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Abstract

Automatic detection and segmentation of objects in 2D and 3D microscopy data is impor-
tant for countless biomedical applications. In the natural image domain, spatial embedding-
based instance segmentation methods are known to yield high-quality results, but their
utility for segmenting microscopy data is currently little researched. Here we introduce
EmbedSeg, an embedding-based instance segmentation method which outperforms exist-
ing state-of-the-art baselines on 2D as well as 3D microscopy datasets. Additionally, we
show that EmbedSeg has a GPU memory footprint small enough to train even on laptop
GPUs, making it accessible to virtually everyone. Finally, we introduce four new 3D mi-
croscopy datasets, which we make publicly available alongside ground truth training labels.
Our open-source implementation is available at https://github.com/juglab/EmbedSeg.
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1. Introduction and Background

Instance segmentation of structures in microscopy images is essential for multiple purposes.
In recent years, many Deep Learning (DL) based approaches to microscopy image segmen-
tation have been proposed (Moen et al., 2019; Caicedo et al., 2019b; Schubert et al., 2018).
Such methods can be divided into Top-down and bottom-up methods. Mask R-CNN (He
et al., 2017), for example, is arguably the most prominent top-down method, designed to
detect object instances via bounding-boxes. An additional refinement step produces a pixel-
mask from multiple predicted bounding-box detections. Bottom-up methods, in contrast,
are designed such that each pixel makes a prediction of either the object class it belongs
to (Ronneberger et al., 2015), and/or the shape of the object instance it is part of (Schmidt
et al., 2018; Neven et al., 2019; Hirsch et al., 2020). In a second phase, all methods need to
consolidate their detections/predictions in order to obtain the final set of object instances.
Mask R-CNN (He et al., 2017) or StarDist (Schmidt et al., 2018), for example, avoid mul-
tiple detections of the same object by employing non-maximum suppression on an instance
associated confidence score. While DL-based methods helped to improve microscopy image
data segmentation considerably, automated results are still subject to many errors that need
to be addressed with manual post-processing.

An additional complication comes from differences between the domain of natural and
microscopic images. While objects in natural images are typically either vertically or hori-
zontally aligned, objects in microscopy typically have complex and unique shapes and are
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randomly oriented. Hence, methods that employ axis-aligned bounding boxes, such as Mask
R-CNN, tends to perform rather poorly. StarDist improves this shortcoming by assuming
star-convexity of objects to be segmented. While being the key to success for some datasets,
this assumption backfires when morphologically more complex shapes need to be segmented.

Another shortcoming of today’s segmentation landscape is that most methods only
operate on 2D image data. Methods to segment volumetric data (3D image data), despite
desperately needed, are much less common. Existing 3D implementations either perform
volumetric data segmentation by combining results on 2D slices (Stringer et al., 2020), or,
if directly operating on 3D images, tend to require large and expensive GPU hardware (see
e.g . Table 2).

Here we present EmbedSeg1, a variation of the inspiring work in (Neven et al., 2019),
a very compact model for end-to-end instance segmentation. Each pixel predicts its own
spatial embedding, i.e. another unique pixel location that is meant to represent the object
this pixel is part of. Additionally, the network learns an instance-specific clustering band-
width, later used to cluster embedding pixels into object instances. The segmentation mask
of an object is defined by all pixels that point to the same cluster of embedding pixels.
An additional seediness score for each pixel is predicted, indicating how likely it is for the
respective pixel, and its associated clustering band-width, to represent an object instance.

We propose several modifications that greatly improve the performance of embedding-
based instance segmentations on microscopy data: Importantly, EmbedSeg is not limited
to 2D images but can directly be trained and applied on volumetric 3D data. Instance
segmentation results on three 2D and four 3D datasets are presented in Section 3 and
Tables 1 and 2. Last but not least, we make all four used 3D datasets and their respective
training labels publicly available2.

2. Related Work and Proposed Method

Embedding-based segmentation methods have recently emerged in the context of multiper-
son pose estimation. (Newell et al., 2017) initially suggested a DL framework where each
pixel predicts a tag or embedding. The proposed objective encourages pairs of tags to have
similar values if and only if the corresponding pixels belonged to the same object. In the
same year, (Brabandere et al., 2017) suggested a specific hinge-loss which lead to improved
clustering during inference, i.e. they propose to penalize close proximity of the mean em-
bedding of different objects. (Novotny et al., 2018) later showed that constructing dense
pixel embeddings to separate objects is not possible with a fully convolutional setup.

EmbedSeg uses a branched ERF-Net (Romera et al., 2018; Neven et al., 2019), such that
each pixel xi P Sk, in an object instance with label k, is trained to predict piq an offset vector
oi that embeds xi to ei “ xi ` oi, ideally coinciding with a uniquely defined embedding
location eki for the ground truth mask Sk, piiq an uncertainty vector σi that estimates
the error of ei w.r.t. eki , and piiiq a seediness score si that expresses the likelihood that
this pixel coincides with eki . Interestingly, the loss terms that enable the training of these

1. A memory-efficient open-source implementation of EmbedSeg is available on GitHub.
2. Data download links can be found on GitHub as well.

(https://github.com/juglab/EmbedSeg)
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Figure 1: Qualitative results. EmbedSeg and two baselines compared on representative images of
the BBBC010 and Usiigaci datasets. Columns show: full input image, zoomed insets,
ground truth labels (GT), and instance segmentation results by the 3-class U-Net baseline,
the best performing competing baseline, and EmbedSeg. Note that each segmented
instance is shown in a unique random color.

predicted values also ensures that the IoU of Sk and the predicted instance segmentation is
maximized. Additional details are provided in Appendix A.

Once trained, the following inference scheme is used to find object instances (see Ap-
pendix B for more details): piq we collect all pixels with a seediness score si ą sfg in a
set of foreground pixels Sfg, piiq from all pixels in Sfg, we pick xseed, the pixel with the
highest seediness score si ą smin, piiiq if such a xseed exists, we collect all foreground pixels
in Sfg that embed themselves at a location where the embedding likelihood defined by eseed
and σseed is ą 0.5. Together, these pixels define a segmented instance Sk. Finally, pivq we
remove all pixels Sk from Sfg and jump to step two until no more valid seed pixels xseed

exist in Sfg. In all our experiments we use sfg “ 0.5 and smin “ 0.9.
While Neven et al . either learn the desired embedding location during training or sim-

ply use the centroid, we argue that this is not the optimal choice when object shapes are
more complex (i.e. not star-convex). We reason that it is desirable to choose a point that
minimizes the average distance to all pixels xi P Sk, i.e. the geometric median (GM). Like
the centroid, also the GM has the unfortunate property that it can lie outside of its defining
object. Such object-external points are bad embedding points for two reasons: piq the seedi-
ness score of such points will likely be very low, and piiq multiple such points might fall very
close to each other in crowded image regions. Hence, we propose to use the medoid instead.
The medoid pixel of the object instance Sk is the one pixel of the object with the smallest
average distance to all other pixels i.e. xmedoidpSkq “ arg minyPSk

1
|Sk|

ř

xPSk
‖x,y‖2.
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Table 1: Quantitative evaluation on three 2D datasets. For each dataset, we compare results of
multiple baselines (rows) to results obtained with our proposed pipeline (EmbedSeg)
highlighted in gray. First results column shows the required GPU-memory (training) of
the respective method. The remaining columns show the Mean Average Precision (APdsb,
see main text) for selected IoU thresholds. Best and second best performing methods per
column are indicated in bold and underlined, respectively.

GPUGB AP0.50 AP0.55 AP0.60 AP0.65 AP0.70 AP0.75 AP0.80 AP0.85 AP0.90

BBBC010

3-Class Unet 5.6 0.521 0.466 0.451 0.440 0.427 0.407 0.377 0.332 0.243
Cellpose (public) 0.225 0.204 0.184 0.155 0.097 0.043 0.013 0.002 0.000
Harmonic Emb. 0.900 0.723
PatchPerPix 0.930 0.905 0.879 0.792 0.386
Neven et al . ă1 0.953 0.941 0.927 0.904 0.878 0.830 0.731 0.563 0.297
EmbedSeg (Ours) ă1 0.965 0.954 0.934 0.917 0.896 0.854 0.762 0.596 0.326

Usiigaci

3-Class Unet 5.6 0.245 0.188 0.133 0.090 0.049 0.016 0.008 0.000 0.000
Cellpose (public) 0.291 0.237 0.169 0.128 0.066 0.031 0.010 0.000 0.000
Cellpose (Usiigaci) 3.6 0.704 0.600 0.499 0.370 0.258 0.138 0.040 0.005 0.000
Mask R-CNN 6.9 0.583 0.520 0.439 0.365 0.235 0.130 0.045 0.008 0.000
StarDist 6.9 0.510 0.427 0.337 0.235 0.143 0.076 0.019 0.002 0.000
Neven et al . 2.9 0.648 0.570 0.463 0.343 0.233 0.115 0.035 0.004 0.000
EmbedSeg (Ours) 2.9 0.704 0.643 0.535 0.414 0.273 0.140 0.044 0.005 0.000

DSB

3-Class Unet 5.6 0.806 0.775 0.743 0.701 0.654 0.578 0.491 0.374 0.226
Cellpose (public) 0.868 0.852 0.829 0.802 0.755 0.676 0.563 0.418 0.234
Cellpose (DSB) 3.6 0.853 0.826 0.812 0.792 0.768 0.716 0.645 0.536 0.402
Mask R-CNN 6.9 0.832 0.805 0.773 0.730 0.684 0.597 0.489 0.353 0.189
PatchPerPix 0.868 0.827 0.755 0.635 0.379
StarDist 6.9 0.864 0.836 0.804 0.755 0.685 0.586 0.450 0.287 0.119
Neven et al . 1.3 0.873 0.852 0.830 0.799 0.762 0.704 0.623 0.511 0.373
EmbedSeg (Ours) 1.3 0.876 0.858 0.834 0.806 0.768 0.715 0.645 0.530 0.399

During prediction we use 8-fold and 16-fold test-time augmentation in 2D and 3D,
respectively (Zeng et al., 2017; Wang et al., 2019) where the evaluation images are trans-
formed through axis-aligned rotations and flips, their corresponding predictions are back
transformed and averaged.

3. Baselines, Experiments and Results

We measure the performance of EmbedSeg against several state-of-the-art baseline meth-
ods that have been developed for microscopy instance segmentation. For 2D images,
we tested all methods on three publicly available datasets, namely the BBBC010 C.
elegans brightfield dataset (Ljosa et al., 2012)3, the Usiigaci NIH/3T3 phase-contrast
dataset (Tsai et al., 2019), and the DSB data from the Kaggle Data Science Bowl challenge

3. We used the C. elegans infection live/dead image set version 1 provided by Fred Ausubel and available
from the Broad Bioimage Benchmark Collection
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Table 2: Quantitative Evaluation on four 3D datasets. For each dataset, we compare results of
multiple baselines (rows) to results obtained with our proposed pipeline (EmbedSeg)
highlighted in gray. First results column shows the required GPU-memory (training) of
the respective method. The remaining columns show the Mean Average Precision (APdsb)
for selected IoU thresholds. Best and second best performing methods per column are
indicated in bold and underlined, respectively.

GPUGB AP0.1 AP0.2 AP0.3 AP0.4 AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

Mouse-Organoid-Cells-CBG

Cellpose (Mouse-Organoid-Cells-CBG) 3.6 0.217 0.214 0.212 0.210 0.203 0.197 0.183 0.146 0.042
StarDist-3D 20 0.988 0.982 0.982 0.982 0.973 0.970 0.958 0.774 0.052
EmbedSeg (Ours) 7 0.988 0.982 0.982 0.982 0.973 0.973 0.973 0.970 0.929

Platynereis-Nuclei-CBG

Cellpose (Platynereis-Nuclei-CBG) 3.6 0.971 0.971 0.966 0.957 0.931 0.872 0.700 0.299 0.009
StarDist-3D 20 0.973 0.969 0.966 0.966 0.937 0.910 0.736 0.246 0.002
EmbedSeg (Ours) 7 0.982 0.982 0.982 0.975 0.964 0.932 0.804 0.361 0.004

Mouse-Skull-Nuclei-CBG

Cellpose (Mouse-Skull-Nuclei-CBG) 3.6 0.613 0.587 0.587 0.563 0.515 0.471 0.389 0.316 0.064
StarDist-3D 20 0.468 0.468 0.400 0.358 0.264 0.138 0.034 0.000 0.000
EmbedSeg (Ours) 7 0.837 0.837 0.837 0.837 0.795 0.646 0.549 0.362 0.053

Platynereis-ISH-Nuclei-CBG

Cellpose (Platynereis-ISH-Nuclei-CBG) 3.6 0.731 0.674 0.629 0.554 0.493 0.390 0.247 0.038 0.000
StarDist-3D 20 0.599 0.587 0.545 0.442 0.280 0.114 0.010 0.000 0.000
EmbedSeg (Ours) 7 0.884 0.884 0.874 0.852 0.781 0.655 0.482 0.120 0.000

Table 3: Used 3D datasets. In this work we introduce four new volumetric microscopy datasets,
covering various practically relevant imaging conditions and microscopy modalities. All
datasets come with high quality ground truth labels for training and are publicly available
at https://github.com/juglab/EmbedSeg.

Name Description Pixel Size (Z,Y,X) rµm3s Bit Depth Used Microscope

Mouse-Organoid-Cells-CBG
Mouse Embryonic Stem Cells,

(1.0, 0.1733, 0.1733) uint16
Selective Plane

R1 cell line, labeled membrane Illumination Microscopy

Platynereis-Nuclei-CBG
Nuclei of a developing Platynereis dumerilii embryo

(2.031, 0.406, 0.406) uint16
Simultaneous Multi-view

at stages between 0 to 16 hours post fertilization, Light-Sheet Microscopy
injected with a fluorescent nuclear tracer

Mouse-Skull-Nuclei-CBG
Nuclei of the skull region of developing mouse

(0.200, 0.073, 0.073) uint16
Inverted Zeiss

embryos, labeled with DAPI LSM 880 Microscope

Platynereis-ISH-Nuclei-CBG
Nuclei of whole-mount Platynereis dumerilli

(0.4501, 0.4499, 0.4499) uint8
Laser Scanning

specimens at stage of 16 hours post fertilization, Confocal Microscopy
labeled with DAPI

of 2018 (Caicedo et al., 2019a)4. For volumetric images, we tested all methods on four new
datasets (Mouse-Organoid-Cells-CBG, Platynereis-Nuclei-CBG, Mouse-Skull-Nuclei-CBG,
and Platynereis-ISH-Nuclei-CBG), which we make available with publishing this work. Ad-
ditional details can be found in Table 3.

Chosen Baseline Methods. Cellpose (Stringer et al., 2020) is a spatial-embedding based
instance segmentation method where the task of the network is to predict a flow at each

4. We used a subset of the image set BBBC038v1, available from the Broad Bioimage Benchmark Collection
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pixel. This ground truth vector flow field is pre-computed from the instance masks as
solution to the heat diffusion equation, assuming a heat source placed at the center of the
object instance. These learnt flows are followed, during inference, to group pixels which
arrive at the same location. PatchPerPix (Hirsch et al., 2020) is a method that predicts
a dense binary mask per pixel. These learnt local per-pixel (per-voxel) shape descriptor
masks are, during inference, assembled into complete object instances. StarDist (Schmidt
et al., 2018) and StarDist-3D (Weigert et al., 2020) are recently the arguably most widely
applied methods in microscopy image analysis. StarDist predicts at each pixel (voxel) the
distance to the boundary (outline) of the surrounding object along a given set of directions
(rays). A 3-Class Unet (Ronneberger et al., 2015) is another widely adopted method for
semantic segmentation, i.e. the assignment of one of three classes (background, foreground,
border) to each pixel (voxel). During inference, pixels (voxels) of a given class are typically
clustered into instance segmentations by finding connected components.

Cellpose, next to offering code for training, also offers a public model, trained on a
huge and diverse set of training data. Hence, below we report not only the performance of
Cellpose trained on each dataset individually, but also how well the public model performs
(see Table 1).

Data and Data Handling in 2D. The BBBC010 dataset consist of only 100 images of
696ˆ 520 pixels each. Like others before us, we randomly split these images in two equally
sized sets, one used for training, the other to evaluate performance (testing). We cropped
256ˆ256 patches that are centered around each ground truth object (worm) and have used
15% of all crops as validation set. Reported results are averages over 9 independent data-
splits and training runs. For the Usiigaci dataset, we split the 50 images of size 1024ˆ1022
pixels as suggested by Tsai et al . (Tsai et al., 2019) in 45 training and 5 test images. We
cropped 512ˆ 512 patches that are centered on all ground truth objects. The DSB dataset
is the largest collection of images, of which we use the same subset as originally suggested
in (Schmidt et al., 2018). It contains a total of 497 images of variable size and is pre-split
in 447 training and 50 test images. We train on object-centered 256 ˆ 256 crops. For the
DSB and Usiigaci datasets, we hold out 15 % of all training images chosen randomly for
validation purposes, prior to cropping, and also average results over 9 independent runs.

Data and Data Handling in 3D. The Mouse-Organoid-Cells-CBG dataset is the largest
collection of 3D images, consisting of 108 volumes of 70ˆ 378ˆ 401 (Z, Y, X) voxels each.
We randomly select 15 and 11 images for validation and testing, respectively. Training is
performed on object-centered crops of size 32 ˆ 200 ˆ 200. The Platynereis-Nuclei-CBG
dataset contains 9 images (113ˆ 660ˆ 700 voxels each), of which we randomly select 2 and
2 images for validation and testing, respectively. Training is performed on object-centered
crops of size 32ˆ 136ˆ 136. The Mouse-Skull-Nuclei-CBG dataset contains only 2 images
of 209 ˆ 512 ˆ 512 and 125 ˆ 512 ˆ 512 voxels respectively. Due to very limited amount
of available data, we test on the sub-volume p:, :, 256:512q of the second image. Training is
performed on the remaining data using object-centered crops of size 96 ˆ 128 ˆ 128. The
Platynereis-ISH-Nuclei-CBG dataset also contains 2 images of 515ˆ 648ˆ 648 voxels each.
We test the performance on the the sub-volume p300:405, :, :q of the second image and train
on object-centered crops of size 80ˆ 80ˆ 80 on the remaining data.
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For all 3D datasets, we report the average results on the test data over 3 independent runs.

Training Details. All results obtained with EmbedSeg and the method by Neven et al .
on 2D datasets use the Branched ERF-Net (Romera et al., 2018; Neven et al., 2019)
architecture, the Adam optimizer (Kingma and Ba, 2014) with a decaying learning rate

αi “ 5e´4
“

1´ i
200

‰0.9
, where i denotes the current epoch. For training and inference on 3D

datasets, we propose a Branched ERF-Net operating on 3D convolutions (see Appendix E
for a schematic of our proposed architecture).

For the BBBC010 data, we use a batch size of 1 without virtual batch multiplier, while
for other datasets we employ a batch-size of 2 and a virtual batch multiplier of 8 (giving us
an effective batch-size of 16).

During training, axis-aligned rotations and flips were used for augmenting the available
data. Every training was run for 200 epochs, and the model with the best performance
w.r.t. IoU on the validation data is later used for reporting results on the evaluation data
(see Tables 1 and 2).

Performance Evaluations. All results on 2D images are compared using the Mean Av-
erage Precision (APdsb score (Schmidt et al., 2018)), at IoU thresholds ranging from 0.5 to
0.9 (see Table 1), while the results on volumetric images are evaluated on at IoU thresholds
ranging from 0.1 to 0.9 (see Table 2). For all EmbedSeg and Neven et al . results, we com-
pute the minimum object size in terms of the number of interior pixels using the available
training and validation masks. We then use this value during inference to avoid spurious
false positives.

Ablation Studies. In order to evaluate the contribution of piq using the medoid instead of
the centroid in EmbedSeg, and piiq employing test-time augmentation, we have performed
the respective ablation studies and report the results on two 2D and one 3D dataset in
Table 4.

4. Discussion

In this work we propose EmbedSeg, an embedding-based instance segmentation method
for 2D and 3D microscopy data, inspired by the work of (Newell et al., 2017; Brabandere
et al., 2017; Neven et al., 2019) and others. The unmodified5 embedding-based method
by Neven et al . shows promising results on 2D microscopy data, but the modifications
we propose (medoid embedding, test-time augmentation, extension to 3D, hyper-params
deduced from training data, one-hot encoded masks, etc.) secure EmbedSeg’s state-of-the-
art results on many practically relevant biomedical microscopy datasets in two and three
dimensions.

When comparing the results of EmbedSeg to all obtained baseline predictions we no-
ticed that Cellpose often runs into issues in dense 3D regions. For example, Cellpose results
on the Mouse-Organoid-Cells-CBG dataset produce a lot of spurious over-segmentations,
which we believe are a side-effect of Cellpose’s interpolation of individual 2D predictions of
the sliced 3D input.

5. Small adaptions of the code by Neven et al . (Neven et al., 2019) are required in order to deal with
non-RGB images, one hot encoded instance masks etc.

7



Embedding-based Instance Segmentation in Microscopy

Table 4: Ablation studies. For the BBBC010, Usiigaci and Platynereis-Nuclei-CBG datasets, we
show how using the centroid instead of the medoid during training and/or removing test-
time augmentation negatively impacts overall performance. Like before, columns show
APdsb (first row) or ∆APdsb (rows 2-4) at selected IoU thresholds. Individual rows show:
results obtained with EmbedSeg; using centroids instead of medoids during training;
using medoids but without test-time augmentation; using centroids during training and
no test-time augmentation.

APdsb AP0.50 AP0.55 AP0.60 AP0.65 AP0.70 AP0.75 AP0.80 AP0.85 AP0.90

BBBC010 (2D)

EmbedSeg (ours) 0.965 0.954 0.934 0.917 0.896 0.854 0.762 0.596 0.326
ë medoid ñ centroid -0.002 -0.002 -0.000 -0.002 -0.001 -0.004 +0.004 +0.001 +0.003
ë no test-time augm. -0.007 -0.008 -0.003 -0.008 -0.014 -0.020 -0.028 -0.033 -0.025
ë both (“Neven et al .) -0.011 -0.013 -0.007 -0.012 -0.018 -0.024 -0.032 -0.033 -0.029

Usiigaci (2D)

EmbedSeg (ours) 0.704 0.643 0.535 0.414 0.273 0.140 0.044 0.005 0.000
ë medoid ñ centroid -0.014 -0.013 -0.006 -0.005 +0.006 +0.009 +0.002 -0.001 0.000
ë no test-time augm. -0.028 -0.048 -0.050 -0.052 -0.040 -0.030 -0.008 -0.001 0.000
ë both (“Neven et al .) -0.038 -0.053 -0.053 -0.055 -0.028 -0.020 -0.006 0.000 0.000

APdsb AP0.10 AP0.20 AP0.30 AP0.40 AP0.50 AP0.60 AP0.70 AP0.80 AP0.90

Platynereis-Nuclei-CBG (3D)

EmbedSeg (ours) 0.982 0.982 0.982 0.975 0.964 0.932 0.804 0.361 0.004
ë medoid ñ centroid -0.006 -0.006 -0.008 -0.005 -0.010 -0.007 +0.018 +0.026 0.000
ë no test-time augm. -0.012 -0.012 -0.012 -0.012 -0.013 -0.019 -0.023 -0.037 -0.003
ë both -0.013 -0.014 -0.016 -0.018 -0.022 -0.013 -0.033 -0.019 0.000

StarDist-3D does not have this problem, but is naturally challenged when the ob-
jects to be segmented are not star-convex (e.g . for the Mouse-Skull-Nuclei-CBG and
Platynereis-ISH-Nuclei-CBG datasets). On datasets that contain only star-convex ob-
jects, e.g . labeled cell nuclei, StarDist-3D typically performs on-par or even better than
EmbedSeg (see Appendix C for an example).

Additionally, we noticed that StarDist-3D performance generally drops at higher IoU-
thresholds (APě0.7 in Tables 1 and 2). When we analyzed the reason for this, we found
that this is caused by the planarity of faces defined by the predicted vectors that span the
star-convex object instances6.

An additional and practically very relevant advantage of EmbedSeg is its small memory
footprint on the GPU, even during training, see Tables 1 and 2. This can enable users
to benefit from our method even on cheap laptop hardware. Hence, we strongly feel that
the method we propose will lead to improved instance segmentations in in many biomedical
projects that require the analysis of microscopy data in two or three dimensions.

6. While object instances typically have smooth, rounded surfaces, StarDist-3D instances are defined by the
convex hull of a given number of vectors radiating out of a source pixel. Such a linear shape approximation
causes lower IoU-values and are therefore leading to weaker AP scores at high IoU-thresholds
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Appendix A. Details on Training EmbedSeg in 2D and 3D

The goal of instance segmentation is to cluster a set of pixels X “ tx1 . . .xi . . .xNu, (where x P RD,
with D being the dimensionality of the given input images), into a set of segmented object instances
S “ tS1 . . . Sk . . . SKu.

This is achieved by learning an offset vector oi for each pixel xi, so that the resulting (spatial)
embedding ei “ xi ` oi points to its corresponding object center (instance center) Ck. Here, oi, ei
and Ck are in RD.

In order to do so, we propose to use a Gaussian function φk for each object Sk, which converts
the distance between a (spatial) pixel embedding ei and the instance center Ck into a probability
of belonging to that object

φk peiq “ exp

˜

´

∥∥∥ pei ´Ckq
T Σ´1

k pei ´Ckq

2

∥∥∥¸ . (1)

A high probability signifies that the pixel embedding ei is close to the instance center Ck and the
corresponding pixel is likely to belong to the object Sk, while a low probability means that the pixel
is more likely to belong to the background (or another object). More specifically, if φkpeiq ą 0.5, the
pixel at location xi will be assigned to the object Sk. Here, Σk P RDˆD is the diagonal covariance
matrix representing the cluster bandwidth for object Sk. The corresponding standard deviation
vector for object Sk is indicated as σk P RD whose entries along the dth dimension are denoted as
σk,d. For example, for D = 3,

Σk “

»

–

σ2
k,1 0 0

0 σ2
k,2 0

0 0 σ2
k,3

fi

fl . (2)

In order to allow larger objects to predict a larger and similarly, smaller objects to predict a
smaller Σk, we let each pixel xi of object k individually predict a σi and compute the corresponding
σk for the constituting object as the mean of all predicted σi for that object

σk “
1

|Sk|

ÿ

σiPSk

σi. (3)

By comparing the predicted φk of object to the ground truth foreground mask Sk, we compute
the differentiable Lovász-Softmax loss LIoU (Berman et al., 2018; Yu and Blaschko, 2015).

There is still the question of deducing the centre of attraction of an object, at inference time, so
as to look for pixel embeddings which fall in a margin around it. For this purpose, we also let each
pixel predict a seediness score which indicates how likely it is to be the centre of attraction. The
seediness score should actually be similar to the output of the gaussian function in Equation (1). So
we can construct a loss function

Lseed “
1

N

N
ÿ

i“1

wfg1tsiPSku‖si ´ φkpeiq‖
2 ` wbg1tsiRSfgu‖si ´ 0‖2, (4)

which allows minimizing the distance between the output of the gaussian function corresponding
to any pixel and the predicted seediness score, arising from that pixel. The seediness score for the
background pixels are regressed to 0. Furthermore, to ensure that at inference, while sampling highly
seeded pixels, σk « σ̂k, we include a smoothness loss

Lvar “
1

|Sk|

ÿ

σiPSk

‖σi ´ σk‖2. (5)
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The complete loss function is then computed as the weighted sum

L “ wseedLseed ` wIoULIoU ` wvarLvar. (6)

We use wseed “ 1, wiou “ 1 and wvar “ 10 for all 2D and 3D experiments. For all 2D experiments,
we additionally set wfg and wbg to 10 and 1, respectively. For all 3D experiments, wfg was instead
set to the ratio of the number of background and foreground pixels in training and validation
data. More details can be found in (Neven et al., 2019) and in our open source implementation at
https://github.com/juglab/EmbedSeg.
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Appendix B. Visualizing the Inference Process of EmbedSeg

Figure B.1: Visualization of inference procedure of EmbedSeg. An exemplary input image
(top-left), we iteratively pick seed pixels greedily from the predicted seediness map
(top-right) and cluster other foreground pixels w.r.t. their predicted embeddings as
explained in Section 2. In the bottom left image we show: ground truth instances as a
binary mask (white regions), the embedding location and clustering bandwidth (thresh-
olded at a likelihood of 0.5) of iteratively picked seed pixels (larger, semi-transparent
ellipses), and the learnt spatial embedding locations (smaller dots inside ellipses) of 5
randomly chosen foreground pixels per predicted instance (colored plus signs). The
final predicted instance segmentation result is shown in the bottom-right panel.

Figure B.1 gives a behind-the-scenes look at the process of clustering pixels into object in-
stances. Please also consult our open GitHub repository for more visualizations and details (https:
//github.com/juglab/EmbedSeg).
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Appendix C. Results on a 3D Dataset Containing Star-Convex Object
Instances

The Paryhale-Nuclei-IGFL data (Alwes et al., 2016) is a dataset which was used to demonstrate the
performance of Stardist-3D (Weigert et al., 2020). It contains a total of 6 images of 34ˆ 512ˆ 512
(Z, Y, X) voxels each. Using EmbedSeg, we train on object-centred 24 ˆ 120 ˆ 120 crops. We
randomly put aside 1 image for evaluation, and then hold out 2 training images chosen randomly
for testing (performance evaluation). Results are averaged over 3 independent runs (one per held
out dataset).

Table 5: Quantitative results on the Paryhale-Nuclei-IGFL data. We compare results of multiple
baselines (rows) to results obtained with our proposed pipeline (EmbedSeg), highlighted
in gray. First results column shows the required GPU-memory (training) of the respective
method. The remaining columns show the Mean Average Precision (APdsb, see main
text) for selected IoU thresholds. Best and second best performing methods per column
are indicated in bold and underlined, respectively.

GPUGB AP0.1 AP0.2 AP0.3 AP0.4 AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

Paryhale-Nuclei-IGFL (Alwes et al., 2016; Weigert et al., 2020)

U-Net 0.592 0.552 0.481 0.372 0.280 0.198 0.097 0.010 0.000
Cellpose (Paryhale-Nuclei-IGFL ) 3.6 0.545 0.498 0.456 0.384 0.285 0.154 0.040 0.006 0.000
StarDist-3D 20 0.766 0.757 0.741 0.698 0.593 0.443 0.224 0.038 0.000
EmbedSeg (Ours) 7 0.581 0.581 0.579 0.543 0.472 0.359 0.185 0.038 0.000
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Appendix D. Qualitative 3D Segmentation Results

Figures D.1 to D.4 show representative qualitative results on all four volumetric microscopy datasets
introduced in Table 3.

RAW GT EmbedSeg

Figure D.1: Qualitative results of EmbedSeg on the Mouse-Organoid-Cells-CBG dataset.
Columns show orthogonal XY , Y Z and XZ slices of one representative input image,
ground truth labels (GT), and our instance segmentation results using EmbedSeg,
respectively. Note that each segmented instance is shown in a random but unique
color.

RAW GT EmbedSeg

Figure D.2: Qualitative results of EmbedSeg on the Platynereis-Nuclei-CBG dataset. Columns
show orthogonal XY , Y Z and XZ slices of one representative input image, ground
truth labels (GT), and our instance segmentation results using EmbedSeg, respec-
tively. Note that each segmented instance is shown in a random but unique color.
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RAW GT EmbedSeg

Figure D.3: Qualitative results of EmbedSeg on the Mouse-Skull-Nuclei-CBG dataset. Columns
show orthogonal XY , Y Z and XZ slices of one representative input image, ground
truth labels (GT), and our instance segmentation results using EmbedSeg, respec-
tively. Note that each segmented instance is shown in a random but unique color.

RAW GT EmbedSeg

Figure D.4: Qualitative results of EmbedSeg on the Platynereis-ISH-Nuclei-CBG dataset.
Columns show orthogonal XY , Y Z and XZ slices of one representative input image,
ground truth labels (GT), and our instance segmentation results using EmbedSeg,
respectively. Note that each segmented instance is shown in a random but unique
color.
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Appendix E. 3D Network Architecture

Figure E.1: Schematic representing the architecture of the used 3D Branched ERF-Net which ac-
cepts volumetric images with C color channels. The encoder portion of the network
has two branches: the first branch returns 6 outputs per pixel which represent the
offsets and the clustering bandwidths in x, y and z dimensions. The second branch
returns one output per pixel which represents the ‘seediness’ score of the pixel.
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