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ABSTRACT

In this paper, an improved long short-term memory (LSTM) structure, called hid-
den attention long short-term memory (HA-LSTM), is proposed to reduce the
long-term memory loss when updating the LSTM neural network at each time
step. The HA-LSTM structure is different from the standard LSTM structure be-
cause a scaled dot-product attention-based sliding controller is introduced to the
LSTM structure. The design of the sliding attention controller provides the tra-
ditional attention mechanism with a time-varying property, which makes the at-
tention mechanism more suitable for time-series analysis tasks. Traditionally, the
inputs to the attention mechanism are the hidden state vectors at all time steps.
In contrast, the length of the inputs to the sliding attention controller is range-
limited, which means it uses less memory than the traditional attention mecha-
nism. In addition, the HA-LSTM structure integrates the attention mechanism
into the standard LSTM structure, which provides the structure with advantages
over both the standard LSTM structure and the attention mechanism. Different
from most works, which perform unilateral computations on the attention mech-
anism after collecting the hidden state vectors at all time steps, the information
of the gate vectors and the cell state vector of the HA-LSTM structure are based
on feedback from the attention mechanism. In other words, the HA-LSTM struc-
ture’s feedback property helps the cell state vector retain valuable information. To
evaluate the performance of the HA-LSTM structure, four text benchmark datasets
are used in experiments for text classification tasks. The model presented here is
compared with two classic models and with a state-of-the-art model presented in
recent years. Most outcomes indicate that the HA-LSTM structure is superior to
the other structures.

1 INTRODUCTION

Because the recurrent neural network (RNN) (Rumelhart et al., 1986) features a memory-updated
design, it specializes in addressing time-varying issues. Therefore, the RNN is used frequently
in natural language processing. For example, phrase representation learning (Cho et al., 2014),
text sentiment analysis (Li & Qian, 2016), and text classification (Zhou et al., 2016) have been
popular research fields in recent years. However, the RNN also has led to problems, such as the
exploding gradients and the vanishing gradients (Hochreiter, 1998; Pascanu et al., 2013). To solve
those problems, the proposed LSTM (Hochreiter & Schmidhuber, 1997) structure introduces gate
vectors.

Although the LSTM structure has replaced the traditional structure of the RNN in sequence-to-
sequence learning (Sutskever et al., 2014), the issue of retaining valuable information from the
long-term memory remains. The unidirectional LSTM structure proves that the RNN might for-
get the initial information if the sequences are long. Therefore, a bidirectional LSTM (BiLSTM)
(Schuster & Paliwal, 1997) structure is developed to take advantage of the forward and backward
properties of the time series where two reversed sequences are used as the input vectors for the two
parallel LSTM units, respectively. Although the bidirectional design can increase the potential for
retaining the initial memory, the computation is twice as complex as the computation for a single
layer. Also, because the BiLSTM structure makes no changes to the cell-updating rules, the memory
loss problem might remain in the unidirectional LSTM structure.
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In recent years, the attention mechanism combined RNN models (Bahdanau et al., 2015; Raffel &
Ellis, 2015; Yang et al., 2016; Ismail et al., 2019) have performed well on text addressing tasks and
image detection tasks. On text addressing tasks, each word vector computed by the recurrent layer
multiplies a corresponding ratio calculated by the attention mechanism (Bahdanau et al., 2015; Raf-
fel & Ellis, 2015; Yang et al., 2016) to represent the importance of the word vector in the sentence.
On image detection tasks, in contrast, the model (Ismail et al., 2019) applies the attention mecha-
nism to the newly generated inputs before passing them to the recurrent layer. The input at each
time step is a concatenation of all input vectors from past to present. Although the model outper-
forms the traditional models that apply the attention mechanism on the output of the recurrent layer,
the computational complexity increases substantially due to the input-cumulative property. Also,
if the unprocessed input vectors are independent of each other, the performance is worse than the
performance of the related input vectors.

Except for the attention mechanism related RNN model described above, other variations of RNN
models have been presented in recent years. For example, the ordered neurons LSTM (ON-LSTM)
(Shen et al., 2019) features a tree-based structure that uses the master forget gate and the master
input gate to address the long-term memory and short-term memory issues by sequential neurons.

Despite the fact that the works listed above achieved good performance by using the hidden state
vectors as the input for the next attention layer, the unilateral computations might limit the perfor-
mance to two layers. That is, the outputs of the attention layer cannot feed back directly into the
recurrent layer. Hence, to achieve reciprocity between the recurrent layer and the attention layer,
the HA-LSTM1 structure is proposed. The HA-LSTM structure uses the range-limited hidden state
vectors as inputs to the attention mechanism and passes the corresponding outputs of the atten-
tion method back to the previous recurrent layer to update the cell state. Inspired by the scaled
dot-product attention mechanism (Vaswani et al., 2017), which has shown good performance on
text-addressing tasks, the HA-LSTM structure adopts the self-attention mechanism (Vaswani et al.,
2017) as the attention computation.

The primary contributions and features of the proposed HA-LSTM structure are as follows. (1)
Different from most works (Bahdanau et al., 2015; Raffel & Ellis, 2015; Yang et al., 2016; Ismail
et al., 2019), the HA-LSTM structure integrates the attention mechanism into the standard LSTM
structure, which means that the attention mechanism is part of the update mechanism of the LSTM
structure at each time step. (2) A sliding attention controller is designed to make the attention
mechanism a time-varying updated method, which in turn makes it easier to integrate the traditional
attention methods into the cell of the RNN. (3) Because the HA-LSTM structure is a standard LSTM
structure-based design, it retains the benefits of the traditional LSTM structure and takes advantage
of the attention mechanism. (4) The number of hidden vectors applied to the attention mechanism of
the HA-LSTM cell is range-fixed, i.e. the memory cost does not increase as the time step increases.
(5) The attention mechanism usually computes the hidden state vectors from the previous recurrent
layer, which is a type of unidirectional computation concept. In contrast, the HA-LSTM structure
is a bidirectional computation that uses the feedback from the attention mechanism to integrate the
past hidden states into the cell computations. (6) The attention mechanism is applied to the hidden
state vectors in the HA-LSTM structure. Therefore, the correlation between the input vectors does
not have a significant impact on the performance of the HA-LSTM structure.

In this work, the HA-LSTM structure, with three different lengths of sliding attention controller,
is compared with the following three structures: LSTM, BiLSTM, and ON-LSTM. Given their
robust designs, the LSTM structure and the BiLSTM structure are commonly used on many different
types of tasks, which makes it possible to use multiple criteria to make comparisons. The ON-
LSTM structure, a state-of-the-art structure proposed in recent years, has been shown to provide
extraordinary performance on natural language tasks. Because the design of the experiments in this
work is based on text classification, it is appropriate to compare the HA-LSTM structure with the
ON-LSTM structure.

1The code implement is available at https://github.com/zz2232/ha-lstm.

2



Under review as a conference paper at ICLR 2022

2 HA-LSTM

Computation of the HA-LSTM structure consists of two parts: (1) updates of the recurrent cell and
(2) self-attention computations of the specific range of hidden state vectors. To clarify, the content
of the HA-LSTM structure is separated into two subsections: (1) the cell structure and (2) the sliding
attention controller.

2.1 CELL STRUCTURE

The HA-LSTM structure for each cell is depicted in Figure 1. Similar to the LSTM cell, the HA-
LSTM structure is implemented as:

ft = σs(Wfxt +Ufat−1 + bf ) (1)
it = σs(Wixt +Uiat−1 + bi) (2)
ot = σs(Woxt +Uoat−1 + bo) (3)
ĉt = tanh(Wĉxt +Uĉat−1 + bĉ) (4)

where ft ∈ RH×1, it ∈ RH×1, ot ∈ RH×1 , and ĉt ∈ RH×1 are the forget gate, the input gate , the
output gate, and the cell input activation vector, respectively, and H denotes the number of hidden
units and t denotes the t-th time step. The input vector is xt ∈ RD×1, where D is the length of the
word embedding vector; at ∈ RNH×1 is the hidden attention vector calculated by the dot-product
attention (Vaswani et al., 2017)-based sliding attention controller mechanism where parameter N
denotes the total number of past time steps applied in the attention mechanism; and ht ∈ RH×1

is the hidden state vector. Operators ◦ and σs() denote the element-wise product and the sigmoid
function, respectively. The corresponding weight matrices in equations 1-4 are Wf ∈ RH×D,
Wi ∈ RH×D, Wo ∈ RH×D, Wĉ ∈ RH×D, Uf ∈ RH×NH , Ui ∈ RH×NH , Uo ∈ RH×NH , and
Uĉ ∈ RH×NH , respectively. The biases in equations 1-4 are bf ∈ RH×1, bi ∈ RH×1, bo ∈ RH×1,
and bĉ ∈ RH×1, respectively.
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Figure 1: The cell of the HA-LSTM structure; the operator ⊗ denotes the matrix multiplication and
the operator ⊕ denotes the matrix addition.

The forget gate determines the erased ratio of the cell state ct−1 ∈ RH×1. The input gate computes
the ratio of the cell input activation vector, which is added to the cell state vector. The process is
implemented as:

ct = ft ◦ ct−1 + it ◦ ĉt. (5)
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The hidden state vector is extracted from the cell state vector by the output gate, which is also the
cell output at each time step. Specifically, the hidden state vector can be expressed as:

ht = ot ◦ tanh(ct). (6)

2.2 SLIDING ATTENTION CONTROLLER

The scaled dot-product attention (Vaswani et al., 2017) is used in the sliding attention controller of
the HA-LSTM structure to obtain the hidden attention vector at, as shown in Figure 2. The attention
mechanism is expressed as A(); other procedures are defined as:

Ht−1 = [ht−1 ht−2 ht−3 . . .ht−N ]T (7)

A(Ht−1) = softmax(
QKT

√
dk

)V (8)

where Ht−1 ∈ RN×H is the hidden state matrix at the previous time step, which consists of the
past hidden state vectors ht−w ∈ RH×1 for w = 1, 2 . . . N . Matrices Q ∈ RN×dk , K ∈ RN×dk ,
and V ∈ RN×dv in equation 8 denote the query matrix, the key matrix, and the value matrix,
respectively, which are generated individually by linearly projecting Ht−1 by WQ ∈ RH×dk ,
WK ∈ RH×dk , and WV ∈ RH×dv , respectively. Parameters dk ∈ R and dv ∈ R are the pro-
jected dimensions.

Ht−1WQ = Q, Ht−1WK = K, Ht−1WV = V. (9)
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Figure 2: The computations of the sliding attention controller of the HA-LSTM structure.
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The function softmax() in equation 8 is defined as:

Z =


z1,1 z1,2 · · · z1,N
z2,1 z2,2 · · · z2,N

...
...

. . .
...

zN,1 zN,2 · · · zN,N

 (10)

softmax(Z) =
ezi,j

N∑
w=1

ezi,w
, i, j = 1, . . . , N (11)

where Z ∈ RN×N represents the matrix QKT

√
dk

, and zi,j denotes the corresponding element of matrix
Z. Considering operating dot product might cause small gradients to approach regions of softmax().
Hence, the value of QKT is scaled by 1√

dk
, and the output of softmax() is multiplied by the value

matrix V. Using the attention mechanism, the hidden attention vector at−1 can be expressed as:

at−1 = flatten(A(Ht−1)) (12)

where flatten() denotes the process of flattening, which reduces the dimension of the matrix.

3 EXPERIMENTS

3.1 DATASETS

Four datasets–AG’s news (Zhang et al., 2015), DBPedia (Zhang et al., 2015; Lehmann et al., 2015),
text retrieval conference (TREC) (Li & Roth, 2002; Hovy et al., 2001), and 20 Newsgroups (Lang,
1995; Pedregosa et al., 2011)–are used to evaluate performance. Table 1 presents the number of
classes, training samples, and test samples of each dataset. The corresponding hyperparameters of
the datasets are also included in Table 1.

Table 1: Settings of the datasets in the experiments.
Dataset Classes Training Samples Test Samples Batch Size Epochs

AG’s News 4 120,000 7,600 500 40
DBPedia 14 560,000 70,000 500 20
TREC 6 5,452 500 120 50
20 Newsgroups 6 11,314 7,532 200 60

AG’s News. The dataset of AG’s News is directly from the work (Zhang et al., 2015), which involves
four topics. Each sample contains the title, the description, and the class fields, but only the class
and description fields are considered in the experiments. Also, the dataset is evenly distributed, with
30,000 samples for training and 1,900 samples for testing in each class.

DBPedia. In the experiments, the DBPedia dataset used is from the work (Zhang et al., 2015),
which is collected from Wikipedia (Lehmann et al., 2015). Three fields are included in each sample:
(1) the corresponding class, (2) the title, and (3) the abstract. In the experiments, only the class and
abstract fields are used, and each class contains 40,000 samples for training and 5,000 samples for
testing.

TREC2. TREC is a text dataset for question classification, which contains six question categories.

20 Newsgroups3. The 20 different newsgroups in the 20 Newsgroups dataset are grouped into six
topics.

2https://cogcomp.seas.upenn.edu/Data/QA/QC/
3The dataset is utilized from the website http://people.csail.mit.edu/jrennie/20Newsgroups/ through the

scikit-learn Python module.
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3.2 NEURAL NETWORK STRUCTURES

The pre-trained 400,000 vocabularies with 100-dimension word vectors generated by the GloVe4

method (Pennington et al., 2014) are used in the experiments, and the embedding vector length is
set to 100. For fairness, three layers are used in each model for all schemes, including LSTM,
BiLSTM, ON-LSTM, and HA-LSTM with three different values of N structures, as depicted in
Figure 3, where Pm ∈ R for m = 1, . . . , S denotes the corresponding probability of the category,
and S ∈ R is the number of classes in the text classification task. Note that the HA-LSTM model
with N = 4, N = 8, and N = 12 is denoted as HA-LSTM-4, HA-LSTM-8, and HA-LSTM-12,
respectively. The only difference between the models is in the first layer, which is based on the
corresponding scheme.

1 2 3 S

Figure 3: The model structure for testing.

In the recurrent layer, the hidden state vector size is 128, and the output vector size of the recurrent
cell at each time step is 128. In the BiLSTM structure, the hidden state vector size in the forward
direction and in the backward direction is 64. The final output vector of the recurrent cell is the
concatenation of the output vectors computed from the forward direction and the backward direction;
hence, the size at each time step becomes 128. In the hidden layer, the output vector size is 32. In
the output layer, the output vector size is the number of the classes of each dataset.

The dropout (Srivastava et al., 2014) method, with dropout rate set to 0.1 is used between the hid-
den layer and the output layer. The Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2015)
method is applied as the optimization in the models and the learning rate is set to 0.0006 in all cases.
Dimension parameters are set dk = dv = H in the HA-LSTM scheme, and the chunk size factor
proposed in the ON-LSTM structure is set to 1 in the experiments.

3.3 RESULTS

The test accuracy of the models on four datasets is summarized in Table 2 through Table 5, where the
length of the input sequences is limited to six different cases to evaluate the structures for addressing
the amount of information, and q ∈ R denotes the length of the input sequences. The test accuracy

4https://nlp.stanford.edu/projects/glove/
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is rounded down to four decimal places and expressed as a percentage. To observe the trend in test
accuracy, the numerical results are plotted in Figure 4 through Figure 6. Each figure consists of
two parts: (a) graph of the HA-LSTM-4 model and the other three models, and (b) graph of the
HA-LSTM model with N = 4, 8, 12, respectively.

The experimental results of the AG’s News dataset are summarized in Table 2 and plotted in Figure
4(a) and Figure 4(b). The HA-LSTM model for different values of N achieves better results than the
results of the other three models in most cases. As the length of input sequences increases, the HA-
LSTM model with N = 4, 8, 12 still outperforms the other three models. These results indicate that
the HA-LSTM structure has the ability to reduce the loss of long-term memory. A comparison of
the results of the HA-LSTM model with N = 4, 8, 12 shows that there are no obvious performance
gaps with different values of N .

Table 2: Test accuracy on AG’s News.
AG’s News q

Models 20 40 60 80 100 120

LSTM (Hochreiter & Schmidhuber, 1997) 87.94 89.64 89.76 88.98 89.46 89.42
BiLSTM (Schuster & Paliwal, 1997) 87.75 88.89 88.90 89.26 89.19 88.80
ON-LSTM (Shen et al., 2019) 88.05 89.64 89.43 89.51 89.56 89.75
HA-LSTM-4 88.57 90.18 90.17 90.19 89.81 90.01
HA-LSTM-8 88.78 89.90 89.80 89.92 90.03 90.09
HA-LSTM-12 88.22 89.55 90.03 89.77 90.05 89.88

(a) (b)

Figure 4: Graphs of test accuracy on AG’s News.

For the DBpedia experiments, the test accuracy of each model is summarized in Table 3; the graphs
are plotted in Figure 5. Based on the information presented in Table 3 and Figure 5(a), the results
show that when the length of the input sequences is 60 and 80, respectively, the performance of
the HA-LSTM-4 model is stable, but inferior to the performance of the ON-LSTM model. As the
length of input sequences increases to 100 and 120, the test accuracy of the HA-LSTM-4 model is
better than the test accuracy of the other models, which indicates that the long-term memory can be
maintained by the HA-LSTM structure when the length of the input sequences increases.

Compared with the HA-LSTM model with N = 4, 8, 12 in Table 3 and Figure 5(b), the performance
of the HA-LSTM-4 model and the performance of the HA-LSTM-8 model is similar. When the
length of the input sequences is less than 120, the performance of the HA-LSTM-12 model is better
than the performance of the other models. However, the test accuracy decreases gradually as the
length of the input sequences increases. As the length of the input sequences is 120, the test accuracy
of the HA-LSTM-12 model approaches the test accuracy of the ON-LSTM model. When the length
of the input sequences is 20, the test accuracy of the HA-LSTM model with N = 4, 8, 12 is low. The
poor performance might be a result of the initial value of the trainable parameters. As the length of
the input sequences increases, the effect of initialization decreases, as shown in Table 3 and Figure
5.
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Table 3: Test accuracy on DBPedia.
DBPedia q

Models 20 40 60 80 100 120

LSTM (Hochreiter & Schmidhuber, 1997) 98.29 98.37 98.30 98.23 98.29 98.34
BiLSTM (Schuster & Paliwal, 1997) 98.20 98.31 98.20 98.20 98.28 98.29
ON-LSTM (Shen et al., 2019) 98.35 98.40 98.43 98.42 98.34 98.37
HA-LSTM-4 98.14 98.44 98.36 98.40 98.38 98.40
HA-LSTM-8 98.29 98.41 98.40 98.37 98.39 98.42
HA-LSTM-12 98.30 98.49 98.50 98.46 98.42 98.36

(a) (b)

Figure 5: Graphs of test accuracy on DBPedia.

The test accuracy of the models on TREC is summarized in Table 4. It is obvious that the HA-
LSTM model with N = 4, 8, 12 outperforms the other three models. The results indicate that the
HA-LSTM model achieves the best test accuracy when N = 12.

Table 4: Test accuracy on TREC.
Models TREC

LSTM (Hochreiter & Schmidhuber, 1997) 94.40
BiLSTM (Schuster & Paliwal, 1997) 94.80
ON-LSTM (Shen et al., 2019) 95.20
HA-LSTM-4 95.80
HA-LSTM-8 95.40
HA-LSTM-12 96.20

The test accuracy of the HA-LSTM-4 model relative to the accuracy of the other three models on
20Newsgroups is summarized in Table 5 and shown visually in Figure 6(a). The test accuracy of
the HA-LSTM-4 model is better than the test accuracy of the other three models, except when the
length of the input sequences is 80. As shown in Figure 6(a), the test accuracy of the HA-LSTM-4
increases as the length of the input sequences increases, which indicates that the HA-LSTM-4 model
has the ability to retain the valuable part of long-term memory.

A comparison of the results of the HA-LSTM model with N = 4, 8, 12, as shown in Table 5 and Fig-
ure 6(b), indicates that the test accuracy of the HA-LSTM model with N = 8, 12 decreases when the
length of the input sequences is 100 and 120, respectively. Despite the decrease in performance as
the length of the input sequence increases, the results show that the two models remain competitive.

In summary, as shown in Figure 4, Figure 5, and Figure 6, the increase in test accuracy in the HA-
LSTM model with N = 4 is the most stable among the three different values of N . Although the
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Table 5: Test accuracy on 20Newsgroups.
20Newsgroups q

Models 20 40 60 80 100 120

LSTM (Hochreiter & Schmidhuber, 1997) 69.98 71.91 71.41 72.98 71.09 71.94
BiLSTM (Schuster & Paliwal, 1997) 68.45 71.38 71.46 71.53 72.27 71.54
ON-LSTM (Shen et al., 2019) 69.67 71.05 72.09 71.77 72.74 72.88
HA-LSTM-4 70.23 72.18 72.37 72.68 73.35 73.53
HA-LSTM-8 69.80 72.51 73.12 74.52 73.18 73.04
HA-LSTM-12 70.03 72.78 72.83 72.91 73.85 73.42

(a) (b)

Figure 6: Graphs of test accuracy on 20Newsgroups.

HA-LSTM model with N = 8, 12 does outperform the HA-LSTM model with N = 4 in many
cases, the drop speed of test accuracy is fast. For example, the test accuracy of the HA-LSTM-12
model on DBPedia begins to decrease when the length of the input sequences is greater than 60, and
there is a peak in the test accuracy of the HA-LSTM-8 model in 20Newsgroups when the length of
the input sequences is 80.

4 CONCLUSION

According to experimental results using the different datasets, the HA-LSTM structure, in most
cases, is superior to the other methods. The experimental results also indicate that the HA-LSTM
structure is capable of retaining the valuable part of long-term memory as the length of the input
sequences increases. In terms of memory cost of the HA-LSTM unit, it is shown that the perfor-
mance of the HA-LSTM model with N = 4 is competitive with the performance of other models in
many cases. That is, the low cost of additional memory indicates that the HA-LSTM structure has
enormous potential to be combined into the deep neural network models.
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