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ABSTRACT
Deep learning models are widely used to process Computed Tomog-
raphy (CT) data in the automated screening of pulmonary diseases,
significantly reducing the workload of physicians. However, the
three-dimensional nature of CT volumes involves an excessive
number of voxels, which significantly increases the complexity
of model processing. Previous screening approaches often over-
look this issue, which undoubtedly reduces screening efficiency.
Towards efficient and effective screening, we design a hierarchical
approach to reduce the computational cost of pulmonary disease
screening. The new approach re-organizes the screening workflows
into three steps. First, we propose a Computed Tomography Vol-
ume Compression (CTVC) method to select a small slice subset that
comprehensively represents the whole CT volume. Second, the se-
lected CT slices are used to detect pulmonary diseases coarsely via
a lightweight classification model. Third, an uncertainty measure-
ment strategy is applied to identify samples with low diagnostic
confidence, which are re-detected by radiologists. Experiments on
two public pulmonary disease datasets demonstrate that our ap-
proach achieves comparable accuracy and recall while requiring
approximately 4.5% of the time needed by the counterparts using
full CT volumes. Besides, we also found that our approach outper-
forms previous cutting-edge CTVC methods in retaining important
indications after compression.
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1 INTRODUCTION
With the rapid advancements in medical imaging and deep learning
algorithms, more researchers are utilizing deep learning methods
to achieve expert-level disease screening, significantly reducing
physicians’ workloads [3]. Computed Tomography (CT) data are
extensively used for diagnosing and screening various pulmonary
diseases, such as lung carcinoma and pneumonia, due to CT’s ability
to reveal crucial details specific to individual patients [11]. However,
pulmonary CT volumes, consisting of dozens or even hundreds
of individual slices, present high computational complexity and
require substantial memory capacity for processing—resources that
are often limited in real-world medical settings.

To efficiently and accurately screen for pulmonary diseases, we
design a novel screening approach. The core methodology insight
is leveraging a Comprehensive Subset Selection (CSS) method to
select representative slices for coarse detection, and then, during
the inference phase, we devise an uncertainty strategy to identify
samples with low diagnostic confidence. Radiologists will re-detect
these samples. Our proposed CSS method ensures that the selected
slices represent the entire CT volume, reducing the likelihood of
omitting slices containing crucial indicators. While traditional slice
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Figure 1: Visualization results of interpolation-based meth-
ods. Four pictures on the left represent four consecutive slices
that contain CP lesions. The right picture illustrates the vi-
sualization results obtained from the spline interpolation.
Within these visualizations, areas enclosed by red solid lines
represent the CP lesions, while regions within yellow solid
lines indicate artefacts generated after processing. And areas
enclosed by blue dashed lines depict regions where lesions
were eliminated after processing.

selectionmethods [26, 27] cannot always guarantee this. In addition,
our method also avoids the problem of introducing artefacts that
interpolation-based methods usually face [18, 5, 13], as shown in
Fig.1.

We conduct comparative experiments on two publicly available
CT datasets to verify the accuracy and efficiency of our proposed
screening approach, containing screening tasks for three types
of pulmonary diseases, with a total of 2654 CT volumes. Specifi-
cally, we train classification networks using CT data compressed
by different methods and compare their accuracy and recall. The
experimental results demonstrate that our proposed CSS method
significantly outperforms other methods. Furthermore, we explore
the performance of the classification model under extreme condi-
tions. For instance, when retaining only 4 slices from a single CT
volume, the classification model still achieves a recall of 95.19% in
the screening task for COVID-19. Based on this, we apply the un-
certainty strategy to select low-confidence samples for re-detection,
further improving the recall and meeting the clinical diagnosis
standards. This proves that the uncertainty strategy screens out
low-confidence cases that contain most of the misdiagnosed sam-
ples, which can provide reference value for actual disease screening
tasks. Finally, we compare the inference time of different methods,
validating the efficiency of our approach.

In summary, the main contributions of this article are as follows:

(1) We design a novel hierarchical approach based on CT data
for accurate and efficient screening of pulmonary diseases.

(2) We propose a slice selection method CSS, which can select
a representative slice subset from the whole CT volume,
thereby enabling efficient screening.

(3) We adopt an uncertainty strategy to select low-confidence
samples for re-detection during the inference phase, ensuring
the accuracy of the screening.

(4) We validate the efficiency and accuracy of our proposed
screening system on two public CT datasets. Experiments
show that our screening method can achieve similar per-
formance while requiring approximately 4.5% of the time
needed by the method using full CT volumes.

2 RELATEDWORK
Numerous studies have proposed various methods to process CT
volumes for efficient screening of pulmonary diseases, which can
be broadly categorized into three types:

Patch-based methods. These methods divide CT volumes into
smaller patches for processing [8], which is similar to serializing
parallel tasks. While this approach reduces the demand for large
memory, it prolongs the inference time, resulting in inefficiency.

Slice selection-based methods. These methods select a subset of
slices from the CT volume evenly to construct the desired vol-
ume [26, 27]. However, this approach lacks assurance that the se-
lected slices represent the entire CT volume, as there is a high
likelihood of omitting slices containing crucial indicators of the
disease, leading to inaccurate screening results.

Interpolation-based methods. These methods adjust the Z-axis by
either compressing or expanding it to reach the desired depth, such
as Linear Interpolation (LI) [16, 18], Spline Interpolation (SI) [2, 5, 6],
or Projection Interpolation (PI) [13]. However, these methods may
distort the original pixel values, potentially introducing artefacts or
losing lesion information, inevitably affecting screening accuracy.

3 METHODOLOGY
The overall process of our screening approach is divided into three
steps, as shown in Fig. 2: First, we design CSS to select a slice
subset that represents the entire CT volume. Second, we train a
classification network to detect disease using the selected slices.
Third, we adopt the uncertainty strategy to select low-confidence
samples for re-detection.

3.1 Comprehensive Subset Selection
Assuming that each CT volume contains𝑛 slices (denoted as {x𝑖 }𝑛𝑖=1),
our goal is to select𝑚(≪ 𝑛) slices that could represent the whole
CT volume so that the performance of a model trained on the se-
lected slice subsets approaches that on the whole CT volumes. The
procedure of CSS is shown in Fig. 3.

3.1.1 Representation Learning. We leverage the pre-trained image
feature extraction capabilities of MedCLIP-ViT [21] to obtain se-
mantically meaningful representations containing key indicators.
The image encoder of MedCLIP-ViT maps x𝑖 onto a 𝑑-dimensional
hypersphere with 𝐿2 normalization, denoted as f𝑖 = 𝑓 (x𝑖 ). Specifi-
cally, the [CLS] token features produced by the model’s final output
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Figure 2: The overall process of our proposed screening approach.

with 𝐿2 normalization are employed for slice selection. It is note-
worthy that although we utilize the larger model MedCLIP-ViT for
feature extraction, which incurs additional computational resource
consumption, this process is conducted before training the classi-
fication models. The efficiency should be evaluated based on the
inference time of the models.

3.1.2 Slice Selection. We select CT slices according to two strate-
gies that are representativeness and diversity [23, 22, 20, 25]. The
former ensures that the selected slice subset can represent the whole
CT volume containing key indicators. The latter minimizes the in-
ternal similarity of the selected subset to avoid redundancy, which
provides the possibility of extremely compressing the CT volume.

First, we adopt 𝐾-Means clustering that partitions 𝑛 instances
(i.e., the CT slices in the feature space, denoted as {f𝑖 }𝑛𝑖=1) into
𝑚(≤ 𝑛) clusters, with each cluster represented by its centroid 𝒄 and
every instance assigned to the cluster of the nearest centroid [4, 14].
Formally, we aim to find𝑚-cluster partitioning S = {𝑆1, 𝑆2, ..., 𝑆𝑚}
that minimizes the within-cluster sum of squares [9]:

min
S

𝑚∑︁
𝑖=1

∑︁
f∈𝑆𝑖

∥f − c𝑖 ∥2 = min
S

𝑚∑︁
𝑖=1

|𝑆𝑖 | Var(𝑆𝑖 ) . (1)

It is optimized iteratively with EM [15] from random initial cen-
troids.

Then, we select the density peaks within each cluster as the
most representative slices since the density peaks are similar to as
many instances as possible. The density is estimated by 𝐾-Nearest
Neighbor (𝐾-NN) [17] which is formulated as

Den(f𝑖 , 𝑘) =
𝑘

𝑛

1
𝐴𝑑 · 𝐷 (f𝑖 , f𝑘𝑖 )

, (2)

where 𝐴𝑑 = 𝜋𝑑/2/Γ( 𝑑2 + 1) is the volume of a unit 𝑑-dimensional
ball, 𝑑 is the feature dimension, Γ(𝑥) is the Gamma function, and
𝐷 (f𝑖 , f𝑘𝑖 ) = ∥f𝑖 − f𝑘

𝑖
∥ is the feature distance between two instances,

f𝑘
𝑖
is the 𝑘th nearest neighbor of f𝑖 . Intuitively, the smaller the

feature distance, the greater the similarity of the instances. However,
Den(·, ·) is very sensitive to noise, as it only takes the 𝑘th nearest
neighbour into account. For robustness, we replace the𝑘th neighbor
distance 𝐷 (f𝑖 , f𝑘𝑖 ) with the average distance 𝐷 (f𝑖 , 𝑘) to all 𝑘 nearest

neighbors instead:

ˆDen(f𝑖 , 𝑘) =
𝑘

𝑛

1
𝐴𝑑 · 𝐷 (f𝑖 , 𝑘)

, (3)

where 𝐷 (f𝑖 , 𝑘) = 1
𝑘

∑𝑘
𝑗=1 𝐷 (f𝑖 , f 𝑗𝑖 ). To sum up, ˆDen(f𝑖 , 𝑘) is used

to measure the representativeness of instance f𝑖 . Since only the
relative ordering matters in our selection process, the density peak
corresponds to the instance with maximum ˆDen(f𝑖 , 𝑘), i.e., mini-
mum 𝐷 (f𝑖 , 𝑘).

However, when the clustering boundaries are located in high-
density areas, the selected instances may align along these bound-
aries and become proximal to each other, leading to redundancy.
Therefore, we apply a regularizer to diversify the selected instances
in the feature space iteratively. In detail, let F̂𝑡 = {f̂𝑡1 , f̂

𝑡
2 , ..., f̂

𝑡
𝑚}

denote the set of𝑚 instances selected at iteration 𝑡 , f̂𝑡
𝑖
is selected

from clusters 𝑆𝑖 , where 𝑖 ∈ {1, 2, ...,𝑚}. For each candidate f𝑖 in
cluster 𝑆𝑖 , the farther it is away from those in other clusters in F̂𝑡−1,
the more diversity it creates. We thus minimize the total inverse dis-
tance to others in a regularization loss Reg(f𝑖 , 𝑡), with a sensitivity
hyperparameter 𝛼 :

Reg(f𝑖 , 𝑡) =
∑︁
𝑗≠𝑖

1
∥f𝑖 − f̂𝑡−1

𝑗
∥𝛼
. (4)

This regularizer is updatedwith an exponential moving average [10]:

Reg(f𝑖 , 𝑡) =𝑚reg · Reg(f𝑖 , 𝑡 − 1) + (1 −𝑚reg) · Reg(f𝑖 , 𝑡), (5)

where𝑚reg is the momentum. At iteration 𝑡 , we select instance 𝑖
of the maximum combination of representativeness and diversity
𝐶 (f𝑖 , 𝑡) within each cluster:

𝐶 (f𝑖 , 𝑡) =
1

𝐷 (f𝑖 , 𝑘)
− 𝜆 · Reg(f𝑖 , 𝑡), (6)

where 𝜆 is a hyperparameter that balances diversity and represen-
tativeness. At the last iteration, the instances in F̂ are the selected
CT slices for the downstream task.

3.2 Disease Detection
We train a classification model using the selected slices for disease
detection. First, ResNet-34 [7] is used to extract image features of
𝑚 slices in each case, denoted as 𝑓𝑅𝑒𝑠 (x𝑖 ), where 𝑖 ∈ {1, 2, ...,𝑚}.
Then, a light transformer-based network [19] is adopted to fuse
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Figure 3: The procedure of CSS. The dark circles represent the selected slices.

these features. Finally, we perform a fully connected layer and
Softmax on the output of the transformer-based network to predict
the probability of disease. Details of the model can be found in
Appendix A.

3.3 Low-confidence Case Re-detection
Low-confidence cases are re-detected using their corresponding full
CT volumes by radiologists, specifically, those where the model’s
predicted probability of disease is between 0.4 and 0.6. Although
this step reduces some screening efficiency, it significantly improves
accuracy to meet clinical requirements.

4 EXPERIMENTS
4.1 Dataset
We conduct comparative experiments on two publicly available
datasets: SARS-CoV-2 dataset [24] and LUNG-PET-CT-Dx [12],
which are obtained from the China Consortium of Chest CT Image
Investigation (CC-CCII) and TheCancer ImagingArchive (TCIA) [1],
respectively. Given our objective to compress CT volumes, we elimi-
nated cases with a relatively low number of slices, specifically those
with less than 64 slices. After that, 2654 cases are included in the
study, containing 311 cases diagnosed with adenocarcinoma (AC),
747 cases with Novel Coronavirus Pneumonia (NCP, i.e., COVID-
19), 741 cases with Common Pneumonia (CP) and 855 normal cases.
Here, a case refers to a 3D CT volume. The AC cases are from
LUNG-PET-CT-Dx, while the NCP, CP and normal cases are from
the SARS-CoV-2 dataset. Then, we design three binary classification
tasks to detect the above three diseases. Specifically, Task 1 contains
747 NCP and 855 normal cases; Task 2 contains 741 CP and 855
normal cases; Task 3 contains 311 AC and 311 normal cases. The
normal cases for Task 3 are randomly chosen from 855 normal cases
of the SARS-CoV-2 dataset. Finally, we evenly divide the dataset
into 5 parts and use 5-fold cross-validation to evaluate the accuracy
and recall for each task.

4.2 Experimental Settings
All models are implemented in PyTorch and trained on an RTX
4090 with 24 GB memory. Considering the anatomical structure
of the lungs—where the left lung is divided into upper and lower
lobes with a volume ratio of approximately 0.4 : 0.6, and the right

lung into upper, middle, and lower lobes with a volume ratio of
approximately 0.25 : 0.15 : 0.6, we divide the entire CT volume into
three distinct parts based on the ratios of 0.25 : 0.15 : 0.6. Following
this, the total budget of slice selection𝑚 is distributed across these
parts in accordance with the same proportion. CSS is used to select
a slice subset in each part. The hyperparameters set for CSS and
training the diagnostic model can be found in Appendix B. In the
efficiency evaluation experiments, we compared the inference times
of different methods while ensuring the same memory usage.

4.3 Comparison with Other Compression
Methods

In three diagnostic tasks, we compare the performance of diag-
nostic models when applied with different compression methods,
including three interpolation-based methods: Projection Interpola-
tion (PI) [13], Linear Interpolation (LI) [16] and Spline Interpolation
(SI) [2], two slice selection-based methods: Subset Slice Selection
(SSS) [26] and Even Slice Selection (ESS) [27], and full CT volume
method. The implementation of the above methods can be found
in Appendix C.

To ensure a fair comparison, we set the number of slices after
compression to 64 for each method. The experimental results are
shown in Table 1, from which we have several observations: (1) The
performance of our method generally surpasses that of other com-
pression methods, and it achieves performance levels very close to
those of the full CT volume method across three tasks; (2) On Tasks
1 and 2, the performance of the second-best SI method is comparable
to that of our method. On task 3, only our method achieves accuracy
and recall above 90%. This may be attributed to the fact that Tasks
1 and 2 involve diagnosing pneumonia, where the lesion areas are
larger and more distinct, thus easier to differentiate from normal
cases. In contrast, Task 3 focuses on detecting adenocarcinoma,
where the lesion areas are smaller and morphologically complex,
making accurate detection challenging. The superior performance
on difficult tasks demonstrates the superiority of our method.

4.4 Exploration Under Extreme Compression
We explore the accuracy and recall of the diagnostic model applied
with CSS under extreme compression, that is, selecting 32, 16, 8,
and 4 CT slices from each case. We compare CSS not only with the
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Table 1: Comparison with other methods. The best performance is bold, and the second best performance is underlined except
for the method of full CT volume. Each result shows mean accuracy and standard deviation over 5-fold cross-validation.

Task 1 Task 2 Task 3Method Accuracy Recall Accuracy Recall Accuracy Recall

Full CT 99.12±0.31 99.15±0.35 99.35±0.41 99.30±0.38 92.47±0.60 92.10±0.65
PI [13] 90.36±0.34 89.02±0.41 88.92±0.40 89.00±0.30 84.59±0.47 83.50±0.52
LI [16] 78.52±2.54 77.89±2.67 73.67±2.03 71.70±2.30 68.81±3.80 67.54±4.81
SI [2] 98.78±0.34 98.20±0.37 98.33±0.42 98.30±0.40 87.24±0.40 86.94±0.37
SSS [26] 96.89±0.56 96.28±0.62 95.23±0.97 95.12±0.99 89.34±0.90 89.67±1.24
ESS [27] 96.42±0.86 96.85±0.78 94.29±1.37 94.50±1.70 88.56±1.56 86.78±1.65
CSS (Ours) 98.89±0.17 99.05±0.18 98.65±0.23 98.82±0.29 91.88±0.43 90.85±0.54

Table 2: Comparison under extreme compression. The best performance under different compression levels is bold. Each result
shows mean accuracy and standard deviation over 5-fold cross-validation.

Task 1 Task 2 Task 3Number Method Accuracy Recall Accuracy Recall Accuracy Recall

32 SI 97.99±0.85 98.06±0.54 96.73±0.95 97.10±0.79 83.63±1.24 83.49±1.33
CSS 98.12±0.55 98.19±0.36 97.89±0.69 97.74±0.77 90.01±0.97 90.27±0.81

16 SI 96.99±1.55 97.21±1.10 93.87±2.27 94.07±2.03 76.71±2.70 76.90±2.56
CSS 97.26±1.54 97.58±1.21 94.00±2.15 94.28±2.04 85.60±2.37 85.54±2.40

8 SI 95.96±1.19 95.88±1.22 92.09±2.77 92.55±2.49 67.34±3.83 67.68±3.41
CSS 96.57±1.24 96.89±1.27 93.21±3.72 93.02±3.44 82.55±2.32 82.63±2.17

4 SI 93.86±2.24 94.24±1.89 90.03±2.25 90.78±2.30 64.41±3.70 64.57±3.54
CSS 94.90±2.12 95.19±2.01 91.17±2.54 91.76±2.51 78.64±3.19 78.89±2.98

Full CT 99.12±0.31 99.15±0.35 99.35±0.41 99.30±0.38 92.47±0.60 92.10±0.65

full CT volume method but also with the second-best performing
method described in Section 4.3, i.e., SI method [2]. The experi-
mental results are shown in Table 2, from which we have several
observations: (1) On Tasks 1 and 2, the performance of models
applied with two compression methods is similar, while on Task 3,
our method shows a significant improvement over the SI method.
This conclusion aligns with the second point discussed in Sec. 4.3;
(2) On Task 3, as the number of target slices after compression
decreases, the performance improvement of our method becomes
increasingly significant compared to the SI method. For instance,
at 𝑁𝑢𝑚𝑏𝑒𝑟 = 32 and 4, the recall increased by 6.78% and 14.32%,
respectively, demonstrating that under extreme compression sce-
narios, our method holds a greater advantage over other methods.

4.5 Comparison Before and After Re-detection
When selecting 8 and 4 CT slices, we verify the effectiveness of
the uncertainty strategy by comparing the performance before
and after the re-detection. We assume all low-confidence cases
will be correctly diagnosed during the re-detection phase. The
experimental results are shown in Table 3, from which we observe
that the accuracy and recall improve after using the uncertainty
strategy to filter out cases for re-detection. In particular, on Task 3,
recall improves by 6.17% and 4.14% when retaining 8 and 4 slices,

respectively. This proves that low-confidence cases do contain most
of the misdiagnosed cases, which can provide reference value for
actual disease screening tasks.

Table 3: Comparison before and after re-detection using un-
certainty strategy.

Task Number Re-detection Accuracy Recall

Task 1
8 Before 96.57 96.89

After 97.24(↑ 0.67) 97.88(↑ 0.99)

4 Before 94.90 95.19
After 96.06(↑ 1.16) 96.41(↑ 1.22)

Task 2
8 Before 93.21 93.02

After 94.27(↑ 1.06) 94.59(↑ 1.57)

4 Before 91.17 91.76
After 93.04(↑ 1.87) 93.18(↑ 1.42)

Task 3
8 Before 82.55 82.63

After 88.53(↑ 5.98) 88.80(↑ 6.17)

4 Before 78.64 78.89
After 82.77(↑ 4.13) 83.03(↑ 4.14)
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4.6 Efficiency Evaluation
We compared the inference time of CSS and the full CT method
to evaluate the efficiency under different compression rates. The
results are shown in Table 4, from which we can see that when
retaining only 4 slices per CT volume, the inference time of our
method is approximately 4.5% of that of the full CT approach.

Table 4: Inference time under different compression ratios.
The time shown in the table is the inference time of 50 cases.

Method Number Task 1 Task 2 Task 3

CSS

32 38.74𝑠 38.91𝑠 38.70𝑠
16 20.40𝑠 21.27𝑠 20.82𝑠
8 11.39𝑠 12.06𝑠 11.58𝑠
4 7.69𝑠 8.55𝑠 8.04𝑠

Full CT 169.24𝑠 189.05𝑠 179.25𝑠

5 CONCLUSION
In this paper, we propose a novel hierarchical approach based on
CT data for accurate and efficient screening of pulmonary diseases.
The core insight is leveraging a CTVC method CSS to select repre-
sentative slices from full CT volumes for coarse detection. During
the inference phase, we adopt an uncertainty strategy to identify
cases with low diagnostic confidence, which can be referred to radi-
ologists for re-detection in clinical practice. Extensive experimental
results show that our approach achieves comparable performance
while requiring approximately 4.5% of the time the counterparts
need to process full CT volumes. Besides, we also found that our
approach outperforms previous SOTA CTVC methods in retaining
crucial information after compression.
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A DETAILS OF CLASSIFICATION MODEL
ResNet-34 is used to extract image features. Specifically, we replace
the 1000 − 𝑑 Fully-Connected (FC) layer in the penultimate layer
with a 512−𝑑 FC layer and delete the last SoftMax layer. The output
of ResNet-34 is used as input to the Transformer Encoder, where
both the layer number and the head number of the Transformer
Encoder are set to 6. Finally, we perform an FC layer and Softmax
on the output of the transformer-based network to predict the prob-
ability of disease. The prediction loss function is a cross-entropy
loss function.

B HYPERPARAMETER SETTINGS
For CSS, we set the hyperparameters 𝑘 = 10, 𝛼 = 0.5,𝑚reg = 0.9,
𝜆 = 0.5 and 𝑡 = 10. During the training stage of the diagnostic
model, we use adaptive moment estimation (Adam) with an initial
learning rate 1𝑒−3 to optimize the network. We set different batch
sizes for experiments with different numbers of compressed selected
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slices. Themore slices selected for each case, the more GPUmemory
each case occupies; thus, the batch size should be smaller. In detail,
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 1, 4, 8, 16, 16 is set for𝑚 = 64, 32, 16, 8, 4 respectively.
For a fair comparison, the training epoch of all experiments is set
to 400.

C IMPLEMENTATION OF OTHER
COMPRESSION METHODS

Interpolation-based methods calculate the new pixel value in the
compressed image based on the values of surrounding pixels on the
Z-axis. As for the slice selection-based method, SSS selects equal
slices from the first, middle and last position of the CT volume,
whereas ESS selects one after every specific number of slices. As a
baseline method, the full CT volume method utilizes the whole CT
dataset for training the classification model without compression.
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