f(xt,yt). To bound this
gap, we utilize the benign descent property of OGDA and EG on concave function and shave off a
significant term �̂0, which yields a better upper complexity bound than GDA.
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On descent property of concave function for OGDA/EG Take OGDA, for example. The key
step in NC-C analysis is to bound �(xt)� f(xt,yt). In OGDA proof, we split this into bounding
the following:

�(xt)� f(xt,yt)  f(xt,y
⇤(xt))� f(xs,y

⇤(xt)) + f(xs,y
⇤(xs))

� f(xt,y
⇤(xs)) + f(xt,y

⇤(xs))� f(xt,yt).
(2)

For the last term f(xt,y⇤(xs))� f(xt,yt), OGDA can guarantee its convergence without bounded
gradient assumption on y. However, for GDA, it requires bounded gradient assumption on y to show
the convergence of this term, and without such assumption, we can only show the convergence of
f(xt,y⇤(xs))� f(xt,yt+1), so Lin et al. [30] split the �(xt)� f(xt,yt) as follow:

�(xt)� f(xt,yt)  f(xt,y
⇤(xt))� f(xt,y

⇤(xs)) + f(xt+1,yt+1)� f(xt,yt) + f(xt,yt+1)

� f(xt+1,yt+1) + f(xt,y
⇤(xs))� f(xt,yt+1)

(3)

Hence they reduce the problem to bounding f(xt,y⇤(xs))� f(xt,yt+1). Therefore, they have to
pay the price for the extra term f(xt+1,yt+1)� f(xt,yt).

Generalized OGDA. Generalized OGDA algorithm is a variant of OGDA in which different learning
rates are used for current gradientrf(xt,yt), and the correction termrf(xt,yt)�rf(xt�1,yt�1).
The update rule for this algorithm is as follows:

xt+1 = xt � ⌘x,1rxf(xt,yt)� ⌘x,2(rxf(xt,yt)�rxf(xt�1,yt�1))

yt+1 = PY
�
yt + ⌘y,1ryf(xt,yt) + ⌘y,2(ryf(xt,yt)�ryf(xt�1,yt�1))

�(OGDA+)

Mokhtari et al. [39] introduced this algorithm and established the convergence bound for the bilinear
setting while analysis beyond this setting remained as an open problem. In Appendix D, we show
that our analysis can be adapted to establish the convergence of the generalized OGDA algorithm. In
Section 6, the empirical advantage of generalized OGDA over the state of art optimization algorithms
is shown, and it seems this algorithm is a better alternative to OGDA in practice. We also define the
correction term ratios �1 = ⌘x,2

⌘x,1
, �2 = ⌘y,2

⌘y,1
, and empirically study the effect of these parameters

on convergence. Note that if �1 = �2 = 1, generalized OGDA would be same as OGDA. It would
also be an interesting future direction to analyze this algorithm for C-C and SC-SC problems to
understand its superior performance better.

Projected OGDA/EG for NC-SC. Here, we highlight that while our analysis for NC-SC assumes
that Y = Rn, it can be easily extended to a constrained setting, where the dual update is performed
under projection onto a convex bounded set Y . In the following, we provide a proof sketch for
extending our analysis of OGDA to its projected variant, in which we do the same primal update as
unconstrained OGDA and a projected (Optimistic gradient) OG update, as defined in [23], on the
dual variable. The main idea behind our dual descent lemma, Lemma A.6, is interpreting OGDA
as an extension of the PEG/OG method and then using Theorem 5 of [23] for PEG/OG analysis,
which already considers the projected gradient updates. Thus, our Lemma A.6 could be immediately
adapted to the projected update. Lemma A.5 can also be extended to projected setting by leveraging
Lemma A.1 in [23]. Combining the projected variant of the mentioned lemmas, the convergence
could be easily established for projected OGDA/EG.

5 Stepsize-Independent Lower Bounds

So far, we have established upper bounds and tightness results given specific stepsize choices. In
this section, we turn to establishing general stepsize-independent lower bound results in the NC-SC
setting.
Theorem 5.1 (Lower complexity bound for GDA). Consider deterministic GDA method (Algorithm 1)
with any arbitrary choice of learning rates, and let x̄ be the returned solution. Then, there exists a
function f satisfying Assumption 4.1, and an initialization (x0,y0), such that Algorithm 1 requires
at least T = ⌦

�

✏2

�
iterations to guarantee kr�(x̄)k  ✏.

Theorem 5.1 implies that GDA algorithm can not find ✏ stationary point of NC-SC problem with less
than with ⌦( 

✏2 ) many gradient evaluations. This result provides the first known lower bound for the
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GDA algorithm in NC-SC, showing that the rate obtained in [30] for the convergence of GDA is tight
up to a factor of . The general proof idea is to consider the following quadratic NC-SC function
f : R⇥ R 7! R, which is strongly-concave in both x and y:

f(x, y) := � 1
2`x

2 + bxy � 1
2µy

2
.

By construction, f is nonconvex in x (it is actually concave in x) and µ-strongly-concave in y.
Assume  := `/µ � 4 and choose b =

p
µ(`+ µx) for some 0 < µx  `/2 to be chosen later.

Then we know b  `/2, and it is easy to verify that f is ` smooth. Note that the primal function

�(x) = max
y

f(x, y) = 1
2µxx

2

is actually strongly convex. This also justifies the symbol for µx. We use GDA to find the solution
for minx maxy f(x, y). Indeed for this problem, the optimal solution is achieved at the origin. The
stepsizes ratio is chosen as r = ⌘y

⌘x
and ⌘y = 1

` for some numerical constants c. Then the GDA
update rule can be written as

✓
xk+1

yk+1

◆
= (I+ ⌘xM) ·

✓
xk

yk

◆
, M :=

✓
` �b
rb �µr

◆
. (4)

Note that (4) is a linear time-invariant system, and due to the simplicity of quadratic form, we are
able to track the dynamic of primal and dual variables. By iterating this linear system and analyzing
the eigenvalues of the transition matrix, we are able to lower bound the gradient at final iterations.

Now we turn to the extension of the lower bound analysis of GDA to OGDA/EG as stated below.
Theorem 5.2 (Lower complexity bound for OGDA/EG). Consider the deterministic OGDA/EG
method with any arbitrary choice of learning rates and let x̄ be the returned solution. Then, there
exists a function f satisfying Assumption 4.1, and an initialization (x0,y0), such that OGDA/EG
method requires at least T = ⌦

�
��
✏2

�
iterations to guarantee kr�(x̄)k  ✏.

Theorem 5.2 shows that OGDA/EG methods can not find ✏-stationary point for any choice of learning
rates with less than ⌦( 

✏2 ) gradient evaluations. Given the upper bounds we derived for deterministic
OGDA/EG in section 4.1, our result indicates that our upper bounds is tight up to a factor of ,
however, we highlight that according to Theorem 4.6, given our choice of the learning rate, our upper
bound is exactly tight. The complete proof of Theorems 5.1 and 5.2 are deferred to Appendix C.

6 Experiments

In this section, we empirically evaluate the performance of the OGDA algorithm. In particular,
we follow [52] and optimize Wasserstein GAN (WGAN) on a synthetic dataset generated from a
Gaussian distribution. We mainly follow the setting of [52, 34] to conduct our experiment. We
consider optimizing the following WGAN loss, where the generator approximates a one-dimensional
Gaussian distribution:

min
wG

max
wD

Ex⇠N (µ,�2)[DwD (x)]� Ez⇠N (0,1)[DwD (GwG(z))]� �kwDk2 (5)

Where wG and wD correspond to generator and discriminator parameters, respectively. We define
discriminator to be D(x) = �1x+ �2x

2, and generator to be a neural network with one hidden layer
with 5 neurons with ReLU activation function, same as the setup considered in [52]. We assume
that real data comes from a Gaussian N (µ,�2) distribution, and the generator tries to approximate µ

and �
2 using a neural network. We set µ = 0, and � = 0.1. � is the regularization parameter which

we set to 0.001. Note that � makes the function strongly-concave/concave in terms of discriminator
parameters, so the problem becomes NC-SC/NC-C.

Performance of fine-tuned stochastic OGDA is depicted in Figure 1a, in comparison to ADAM [25],
RMSprop, SGDA [30], SAGDA [52], and Smooth-SAGDA [52], which are well-known minimax
optimization methods. Our evaluation shows that OGDA outperforms all of these methods, supporting
the empirical advantage of OGDA as seen in relevant studies [28, 8]. While our theoretical results
show that OGDA/EG might not outperform GDA in terms of convergence rate, comparing the
empirical result suggests that OGDA might converge faster. In Figure 1c, the evolution of the
Wasserstein distance metric during the training has been shown. While GDA and OGDA are
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(a) (b) (c)

Figure 1: Figure 1a demonstrates the best performance of different algorithms on optimizing NC-SC
objective in WGAN, where krf(x,y)k2 = krxf(x,y)k2+ kryf(x,y)k2. For GDA, and OGDA,
⌘x, and ⌘y chosen from the set {5e� 5, 1e� 4, 5e� 4, 1e� 3, 5e� 3, 1e� 2, 5e� 2} using grid
search. For OGDA, we choose correction term ratios from the set {0, 0.01, 0.1, 0.5, 1}. The optimal
learning rates are as follows. For both OGDA, and GDA, we set ⌘x = ⌘y = 0.05, and for OGDA
�1 = �2 = 0.01. For other algorithms, we used the same hyperparameters as reported in [52], using
the same random seed. Figure 1b indicates effect of tuning correction term ratio � on the performance
of generalized OGDA algorithm. Figure 1c indicates the evaluation of the Wasserstein distance metric
during the training for the best hyperparameter configuration.

stabilized faster than other algorithms, it seems that they converge to a suboptimal solution, which
incurs a higher Wasserstein distance. Thus, our study suggests that comparing different minimax
algorithms only based on the convergence of gradient norm may not be that insightful in practice, as
they might converge to a suboptimal equilibrium. This observation naturally leads to an interesting
future direction to theoretically understand how different notions of equilibrium in first-order minimax
optimization algorithms are related to the realistic performance of practical methods such as GANs
or WGANs.

The common version of OGDA, as depicted in Algorithm 2 in Appendix A, uses the same learning
rate for the current gradient and correction term (difference between gradient). Empirically, we
observed that using different learning rates for those terms (which we call generalized OGDA)
makes the convergence faster and more stable. Hence in the following, we investigate the effect of
using different correction term ratios in OGDA, which we refer them as �1 and �2 as defined in
Subsection 4.3. The results in Figure 1b demonstrate that small values of these parameters benefit
the convergence rate, and larger values degrade the performance. We further observe that using
correction term ratios larger than 0.5 makes the algorithm diverge and become unstable. Hence, this
corroborates the practical importance of the generalized OGDA algorithm compared to OGDA, as
we are restricted to choosing the same learning rate in OGDA (i.e., �1 = �2 = 1).

7 Conclusion

In this paper, we established the convergence of Optimistic Gradient Descent Ascent (OGDA) and
Extra-gradient (EG) methods in solving nonconvex minimax optimization problems. We demonstrated
that both methods exhibit the same convergence rate that is achievable by GDA in both stochastic
and deterministic settings. We also derived matching lower bounds for the choice of parameters that
indicate the tightness of obtained rates. Further, we established general lower bounds (i.e, learning
rate-independent) for GDA/EG/OGDA in the NC-SC setting, indicating the optimality of obtained
upper bounds up to the factor of . It remains an interesting future work to extend the lower bound
results to the stochastic setting and also derive the general lower bound for GDA/EG/OGDA in the
NC-C setting. Moreover, there is a gap by a factor of  between our lower and upper bounds for
NC-SC problems, which would also be an interesting future work to close this gap.
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