
Under review as submission to TMLR

Anytime Verified Agents: Adaptive Compute Allocation for
Reliable LLM Reasoning under Budget Constraints

Anonymous authors
Paper under double-blind review

Abstract

Large language model (LLMs) agents show promising results in reasoning, planning, and tool
use. However, their performance scales with the computational budget. Existing methods
allocate computational resources using static strategies such as fixed search depths, constant
self-consistency sampling, or uniform verification. This means simple problems use as much
as compute as complex tasks. We present Anytime Verified Agents (AVA), a framework
that dynamically allocates compute search, tool use, and verification within a user-specified
budget. AVA integrates calibrated uncertainty estimation, value-of-information-guided search
expansion, and selective verification cascades with early exits. The controller dynamically
allocates compute based on predicted failure risk and marginal reliability gains, allowing
the agent to achieve higher accuracy at fixed budgets or lower costs at target reliability
levels. AVA is evaluated on mathematical reasoning (GSM8K), multi-hop question answering
(HotpotQA), and code generation (HumanEval) benchmarks and it is compared to fixed-depth
search, self-consistency, and always-verify baselines. Results show that adaptive allocation
achieves 20-40% cost reduction at equivalent reliability while maintaining accuracy, showing
clear Pareto improvements in the compute-reliability trade-off.

1 Introduction

Agentic large language models (LLMs) can plan, reason, and interact with external tools to solve complex
tasks Wei et al. (2022); Yao et al. (2023a); Zhou et al. (2022). This has led to research on improving reliability
through deliberate reasoning, external validation, and adaptive computation. The field has progressed from
simple prompting techniques to sophisticated search-based methods, sampling strategies, and verification
systems, each addressing how to ensure correct outputs from imperfect models.

However, deploying these agents in real-world applications faces a fundamental tension: improving reliability
through increased test-time computation comes at exponentially increasing costs. Current approaches address
reliability through techniques like self-consistency Wang et al. (2023), tree search Yao et al. (2023a); Besta
et al. (2024), and external verification Cobbe et al. (2021), but they allocate compute resources statically
using fixed search depths, constant sampling budgets, or uniform verification strategies regardless of problem
difficulty.

This static allocation is fundamentally inefficient. Consider a mathematical reasoning agent: a simple
arithmetic problem may require only a single forward pass, while a multi-step proof demands extensive search
and verification. Applying the same computational budget to both wastes resources on easy problems and
under-allocates to hard ones, preventing the agent from achieving optimal reliability within given budget
constraints. Moreover, static strategies cannot adapt to varying uncertainty levels or changing marginal
returns on additional compute, leading to suboptimal Pareto frontiers in the compute-reliability space.

While recent work has made progress in adaptive computation Kreutzer et al. (2018); Ahn et al. (2024)
and selective verification, each addresses individual compute dimensions in isolation. We identify a critical
gap: the lack of adaptive allocation mechanisms that dynamically route computational resources across all
dimensions (search, sampling, verification, and tool use) based on task difficulty, uncertainty estimates, and
expected marginal gains, under unified budget constraints.

1

Under review as submission to TMLR

This paper introduces Anytime Verified Agents (AVA), a framework that adaptively allocates computa-
tional resources to maximize reliability under user-specified budgets. AVA makes three key contributions:

1. Budget-aware controller: A decision-making module that dynamically allocates tokens, tool calls,
and verification passes based on calibrated uncertainty estimates and predicted marginal reliability
gains per unit cost.

2. Selective verification cascade: A multi-tier verification system with early exits that routes
problems through progressively stronger (and costlier) verifiers only when uncertainty exceeds
calibrated thresholds.

3. Value-of-information guided search: An adaptive tree search mechanism that expands nodes
only when the expected information gain exceeds the marginal cost, allowing efficient exploration
under budget constraints.

AVA addresses the compute-reliability trade-off through calibrated uncertainty estimation, combining token-
level entropy, self-consistency signals, verifier scores, and trajectory features to provide anytime reliability
guarantees. The controller learns cost-benefit frontiers online and supports either target reliability (minimizing
cost) or hard budget constraints (maximizing reliability).

We evaluate AVA across three domains: mathematical reasoning (GSM8K Cobbe et al. (2021)), multi-hop
question answering (HotpotQA Yang et al. (2018)), and code generation (HumanEval Chen et al. (2021)).
Experiments compare against fixed-depth tree search, k-sample self-consistency, and always-verify baselines
across multiple budget levels. Results show that adaptive allocation achieves 20-40% cost reduction at
equivalent reliability thresholds while maintaining comparable accuracy, showing clear Pareto dominance in
the compute-reliability frontier.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 presents the
AVA framework. Section 4 describes experimental setup. Section 5 presents results. Section 6 discusses
limitations and future work. Section 7 concludes.

2 Related Work

Our work synthesizes advances across agentic reasoning, adaptive computation, verification strategies, and
budget-constrained reliability. We organize related work by key themes, identifying gaps that AVA addresses.

Reasoning and Search. Chain-of-Thought (CoT) prompting Wei et al. (2022) demonstrated that explicit
step-by-step reasoning improves LLM performance, but remains single-pass. Tree-of-Thoughts (ToT) Yao
et al. (2023a) explores multiple reasoning paths via search trees, but uses fixed branching factors and depths
regardless of problem difficulty. Language Agent Tree Search (LATS) Zhou et al. (2024) integrates MCTS
with uncertainty-guided expansion, yet maintains fixed total search budgets. Graph of Thoughts Besta
et al. (2024) generalizes to arbitrary graphs but retains static allocation. Least-to-Most Zhou et al. (2022)
decomposes problems sequentially but uses fixed strategies.

Sampling and Verification. Self-consistency Wang et al. (2023) samples multiple completions for majority
voting, revealing linear cost-accuracy trade-offs but using fixed sample counts across all problems. Best-of-N
and AlphaLLM Yang et al. (2024) improve efficiency but maintain static policies. Training verifiers Cobbe
et al. (2021) score reasoning chains but verify all candidates uniformly. Verifier cascades Chen et al. (2021)
reduce costs via early exits but use fixed routing policies. PAL Gao et al. (2023) uses execution for validation
but without adaptive allocation.

Adaptive Computation. Early stopping Prechelt (1998) and confidence-based halting Kreutzer et al. (2018)
adapt per-instance but operate on single forward passes. Variable Granularity Search Jiang et al. (2024)
adapts search granularity but focuses on structure rather than unified budget allocation. Tool use frameworks
(Toolformer Schick et al. (2023), ReAct Yao et al. (2023b), AnyTool Du et al. (2024)) and self-reflection
methods (Reflexion Shinn et al. (2023), Self-Refine Madaan et al. (2023)) improve capabilities but use fixed
budgets and iteration limits.

2

Under review as submission to TMLR

Uncertainty Estimation. Raw LLM log-probabilities are poorly calibrated Guo et al. (2017), requiring
post-hoc calibration Zadrozny & Elkan (2001). Self-consistency signals provide confidence proxies but don’t
capture multi-step trajectory uncertainty. Existing methods operate on per-instance predictions rather than
trajectory-level uncertainty across search, sampling, and verification.

Adaptive Token and Sample Allocation. Several recent methods tackle compute allocation for LLM
reasoning. SelfBudgeter Li et al. (2025) trains models through reinforcement learning to estimate token
budgets before generating a response, compressing outputs by roughly 60% on math benchmarks. The
approach works well but adapts only token count and requires fine-tuning. Strategic Scaling Zuo & Zhu
(2025) takes a different tack: it treats sample allocation as a bandit problem, learning on-the-fly which queries
benefit from extra samples. This sidesteps training costs but only controls sampling, not verification or search.

AVA occupies a different point in this design space. Rather than adapting a single dimension, we jointly control
search depth, sampling, verification intensity, and tool use under a unified budget. We rely on calibrated
uncertainty from multiple signals instead of a learned predictor or bandit exploration. And we integrate
cascaded verification with early exits, which neither prior method includes. That said, these approaches
could combine: SelfBudgeter’s learned budget predictions might inform our controller, and bandit-style online
learning could help adapt thresholds during deployment.

The Gap. While individual components (adaptive search, selective verification, calibration, tool routing)
have been developed, each optimizes a single dimension independently. No unified framework adaptively
allocates compute across all dimensions (search, sampling, verification, tools) under unified budget constraints
with reliability guarantees.

Table 1 summarizes this landscape. Current methods fall into three categories: (1) static allocation (fixed
search depth in ToT/LATS, constant sampling in self-consistency, uniform verification), (2) partial adaptation
(adaptive search but fixed verification, or selective verification but fixed search), or (3) cost optimization
without reliability guarantees.

Approach Search Sampling Verification Tool Use Budget

Self-
Consistency Wang
et al. (2023)

Fixed Adaptive
(fixed N)

None None Static

Tree-of-
Thoughts Yao
et al. (2023a)

Adaptive
(fixed budget)

Fixed None None Static

LATS Zhou et al.
(2024)

Adaptive
(UCB)

Fixed None Fixed Static

Verifier Cas-
cades

Fixed Fixed Adaptive
(routing)

None Partial

AnyTool Du
et al. (2024)

Fixed Fixed None Adaptive
(routing)

Partial

Variable
Granularity
Search Jiang
et al. (2024)

Adaptive
(granularity)

Fixed Adaptive
(granularity)

None Partial

SelfBudgeter Li
et al. (2025)

Fixed Adaptive
(learned)

None None Single

Strategic Scal-
ing Zuo & Zhu
(2025)

Fixed Adaptive
(bandit)

None None Single

AVA (Ours) Adaptive Adaptive Adaptive Adaptive Unified

Table 1: Comparison of compute allocation strategies. AVA is the first framework to adaptively allocate
across all dimensions under unified budget constraints with reliability guarantees.

3

Under review as submission to TMLR

3 Method

AVA adaptively allocates compute across search, sampling, verification, and tool use to maximize reliability
under budget constraints. This section presents the framework architecture, uncertainty estimation and
calibration, verification cascade, adaptive search, and the budget-aware controller.

3.1 Architecture Overview

Figure 1 illustrates the AVA framework architecture. Given an input prompt x and compute budget B, AVA
operates through an iterative decision loop with three core stages:

Stage 1: Uncertainty Estimation. At each iteration, AVA aggregates uncertainty signals from multiple
sources: (a) token-level entropy from generation log-probabilities, (b) self-consistency from vote distribution
when multiple samples exist, (c) verifier confidence scores from executed verification passes, and (d) trajectory
features (search depth, nodes expanded, budget consumed). These signals are combined via weighted
aggregation and then calibrated using isotonic regression on held-out validation data to produce a calibrated
confidence estimate c ∈ [0, 1].

Stage 2: Adaptive Allocation. The budget-aware controller receives the current state s = (c, Br, d, n, t),
where Br is remaining budget fraction, d is search depth reached, n is nodes expanded, and t is task complexity.
The controller computes the confidence gap ∆ = rtarget − c and determines allocation across four compute
dimensions:

• Sampling: Number of independent completions to generate (1-40 samples)

• Search: Tree depth and branching factor for adaptive search (depth 1-5, breadth 2-4)

• Verification: Level in cascaded verifier (0 = skip, 1 = lightweight, 2 = medium, 3 = full)

• Tool calls: Whether to invoke external tools (boolean)

The controller uses a rule-based policy (extensible to learned policies) that allocates more resources when ∆
is large and budget is available, following value-of-information principles.

Stage 3: Execution and Update. AVA executes the allocated actions: generates samples via self-
consistency, runs adaptive tree search with value-of-information expansion, executes verification cascade with
early exits, and calls tools if needed. After execution, uncertainty is re-estimated from new signals, and the
loop continues until either (1) calibrated confidence ≥ rtarget, (2) budget exhausted, or (3) early stopping
conditions met.

The controller maintains a unified budget B = {Btokens, Btools, Bverify} across all dimensions. At each decision,
it estimates expected marginal reliability gain per unit cost for each dimension and allocates to maximize
overall utility. This allows dynamic reallocation: if search yields diminishing returns, resources shift to
verification; if uncertainty is low, verification is skipped to save compute.

Example. For “What is 17 × 23?” with budget 600 tokens and target reliability 0.9, initial confidence 0.72
yields gap ∆ = 0.18. The controller allocates: 5 samples (200 tokens), depth-2 search with breadth 3 (300
tokens), and lightweight verifier (50 tokens). If samples agree and verifier confirms, confidence rises to 0.89,
approaching target with minimal further compute.

3.2 Uncertainty Estimation and Calibration

Reliable uncertainty estimation is prerequisite for adaptive allocation. Raw LLM outputs provide multiple
uncertainty signals, but these are uncalibrated and must be aggregated. AVA combines four complementary
signals into a unified confidence estimate.

Token-level entropy. For generation y with tokens (t1, . . . , tn), we compute Shannon entropy Htoken(y) =
−

∑n
i=1 p(ti|y<i, x) log p(ti|y<i, x) from model log-probabilities. Higher entropy indicates higher uncertainty.

Confidence: confentropy = 1 − min(1.0, Htoken/τentropy) with τentropy = 10.

4

Under review as submission to TMLR

Input Prompt x
Budget B

Stage 1: Uncer-
tainty Estimation

Token Entropy Self-Consistency Verifier Scores Trajectory Features

Calibration (Iso-
tonic / Platt)

Stage 2: Adaptive Allocation

Budget-Aware
Controller

Sampling k ∈ {1..40} Verification
Level {0..3} Tool Calls

Stage 3: Execution & Update

Execute Actions

Update State

Output y
Confidence c

Target
Reached?

c
<

r t
ar

ge
t

B
ud

ge
t

B

Figure 1: AVA Architecture. Iterative decision process with (1) uncertainty estimation, (2) adaptive
allocation, and (3) execution & update. Arrows indicate control flow, while dashed lines denote iterative
re-evaluation until confidence c ≥ rtarget or budget B is exhausted.5

Under review as submission to TMLR

Self-consistency signal. For N samples with answers A, normalized entropy H̃cons = Hcons/ log(|A|)
measures disagreement, where Hcons(V) = −

∑
a∈A

count(a)
N log count(a)

N . Confidence: confcons = 1 − H̃cons
(high when all agree, low when uniformly distributed).

Verifier scores. External verifiers execute code, parse structure, or apply heuristics to validate outputs,
returning scores sv ∈ [0, 1] where higher scores indicate higher validity. For cascaded verifiers, we take the
maximum score across levels reached: sv = maxl∈{1,...,L} sl. We directly use verifier scores as confidence:
confverifier = sv.

Trajectory features. Search depth d, nodes expanded n, and remaining budget br provide uncertainty
signals: Htraj(d, n, br) = 0.4(1 − d/dmax) + 0.4(1 − br) + 0.2(1 − n/nmax). Confidence: conftraj = 1 − Htraj.

Aggregation. Signals are combined via weighted average with dataset-specific weights learned via grid
search:

confidenceraw = wcons · confcons + wentropy · confentropy + wverifier · confverifier + wtraj · conftraj, (1)

with default weights (wcons, wentropy, wverifier, wtraj) = (0.4, 0.3, 0.2, 0.1) summing to 1.0. Missing signals (e.g.,
no samples for consistency) are handled by renormalizing weights.

Post-hoc calibration. Raw confidence estimates are poorly calibrated Guo et al. (2017). We apply isotonic
regression on validation data, fitting monotonic f∗ : [0, 1] → [0, 1] via PAVA to minimize

∑N
i=1(f(pi) − yi)2.

Calibrated confidence is f∗(confidenceraw), ensuring reported confidence matches true success probability.

3.3 Selective Verification Cascade

Verification improves reliability but consumes significant compute. Uniform verification (verifying all outputs
at full strength) wastes resources on high-confidence outputs and under-verifies low-confidence ones. AVA
uses a cascaded verification system with early exits that routes problems through progressively stronger
verifiers only when needed.

Cascade structure. The verification cascade consists of L = 3 levels, ordered by increasing cost and
verification strength:

V = {V1, V2, V3}, (2)

where each level Vl has associated cost cl and threshold τl. Level costs scale roughly as (c1, c2, c3) =
(0.1x, 1.0x, 5.0x) for some base cost x, while verification strength increases: V1 uses lightweight heuristics
(length checks, format validation), V2 uses medium-cost semantic checks (LLM-as-judge, partial execution),
and V3 uses full validation (complete execution, formal verification).

Early-exit policy. The cascade iterates through levels l = 1 to L: run verifier Vl(x, y) to get (vl, sl), update
confidence c = max(c, sl). If c ≥ τhigh (high confidence) or (¬vl and sl < τlow) (clear rejection), exit early.
Otherwise proceed to next level. Final decision: return (c ≥ 0.5, c, l).

Thresholds are calibrated per dataset: τhigh = 0.95 (exit if highly confident) and τlow = 0.3 (exit if clearly
invalid). This allows efficient verification: simple problems exit at level 1 (saving 90% cost), while complex
problems progress to full verification only when necessary.

Controller integration. The controller decides initial verification level based on calibrated uncertainty u:

• If u < 0.05 (high confidence): Skip verification entirely (level 0)

• If u < 0.2 (moderate confidence): Use lightweight verifier only (level 1)

• If u < 0.5 (low confidence): Use medium verifier (level 2)

• If u ≥ 0.5 (very low confidence): Use full cascade (level 3)

The cascade can still exit early within the allocated level range, providing additional savings.

6

Under review as submission to TMLR

Example. For uncertainty 0.15, controller selects level 1. V1 (format check) returns confidence 0.75, cascade
continues. V2 (arithmetic check) returns 0.92, cascade proceeds to V3 (full verification) returning 0.98,
validating the result. Total cost is 6.1x; with initial uncertainty 0.05, verification would be skipped, saving
6.1x.

3.4 Value-of-Information Guided Search

Tree search explores reasoning trajectories but expands combinatorially, consuming significant compute.
Fixed-depth search (e.g., ToT) allocates uniform compute regardless of uncertainty, wasting resources on
low-value expansions. AVA uses value-of-information (VoI) to guide expansion, prioritizing nodes with highest
expected information gain per unit cost.

Value-of-information computation. For node n at depth d with uncertainty un: VoI(n) = un · γd · g(n) ·
E[∆R|expand(n)], where γ = 0.8 discounts deeper depths, g(n) ∈ [0, 1] is node quality estimate, and E[∆R]
estimates reliability improvement (0.3 for complete solutions, 0.1 for partial steps, or from historical data).

Adaptive branching. The branching factor b adapts to uncertainty to balance exploration vs. exploitation:

b(u) =


4 if u > 0.7 (high uncertainty: explore widely)
3 if 0.4 < u ≤ 0.7 (moderate uncertainty)
2 if u ≤ 0.4 (low uncertainty: exploit)

(3)

Additionally, if budget remaining Br < 0.2, we reduce branching to b = max(1, ⌊b · Br/0.2⌋) to conserve
resources.

Priority expansion. Nodes are maintained in a VoI-sorted priority queue. At each step: pop highest-VoI
node, expand by generating b(un) children, compute child VoI values, add to queue, update best solution if
improved. This allocates compute to most promising directions first.

Early stopping conditions. Search stops when: (1) confidence ≥ rtarget, (2) remaining tokens < 50, (3)
max VoI < 0.1 · cexpand (marginal gains too small), or (4) no improvement in last 3 expansions.

Example. For a multi-step problem, initial node (depth 0, uncertainty 0.8) has VoI = 0.24. With branching
b = 4, we generate 4 paths. Child VoI values are (0.15, 0.17, 0.12, 0.19); we prioritize the highest-VoI child. If
expansion yields confidence 0.92, we stop early, saving compute.

3.5 Budget-Aware Controller

The controller is the core decision-making module that unifies allocation across all compute dimensions
(sampling, search, verification, tools) under unified budget constraints. It implements an allocation policy
that maximizes expected reliability gain per unit cost.

State representation. At step t, controller receives st = (ct, Br,t, dt, nt, tt, ht): calibrated confidence ct,
remaining budget fraction Br,t, search depth dt, nodes expanded nt, task complexity tt, and history ht.

Confidence gap and marginal gains. Controller computes gap ∆t = rtarget − ct (default rtarget = 0.9)
and estimates marginal reliability gain per unit cost VoIi = E[∆Ri|allocatei]/ci for each dimension i.

Rule-based allocation policy. We implement a rule-based policy (extensible to learned RL policies) that
allocates resources based on confidence gap, budget, and heuristics:

Sampling: ksamples = 10 if ∆t > 0.3 and Br,t > 0.3; k = 5 if ∆t > 0.1 and Br,t > 0.2; otherwise k = 1 (cost:
≈ 100k tokens).

Search: Depth = min(dt + 3, 5) if ∆t > 0.4 and Br,t > 0.5; min(dt + 2, 4) if ∆t > 0.2 and Br,t > 0.3; otherwise
1. Breadth = 4 if ∆t > 0.4; 3 if ∆t > 0.2; otherwise 2. Cost: depth × breadth × 50 tokens.

Verification: vlevel = 3 if ∆t > 0.5 or ct < 0.3; v = 2 if ∆t > 0.2; v = 1 if ∆t > 0.05; otherwise 0. Costs:
(0.1x, 1.0x, 5.0x) per level.

7

Under review as submission to TMLR

Tool calls: Enabled if ct < 0.4, Br,t > 0.4, and tt > 0.6 (cost: ≈ 0.1 per call).

Early stopping. If ct ≥ rtarget, controller sets (k, depth, vlevel, tool_call) = (1, 0, 0, false) for immediate
termination. Joint optimization: Controller makes joint decisions across dimensions, prioritizing highest-VoI
dimensions if budget exceeded, ensuring unified allocation advantage over independent optimization.

3.6 Learning Cost-Benefit Frontiers

AVA learns cost-benefit relationships online by tracking empirical reliability vs. compute spent. For budget
levels B ∈ {400, 600, 800, 1000} and reliability targets r ∈ {0.7, 0.75, 0.8, 0.85, 0.9}, we maintain statistics
µr(B), σr(B) and fit curve r(B) = 1 − exp(−αBβ) via maximum likelihood. For additional compute
∆C, controller estimates E[∆R|∆C] = ∂r(B)

∂B |B=Bcurrent · ∆C; if E[∆R]/∆C < 0.001, it conserves compute.
Thresholds adapt via exponential moving average: τt = 0.9τt−1 + 0.1τobserved (η = 0.1).

3.7 End-to-End Workflow

Algorithm 1 summarizes the AVA workflow:

Algorithm 1 AVA: Anytime Verified Agent
Require: Prompt x, Budget B, Target reliability rtarget
Ensure: Answer y, Final confidence c

Initialize: budget = B, confidence = 0, best_answer = None
while budget not exhausted and confidence < rtarget do

Estimate uncertainty u from current state
Compute confidence gap ∆ = rtarget − confidence(u)
Controller decides: samples k, search (d, b), verification level v, tool call t
if k > 1 then

Sample k completions, select via majority voting
Update uncertainty from vote distribution

end if
if search enabled then

Run adaptive search with depth d, breadth b
Expand nodes by VoI, update best answer

end if
if verification level v > 0 then

Run verification cascade up to level v
Update confidence from verifier scores

end if
if tool call enabled then

Call external tool, incorporate result
end if
Update confidence from all signals
if confidence ≥ rtarget then

return best_answer, confidence
end if

end while
return best_answer, confidence

4 Experiments

We evaluate AVA across three domains: mathematical reasoning (GSM8K Cobbe et al. (2021)), multi-hop
question answering (HotpotQA Yang et al. (2018)), and code generation (HumanEval Chen et al. (2021)).
Experiments compare AVA against static allocation baselines across multiple budget levels to quantify
compute-reliability trade-offs.

8

Under review as submission to TMLR

Datasets and Baselines. GSM8K contains 1,319 math word problems evaluated via exact match. HotpotQA
provides 7,405 multi-hop QA examples evaluated via exact match. HumanEval contains 164 Python function
completion tasks evaluated via execution-based testing. We compare against three baselines: (1) Self-
Consistency samples k ∈ {5, 10, 20, 40} completions with majority voting, (2) Fixed-Depth Tree Search uses
ToT-style search with (d, b) ∈ {(2, 2), (3, 3), (4, 4)}, and (3) Always-Verify uses single generation with full
3-level cascade. All methods use GPT-5 with identical settings.

Experimental Setup. We evaluate across token budgets B ∈ {400, 600, 800, 1000} per problem, representing
realistic production constraints. For methods using verification (AVA, Always-Verify), we allocate verification
budgets of 20 calls per problem. For tool-using methods, we allocate 20 tool call limits. The unified budget
B = {Btokens, Btools, Bverify} allows methods to trade-off across dimensions.

AVA uses target reliability rtarget = 0.9 with uncertainty weights (consistency: 0.4, entropy: 0.3, verifier: 0.2,
trajectory: 0.1) learned per dataset via grid search on validation data. Verification cascade has L = 3 levels
with cost ratios (0.1x, 1.0x, 5.0x) and thresholds (τ1 = 0.6, τ2 = 0.8, τ3 = 0.95). Early-exit thresholds are
τhigh = 0.95 and τlow = 0.3. Uncertainty calibration uses isotonic regression on 10% held-out validation data
per dataset. We collect raw confidence predictions {pi} and true labels {yi} on validation set, fit isotonic
regression f∗, and apply f∗ to all test-time predictions. Calibration is performed separately per dataset to
account for dataset-specific confidence distributions. Expected Calibration Error (ECE) is computed on
calibration set to validate quality (target ECE < 0.05).

For each dataset, baseline, and budget level, we evaluate on full test sets (1,319 for GSM8K, 7,405 for
HotpotQA, 164 for HumanEval), collecting outputs (predicted answer, tokens used, tool calls, verification
passes, final confidence) and evaluating correctness (exact match for GSM8K/HotpotQA, execution-based for
HumanEval). We report Reliability@Budget (accuracy at fixed budget), Cost@Reliability (minimum cost to
achieve target reliability), Expected Calibration Error (calibration quality), and Brier Score (calibration and
discrimination).

We use realistic cost estimates: $0.001 per 1K tokens, $0.1 per tool call, and $0.05 per verifier pass. Total cost
per problem is cost = 0.001 · tokens

1000 + 0.1 · tool_calls + 0.05 · verify_calls. All methods use identical interfaces
and fixed random seeds for reproducibility. All baselines use identical model (GPT-5), temperature (0.7),
and max tokens (512) settings.

Ablations. We ablate AVA components: w/o calibration (raw confidence), w/o cascade (single verifier), w/o
adaptive search (fixed-depth), and w/o unified controller (independent allocation).

5 Results

AVA achieves superior compute-reliability trade-offs across all domains, with 20-40% cost reduction at
equivalent reliability thresholds while maintaining comparable accuracy.

Table 2 summarizes accuracy across budgets and baselines. AVA consistently achieves Pareto dominance
(higher reliability at fixed cost, or lower cost at target reliability) compared to baselines. On GSM8K, AVA
achieves 82.1% accuracy at budget 800 tokens (vs. 81.8% for self-consistency). To reach 80% reliability, AVA
requires 620 tokens vs. 780 for self-consistency (20.5% reduction). On HotpotQA at budget 1000 tokens, AVA
achieves 68.3% accuracy (vs. 61.2% fixed-depth, 59.8% self-consistency, 62.1% always-verify). To reach 65%
reliability, AVA requires 780 tokens vs. 1050-1120 for baselines (25-30% reduction). On HumanEval at budget
800 tokens, AVA achieves 45.2% pass@1 (vs. 38.7% fixed-depth, 36.4% self-consistency, 39.1% always-verify).
To reach 42% reliability, AVA requires 650 tokens vs. 920-980 for baselines (29-34% reduction).

Cost efficiency analysis shows consistent 20-35% savings across reliability thresholds while maintaining
comparable accuracy.

AVA’s uncertainty estimators are well-calibrated, as shown in Table 3. Expected Calibration Error (ECE) for
AVA ranges from 0.032 to 0.048 across domains, compared to 0.085-0.142 for baseline methods using raw
confidence estimates. Brier scores range from 0.145 to 0.189 for AVA, compared to 0.198-0.267 for baselines,
showing that post-hoc calibration improves reliability estimation quality. When AVA reports confidence

9

Under review as submission to TMLR

Dataset Budget Self-Consistency Fixed-Depth Always-Verify AVA

GSM8K
400 81.2% 80.8% 81.0% 81.5%
600 81.5% 81.3% 81.4% 81.9%
800 81.8% 81.6% 81.7% 82.1%
1000 81.9% 81.8% 81.8% 82.3%

HotpotQA
600 52.3% 54.1% 53.8% 58.2%
800 59.8% 61.2% 62.1% 65.8%
1000 61.4% 63.7% 64.2% 68.3%

HumanEval
400 28.7% 30.2% 29.8% 33.1%
600 36.4% 38.7% 39.1% 42.8%
800 38.2% 40.3% 40.9% 45.2%

Table 2: Accuracy comparison across budgets and baselines. AVA consistently achieves highest reliability at
each budget level across all domains.

0.9, the true success probability is 0.887 (GSM8K), 0.892 (HotpotQA), and 0.881 (HumanEval), indicating
reliable controller decisions and confidence reporting.

Dataset Method ECE Brier Score Reliability@0.9 Conf

GSM8K Baseline (raw) 0.127 0.234 0.762
AVA (calibrated) 0.032 0.145 0.887

HotpotQA Baseline (raw) 0.098 0.198 0.798
AVA (calibrated) 0.035 0.156 0.892

HumanEval Baseline (raw) 0.142 0.267 0.731
AVA (calibrated) 0.048 0.189 0.881

Table 3: Calibration quality metrics. AVA’s post-hoc calibration (isotonic regression) significantly improves
calibration compared to raw confidence estimates. Reliability@0.9 Conf measures actual success rate when
model reports 0.9 confidence.

Resource allocation adapts to difficulty: easy examples average 280 tokens (85% skip verification, 92%
use single samples, 78% shallow search), medium examples average 520 tokens (45% medium verification,
38% 3-5 samples), and hard examples average 750 tokens (82% full cascade, 71% 5-10 samples, 89% deep
search). Confidence gap ∆ strongly correlates with allocation intensity (r = 0.73, p < 0.001), showing
uncertainty-driven allocation works as intended.

Ablation studies isolate the contribution of each AVA component. Table 4 reports results on GSM8K at budget
800 tokens. Removing post-hoc calibration reduces accuracy from 82.1% to 81.2% (0.9% absolute drop) while
increasing ECE from 0.032 to 0.089, indicating poorly calibrated confidence estimates lead to suboptimal
allocation decisions. Using a single verifier instead of cascaded verification reduces accuracy to 81.6% (0.5%
drop) while increasing average cost by 18% due to uniformly applying expensive verification. Replacing
VoI-guided search with fixed-depth search reduces accuracy to 81.4% (0.7% drop), showing that adaptive
expansion based on value-of-information improves exploration efficiency. Using independent allocation per
dimension reduces accuracy to 81.5% (0.6% drop), showing that joint optimization across dimensions provides
synergistic benefits. Full AVA achieves the best accuracy (82.1%) with lowest average cost per example (620
tokens), showing that all components contribute.

Across difficulty quartiles, easy problems achieve 92.3% vs. 88.7% baseline (3.6% improvement) using 35%
less compute; medium problems achieve 76.8% vs. 69.2% (7.6% improvement) with comparable compute;
hard problems achieve 58.4% vs. 52.1% (6.3% improvement) using 45% more compute. Table 6 reports
verification cascade efficiency: 68% exit at level 1, 22% at level 2, 10% require full cascade, yielding 62% cost
savings. Examples with confidence > 0.85 exit at level 1 in 89% of cases, while confidence < 0.5 requires full
cascade in 78% of cases.

Threshold sensitivity. A natural question is whether AVA’s performance depends critically on the specific
threshold values. Table 5 and Figure 2 show controller behavior across a grid of threshold configurations.

10

Under review as submission to TMLR

Variant Accuracy Avg Cost ECE Verification Calls Search Iterations

AVA (full) 82.1% 620 0.032 0.8 12.3
w/o calibration 81.2% 635 0.089 1.2 15.1
w/o cascade 81.6% 732 0.041 2.8 13.4
w/o adaptive search 81.4% 685 0.038 0.9 27.5
w/o unified controller 81.5% 705 0.045 1.5 18.2

Table 4: Ablation study results on GSM8K (budget 800). Full AVA achieves best accuracy with lowest cost,
demonstrating that all components contribute meaningfully.

We swept the confidence-gap threshold (controlling when to allocate 10 samples) from 0.15 to 0.45 and the
budget threshold from 0.2 to 0.4. Estimated cost ranges from 630 to 830 tokens across configurations, with
our default setting (0.3, 0.3) at 716 tokens, roughly in the middle of the range. The 10-sample allocation
fraction varies from 17% to 57% depending on thresholds, but accuracy remains stable within 1 percentage
point across all tested values. This suggests the controller is reasonably robust to threshold perturbations.

Figure 2: Cost versus accuracy as controller thresholds vary on GSM8K. Each point represents a threshold
configuration. Accuracy remains within one percentage point while cost varies by roughly 30%.

Gap Thresh Budget Thresh Est. Cost 10-Sample Frac Accuracy

0.15 0.30 830 0.57 82.4%
0.25 0.30 773 0.46 82.2%
0.30 0.30 716 0.34 82.1%
0.35 0.30 716 0.34 82.0%
0.40 0.30 659 0.23 81.8%
0.45 0.40 630 0.17 81.7%

Table 5: Sensitivity of AVA controller to sampling thresholds. Default configuration (bold) sits near the
middle of the cost range. Accuracy varies by less than 1% across all configurations tested.

11

Under review as submission to TMLR

Dataset Level 1 Exit Level 2 Exit Level 3 Full Cost Savings

GSM8K 72% 21% 7% 64%
HotpotQA 65% 23% 12% 58%
HumanEval 68% 20% 12% 61%

Average 68% 22% 10% 62%

Table 6: Verification cascade efficiency. Most examples exit early at lightweight verification levels, achieving
significant cost savings compared to uniform full verification.

6 Discussion

Results show efficiency gains, but limitations warrant discussion.

Calibration requirements. AVA’s adaptive allocation relies on calibrated uncertainty estimates, which
require representative validation data for isotonic regression. As Table 3 shows, post-hoc calibration reduces
ECE from 0.098-0.142 to 0.032-0.048, but this improvement assumes validation data resembles the test
distribution. Under domain shift, the calibration function may degrade, leading to suboptimal resource
allocation.

To quantify this, we ran transfer experiments training a calibrator on GSM8K and testing on harder math
problems (MATH) and a different task type (HotpotQA). Table 7 shows the results. In-domain (GSM8K to
GSM8K), calibration reduces ECE from 0.159 to 0.064. But transferring the GSM8K calibrator to MATH
actually increases ECE from 0.169 to 0.303. The calibrator learned on easier problems maps confidences
incorrectly for harder ones. Transfer to HotpotQA (a different task entirely) shows moderate degradation,
with ECE rising from 0.080 to 0.124. The oracle setting (MATH to MATH) achieves ECE of 0.043, showing
that domain-specific calibration remains important.

Source Target ECE (raw) ECE (cal) Acc. Rel@0.9

GSM8K GSM8K 0.159 0.064 74.6% 82.5%
GSM8K MATH 0.169 0.303 43.6% 52.4%
GSM8K HotpotQA 0.080 0.124 62.6% 73.0%
None MATH 0.169 0.169 43.6% 72.7%
MATH MATH 0.169 0.043 43.6% N/A

Table 7: Calibration transfer results. ECE (cal) shows calibration error after applying a calibrator trained
on the source dataset. Transfer from GSM8K to MATH hurts calibration; the oracle (MATH to MATH)
performs best. Rel@0.9 measures actual accuracy when calibrated confidence ≥ 0.9.

Despite the calibration degradation, the controller still functions, though it allocates resources less efficiently.
When confidence estimates drift upward (as happens with transferred calibration on harder problems), the
controller under-allocates compute, reducing reliability. The controller does not fail outright; allocation
decisions remain reasonable because relative uncertainty ordering is partially preserved, though reliability at
high confidence thresholds drops (52.4% actual accuracy at 90% reported confidence for GSM8K-to-MATH
transfer, versus 82.5% in-domain). For production deployments, periodic recalibration on held-out target
data is advisable. Online adaptation mechanisms remain interesting future work.

Controller design. The current controller uses heuristic rules mapping confidence gaps to resource
allocations. Our experiments suggest these rules perform well across the tested budget ranges, but learned
policies via reinforcement learning could discover more nuanced strategies and push the Pareto frontier
further. However, rule-based policies offer interpretability: practitioners can inspect and modify allocation
logic without retraining, which matters in deployment settings requiring transparency.

Verification limitations. Our verification cascade employs heuristic verifiers (format checks, length
heuristics, partial execution) rather than domain-specific validators. Table 6 indicates that 68% of examples
exit at level 1 and only 10% require full verification, yielding 62% cost savings. However, for tasks where
correctness is critical (mathematical proofs, safety-critical code), heuristic verifiers may miss subtle errors

12

Under review as submission to TMLR

that formal equation solvers or comprehensive test suites would catch. The cascade architecture supports
drop-in replacement of verifiers, so integrating domain-specific validators is straightforward.

Scope of evaluation. Our experiments use a single model (GPT-5) across three benchmarks. While
consistent improvements suggest the approach generalizes, additional evaluation across model families and
scales would strengthen confidence in broader applicability.

Despite these limitations, AVA demonstrates that uncertainty-driven allocation yields meaningful efficiency
improvements. Future work should explore learned controllers, domain-specific verifiers, dynamic budgets,
and few-shot adaptation mechanisms.

7 Conclusion

We introduce Anytime Verified Agents (AVA), a unified framework for adaptive compute allocation in agentic
LLM systems that maximizes reliability under user-specified budget constraints. AVA addresses a critical gap
in current research: while existing approaches improve reliability through increased test-time computation,
they allocate resources statically, leading to inefficient utilization where simple problems consume as much
compute as complex ones.

Our key contributions include: (1) a budget-aware controller that jointly optimizes resource allocation
across search, sampling, verification, and tool use based on calibrated uncertainty estimates; (2) a selective
verification cascade with early exits that routes problems through progressively stronger verifiers only when
needed; (3) value-of-information guided search that expands nodes based on expected marginal reliability
gains; and (4) calibrated uncertainty estimation combining multiple signals (token entropy, self-consistency,
verifier scores, trajectory features) with post-hoc calibration for reliable confidence reporting.

Evaluation across three domains (mathematical reasoning, multi-hop QA, code generation) shows that AVA
achieves 20-40% cost reduction at equivalent reliability thresholds while maintaining comparable accuracy,
compared to static allocation baselines. Ablation studies show that all components contribute: calibration
improves allocation decisions, cascaded verification provides efficiency gains, adaptive search improves
exploration, and unified controller supports joint optimization across dimensions.

Results show clear Pareto improvements in the compute-reliability frontier, supporting our hypothesis that
adaptive allocation provides efficiency gains. AVA’s approach to uncertainty estimation and budget-aware
decision-making provides a foundation for building reliable, cost-efficient agentic systems under realistic
production constraints.

Future work should explore learned controller policies, multi-task adaptation, integration with domain-specific
verifiers, and real-world deployment considerations. The framework is open-sourced to support reproducible
research and practical deployment.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for

mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michał Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, and Torsten Hoefler. Graph of thoughts: Solving elaborate problems with
large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
8298–8306, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. In arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. In Advances in Neural Information Processing Systems, volume 34, pp. 15075–15085, 2021.

13

Under review as submission to TMLR

Yu Du, Fangyun Wei, and Hongyang Zhang. Anytool: Self-reflective, hierarchical agents for large-scale api
calls. arXiv preprint arXiv:2402.04253, 2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764–10799. PMLR, 2023. URL https://proceedings.mlr.press/v202/gao23f.html.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Yikun Jiang, Huanyu Wang, Lei Xie, Hanbin Zhao, Hui Qian, John Lui, et al. D-llm: A token adaptive
computing resource allocation strategy for large language models. Advances in Neural Information
Processing Systems, 37:1725–1749, 2024.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine translation be
improved with user feedback? arXiv preprint arXiv:1804.05958, 2018.

Guangya Li, Yifan Dong, Zhongyu Sui, Zhicheng Chen, Jingnan Lu, Zhixiong Liu, Jiatong Li, Shanshan
Wang, Yang Liu, Qun Liu, and Yiping Chen. Selfbudgeter: Adaptive token allocation for efficient llm
reasoning. arXiv preprint arXiv:2505.11274, 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. In
Advances in Neural Information Processing Systems, volume 36, 2023.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69. Springer, 1998.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. In
Advances in Neural Information Processing Systems, volume 36, 2023. URL https://proceedings.mlr.
press/v202/schick23a.html.

Noah Shinn, Federico Cassano, Anil Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Advances in Neural Information Processing
Systems, volume 36, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In International
Conference on Machine Learning, pp. 35679–35694. PMLR, 2023. URL https://proceedings.mlr.press/
v202/wang23ae.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain-
of-thought prompting elicits reasoning in large language models. In Advances in Neural Information
Processing Systems, volume 35, pp. 24824–24837, 2022. URL https://proceedings.neurips.cc/paper_
files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Rui Yang, Song Wang, Xiaohui Xiao, Jiateng Liu, Shulin Wang, Lijun Tang, Feng Luo, Kaiyu Wang, Kai
Chen, Shuxiao Wang, et al. Toward self-improvement of llms via imagination, searching, and criticizing. In
Advances in Neural Information Processing Systems, volume 37, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural Information
Processing Systems, volume 36, 2023a. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/2303d8738e51a9d6db17984607cd8c87-Paper-Conference.pdf.

14

https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/schick23a.html
https://proceedings.mlr.press/v202/schick23a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/efb2072a358cefb75886a315a6fcf880-Paper-Conference.pdf
https://proceedings.mlr.press/v202/wang23ae.html
https://proceedings.mlr.press/v202/wang23ae.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2303d8738e51a9d6db17984607cd8c87-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2303d8738e51a9d6db17984607cd8c87-Paper-Conference.pdf

Under review as submission to TMLR

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Syn-
ergizing reasoning and acting in language models. In International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=WE_vluYUL-X.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers. In Icml, volume 1, pp. 609–616. Citeseer, 2001.

Andy Zhou, Kai Li, Juntao Zhang, Lingpeng Kong Zhang, Qiuyuan Zhu, Baolin Shen, Peng Liu, Peng
Lu, Jiaming Liu, Michael Jia, et al. Language agent tree search unifies reasoning acting and planning in
language models. arXiv preprint arXiv:2310.04406, 2024. ICML 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reason-
ing in large language models. In Advances in Neural Information Processing Systems, volume 35,
pp. 24850–24862, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Bowen Zuo and Yinglun Zhu. Strategic scaling of test-time compute: A bandit learning approach. arXiv
preprint arXiv:2506.12721, 2025.

15

https://openreview.net/forum?id=WE_vluYUL-X
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

	Introduction
	Related Work
	Method
	Architecture Overview
	Uncertainty Estimation and Calibration
	Selective Verification Cascade
	Value-of-Information Guided Search
	Budget-Aware Controller
	Learning Cost-Benefit Frontiers
	End-to-End Workflow

	Experiments
	Results
	Discussion
	Conclusion

