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Abstract

Analyzing inter-individual variability of physiological functions is particularly ap-
pealing in medical and biological contexts to describe or quantify health conditions.
Such analysis can be done by comparing individuals to a reference one with time
series as biomedical data. This paper introduces an unsupervised representation
learning (URL) algorithm for time series tailored to inter-individual studies. The
idea is to represent time series as deformations of a reference time series. The
deformations are diffeomorphisms parameterized and learned by our method called
TS-LDDMM. Once the deformations and the reference time series are learned, the
vector representations of individual time series are given by the parametrization of
their corresponding deformation. At the crossroads between URL for time series
and shape analysis, the proposed algorithm handles irregularly sampled multivari-
ate time series of variable lengths and provides shape-based representations of
temporal data. In this work, we establish a representation theorem for the graph of a
time series and derive its consequences on the LDDMM framework. We showcase
the advantages of our representation compared to existing methods using synthetic
data and real-world examples motivated by biomedical applications.

1 Introduction

Our goal is to analyze the inter-individual variability within a time series dataset, an approach of
significant interest in physiological contexts [25, 58, 4, 21]. Specifically, we aim to develop an
unsupervised feature representation method that encodes the specificities of individual time series in
comparison to a reference time series. In physiology, examining the various "shapes" in a time series
related to biological phenomena and their variations due to individual differences or pathological
conditions is common. However, the term "shape" lacks a precise definition and is more intuitively
understood as the silhouette of a pattern in a time series. In this paper, we refer to the shape of a time
series as the graph of this signal.
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Figure 1: A time series’ graph G = {(t, s(t)) : t ∈ I} can lose its structure after applying a general
diffeomorphism ϕ.G: a time value can be related to two values on the space axis.

Although community structures with representatives can be learned in an unsupervised manner
[55, 39] using contrastive loss [20, 54, 39] or similarity measures [2, 21, 45, 62], the study of inter-
individual variability of shapes within a cluster [42, 51] remains an open problem in unsupervised
representation learning (URL), particularly for irregularly sampled time series with variable lengths.

Our work explicitly focuses on learning shape-based representation of time series. First, we propose
to view the shape of a time series not merely as its curve {st : t ∈ I}, but as its graph G(s) =
{(t, s(t)) : t ∈ I}. Then, building on the shape analysis literature [5, 57], we adopt the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework [5, 57] to analyze these graphs.
The core idea is to represent each element G(sj) of a dataset (sj)j∈[N ] as the transformation of a
reference graph G(s0) by a diffeomorphism ϕj , i.e. G(sj) ∼ ϕj .G(s0). The diffeomorphism ϕj

is learned by integrating an ordinary differential equation parameterized by a Reproducing Kernel
Hilbert Space (RKHS). The parameters (αj)j∈[N ] encoding the diffemorphisms (ϕj)j∈[N ] yield the
representation features of the graphs (G(sj))j∈[N ]. Finally, these shape-encoding features can be
used as inputs to any statistical or machine-learning model.

However, a time series graph transformation by a general diffeomorphism is not always a time series
graph, see e.g. Figure 1, thus a time series graph is more than a simple curve [23]. Our contributions
arise from this observation: we specify the class of diffeomorphisms to consider and show how to
learn them. This change is fruitful in representing transformations of time series graphs as illustrated
in Figure 2.

Our contributions can be summarized as follows:

• We propose an unsupervised method (TS-LDDMM) to analyze the inter-individual vari-
ability of shapes in a time series dataset (Section 4). In particular, the method can handle
multivariate time series irregularly sampled and with variable sizes.

• We motivate our extension of LDDMM to time series by introducing a theoretical framework
with a representation theorem for time series graph (Theorem 1) and kernels related to their
structure (Lemma 1).

• We demonstrate the identifiability of the model by estimating the true generating parameter of
synthetic data, and we highlight the sensitivity of our method concerning its hyperparameters
(Appendix G.1), also providing guidelines for tuning (Appendix D).

• We highlight the interpretability of TS-LDDMM for studying the inter-individual variability
in a clinical dataset (Section 5).

• We illustrate the quantitative interest of such representation on classification tasks on real
shape-based datasets with regular and irregular sampling (Appendices H and I).

2 Notations

We denote by integer ranges by [k : l] = {k, . . . , l} ⊂ P(Z) and [l] = [1 : l] with k, l ∈ N, by
Cm(I,E) the set of m-times continously differentiable function defined on an open set U to a normed
vector space E, by ||u||∞ = supx∈U |u(x)| for any bounded function u : U → E, and by N>0 is the
set of positive integers.
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Figure 2: LDDMM and TS-LDDMM are applied to ECG data. We observe that LDDMM, using a
general Gaussian kernel, does not learn the time translation of the first spike but changes the space
values, i.e., one spike disappears before emerging at a translated position. At the same time, TS-
LDDMM handles the time change in the shape. This difference of deformations implies differences
in features representations.

3 Background on LDDMM
In this part, we expose how to learn the diffeomorphisms (ϕj)j∈[N ] using LDDMM, initially intro-
duced in [5]. In a nutshell, for any j ∈ [N ], ϕj corresponds to a differential flow related to a learnable
velocity field belonging to a well-chosen Reproducing Kernel Hilbert Space (RKHS).

In the next section, time series are going to be represented by diffeomorphism parameters (αj)j∈[N ].
That is why LDDMM is chosen since it offers a parametrization for diffeomorphisms that is sparse
and interpretable, two features particularly relevant in the biomedical context.

The basic problem that we consider in this section is the following. Given a set of targets y =

(yi)i∈[T2] in Rd′2, a set of starting points x = (xi)i∈[T1] in Rd′
, we aim to find a diffeomorphism ϕ

such that the finite set of points y is similar in a certain sense to the set of finite sets of transformed
points ϕ · x = (ϕ(xi))i∈[T1]. The function ϕ is occasionally referred to as a deformation. In general,
these sets x,y are meshes of continuous objects, e.g., surfaces, curves, images, and so on.

Representing diffeomorpshims as deformations. Such deformations ϕ are constructed via differ-
ential flow equations, for any x0 ∈ Rd′

and τ ∈ [0, 1]:

dX(τ)

dτ
= vτ (X(τ)), X(0) = x0 , ϕv

τ (x0) = X(τ), ϕv = ϕv
1 , (1)

where the velocity field is v : τ ∈ [0, 1] 7→ vτ ∈ V and V is a Hilbert space of continuously
differentiable function on Rd′

. If || du||∞ + ||u||∞ ≤ ||u||V for any u ∈ V and v ∈ L2([0, 1],V) =

{v ∈ C0([0, 1],V) :
∫ 1

0
||vτ ||2V dτ < ∞}, by [22, Theorem 5] ϕv exists and belongs to D(Rd′

), where
we denote by D(O) the set of diffeomorpshim defined on an open set O to O. Therefore, for any
choice of v, ϕv defines a valid deformation. This offers a general recipe to construct diffeomorphism
given a functional space V.

With this in mind, the velocity field v fitting the data can be estimated by minimizing v ∈
L2([0, 1],V) 7→ L (ϕv.x,y), where L is an appropriate loss function. However, two computa-
tional challenges arise. First, this optimization problem is ill-posed, and a penalty term is needed to
obtain a unique solution. In addition, a parametric family VΘ ⊂ L2([0, 1],V), parameterized by Θ, is
sought to efficiently solve this minimization problem.

From deformations to geodesics. It has been proposed in [40] to interpret V as a tangent space
relative to the group of diffeomorphisms H = {ϕv : v ∈ L2([0, 1],V)}. Following this geometric
point of view, geodesics can be constructed on H by using the following squared norm

R2 : g ∈ H 7→ inf
v∈L2([0,1],V): g=ϕv

∫ 1

0

||vτ ||2V dτ (2)

By deriving differential constraints related to the minimum of (2) and using Cauchy-Lipschitz
conditions, geodesics can be defined only by giving the starting point and the initial velocity v0 ∈ V
[40], as straight lines in Euclidean space. Denoting by τ 7→ ρv0(τ) ∈ H the geodesic starting from

2Note that we denote by d′ ∈ N the ambient space
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the identity with inital velocity v0 ∈ V, the exponential map is defined as φ{v0} ≜ ρv0(1). Using
φ{v0} instead of ϕv , the previous matching problem becomes a geodesic shooting problem:

inf
v0∈V

L (φ{v0}.x,y). (3)

Using φ{v0} instead of ϕv for any v ∈ L2([0, 1],V) regularizes the problem and induces a sparse
representation for the learning diffeomorphisms. Moreover, by setting V as an RKHS, the geodesic
shooting problem has a unique solution and becomes tractable, as described in the next section.

Discrete parametrization of diffeomorpshim. In this part, V is chosen as an RKHS [6] generated
by a smooth kernel K (e.g., Gaussian). We follow [17] and define a discrete parameterization of the
velocity fields to perform geodesics shooting (3). The initial velocity field v0 is chosen as a finite
linear combination of the RKHS basis vector fields, n0 control points X0 = (xk,0)k∈[n0] ∈ (Rd′

)n0

and momentum vectors α0 = (αk,0)k∈[n0] ∈ (Rd′
)n0 are defined such that for any x ∈ Rd′

,

v0 (α0,X0) (x) =

n0∑
k=1

K(x, xk,0)αk,0 . (4)

In our applications, the control points (xk,0)k∈[n0] can be understood as the discretized graph
(tk, s0(tk))k∈[n0] of a starting time series s0. With this parametrization of v0, [40] show that the
velocity field v of the solution of (3) keeps the same structure along time, such that for any x ∈ Rd′

and τ ∈ [0, 1],

vτ (x) =

n0∑
k=1

K(x, xk(τ))αk(τ) ,
dxk(τ)

dτ
= vτ (xk(τ)) ,

dαk(τ)

dτ
= −

n0∑
k=1

dxk(τ)K(xk(τ), xl(τ))αl(τ)
⊤αk(τ)

αk(0) = αk,0, xk(0) = xk,0 , k ∈ [n0]

(5)

These equations are derived from the hamiltonian H : (αk, xk)k∈[n0] 7→
∑n0

k,l=1 α
⊤
k K(xk, xl)αl,

such that the velocity norm is preserved ||vτ ||V = ||v0||V for any τ ∈ [0, 1]. By (5), the velocity
field related to a geodesic v∗ is fully parametrized by its initial control points and momentum
(xk,0, αk,0)k∈[n0]. Thus, given a set of targets y = (yi)i∈[T2] in Rd′

, a set of starting points x =

(xi,0)i∈[T1] in Rd′
, a RKHS’s kernel K : Rd′ × Rd′ → Rd′×d′

, a distance on sets L , a numerical
integration scheme of ODE and a penalty factor λ > 0, the basic geodesic shooting step minimizes
the following function using a gradient descent method:

Fx,y : (αk)k∈[T1] 7→ L
(
φ{v0}.x,y

)
+ λ||v0||2V , (6)

where v0 is defined by (4) and φ{v0}.x is the result of the numerical integration of (5) using control
points x and initial momentums (αk)k∈[T1].

Relation to Continuous Normalizing Flows. One particular popular choice to address the problem
of learning a diffeomorphism or a velocity field is Normalizing Flows [47, 32] (NF) or their continuous
counterpart [13, 24, 48] (CNF). However, we do not rely on this class of learning algorithms for
several reasons. Indeed, existing and simple normalizing flows are not suitable for the type of data
that we are interested in this paper [19, 16]. In addition, they are primarily designed to have tractable
Jacobian functions, while we do not require such property in our applications. Finally, the use of
a differential flow solution of an ODE (1) trick is also at the basis of CNF, which then consists of
learning a velocity field to address in fitting the data through a loss aiming to address the problem at
hand. Nevertheless, the main difference between CNF and LDDMM lies in the parametrization of the
velocity field. LDDMM uses kernels to derive closed form formula and enhance interpretability while
NF and CNF take advantage of deep neural networks to scale with large dataset in high dimensions.

4 Methodology
We consider in this paper observations which consist in a population of N multivariate time series, for
any j ∈ [N ], sj ∈ C1(Ij ,Rd). However, we can only access a nj-samples s̃j = (s̃ji = sj(tji ))i∈[nj ]
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collected at timestamps (tji )i∈[nj ] for any j ∈ [N ]. Note that the number of samples nj is not
necessarily the same across individuals and the timestamps can be irregularly sampled. We assume
the time series population is globally homogeneous regarding their "shapes" even if inter-individual
variability exists. Intuitively speaking, the "shape" of a time series s : I → Rd is encoded in its graphs
G(s) defined as the set {(t, s(t)) : t ∈ I} and not only in its values s(I) = {s(t) : t ∈ I} since the
time axis is crucial. As a motivating use-case, sj can be the time series of a heartbeat extracted from
an individual’s electrocardiogram (ECG), see Figure 2. The homogeneity in a resulting dataset comes
from the fact that humans have similar shapes of heartbeat [61, 37].

The deformation problem. In this paper, we aim to study the inter-individual variability in the
dataset by finding a relevant representation of each time series. Inspired from the framework of shape
analysis [57], addressing similar problems in morphology, we suggest to represent each time series’
graph G(sj) as the transformation of a reference graph G(s0), related to a time series s0 : I → Rd, by
a diffeomorphism ϕj on Rd+1, for any j ∈ [N ],

ϕj .G(s0) = {ϕj (t, s0(t)) , t ∈ I} . (7)

s0 will be understood as the typical representative shape common to the collection of time series
(sj)j∈[N ]. As s0 is supposed to be fixed, then the representation of the time series (sj)j∈[N ] boils
down to the one of the transformation (ϕj)j∈[N ]. We aim to learn G(s0) and (ϕj)j∈[N ].

Optimization related to (7). Defining the discretized graphs of the time series (sj)j∈[N ] and a
discretization of the reference graph G(s0) as, for any j ∈ [N ],

yj = G(s̃j) = (tji , s̃
j
i )i∈[nj ] ∈ (Rd+1)nj , G̃0 = (t0i , s̃

0
i )i∈[n0] ∈ (Rd+1)n0 ,

with n0 = median((nj)j∈[N ]), the representation problem given in (7) boils down solving:

argmin
G̃0,(α

j
k)

j∈[N]

k∈[n0]

N∑
j=1

FG̃0,yj

(
(αj

k)k∈[n0]

)
, (8)

which is carried out by gradient descent on the control points G̃0 and the momentums αj = (αj
k)k∈[n0]

for any j ∈ [N ], initialized by a dataset’s time series graph of size n0 and by 0(d+1)n0
respectively.

The optimization hyperparameter details are given in Appendix E.1. The result of the minimization
G̃0 is then considered as the n0-samples of a common time series s0 and the momentums αj encoding
ϕj yields a feature vector in Rdn0 of sj for any j ∈ [N ]. Finally, the vectors (αj)j∈[N ] can be
analyzed with any statistical or machine learning tools such as Principal Components Analysis (PCA),
Latent Discriminant Analysis (LDA), longitudinal data analysis and so on.

Nevertheless, (8) asks to define a kernel and a loss in order to perform geodesic shooting (6), which
is the purpose of the following subsection.

4.1 Application of LDDMM to time series analysis: TS-LDDMM
This section presents our theoretical contribution: we tailor the LDDMM framework to handle time
series data. The reason is that applying a general diffeomorphism ϕ from Rd+1 to a time series’ graph
G(s) can result in a set ϕ.G(s) that does not correspond to the graph of any time series, as illustrated
in the Figure 1. Thus, time series graphs have more structure than a simple 1D curve [23] and deserve
their unique analysis, which will prove fruitful as demonstrated in Section 5.

To address this challenge, we need to identify an RKHS kernel K : Rd+1 × Rd+1 → R(d+1)2 that
generates deformations preserving the structure of the time series graph. This goal motivates us to
clarify, in Theorem 1, the specific representation of diffeomorphisms we require before presenting a
class of kernels that produce deformations with this representation.

Similarly, selecting a loss function on sets L that considers the temporal evolution in a time series’
graph is crucial for meaningful comparisons with time series data. Consequently, we introduce the
oriented Varifold distance.

A representation separating space and time. We prove that two time series graphs can always
be linked by a time transformation composed with a space transformation. Moreover, a time series
graph transformed by this kind of transformation is always a time series graph. We define Ψγ ∈
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D(Rd+1) : (t, x) ∈ Rd+1 → (γ(t), x) for any γ ∈ D(R) and Φf : (t, x) ∈ Rd+1 → (t, f(t, x))
for any f ∈ C1(Rd+1,Rd). We have the following representation theorem. All proofs are given in
Appendix B.

Denote by G(s) ≜ {(t, s(t)) : t ∈ I} the graph of a time series s : I → Rd and ϕ.G(s) ≜ {ϕ(t, s(t)) :
t ∈ I} the action of ϕ ∈ D(Rd+1) on G(s).

Theorem 1. Let s : J → Rd and s0 : I → Rd be two continuously differentiable time seriess
with I, J two intervals of R. There exist f ∈ C1(Rd+1,Rd) and γ ∈ D(R) such that γ(I) = J and
Φf ∈ D(Rd+1),

G(s) = Πγ,f .G(s0), Πγ,f = Ψγ ◦ Φf .

Moreover, for any f̄ ∈ C1(Rd+1,Rd) and γ̄ ∈ D(R), there exists a continously differentiable time
series s̄ such that G(s̄) = Πγ̄,f̄ .G(s0)

Remark 2. Note that for any γ ∈ D(R) and s ∈ C0(I,Rd),

{(γ(t), s(t)), t ∈ I} = {(t, s ◦ γ−1(t)) : t ∈ γ(I)} .

As a result, Ψγ can be understood as a temporal reparametrization and Φf encodes the transformation
about the space.

Choice for the kernel associated with the RKHS V As depicted on Figure 1-2, we can not use
any kernel K to apply the previous methodology to learn deformations on time series’ graphs. We
describe and motivate our choice in this paragraph. Denote the one-dimensional Gaussian kernel by
K

(a)
σ (x, y) = exp(−|x − y|2/σ) for any (x, y) ∈ (Ra)2, a ∈ N and σ > 0. To solve the geodesic

shooting problem (6) on Rd+1, we consider for V the RKHS associated with the kernel defined for
any (t, x), (t′, x′) ∈ (Rd+1)2:

KG((t, x), (t
′, x′)) =

(
c0Ktime 0

0 c1Kspace

)
, (9)

Kspace = K(1)
σT,1

(t, t′)K(d)
σx

(x, x′)Id ,Ktime = K(1)
σT,0

(t, t′) ,

parametrized by the widths σT,0, σT,1, σx > 0 and the constants c0, c1 > 0. This choice for KG is
motivated by the representation Theorem 1 and the following result.
Lemma 1. If we denote by V the RKHS associated with the kernel KG, then for any vector field
v generated by (5) with v0 satisfying (4), there exist γ ∈ D(R) and f ∈ C1(Rd+1,Rd) such that
ϕv = Ψγ ◦ Φf .

Instead of Gaussian kernels, other types of smooth kernels can be selected as long as the structure (9)
is respected.
Remark 3. With this choice of kernel, the features associated with the time transformation can be
extracted from the momentums (αk,0)k∈[n0] ∈ (Rd+1)n0 in (4) by taking the coordinates related to
time. However, the features related to the space transformation are not only in the space coordinates
since the related kernel Kspace depends on time as well.The kernel’s representation has been carefully
designed to integrate both space and time, while ensuring that time remains independent of space.
Initially, we considered separating the spatial and temporal components. However, post-hoc analysis
of such a representation proved to be challenging. The separated spatial and temporal representations
are correlated, and understanding this correlation is essential for interpreting the data. As a result,
concatenating the two representations becomes necessary, though there is no straightforward method
for doing so, as they are not commensurable. Consequently, we opted for a representation that
inherently integrates both space and time.

In Appendix D, we give guidelines for selecting the hyperparameters (σT,0, σT,1, σx, c0, c1).

Loss This section specifies the distance function L introduced in the loss function defined in (6).

In practice, we can only access discretized graphs of time series, (tji , s̃
j
i )i∈[nj ] for any j ∈ [N ], that are

potentially of different sizes nj and sampled at different timestamps (tji )i∈[nj ] for any j ∈ [N ]. Usual
metrics, such as the Euclidean distance, are not appealing as they make the underlying assumptions
of equal size sets and the existence of a pairing between points. Distances between measures on sets
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(taking the empirical distribution), such as Maximum Mean Discaprency (MMD) [18, 9], alleviate
those issues; however, MMD only accounts for positional information and lacks information about
the time evolution between sampled points. A classical data fidelity metric from shape analysis
corresponding to the distance between oriented varifolds associated with curves alleviates this last
issue [30]. Intuitively, an oriented varifold is a measure that accounts for positional and tangential
information about the underlying curves at sample points. More details and information about
oriented varifolds can be found in Appendix C.

More precisely, given two sets G0 = (g0i )i∈[T0],G1 = (g1i )i∈[T1] ∈ (Rd+1)T1 and a kernel3 k :

(Rd+1 × Sd)2 → R verifying [30, Proposition 2 & 4], for any ξ ∈ {0, 1} and i ∈ [Tξ − 1], denoting
the center and length of the ith segment [gξi , g

ξ
i+1] by cξi = (gξi + gξi+1)/2, lξi = ∥gξi+1 − gξi ∥, and

−→vi ξ = (gξi+1 − gξi )/l
ξ
i , the varifold distance between G0 and G1 is defined as,

d2W∗(G0,G1) =

T0−1∑
i,j=1

l0i k((c
0
i ,
−→vi 0), (c0j ,−→vj 0))l0j − 2

T0−1∑
i=1

T1−1∑
j=1

l0i k((c
0
i ,
−→vi 0), (c1j ,−→vj 1))l1j

+

T1−1∑
i,j=1

l1i k((c
1
i ,
−→vi 1), (c1j ,−→vj 1))l1j

In practice, we set the kernel k as the product of two anisotropic Gaussian kernels, kpos and kdir,
such that for any (x,−→u ), (y,−→v ) ∈ (Rd+1 × Sd)2

k((x,−→u ), (y,−→v )) = kpos(x, y)kdir(
−→u ,−→v ) .

Note that the loss kernel k has nothing to do with the velocity field kernel denoted by KG or K
specified in Section 4.1. Finally, we define the data fidelity loss function, L , as a sum of d2W∗

using different kernel’s width parameters σ to incorporate multiscale information. L is indeed
differentiable with respect to its first variable. The specific kernels kpos, kdir that we use in our
experiments are given Appendix C.1. For further readings on curves and surface representation as
varifolds, readers can refer to [30, 12].

A pedagogical online application is available to inspect the effect of hyperprameters on geodesic
shooting (5) and registration (6).

5 Experiments
The source code is available on Github4. For conciseness, several experiments are relegated in
appendix:

1. TS-LDDMM representation identifiability, Appendix G: On synthetic data, we evaluate
the ability of our method to retrieve the parameter v∗0 that encodes the deformation φ{v∗

0}

acting on a time series graph G by solving the geodesic shooting problem (6) between G
and φ{v∗

0}.G. Results show that TS-LDDMM representations are identifiable or weakly
identifiable depending on the velocity field kernel KG specification.

2. Robustness to irregular sampling, Appendix H: We compare the robustness of TS-
LDDMM representation with 9 URL methods handling irregularly sampled multivariate
time series on 15 shape-based datasets (7 univariates & 8 multivariates). We assess methods’
classification performances under regular sampling (0% missing rate) and three irregular
sampling regimes (30%, 50%, and 70% missing rates), according to the protocol depicted in
[31]. Results show that our method, TS-LDDMM, outperforms all methods for sampling
regimes with missing rates: 0%, 30%, and 50%.

3. Classification benchmark on regularly sampled datasets, Appendix I: We compare
performances of a kernel support vector machine (SVC) algorithm based on TS-LDDMM
representation with 3 state-of-the-art classification methods from shape analysis on 15
shape-based datasets (7 univariates & 8 multivariates). Results show that the TS-LDDMM-
based method outperforms other methods (best performances over 13 datasets), making
TS-LDDMM representation relevant for time series shape analysis.

3Sd = {x ∈ Rd+1 : |x| = 1}
4https://github.com/thibaut-germain/TSLDDMM
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PC densities
(b) LDDMM shooting

PC densities
(a) TS-LDDMM shooting

Figure 3: Analysis of the two principal components (PC) related to mice ventilation before exposure
with TS-LDDMM representations (a), and LDDMM (b). In both cases and for all PC, the left
plot displays PC densities according to mice genotype and right plot displays deformations of the
reference graph c0 along each PC.

(a) ColQ cycle (b) PC1 vs PC2 (c) WT cycle

Figure 4: (a) a ColQ respiratory cycle sample. (b) Referent respiratory cycle of individual mouse cj0
in the TS-LDDMM PC1-PC2 coordinates system of c0. (c) a WT respiratory cycle sample.

4. Noise sensitivity for learning the reference graph, Appendix J: We evaluate the noise
sensitivity of TS-LDDMM and Shape-FPCA [60] for learning the reference graph on a
synthetic dataset and for several levels of additive Gaussian noise. Results show that both
methods are sensitive to noise. However, TS-LDDMM preserves the overall shape while
shape-FPCA alters the shape depending on the noise level.

5.1 Interpretability: mice ventilation analysis

This experiment highlights the interpretability of TS-LDDMM representation for studying the inter-
individual variability in biomedical applications. We consider a time series dataset monitoring the
evolution of mice’s nasal and thoracic airflow when exposed to a drug altering respiration [41]. The
dataset includes recordings of 7 control mice (WT) and 7 mutant mice (ColQ) with an enzyme
deficiency. The enzyme is involved in the respiration regulation, and the drug inhibits its activity. For
each mouse, airflows were monitored for 15 to 20 minutes before the drug exposure and then for 35
to 40 minutes. A complete description of the dataset is given in the Appendix F.1.

Experimental protocol. We considered two experimental scenarios; the first focuses on mice
ventilation before exposure to explore the inter-individual and genotype-specific variabilities. The
second focuses on whole recordings to analyze the evolution of mice’s ventilation after drug exposure.
In both cases, the baseline protocol consists of first extracting N respiratory cycles from the datasets
with the procedure described in [21]. Then, learning the referent respiratory cycle c0 and the
representations of respiratory cycles (αj

0)j∈[N ] by solving (8) using TS-LDDMM. αj
0 being the

momentum of the initial velocity field of the geodesic encodings the diffeomorphisms mapping
c0 to the jth respiratory cycle. Finally, performing a Kernel-PCA on the initial velocity fields (4)
belonging to V and encoded by the pairs (αj

0, c0)j∈[N ]. The first experiment includes N1 = 700
cycles collected before exposure. The second experiment includes N2 = 1400 cycles with 25% (resp.
75%) before (resp. after) exposure. We also performed the first experimental scenario with LDDMM
representation, and Appendix K describes the settings of both methods. Essentially, varifold losses are
identical for both methods, and the velocity field kernels are set to encompass time and space scales.
in addition, In addition, Appendix K presents a comparison between TS-LDDMM and Shape-FPCA
on the second scenario.

Geodesic shooting along principal component directions. Any principal component (PC), noted
vpc0 , from a kernel-PCA in V, is itself an initial velocity field encoded by a pair (c0,α

pc
0 ). PCs encode

the principal axis of deformations, and it is possible to shoot along the geodesic they encode with the
differential equations (5), enabling interpretation of the main sources of deformations.
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(b) TS-LDDMM PC1 shooting(a) PC1 densities (c) Scatter PC1 vs PC3

Figure 5: Analysis of the first Principal Component (PC1) related to mice ventilation before and
after exposure with TS-LDDMM representations. (a) displays PC densities per mice genotype,
(b) illustrates deformations of the reference respiratory cycle c0 along PC1, and (c) displays all
respiratory cycles with respect to time in PC1 and PC3 coordinates

Mice ventilation before exposure. We focus on the analysis of the two first Principal Components
(PC) for TS-LDDMM (Figure 3a) and LDDMM (Figure 3b). Looking at the geodesic shooting
along PCs, Figure 3 shows that principal components learned with TS-LDMM lead to deformations
that remain respiratory cycles. In contrast, deformations learned with LDDMM are challenging to
interpret as respiratory cycles. The LDDMM velocity field kernel is a Gaussian anisotropic kernel
that accounts for time and space scales; however, the entanglement of time and space dimensions
in the kernel does not guarantee the graph structure, and it makes the convergence of the method
complex (relative varifold loss error: TS-LDDMM: 0.06, LDDMM: 0.11).

Regarding TS-LDDMM Figure 3a, its PCs refer to deformations directions carrying different physio-
logical meanings. Indeed, the geodesic shooting along these directions indicates that PC1 accounts
for variations of the total duration of a respiratory cycle, while PC2 expresses the trade-off between
inspiration and expiration duration. In addition, the distribution of ColQ respiratory cycles along PC1
is wider than in WT mice, indicating that the adaptation of mutant mice to their enzyme deficiency
is variable. This observation can also be seen in Figure 4b where a referent respiratory cycle cj0 is
learned by solving (8) for each mouse and is encoded in the (PC1,PC2) coordinate system of c0 by
registration (3). Indeed, the average respiratory cycles of ColQ mice are more spread out than WT
mice’s. Going back to the densities of PC1, ColQ mice distribution has a heavier tail toward negative
values compared to WT mice. When shooting in the opposite direction of PC1, we can observe that
the inspiration is divided into two steps. Congruently with [21], such inspirations indicate motor
control difficulties due to enzyme deficiency. Figure 4a is an example of ColQ respiratory cycle with
negative PC1 coordinate.

Mice ventilation evolution after drug exposure. This experiment focuses on the first principal
components learned from TS-LDDDM representations of respiratory cycles randomly sampled
before and after drug exposure. Figure 5a illustrates the geodesic shootings along PC1. Again, PC1
accounts for variations in respiratory cycle duration, but more importantly, it can be observed on
the deformation at -1.5 σPC the apparition of a long pause after inspiration. Congruently, Figure 5c
indicates that pauses appear after drug exposure as cycles with negative PC1 values mainly occur
after 20 minutes and present more variability along PC3. In addition, Figure 5b shows a bimodal
distribution for WT mice with one of the peaks in the negative values. This peak was not observed in
the previous experiment Figure 3a. It indicates that pauses after inspiration are prevalent in WT mice
after drug exposure. On the other hand, the distributions of ColQ mice’s respiratory cycles along PC1
in both experiments are similar and account for the same deformation, suggesting that ColQ mice
weakly react to the drug exposure as they already adapt their enzyme deficiency.

Experiment Conclusion. Analyzing mice ventilation with TS-LDDMM representation highlights
the method’s ability to create meaningful interaction between experts and the data. Indeed, combining
statistical and visual results shows that main deformations carry physiological meaning, enabling the
characterization of some mice genotypes and the effects of drug exposure.

6 Related Works
Shape analysis focuses on statistical analysis of mathematical objects invariant under some deforma-
tions like rotations, dilations, or time parameterization. The main idea is to represent these objects in
a complete Riemannian manifold (M,g) with a metric g adapted to the geometry of the problem
[40]. Then, any set of points in M can be represented as points in the tangent space of their Frechet
mean m0 [44, 33] by considering their logarithms. The goal is to find a well-suited Riemannian
structure according to the nature of the studied object.
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LDDMM framework is a relevant shape analysis tool to represent curves as depicted in [23]. However,
graphs of time series are a well-structured type of curve due to the inclusion of the temporal dimension
that requires specific care (Figure 1). In a similar vein, Qiu et al [46] proposes a method for tracking
anatomical shape changes in serial images using LDDMM. They include temporal evolution, but not
for the same purpose: the aim is to perform longitudinal modeling of brain images.

Leaving the LDDMM representation, the results of [53, 26] address the representation of curves with
the Square-Root Velocity (SRV) representation. However, the SRV representation is applied after
reparametrization of the temporal dimension of the unit length segment. Consequently, the graph
structure of the time series is not respected, and the original time evolution of the time series is not
encoded in the final representation. Very recently, in a functional data analysis (FDA) framework, a
paper [60] (Shape-FPCA) improved by representing the original time evolution. However, the space
and time representations remain correlated, complicating post-hoc analysis, as discussed in Remark 3.
Additionally, this method is tailored for continuous objects and applies only to time series of the
same length, making the estimation more sensitive to noise. This issue can be addressed through
interpolation, but this approach is not always reliable in sparse and irregular sampling scenarios.
Most FDA approaches, as seen in [50, 63, 59], address this challenge using interpolation or basis
function expansion. In summary, FDA methods typically separate space and time representations
for continuous objects, whereas TS-LDDMM algorithm maintain a discrete-to-discrete analysis,
inherently integrating both space and time representations.

Balancing between discrete and continuous elements is a challenging task. In the deep learning
literature [13, 31, 56, 29, 36, 1], Neural Ordinary Differential Equations (Neural ODEs) [13] learn
continuous latent representations using a vector field parameterized by a neural network, serving
as a continuous analog to Residual Networks [64]. This approach was further enhanced by Neural
Controlled Differential Equations (Neural CDEs) [31] for handling irregular time series, functioning
as continuous-time analogs of RNNs [49]. Extending Neural ODEs, Neural Stochastic Differen-
tial Equations (Neural SDEs) introduce regularization effects [36], although optimization remains
challenging. Leveraging techniques from continuous-discrete filtering theory, Ansari et al. [1]
applied successfully Neural SDEs to irregular time series. Oh et al. [43] improved these results
by incorporating the concept of controlled paths into the drift term, similar to how Neural CDEs
outperform Neural ODEs. With TS-LDDMM, the representation is also derived from an ODE, but the
velocity field is parameterized with kernels and optimized to have a minimal norm, which enhances
interpretability.

All these state-of-the-art methods previously mentionned [23, 43, 60, 26] are compared to TS-
LDDMM in Appendix H and Appendix I.

Compared to the Metamorphosis framework [7], LDDMM framework has weaker assumptions. The
3DMM framework requires that each mesh be re-parametrized into a consistent form where the
number of vertices, triangulation, and the anatomical meaning of each vertex are consistent across all
meshes, as stated in the introduction of [8]. In our context, we do not need such pre-processing; the
time series graph can have different sizes.

7 Limitations and conclusion
This paper proposes a feature representation method, TS-LDDMM, designed for shape comparison
on homogeneous time series datasets. We show on a real dataset its ability to study, with high
interpretability, the inter-individual shape variability. As an unsupervised approach, it is user-friendly
and enables knowledge transfer for different supervised tasks such as classification.

Although TS-LDDMM is already competitive for classification, its performances can be leveraged on
more heterogeneous datasets using a hierarchical clustering extension, which is relegated for future
work.

TS-LDDMM employs kernel computations, which require specific libraries (e.g., KeOps [11]) to
be efficient and scalable. However, in our experiments, the time complexity of TS-LDDMM is
comparable to that of competitors. It is clear that TS-LDDMM needs to be extended to handle very
large datasets with high-dimensional time series (such as videos).

Additionally, TS-LDDMM requires tuning several hyperparameters, though this is a common re-
quirement among competitors [23, 43, 60, 26]. In future work, adaptive methods are expected to be
developed to provide a more user-friendly interface.
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A Societal impact

We believe that the paper has a positive societal impact for the following reasons:

• TS-LDDMM is an interpretable method for understanding inter-individual variability in
biomedical datasets, potentially offering new insights in medicine.

• TS-LDDMM bridges the gap between the shape analysis community and the unsupervised
representation learning (URL) community, fostering potential future collaborations between
these fields.

However, the computational cost of the method may raise environmental concerns similar to those
associated with deep learning [43]. Additionally, while TS-LDDMM has promising biomedical
applications, it could also be misused for creating poison.

B Proofs

Denote by G(s) ≜ {(t, s(t)) : t ∈ I} the graph of a time series s : I → Rd and ϕ.G(s) ≜ {ϕ(t, s(t)) :
t ∈ I} the action of ϕ ∈ D(Rd+1) on G(s).

Theorem 4. Let s : J → Rd and s0 : I → Rd be two continuously differentiable time seriess
with I, J two intervals of R. There exist f ∈ C1(Rd+1,Rd) and γ ∈ D(R) such that γ(I) = J and
Φf ∈ D(Rd+1),

G(s) = Πγ,f .G(s0), Πγ,f = Ψγ ◦ Φf .

Moreover, for any f̄ ∈ C1(Rd+1,Rd) and γ̄ ∈ D(R), there exists a continously differentiable time
series s̄ such that G(s̄) = Πγ̄,f̄ .G(s0)

Proof. Let s : J → Rd and s0 : I → Rd be two continuously differentiable time seriess with
I = (a, b), J = (α, β) two intervals of R. By setting γ : t ∈ R 7→ (β − α)(t− a)/(b− a) + α ∈ R,
we have γ(I) = J and γ ∈ D(R). By defining f : (t, x) ∈ Rd+1 7→ x − s0(t) + s ◦ γ(t), the
map Φf ∈ D(Rd+1), indeed, its inverse is Φ−1

f : (t, x) ∈ Rd+1 7→ (t, x + s0(t) − s(t)) and is
continuously differentiable. Moreover, we have Πγ,f .G(s0) = {(γ(t), s ◦ γ(t)) : t ∈ I} = G(s).

Let f̄ ∈ C1(Rd+1,Rd), γ̄ ∈ D(R) and s0 ∈ C1(I,Rd) with I an interval of R. We have :

Πγ,f .G(s0) = {(γ(t), f(t, s0(t))), t ∈ I }
= {(t, f

(
γ−1(t), s0(γ

−1(t))
)
, t ∈ γ(I) } . (10)

By defining s̄ : t ∈ γ(I) → f
(
γ−1(t), s0(γ

−1(t))
)
, we have s̄ ∈ C1(γ(I),Rd) by composition of

C1 functions and G(s̄) = Πγ,f .G(s0) by (10), which concludes the proof.

Lemma 2. If we denote by V the RKHS associated with the kernel KG, then for any vector field
v generated by (5) with v0 satisfying (4), there exist γ ∈ D(R) and f ∈ C1(Rd+1,Rd) such that
ϕv = Ψγ ◦ Φf .

Proof. Let v be a vector field generated by (5) with v0 satisfying (4). We remark that the first
coordinate of the velocity field vτ denoted by vtime

τ only depends on the time variable t for any
τ ∈ [0, 1]. Thus, when computing the first coordinate of the deformation ϕv, denoted by γ, we
integrate (1) with vτ replaced by vtime

τ , thus γ is independant of the variable x. Moreover, γ ∈ D(R)
since a Gaussian kernel induced an Hilbert space V satisfying |f |V ≤ |f |∞ + |df |∞ for any f ∈ V
by [22, Theorem 9]. For the same reason, we have ϕv ∈ D(Rd+1), and thus its last coordinates
denoted by f belongs to C1(Rd+1,Rd), and by construction ϕv = Ψγ ◦ Φf .

C Oriented varifold

In this section, we introduce the oriented varifold associated with curves. For further readings
on curves and surfaces representation as varifolds, readers can refer to [30, 12]. We associate to
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γ ∈ C1((a, b),Rd+1) an oriented varifold µγ , i.e. a distribution on the space Rd+1 × Sd defined as
follows, for any smooth test function ω : Rd+1 × Sd → R,

EY∼µγ
[ω(Y )] = µγ(ω) =

∫ b

a

ω

(
γ(t),

γ̇(t)

|γ̇(t)|

)
|γ̇(t)|dt .

Denoting by W the space of smooth test function, we have that µγ belongs to its dual W∗. Thus,
a distance on W∗ is sufficient to set a distance on oriented varifolds associated to curve and thus
on C1((a, b),Rd+1) by the identification γ → µγ . Remark that in (TS-LDDMM), γ should be
the parametrization of a time series’ graph G(s), i.e. γ : t ∈ I → (t, s(t)) ∈ Rd+1 denoting by
s : I → Rd the time series. However, in practice, we work with discrete objects. That is why, we
set W as an RKHS to use its representation theorem. More specifically [30, Proposition 2 & 4]
encourages us to consider a kernel k : (Rd+1 × Sd)2 → R such that there exist two positive and
continuously differentiable kernels kpos and kdir, such that for any (x,−→u ), (y,−→v ) ∈ (Rd+1 × Sd)2

k((x,−→u ), (y,−→v )) = kpos(x, y)kdir(
−→u ,−→v ) ,

with moreover kdir > 0 and kpos which admits an RKHS Wpos dense in the space of continous
function on Rd+1 vanishing at infinite [10].

Given such a kernel k : (Rd+1 × Sd)2 → R verifying [30, Proposition 2 & 4], we have that for any
(x, v) ∈ Rd+1 × Sd, δ(x,−→v ) belongs to W∗ as a distribution and that the dual metric ⟨·, ·⟩W∗ satisfies

for any (x1, v1), (x2, v2) ∈
(
Rd+1 × Sd

)2
,

⟨δ(x1,
−→v 1), δ(x2,

−→v 2)⟩W∗ = k((x1,
−→v 1), (x2,

−→v 2)) .

Thus, given two sets of triplets X = (li, xi,
−→v i)i∈[T0−1] ∈ (R × Rd+1 × Sd)T0−1, Y =

(l′i, yi,
−→w i)i∈[T1] ∈ (R× Rd+1 × Sd)T1−1 and denoting by

µX =

T0∑
i=1

liδ(xi,
−→v i), µY =

T1∑
i=1

l′iδ(yi,
−→w i) , (11)

we have,

|µX − µY |2W∗ =
∑T0−1

i,j=1 lik((xi,
−→vi ), (xi,

−→vi 0))lj +
∑T1−1

i,j=1 l
′
ik((yi,

−→wi), (yi,
−→wi))l

′
j

−2
∑T0−1

i=1

∑T1−1
j=1 lik((xi,

−→vi ), (yi,−→wi))l
′
j .

Then, using the identification X → µX , Y → µY , we can define a distance on sets of triplets as
dW∗,3(X,Y ) = |µX − µY |2W∗ .

Now, we aim to discretize the oriented varifold µG related to a time series’ graph G(s) by using a set
of triplets. This is carried out by using a discretized version of G(s), i.e. G̃ = (gi = (ti, s(ti)))i∈[T ] ∈
(Rd+1)T , in the following way: For any i ∈ [T −1], denoting the center and length of the ith segment
[gi, gi+1] by ci = (gi + gi+1)/2, li = ∥gi+1 − gi∥, and the unit norm vector of direction −−−→gigi+1 by
−→vi = (gi+1 − gi)/li, we define the set of triplets X(G̃) = (li, ci,

−→vi )i∈[T−1] and its related oriented
varifold µX(G̃) =

∑T−1
i=1 liδci,−→vi as in (11). This is a valid discretization of the oriented varifold µG

according to [30, Proposition 1]: µX(G̃) converges towards µG as the size of the descretization mesh
supi∈[T−1] |ti+1 − ti| converges to 0.

Finally, we define a distance on discretized time series’ graphs G̃1, G̃2 as dW∗(G̃1, G̃2) =

dW∗,3(X(G̃1), X(G̃2)).

C.1 Varifold kernels

Denote the one-dimensional Gaussian kernel by K
(a)
σ (x, y) = exp(−|x− y|2/σ) for any (x, y) ∈

(Ra)2, a ∈ N and σ > 0. In the implementation, we use the following kernels, for any
((t1, x1), (t2, x2)) ∈ (Rd+1)2, ((w1, v1), (w2, v2)) ∈ (Sd)2,

kpos(x, y) = K(1)
σpos,t

(t1, t2)K
(d)
σpos,x

(x1, x2), kpos(x, y) = K(1)
σdir,t

(w1, w2)K
(d)
σdir,x

(v1, v2) ,
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where σpos,t, σpos,x, σdir,t, σdir,x > 0 are hyperparameters. In practice, we select σpos,x ≈ σdir,x ≈
1 when the times series are centered and normalized. Otherwise we select σpos,x ≈ σdir,x ≈ σ̄s with
σ̄s the average standard deviation of the time series. We choose σpos,t ≈ σdir,t = mfe with fe the
sampling frequency of the time series and m ∈ [5] an integer depending on the time change between
the starting and the target time series graph. The more significant the time change, the higher m
should be. The intuition comes from the fact that the width σpos,t, σdir,t rules the time windows used
to perform the comparison, and σpos,x, σdir,x affects the space window. The size of the windows
should be selected depending on the variations in the data.

D Tuning the hyperparameters of the TS-LDDMM velocity field kernel

The parameter σT,0 should be chosen large compared the sampling frequency fe and compared to
average standard deviation σ̄s of the time series, e.g σT,0 = 100 as σ̄s ≈ fe ≈ 1. It makes the
time transformation smoother. If σT,0 is too small, for instance, σT,0 = fe, the effect of the time
deformation is too localized, and there are not enough samples to make it visible.

The parameter σT,1 should be of the same order as fe: two different points in time can have various
space transformations. σx should be of the same order of σ̄s: two points with a big difference
regarding space compared to σ̄s can have very different space transformations.

We take c0 ≈ 10c1, we want to encourage time transformation before space transformation. We take
(c0, c1) = (1, 0.1) in all experiments.

E Experimental settings

All experiments were performed on a Debian 6.1.69-1 server with NVIDIA RTX A2000 12GB GPU,
Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, and 250 GB of RAM. The source code is available
on Github5.

E.1 Optimization details of TS-LDDMM & LDDMM

We implemented TS-LDDMM in Python with the JAX library 6.

Initialization. As initialization of (8), all momentum parameters are set to 0, and the initial graph
of reference is picked from the dataset such that its length is equal to the median length observed in
the dataset.

Gradient descent. The chosen gradient descent method is "adabelief" [65] implemented in the
OPTAX library 7. The gradient descent has two main parameters: the number of steps (nb_steps) and
the maximum stepsize value (ηM ). The stepsize has a scheduling scheme:

• Warmup period on 0.1× nb_steps steps: the stepsize increases linearly from 0 to ηM . The
goal is to learn progressively the parameters. If the step size is too large at the start, smaller
steps at the end cannot make up for the mistakes made at the beginning.

• Fine tuning periode on 0.9× nb_steps : the stepsize decreases from ηM to 0 with a cosine
decay implemented in the OPTAX scheduler, i.e. the decreasing factor as the form 0.5(1 +
cos(πt/T )).

By default, we set nb_steps to 400 and ηM to 0.1.
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Figure 6: A: Illustration of a double-chamber plethysmograph. The term dpt stands for differential
pressure transducer which measures the pressure in each compartment, the pressure then being
converted to flow. B: Nasal airflow (top) and lung volume (bottom). During inspiration, airflow is
positive (grey) and during expiration, airflow is negative (pink).

F Datasets

F.1 Mouse respiratory cycle dataset

Ventilation is a simple physiological function that ensures a vital supply of oxygen and the elimination
of CO2. Acetylcholine (Ach) is a neurotransmitter that plays an important role in muscular activity,
notably for breathing. Indeed, muscle contraction information passes from the brain to the muscle
through the nervous system. Achs are located in synapses of the nervous system (central and periph-
eral) and skeletal muscles. They ensure the information transmission from nerve to nerve. However,
the transmission cannot end without the hydrolysis of Ach by the enzyme Acetylcholinesterase
(AchE), allowing nerves to return to their resting state. Inhibition of (AchE) with, for instance, nerve
gas, pesticide, or drug intoxication leads to respiratory arrests.

The dataset comes from the experiment [41], where they studied the consequences of partial deficits
in AChE and AChE inhibition on mice respiration. AchE inhibition was induced with an irritant
molecule called physostigmine (an AchE inhibitor). Mice nasal airflows were sampled at 2000Hz
with a Double Chamber plethysmograph [28], as depicted in Figure 6-A). The flow is expressed
in ml.s−1; it has a positive value during inspiration and a negative value expiration Figure 6-B).
Among the mice population, we selected 7 control mice (wt) and 7 ColQ mice (colq), which do not
have AChE anchoring in muscles and some tissues. As described in [41], mice experiments were as
follows:

1. The mouse is placed in a DCP for 15 or 20 min to serve as an internal control.

2. The mouse is removed from the DCP and injected with physostigmine.

3. The mouse is placed back into the DCP, and its nasal flow is recorded for 35 or 40 min.

Respiratory cycles were extracted following procedure [21]. We removed respiratory cycles whose
duration exceeds 1 second; the average respiratory cycle duration is 300 ms. We randomly sampled
10 respiratory cycles per minute and mouse. It leads to a dataset of 12,732 (time, genotype)-annotated
respiratory cycles.

5https://github.com/thibaut-germain/TSLDDMM
6https://github.com/google/jax
7https://optax.readthedocs.io/en/latest/
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F.2 Shape-based UCR/UEA time series classification datasets

We selected 15 shape-based datasets (7 univariates and 8 multivariates) from the from the University
of East Anglia (UEA) and the University of California Riverside (UCR) Time Series Classification
Repository8 [15, 3]. All datasets were downloaded with the python package aeon9. Essential datasets
information are summarized in Table 1 and further can be found in [15, 3].

Table 1: UCR/UEA shape-based time series datasets for classification.
Dataset Size Lengh Number of classes Number of dimensions Type

Univariate

ArrowHead 211 251 3 1 IMAGE
BME 180 128 3 1 SIMULATED
ECG200 200 96 2 1 ECG
FacesUCR 2250 131 14 1 IMAGE
GunPoint 200 150 2 1 MOTION
PhalangesOutlinesCorrect 2658 80 2 1 IMAGE
Trace 200 275 4 1 SENSOR

Multivariate

ArticularyWordRecognition 575 144 25 9 SENSOR
Cricket 180 1197 12 6 MOTION
ERing 60 65 6 4 SENSOR
Handwriting 1000 152 26 3 MOTION
Libras 360 45 15 2 VIDEO
NATOPS 360 51 6 24 MOTION
RacketSports 303 30 4 6 SENSOR
UWaveGestureLibrary 240 315 8 3 SENSOR

G Appendix for experiment: TS-LDDMM representation identifiability

In this experiment, we evaluate the ability of TS-LDDMM to retrieve the parameter v∗0 that encodes
the deformation φ{v∗

0} acting on a time series graph G by solving the geodesic shooting problem (6)
between G and φ{v∗

0}.G. Parameter identifiability is an important property for subsequent statistical
analysis. Results show that TS-LDDMM representations are identifiable or weakly identifiable
depending on the velocity field kernel KG specification.

G.1 Settings

This experiment only involves the TS-LDDMM method in two different settings:

• The velocity field kernel KG is well-specified: The velocity field kernel KG is set to
(c0, c1, σT,0, σT,1, σx) = (1, 0.1, 100, 1, 1), the varifold loss kernels (kpos, kdir) are set
to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, 1, 2, 0.6), and the optimizer has 400 steps with a
maximum stepsize ηM of 0.05.

• The velocity field kernel KG is missspecified: The velocity field kernel KG is
set with (c0, c1, σT,1) = (1, 0.1, 1), σT,0 ranging in (1, 5, 10, 50, 100, 200, 300), and
σx ranging in (0.1, 1, 10, 100). The varifold loss kernels (kpos, kdir) are set to
(σpos,t, σpos,t, σdir,t, σdir,x) = (2, 1, 2, 0.6), and the optimizer has 400 steps with a maxi-
mum stepsize ηM of 0.05.

provided that the hyperparameters and the reference graph are wisely selected, i.e., the parameter v∗0
generating a deformation φ{v∗

0} of a time series graph G can be estimated from the data G, φ{v∗
0}.G

by solving the geodesic shooting problem (6).

The velocity field kernel KG is well specified. First, we show the model identifiability when the
kernel KG is well specified: the estimated parameter is a good approximation of the generating
parameter when the generation and the estimation procedure use the same hyperparameters for
the RKHS kernel KG. All the hyperparameter values for generation and estimation are given in
Appendix G.1.

8https://timeseriesclassification.com
9https://www.aeon-toolkit.org/en/stable/
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Figure 7: Plots of φ{v0(α∗,X)}.X for different values of α∗ according to its sampling parameter
ta, sa,ms, taking X = G(s0) with s0 : k ∈ [300] → sin(2πk/300).

Table 2: Values of L (φ{v0(α∗,X)}.X, φ{v̂0}.X) as α∗ is sampled according to Gen(10,10,50) and v̂0
is estimated using KG with varying parameters σT,1, σx.

σT,0\σx 1 10 50 100 200 300

0.1 2e+0 3e-4 1e-5 4e-6 7e-4 4e-3
1 4e-2 1e-4 1e-5 4e-6 7e-4 4e-3
100 4e-2 2e-4 1e-5 4e-6 7e-4 4e-3

We fix the initial control points as X = (xk = (k, sin(2πk/300)))k∈[300]. Given ms ∈ N>0 and
ta, sa > 0, we randomly generate initial momentums α∗ = (α∗

k)k∈[n0] with the following sam-
pling, called Gen(ms, ta, sa): For any k ∈ [n0], α′

k is sampled according to a Gaussian normal
distribution N (0d+1, Id+1). Then, (α′

k)k∈[n0] is regularized by a rolling average of size ms, we
get ᾱ′ = (ᾱ′

k)k∈[n0]. Finally, we normalize ᾱ′ to derive α∗ such that |([α∗
k]t)k∈[n0]| = tamp and

|([α∗
k]s)k∈[n0]| = samp for any k ∈ [n0], denoting by [α∗

k]t, [α
∗
k]s the time and space coordinates

of α∗
k respectively. Note that the regularizing step (α′

k)k∈[n0] → ᾱ′ is necessary to obtain realistic
deformations which take into account the regularity induced by the RKHS V.

Then, using v0(α
∗,X) as defined in (4) with initial momentums α∗ and control points X, we apply

the induced deformation φ{v0} by (5) to X and obtain φ{v0}.X. Finally, we solve (6) to recover an
estimation α̂ of α∗ and report the average relative error (ARE) |v0(α̂,X)− v0(α

∗,X)|V/|v0(α∗,X)|V
on 50 repetitions. This procedure is performed for any ms, ta, sa ∈ {10, 50, 100} × {5, 10, 15, 20}2.
Mean, standard deviation, and maximum of the ARE on all these hyperparameters choices are
respectively 0.10,0.03,0.17. Therefore, the estimation procedure (6) offers a good approximation
of the true parameter when the kernel KG is well specified. We observe that the estimation is difficult
when ta ≪ sa because the time series can be very noisy as illustrated in Figure 7: this impacts the
Varifold loss which is sensitive to tangents.

The velocity field kernel KG is misspecified. We demonstrate a weak identifiability when the
kernel KG is misspecified: we can reconstruct the graph time series’ after deformations even if
the hyperparameters of KG are different during the generation and the estimation. The hyper-
parameters of KG during generation are (c0, c1, σT,0, σT,1, σx) = (1, 0.1, 100, 1, 1) and we fix
σT,1, c0, c1 = (1, 1, 0.1) for KG during estimation. We aim to understand the impact of σT,1, σx on
the reconstruction since they are encoding the smoothness of the transformation according to time
and space.

For any choice of the hyperparameters σT,1, σx ∈ {1, 10, 50, 100, 200, 300}×{0.1, 1, 100} related to
KG in the estimation, we average L (φ{v0(α∗,X)}.X, φ{v̂0}.X) on 50 repetitions when α∗ is sampled
according to Gen(10, 10, 50) and v̂0 = v0(α̂,X) denoting by α̂ the result of the minimization (6). We
observe in Table 2 that the reconstruction is almost perfect except in the case when σt,0 = 1 during
estimation, while σt,0 = 100 during generation. Compared to σT,0, σx has nearly no impact on the
reconstruction. In Appendix C.1-D, we propose guidelines to drive future hyperparameters tuning
and further discussions related to σT,1, c0, c1.

20



H Appendix for experiment: Robustness to irregular sampling

This experiment is inspired by [43] where the authors perform an extensive comparison of Neural Or-
dinary Differential Equations (Neural ODEs) methods [31]. We assess the classification performances
of several methods under regular sampling (0% missing rate) and three irregular sampling regimes on
15 shape-based datasets (7 univariate & 8 multivariate). Methods and training strategy are taken from
its associated Github10 and described in what follows. We conclude with the results, which show that
our method, TS-LDDMM, outperforms all methods for sampling regimes with missing rates: 0%,
30%, and 50%.

H.1 Benchmark methods

In related work, we give an overview of Neurals ODEs methods and their relation with TS-LDDMM.

• RNN-based methods: Baseline reccurent neural networks including RNN [38], LSTM [27],
and GRU [14].

• Attention-based methods: Multi-Time Attention Networks (MTAN) [52] and Multi-
Integration Attention Module (MIAM) [35]. Both handle multivariate time series irregularly
sampled with attention mechanisms.

• Neural ODEs: ODE-LSTM [34] a form of Neural-ODEs used to learn continuous latent
representations.

• Neural SDEs: Neural SDE [36] and Neural LNSDE [43] have been proposed to model
randomness in time-series using drift and diffusion terms as an extension of Neural-ODEs.

• Shape-Analysis methods: TS-LDDMM (ours) and LDDMM [23]. From shape analysis,
both methods learn representations by solving ODEs parametrized with Kernels. While
both methods handle multivariate signals irregularly sampled, TS-LDDMM is specifically
designed for time series.

H.2 Model architecture

Neural ODEs methods As depicted in [43], any Neural ODEs layer in Appendix H.1 is followed
by an MLP with two fully connected layers with ReLU activations. The risk of overfitting and the
model regularization are handled with a dropout rate of 10% and an early-stopping mechanism,
ceasing the training when the validation loss does not improve for 10 successive epochs.

For each method and dataset, the learning rate, the hidden vector dimensions, and the number of
layers are optimized to minimize the CrossEntropy loss on a validation set using the Ray 11 Python
library. The learning rate varies from 10−4 to 10−1 using log uniform search, the hidden vector
dimension ranges from 16, 32, 64, 128 using grid search, and the number of layers ranges from
1, 2, 3, 4 using grid search. The batch size was selected from 16, 32, 64, 128 according to the size of
the dataset. All methods were trained for 100 epochs, and the best method was selected based on the
lowest validation loss.

TS-LDDMM and LDDMM Representations learned with TS-LDDMM or LDDMM are fed to
a Support Vector Classifier (SVC) from scikit-learn 12. All SVC’s hyperparameters are set to
default except the regularization term C, which is set through grid search on a validation set with the
macro f1-score 13.

To learn TS-LDDMM (resp. LDDMM) representations, the velocity field kernel KG is set to
(c0, c1, σT,0, σT,1, σx) = (1, 0.1, 0.33l̄, 1, nd), (resp. (σT , σx) = (0.33l̄, nd)) where l̄ is the average
time series length and nd the number of dimensions. For both methods and all datasets, the varifold
loss kernels (kpos, kdir) are identical and set to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, nd, 2, nd). For
TS-LDDMM (resp. LDDMM), the optimizer is set with 400 epochs (resp. 400) and a maximum
learning rate ηM = 0.1 (resp. ηM = 0.01). In all cases, the initial reference graph is selected in the
dataset as a time series with the median length.

10https://github.com/yongkyung-oh/Stable-Neural-SDEs
11https://github.com/ray-project/ray
12https://scikit-learn.org/stable/
13https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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H.3 Protocol

In this experiment, we investigate the robustness to missing samples and the classification performance
of TS-LDDMM compared to Neural ODEs on 15 datasets described in Appendix F.2. For fairness
between methods of different architectures, the evaluation protocol on each dataset and method is as
follows:

1. Spilt the dataset in train 75%, validation 15%, and test 15%.

2. Tune hyperparameters with train and validation sets and a missing rate of 0%.

3. For each missing rate in [0%,30%,50%,70%]

• Remove samples in time series in the train and test sets according to the missing rate
and the drop procedure described in [31].

• Train the model on the train set
• Evaluate the macro f1-score on the test set

H.4 Results

In this experiment, we investigate the robstuness to missing samples and the classification performance
of TS-LDDMM representations. We compare TS-LDDMM with LDDMM and 8 neural ODEs
networks. Performances are evaluated in terms of average macro f1-score and rank on four different
regimes of missing rate 0%,30%,50%, and 70%. Results are aggregated in Table 3.

On three out of four regimes (0%,30%, and 50%) TS-LDDMM classifier is the best performer in
terms of f1-score and rank. For missing rates of 0% and 30%, the score increases by 10% compared
to the second-best performer, LDDMM. However, LDDMM is not the second-best performer in rank
(Neural LNSDE), showing its sensitivity to parameterization, unlike TS-LDDMM, which remains
consistent. Performances of Neural LNSDE remain constant with the increase of the missing rate
as observed in [43], and it becomes the best performer for missing rate 70%. The decrease in
TS-LDDMM performances with the increasing missing rate is due to the varifold loss, which poorly
approximates the time series shape. Other losses might be more relevant for high missing rates.

Overall, TS-LDDMM is a relevant and consistent shape-based representation for irregularly sampled
multivariate time series for missing rates up to 50% .

Table 3: Comparison of average macro f1-score and rank as the sample dropping rate increases. First
& second best performers. TS-LDDMM is the best performer on three out of four regimes.

Methods Regular 30 % dropped 50 % dropped 70 % dropped
F1-score Rank F1-score Rank F1-score Rank F1-score Rank

RNN (1999) 0.64± 0.21 6.2 0.53± 0.23 6.6 0.48± 0.21 7.2 0.44± 0.21 6.07
LSTM (1997) 0.61± 0.29 6.0 0.57± 0.29 6.27 0.53± 0.25 6.07 0.51± 0.29 5.27
GRU (2014) 0.71± 0.26 4.2 0.68± 0.28 4.27 0.66± 0.28 3.73 0.59± 0.28 3.67
MTAN (2021) 0.59± 0.28 7.13 0.58± 0.28 5.8 0.54± 0.29 5.33 0.51± 0.28 5.0
MIAM (2022) 0.48± 0.35 6.93 0.42± 0.33 8.27 0.47± 0.31 6.93 0.35± 0.31 7.6
ODE-LSTM (2020) 0.63± 0.24 6.0 0.57± 0.25 6.53 0.51± 0.24 7.27 0.45± 0.23 6.73
Neural SDE (2019) 0.48± 0.28 7.67 0.47± 0.26 7.47 0.45± 0.27 7.13 0.45± 0.25 6.0
Neural LNSDE (2024) 0.7± 0.27 3.87 0.68± 0.29 4.0 0.67± 0.25 3.53 0.66± 0.23 2.47
LDDMM (2008) 0.72± 0.2 4.53 0.7± 0.21 4.2 0.57± 0.25 5.0 0.4± 0.25 7.13
TS-LDDMM (ours) 0.83± 0.18 2.93 0.8± 0.18 2.07 0.7± 0.26 3.33 0.51± 0.27 5.67

I Appendix for experiment: Classification benchmark on regularly sampled
datasets

In this section, we compare the classification performances of TS-LDDMM with other methods from
shape analysis on 15 shape-based datasets of time series regularly sampled. TS-LDDMM outperforms
other methods on 12 out of 15, highlighting its relevance for shape analysis when dealing with time
series.
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I.1 Benchmark methods

• SRV-based method: we include TCLR [26] a logistic regression on the tangent space
of the Frechet mean with Square Root Velocity (SRV representation). We also include
Shape-FPCA [60] that encodes both the time series and its time parameterization.

• LDDMM-Based : TS-LDDMM (ours) and LDDMM [23]. Both methods learn representa-
tions by solving ODEs parametrized with Kernels. While both methods handle multivariate
signals, TS-LDDMM is specifically designed for time series.

I.2 Model settings

TCLR & Shape-FPCA Shape-FPCA is available in the Python library FDASRSF 14. Once the shape-
FPCA representations are learned, they are fed to an SVC from scikit-learn. FDASRSF provides
SRV representation methods that we combined with a logistic regression from scikit-learn to
implement TCLR. For both methods, the number of steps to learn the Frechet mean is set to 50, and
the regularization hyperparameter C is set through grid search on a validation set with the macro
f1-score. Other parameters are set to default.

TS-LDDMM & LDDMM Representations learned with TS-LDDMM or LDDMM are fed to an
SVC from scikit-learn. All SVC’s hyperparameters are set to default except the regularization
term C, which is set through grid search on a validation set with the macro f1-score.

To learn TS-LDDMM (resp. LDDMM) representations, the velocity field kernel KG is set to
(c0, c1, σT,0, σT,1, σx) = (1, 0.1, 0.33l̄, 1, nd), (resp. (σT , σx) = (0.33l̄, nd)) where l̄ is the average
time series length and nd the number of dimensions. For both methods and all datasets, the varifold
loss kernels (kpos, kdir) are identical and set to (σpos,t, σpos,t, σdir,t, σdir,x) = (2, nd, 2, nd). For
TS-LDDMM (resp. LDDMM), the optimizer is set with 400 epochs (resp. 400) and a maximum
learning rate ηM = 0.1 (resp. ηM = 0.01). In all cases, the initial reference graph is selected in the
dataset as a time series with the median length.

I.3 Protocol

For each dataset and method, the evaluation protocol is a simple train,validation test with hyperpa-
rameter tuning:

1. Split The dataset in train 75%, validation 15%, and test 15%.
2. Training and hyperparameters tuning with train and validation sets
3. Evaluate the macro f1-score on the test set

I.4 Results

In this experiment, we investigate the classification performances of several methods from shape
analysis on 15 shape-based time series datasets (7 univariate and 8 multivariate). The performances
are evaluated in terms of macro f1-score. Results are aggregated in Table 4.

The TS-LDDMM-based classifier outperforms other methods on 12 out of 15 datasets. TCLR is the
second-best performer on univariate datasets; however, its current implementation with FDASRSF
does not extend to the multivariate case, which limits usage. LDDMM performances are lower than
TCLR, and Shape-FPCA is the worst performer.

Overall, TS-LDDMM representations are well suited for shape-based time series classification, and
its extension to multivariate irregularly sampled time series makes it a relevant option for time series
shape analysis.

J Appendix for the experiment: Noise sensitivity

This experiment evaluates the influence of noise on the learning of the reference sequence for
TS-LDDMM and SRVF Kacher-mean, a subroutine of Shape-FPCA [60].

14https://fdasrsf-python.readthedocs.io/en/latest/
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Table 4: F1-score comparison between methods from shape analysis on 15 datasets. First and second
best performers.

Dataset Shape-FPCA (2024) TCLR (2024) LDDMM (2008) TS-LDDMM (ours)

Univariate

ArrowHead 0.18 0.75 0.84 0.91
BME 0.16 1.00 0.82 1.00
ECG200 0.40 0.67 0.81 0.79
FacesUCR 0.08 0.73 0.69 0.86
GunPoint 0.93 0.97 0.83 1.00
PhalangesOutlinesCorrect 0.39 0.63 0.53 0.52
Trace 0.55 1.00 0.46 1.00

Multivariate

ArticularyWordRecognition – – 0.98 1.00
Cricket – – 0.77 0.93
ERing – – 0.95 0.98
Handwriting – – 0.22 0.44
Libras – – 0.56 0.60
NATOPS – – 0.82 0.82
RacketSports – – 0.83 0.79
UWaveGestureLibrary – – 0.72 0.81

J.1 Protocol

The dataset includes 100 sine waves with randomly generated time parametrization by following the
procedure described in Appendix G.1 with Gen(50, 1, 0) and uniformly resampled. The dataset has
been altered under four scenarios with an additive Gaussian noise centered and with standard deviation
σϵ ∈ {0, 0.05, 0.1, 0.2}. The referent sequence is learned for each scenario, and the L2-norm error
between the exact and the learned barycenter is computed.

J.2 Method settings

For SRVF, the number of steps to learn the Kacher-mean is set to 20. Regarding TS-LDDMM,
the velocity field kernel KG is set to (c0, c1, σT,0, σT,1, σx) = (1, 0.1, 65, 1, 1), and the varifold
loss kernels (kpos, kdir) are set to (σpos,t, σpos,t, σdir,t, σdir,x) = (5, 1, 1, 1). For TS-LDDMM, the
optimizer is set with 400 epochs and a maximum learning rate ηM = 0.1. In all cases, the initial
reference graph is selected in the dataset as a time series with the median length.

J.3 Results

Figure 8 illustrates the results. Noise level affects the learning reference graph in both cases, as
depicted by the increasing error and the illustrations. However, the overall sine wave shape is better
preserved by TS-LDDMM compared to SRVF Kacher-mean, for which the sine wave amplitude
decreases as the noise increases. In addition, for TS-LDDMM, the regularity of the reference graph
can be controlled by penalizing the norm of the velocity fields in the loss function. Further work on
penalization will be conducted to handle noisy data better.

K Appendix for experiment: Analysis of respiratory behavior in mice

K.1 Settings

This experiment involves TS-LDDMM, LDDMM [23] and Shape-FPCA [60] methods. Two scenarios
are investigated: before drug exposure and before/after drug exposure. All methods are investigated
on both scenarios.

TS-LDDMM parameters.

• Before exposure: The velocity field kernel KG is set to (c0, c1, σT,0, σT,1, σx) =
(1, 0.1, 150, 1, 2). The varifold loss is the sum of three varifolds to capture shapes
variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3):
((5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.6, 1, 0.6)) and the mapper (σpos,t, σpos,t, σdir,t, σdir,x). The
optimizer has 800 steps with a maximum stepsize ηM of 0.3.

• Before/after exposure: The velocity field kernel KG is set to (c0, c1, σT,0, σT,1, σx) =
(1, 0.1, 220, 1, 2). The varifold loss is the sum of four varifolds to capture shapes
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(b) Shape-FPCA barycenter

(a) TS-LDDMM barycenter

Figure 8: Illustration of the learned barycenter (red) compared to the exact barycenter (green) for
both TS-LDDMM (a) and Shape-FPCA (b). The computation has been done for different level of
noise ϵ ∼ N (0, σϵ) with σϵ ∈ {0, 0.05, 0.1, 0.2}.

variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold 3,
Varifold 4): ((30, 2, 30, 1), (5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.1, 1, 0.1)) and the mapper
(σpos,t, σpos,t, σdir,t, σdir,x). The optimizer has 800 steps with a maximum stepsize ηM of
0.3.

LDDMM parameters. Note that varifold losses are unchanged between TS-LDDMM and LD-
DMM. Compared to TS-LDDMM, the convergence of LDDMM is more sensitive to the maximum
stepsize ηm, which must remain small for LDDMM to guarantee the convergence.

• Before exposure: The velocity field kernel KG is an anysotropic Gaussian kernel with
parameters σT = 150 for the time dimension and σx = 2 for space dimensions. The
varifold loss is the sum of three varifolds to capture shapes variations at different scales with
parameters: (Varifold 1,Varifold 2,Varifold 3): ((5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.6, 1, 0.6))
and the mapper (σpos,t, σpos,t, σdir,t, σdir,x). The optimizer has 800 steps with a maximum
stepsize ηM of 0.01.

• Before/after exposure: The velocity field kernel KG is an anysotropic Gaus-
sian kernel with parameters σT = 220 for the time dimension and σx = 2
for space dimensions. The varifold loss is the sum of four varifolds to capture
shapes variations at different scales with parameters: (Varifold 1,Varifold 2,Varifold
3, Varifold 4): ((30, 2, 30, 1), (5, 2, 5, 1), (2, 1, 2, 0.6), (1, 0.1, 1, 0.1)) and the mapper
(σpos,t, σpos,t, σdir,t, σdir,x). The optimizer has 800 steps with a maximum stepsize ηM of
0.01.

Shape-FPCA parameters. For both scenarios, respiratory cycles are linearly interpolated and
resampled to 200 points, and the length of the original time interval is kept. The computation of
the Kacher-mean is done in a maximum of 50 iterations, and srv representations of the realigned
time series and time parametrization are concatenated with cycle durations. When concatenating
these vectors, the choice of amplitude factors is made to minimize the reconstruction error from the
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(b) TS-LDDMM PC1 shooting(a) PC1 densities (c) Scatter PC1 vs PC3

Figure 9: Analysis of the first Principal Component (PC1) related to mice ventilation before and
after exposure with TS-LDDMM representations. (a) displays PC densities per mice genotype,
(b) illustrates deformations of the reference respiratory cycle c0 along PC1, and (c) displays all
respiratory cycles with respect to time in PC1 and PC3 coordinates

(b) Shape-FPCA PC1 shooting(a) PC1 densities (c) Scatter PC1 vs PC3

Figure 10: Analysis of the first Principal Component (PC1) related to mice ventilation before and
after exposure with shape-FPCA representations. (a) displays PC densities per mice genotype,
(b) illustrates deformations of the reference respiratory cycle c0 along PC1, and (c) displays all
respiratory cycles with respect to time in PC1 and PC2 coordinates

principal components analysis by following the procedure described in [60]. Shape-FPCA does not
handle multivariate data, and we only kept the nasal airflow for this method.

K.2 Addiotinal results

Figure 9 presents results for TS-LDDMM and Figure 10 presents results for Shape-FPCA. The
main components look similar. However, a subtle difference, yet important, can be noticed. With
Shape-FPCA, the deformation tends to be a uniform time scaling, whereas, with TS-LDDMM, the
time dilatation mainly occurs during the pause between inspiration and expiration. Qualitatively, this
last deformation fits the physiological phenomenon: Mice’s muscles cannot relax after exposure to the
irritant molecule, leading to pauses between inspiration and expiration [41]. Qualitatively, contrary
to Shape-FPCA, which manages to represent the main phenomena in the data, the deformations of
TS-LDDMM capture subtle physiological behaviors essential for understanding the phenomenon at
hand.
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