
Multi-Objective Coverage Bayesian Optimization
(MOCOBO)

Natalie Maus∗ Kyurae Kim Yimeng Zeng Haydn Thomas Jones Fangping Wan
Marcelo Der Torossian Torres Cesar de la Fuente-Nunez Jacob R. Gardner

University of Pennsylvania
Philadelphia, PA, USA

Abstract

In multi-objective black-box optimization, the goal is typically to find solutions
that optimize a set of T black-box objective functions, f1, . . . fT , simultaneously.
Traditional approaches often seek a single Pareto-optimal set that balances trade-
offs among all objectives. In contrast, we consider a problem setting that departs
from this paradigm: finding a small set of K < T solutions, that collectively
“cover” the T objectives. A set of solutions is defined as “covering” if, for each
objective f1, . . . fT , there is at least one good solution. A motivating example for
this problem setting occurs in drug design. For example, we may have T pathogens
and aim to identify a set of K < T antibiotics such that at least one antibiotic can
be used to treat each pathogen. This problem, known as coverage optimization,
has yet to be tackled with the Bayesian optimization (BO) framework. To fill this
void, we develop Multi-Objective Coverage Bayesian Optimization (MOCOBO), a
BO algorithm for solving coverage optimization. Our approach is based on a new
acquisition function reminiscent of expected improvement in the vanilla BO setup.
We demonstrate the performance of our method on high-dimensional black-box
optimization tasks, including applications in peptide and molecular design. Results
show that the coverage of the K < T solutions found by MOCOBO matches or
nearly matches the coverage of T solutions obtained by optimizing each objective
individually. Furthermore, in in vitro experiments, the peptides found by MOCOBO
exhibited high potency against drug-resistant pathogens, further demonstrating the
potential of MOCOBO for drug discovery. All of our code is publicly available at the
following link: https://github.com/nataliemaus/mocobo.

1 Introduction

−8 −6 −4 −2 0 2 4 6 8

x

−40

−30

−20

−10

0

10

20

O
b

je
ct

iv
e

va
lu

e

covers f1 covers f2, f3

Pareto frontier

Cover set (Reward: -8)

Pareto point (Reward: -32)

Figure 1: Traditional multi-objective optimization
for T objectives might select any point along the
Pareto frontier, but in some situations like this any
Pareto optimal point performs poorly on at least
one objective. In situations where multiple K <
T solutions are allowed (■), we can sometimes
optimize all objectives well. Note that this is a
simplified schematic meant to illustrate intuition.

Bayesian optimization (BO; [1–3]) is a general
framework for sample-efficient optimization of
black-box functions. By using a probabilis-
tic surrogate model, such as a Gaussian pro-
cess (GP; [4]), Bayesian optimization balances
exploration and exploitation to identify high-
performing solutions with a limited number of
function evaluations. BO has been successfully
applied in a wide range of domains, including
hyperparameter tuning [5, 6], A/B testing [7],
chemical engineering [8], drug discovery [9],
and more.

∗Correspondence to: nmaus@seas.upenn.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/nataliemaus/mocobo
mailto:nmaus@seas.upenn.edu

For application domains such as drug discovery, however, the setup assumed by vanilla BO, where
there is only one clear objective, is often insufficient. Consider the example of designing antibodies
for treating a broad spectrum of pathogens. Here, the activity against each individual pathogen
serves as an objective, each equally important. Ideally, one would seek to optimize all objectives
simultaneously by obtaining a single broad-spectrum antibiotic. When this is not possible, however,
we should seek antibiotics that are potent against a large enough group of pathogens. By identifying a
set of such solutions—a covering set—we would obtain a set of drugs that are together lethal against
the set of pathogens.

At first, this setup may be reminiscent of multi-objective optimization, which has been tackled under
the black-box setup via multi-objective BO (MOBO; [10–16]). These methods search for Pareto-
optimal solutions that balance the trade-offs between the individual objectives, enabling practitioners
to post hoc select a single solution lying on the Pareto front based on their preferences. In cases where
some objectives are completely incompatible with each other, however, selecting a single solution on
the Pareto front cannot simultaneously satisfy performance requirements across those objectives. This
is illustrated in Figure 1, where no individual solution can provide acceptable performance across all
objectives due to the extreme trade-offs between objectives.

Instead, our problem is distinctly described as the coverage optimization problem. More formally,
consider a set of T distinct objectives. Our goal is to obtain a set-valued solution of size K < T ,
where the set “covers” the T objectives: For each objective, this K-element covering set should
contain at least one solution that performs similarly to the maximizer of that objective. In the context
of drug design, this translates to identifying K drugs such that each of the T pathogens is effectively
addressed by at least one drug in the set. This setting is particularly relevant to applications where
the size of K is associated with downstream cost. For instance, in drug discovery, the number of
compounds that can be synthesized is fundamentally constrained by the capacity of the facility.

Previously, the coverage optimization problem has been tackled in [17–19] through gradient-based
algorithms, while for the black-box setup, Liu et al. [20] proposed an evolutionary algorithm. Over
the years, variants of BO have demonstrated superior performance over evolutionary algorithms in
high-dimensional [15, 21, 22] and multi-objective problems [14], which has been instrumental for its
success in drug discovery [22–25]. Therefore, it is natural to ask how we could harness the strengths
and flexibility of BO to attack the coverage optimization problem.

In this work, we develop Multi-Objective Coverage Bayesian Optimization (MOCOBO)—a BO-based
method for solving the coverage optimization problem with high-dimensional black-box objectives.
MOCOBO primarily consists of a coverage-optimization analog of the celebrated expected improve-
ment (EI; [26]) acquisition function, where the covering set is greedily constructed via submodular
optimization [27]. We evaluate the resulting algorithm on realistic optimization tasks: drug discovery
over molecules and peptides, and tuning of image processing pipelines. Baselines include the method
of [20] and MOBO.

Our contributions are summarized as follows:

• We propose MOCOBO, a coverage optimization algorithm for black-box objectives that can deal with
structured, high-dimensional search spaces, and scale to large numbers of function evaluations.

• We experimentally validate MOCOBO on challenging, high-dimensional optimization tasks including
structured drug discovery over molecules and peptides, demonstrating its ability to consistently
outperform state-of-the-art BO methods in identifying high-performing covering sets of solutions.

• We demonstrate empirically that the small sets of K < T solutions found by MOCOBO consistently
nearly match the performance of a larger set of T solutions individually optimized for each task.

• We demonstrate the potential of MOCOBO for drug discovery using an in vitro experiment showing
it produces potent antimicrobial peptides that cover 9 out of 11 drug resistant or otherwise
challenging to kill pathogens, with moderate activity on 1 out of 11.

2 Background
Bayesian Optimization. To solve the black-box optimization problem, BO operates by iteratively
selecting a query according to a certain search policy [3] and observing the objective value on the
query. The observations that have been obtained up to iteration n ≥ 0 are collected into a dataset Dn

to form a surrogate model, typically GP, which supplies information to the policy. Most policies are

2

chosen to maximize a function known as acquisition function [3] such that, at each step n ≥ 0, the
query xn+1 is found as

xn+1 = argmax
x∈X

α (x;Dn) , (1)

where EI [26] is a popular example of an acquisition function. In our case, the optimization problem
is over covering sets. Naturally, an acquisition function for this setting is needed.

Trust Region Bayesian Optimization (TuRBO). For high-dimensional problems, the basic scheme
of solving Equation (1) is no longer effective. Local BO methods [21] address this issue by restricting
the search space to a trust region that is adjusted adaptively. This simple modification has been shown
to be effective and has been employed in various setups. In high-dimensional MOBO problems
specifically, a variant of TuRBO [21] referred to as TuRBO-M has been shown to be effective [14, 28].
TuRBO-M works by running M parallel local optimization runs, each maintaining its own dataset
Di and surrogate model. Each local optimizer proposes candidates within a hyper-rectangular trust
region Ti, which is taken to be a rectangular subset of the space X centered on the incumbent x+

i . The
side of each Ti is chosen to have a length ℓi ∈ [ℓmin, ℓmax]. If an optimizer improves the incumbent
for ρsucc consecutive iterations, ℓi expands to min(2ℓi, ℓmax). If not improved in ρfail iterations, ℓi is
halved. Optimizers are restarted if ℓi drops below ℓmin. We will later incorporate this scheme for
solving the coverage optimization problem.

3 Multi-Objective Coverage Bayesian Optimization

3.1 Coverage Optimization

Consider T > 1 objectives f1, . . . , fT , each defined as ft : X → R for each t = 1, . . . , T , all sharing
the same input domain X . For some user-defined parameter K ∈ {1, . . . , T − 1}, we consider the
task of finding a set of K solutions S∗ = {x∗

1, . . . ,x
∗
K} that “covers” the T objectives {ft}t=1,...,T .

Specifically, the set S∗ ⊆ X “covers” the T objectives if, for each objective ft ∈ {f1, . . . , fT }, there
is at least one solution x∗

k ∈ S∗ for which ft is well optimized by x∗
k. We evaluate how well a set of

K points {x1, . . . ,xK} “covers" the T objectives using the following “coverage score” Formally,

c({x1, . . . ,xK}) =
∑T

t=1

K
max
k=1

ft(xk). (2)

Formally, we seek a set S∗ := {x∗
1, . . . ,x

∗
K} such that:

S∗ = argmax
{x1,...,xK}⊆X

c({x1, . . . ,xK}). (3)

The coverage score in (2) only credits a single solution for each objective. If, for example, ft is
maximized by one of the xi in the solution set, improving the value of ft on some other xj ̸=i becomes
irrelevant so long as ft(xi) ≥ ft(xj). In the setting where K = 1, the coverage score collapses into
a trivial linearization of the objectives, and true multi-objective BO methods should be preferred. In
the setting where K = T , the coverage score is trivially optimized by maximizing each objective
independently. This problem has previously been formulated in [17–20], where we will proceed by
developing a new BO-based solution.

3.2 Multi-Objective Coverage Bayesian Optimization (MOCOBO)

In this section, we propose MOCOBO - an algorithm which extends Bayesian optimization to the
problem setting above. On each step of optimization s, we use our current set of all data evaluated so
far Ds = {(x1,y1), . . . , (xn,yn)} to define the best covering set S∗

Ds
=

{
x
∗(s)
1 , . . . ,x

∗(s)
K ∈ Ds

}
found so far. Here yi = (f1(xi), . . . , fT (xi)) and n is the number of data points evaluated so far at
step s. Following Equation (3), we define S∗

Ds
as follows:

S∗
Ds

= argmax
{x1,...,xK}⊆Ds

c({x1, . . . ,xK}) = argmax
{x1,...,xK}⊆Ds

∑T

t=1

K
max
k=1

ft(xk). (4)

Here, c(S∗
Ds

) denotes the best coverage score found by the optimizer after optimization step s.

3

3.2.1 Candidate Selection with Expected Coverage Improvement (ECI)

Given S∗
Ds

, our surrogate model’s predictive posterior p(y | x, D) induces a posterior belief about
the improvement in coverage score achievable by choosing to evaluate at x next. We naturally extend
the typical expected improvement (EI; [26]) acquisition function to the coverage optimization setting
by defining expected coverage improvement (ECI):

ECI(x) = Ep(y|x,D)[max(0, c(S∗
Ds∪{(x,y)})− c(S∗

Ds
))]. (5)

Here c(S∗
Ds

) is the coverage score of the best possible covering set from among all data observed
Ds – as we shall see, constructing this set S∗

Ds
will be our primary challenge. c(S∗

Ds∪{(x,y)}) is the
coverage score of the best possible covering set after adding the observation (x,y). Thus, ECI gives
the expected improvement in the coverage score after making an observation at point x. We aim to
select points during acquisition that maximize ECI. Note that the name ECI is shared with a method
proposed by Malkomes et al. [29] for multi-objective experimental design, but their method targets
an entirely different notion of “coverage.” (See Section 5 for more details.)

We estimate ECI using a Monte Carlo (MC) approximation. To select a single candidate x̂, we
sample m points P = {p1,p2, ...,pm}. For each sampled point pj , we sample a realization
ŷj = (f̂1(pj), . . . , f̂T (pj)) from the GP surrogate model posterior. We leverage these samples to
compute an MC approximation to the ECI of each pj :

CI(pj) = max(0, c(S∗
Ds∪{(pj ,ŷj)} − c(S∗

Ds
))). (6)

Here, c(S∗
Ds∪{(pj ,ŷj)}) is the approximation of the coverage score of the new best covering set if we

choose to evaluate candidate pj , assuming the candidate point will have the sampled objective values
ŷj . We select and evaluate the candidate pj with the largest expected coverage improvement.

3.2.2 Greedy Approximation of Best Observed Covering Set

Algorithm 1: Greedy (1− 1
e)-Approximation for

Finding S∗
Ds

(Incremental Strategy)
Require: Dataset Ds, observed values ft(x) for

all t ∈ {1, . . . , T} and x ∈ Ds, set size K.
Initialize A← ∅. {Start with an empty set.}
Compute the initial coverage score for A:
c(A)← 0.
for k = 1 to K do

Initialize xbest ← None and ∆best ← −∞.
for x ∈ Ds \A do

Compute marginal coverage of adding x
to A:

∆c←
T∑

t=1

max

(
max
x′∈A

ft(x
′), ft(x)

)
−c(A).

if ∆c > ∆best then
xbest ← x and ∆best ← ∆c.

end if
end for
Update A ← A ∪ {xbest}, c(A) ← c(A) +
∆best.

end for
Output: A∗

Ds
← A.

The candidate acquisition method in Sec-
tion 3.2.1 utilizes the best covering set of K
points among all data collected so far, S∗

Ds
. On

each step of optimization s, MOCOBO must there-
fore construct S∗

Ds
from all observed data Ds,

as S∗
Ds

may change on each step of optimiza-
tion after new data is added to Ds.

Lemma 3.1 (NP-hardness of Optimal Covering
Set). Let T,K be finite positive integers such
that K < T . Let f1, . . . , fT be real valued
functions. Let Ds = {(x1,y1), . . . , (xn,yn)}
be a dataset of n real valued data points such
that for all xi, yi = (f1(xi), . . . , fT (xi)). Let
S∗
Ds

be the optimal covering set of size K in Ds

as defined in Equation (4). Then, constructing
S∗
Ds

is NP-hard.

Proof. The proof is in Appendix I.

Since constructing S∗
Ds

is NP-hard, we use an
approximate construction of S∗

Ds
on each step

of optimization s. We present Algorithm 1,
which is based on greedy submodular optimiza-
tion [27], that provides a (1− 1

e)-approximation
of S∗

Ds
after an execution time of O(nKT).

Theorem 3.2. The set A∗
Ds

output by Algo-
rithm 1 satisfies c(A∗

Ds
) ≥

(
1− 1

e

)
c(S∗

Ds
).

Proof. The proof is in Appendix J.

4

Time Complexity of Algorithm 1. The algorithm iterates K times to construct the covering set.
In each iteration, it evaluates at most n candidate points, and for each candidate, it computes the
incremental coverage score by iterating over T objectives. The execution time complexity is thus
O(K ·n ·T). For practical applications where we can assume relatively small K and T , the execution
time is approximately O(n). For an empirical evaluation of the execution time, see Appendix B.3.

Corollary 3.3 (Algorithm 1 is the best possible approximation of S∗
Ds

). There is no polynomial
execution time algorithm that provides a better approximation ratio unless P = NP .

Proof. This follows from the fact that we reduced from Max k-cover, for which a better approximation
ratio is not practically achievable unless P = NP [30].

3.2.3 Extending ECI to the Batch Acquisition Setting (q-ECI)

In batch acquisition, we select a batch of q > 1 candidates for evaluation. Following recent work on
batch EI [31, 32], we define q-ECI, a natural extension of ECI to the batch setting:

q-ECI(X) = Ep(Y|X,D)

[
max

{
0, max

r=1,...,q
c
(
S∗
Ds∪{(xr,yr)}

)
− c

(
S∗
Ds

) }]
. (7)

q-ECI gives the expected improvement in coverage score after simultaneously observing the batch of
q points X = {x1, . . . ,xq}. However, the resulting Monte Carlo expectation would require O(q×m)
evaluations of Algorithm 1. We therefore adopt a more approximate batching strategy for practical
use with large q (see Appendix C for details).

3.2.4 MOCOBO with Trust Regions

In order to find a set of K solutions, as explained in Section 2, MOCOBO follows the TuRBO-M
principle. That is, it maintains K simultaneous local optimization runs using K individual trust
regions. Each local run k ∈ {1, . . . ,K} aims to find a single solution x∗

k, which together form the
desired set S∗. As in the original TuRBO paper, trust regions are rectangular regions of the search
space Tk ⊆ X defined solely by their size and center point. We center the K trust regions on the best
covering set of solutions observed so far during optimization. In particular, on each optimization
step s, we construct an approximation of S∗

Ds
using Algorithm 1, and center each trust region Tk

on the corresponding point x∗(s)
k in S∗

Ds
=

{
x
∗(s)
1 , . . . ,x

∗(s)
K

}
. We then use our proposed ECI (or

q-ECI when q > 1) acquisition function to select q candidates for evaluation from within each trust
region. The MC approximation of ECI described in Section 3.2.1 can be straightforwardly applied to
select candidates in trust region Tk by sampling the m discrete points from within the rectangular
bounds of Tk. Since we select and evaluate q candidates from each of the K trust regions, the total
number of observed data points n at step s of MOCOBO is n = s×K × q. As in the original TuRBO
algorithm, each trust region Tk has success and failure counters that dictate the size of the trust region.
For MOCOBO, we count a success for trust region Tk whenever Tk proposes a candidate on step s that
improves upon the best coverage score and is included in S∗

Ds+1
.

4 Experiments

We evaluate MOCOBO on four high-dimensional, multi-objective BO tasks for which finding a set of
K < T solutions to cover the T objectives is desirable. Detailed descriptions of each task are in
Section 4.1. Two tasks involve continuous search spaces, allowing direct application of MOCOBO,
while the other two involve structured spaces (molecules and peptides), requiring an extension for
structured optimization.

Implementation details and hyperparameters. We implement MOCOBO using BoTorch [33] and
GPyTorch [34]. Code to reproduce MOCOBO results on all tasks considered is available on GitHub:
https://github.com/nataliemaus/mocobo. We use an acquisition batch size of 20 for all tasks
and across all BO methods compared. Since we consider challenging high-dimensional tasks that
require a large number of function evaluations, we use approximate GP surrogate models, specifically
PPGPR [35]. Further implementation details are provided in Appendix G.

5

https://github.com/nataliemaus/mocobo

Figure 2: Coverage optimization results on all tasks considered.

Structured Search Spaces. Some of our optimization tasks operate on structured search spaces
that are not Euclidean. For this, it is typical to employ a generative model—such as a variational
autoencoder (VAE; 36, 37)—to convert structured inputs into a continuous latent space for BO
[15, 38–40, 40–48], resulting in an algorithm known as latent space BO. Naturally, for problems with
structured search spaces, we apply MOCOBO to the latent space of a pre-trained VAE on which we
perform regular end-to-end updates with the surrogate model during optimization [47].

Plots. In Figure 2, we plot the best coverage score c Equation (2) obtained by the K best covering
solutions found so far after a certain number of function evaluations on each task. Since BO baseline
methods are not designed to optimize coverage directly, instead aiming to find a single solution or a
set of solutions to optimize the T objectives, we plot the best coverage score c obtained by the K
best covering solutions found by the method. All plots show mean coverage scores averaged over 20
replications of each method, and show standard errors.

Baselines. In all plots, we compare MOCOBO against CluSO, TuRBO, ROBOT, and MORBO [14, 20, 21,
28]. While MORBO is not designed to optimize coverage, the MOBO setting is closely related to our
problem setting, and MORBO represents a strong baseline among existing MOBO techniques. We also
compare to sampling uniformly at random in the search space. For each method, we compare to the
performance of the best set of K solutions found.

Extending baselines to the structured BO setting. In the case of the two structured optimization
tasks (molecule and peptide design), we apply LOL-BO and ROBOT as described by design for these
problem settings. For MORBO and CluSO, we take the straightforward approach of applying the
methods directly in the continuous latent space of the VAE model without other adaptations. The
same pre-trained VAE model is used across methods compared.

Table 1: Best set of K = 4 peptides found by one run of MOCOBO for the “template free" peptide
design task. We provide the APEX model’s predicted MIC for each sequence on each of the 11
target pathogenic bacteria. The target pathogenic bacteria B1, . . . , B11 are listed in Table H.3. (-)
and (+) indicate Gram negative and Gram positive pathogenic bacteria respectively. The best/lowest
MIC achieved for each pathogenic bacteria is in bold in each column. See row “TF1" in Figure 3, and
Figure B.1 for in vitro MICs for this set of K = 4 peptides. See Table B.1 for an analogous result on
the “template constrained" peptide design task.

Peptide Amino Acid Sequence B1(-) B2(-) B3(-) B4(-) B5(-) B6(-) B7(-) B8(+) B9(+) B10(+) B11(+)

KKKKLKLKKLKKLLKLLKRL 1.017 1.040 1.893 0.999 8.613 0.966 1.039 65.999 38.361 338.692 1.393
IFHLKILIKILRLL 0.999 15.565 1.860 1.952 404.254 486.860 406.034 1.233 1.318 7.359 0.981
SKKIKLLGLALKLLKLKLKL 2.654 3.268 3.113 4.854 4.923 12.967 14.610 22.631 29.685 254.306 3.947
KKKKLKLKKLKRLLKLKLRL 0.939 0.906 1.124 1.310 10.909 1.384 1.711 12.776 32.884 434.193 1.037

6

Extending baselines to the coverage optimization setting. As TuRBO, LOL-BO, and ROBOT target
single-objective optimization, we conduct T independent runs to optimize each of the T objectives
for the multi-objective task. We use all solutions gathered from the T runs to compute the best
covering set of K solutions found by each method. Unlike LOL-BO and TuRBO, which seek a single
best solution for a given objective, a single run of ROBOT seeks a set of M solutions that are pairwise
diverse. We run ROBOT with M = K so that each independent run of ROBOT seeks M = K diverse
solutions. The aggregate result of the T independent runs for ROBOT is thus K diverse solutions for
each of the T objectives. We compare to the best covering K solutions from among those K ∗ T
solutions. See Appendix G.4 for more details on the diversity constraints used by ROBOT and the
associated hyperparameters. MORBO is a multi-objective optimization method and can thus be applied
directly to each multi-objective optimization task. For each run of MORBO, we compare to the best
covering set of K solutions found among all solutions proposed by the run. For CluSO, no extension
is needed as this method is designed for coverage optimization. We run CluSO with the same K used
by MOCOBO, and all other hyperparameters set to CluSO defaults.

As far as we are aware, CluSO is the only existing method that tries to solve the black-box coverage
optimization problem directly. We note that other adapted baselines are included not to criticize, but
to underscore the importance of explicitly addressing this problem class.

T individually optimized solutions baseline. We also compare to a brute-force method involving
T separate single-objective optimizations for each of the T objectives, using TuRBO for each run
or LOL-BO for molecule and peptide design. This is not an alternative for finding K < T covering
solutions, but instead identifies T solutions, one per objective, approximating a ceiling we can achieve
on performance without the limit of K < T solutions. Approaching the performance of this baseline
implies that we can find K solutions that do nearly as well as if we were allowed T solutions instead.

4.1 Tasks
Peptide design. In the peptide design task, we explore amino acid sequences to minimize the MIC
(minimum inhibitory concentration, measured in µmol L−1) for each of T = 11 target drug resistant
strains or otherwise challenging to kill bacteria (B1-B7 Gram negative, B8-B11 Gram positive).
Table H.3 lists our target bacteria in this study. Briefly, MIC indicates the concentration of peptide
needed to inhibit bacterial growth (see Kowalska-Krochmal and Dudek-Wicher 49). We evaluate
MIC for a given peptide sequence and bacteria using the APEX 1.1 model proposed by Wan et al.
[50]. To frame the problem as maximization, we optimize −MIC. We seek K = 4 peptides that
together form a potent set of antibiotics for all T = 11 bacteria. To enable optimization over peptides,
we use the VAE model pre-trained on 4.5 million amino acid sequences from Torres et al. [23] to
map the peptide sequence search space to a continuous 256 dimensional space.

Template free vs template constrained peptide design. We evaluate MOCOBO on two variations of
the peptide design task: “template free" (TF) and “template constrained" (TC). For TF, we allow the
optimizer to propose any sequence of amino acids. For TC, we add a constraint that any sequence
proposed by the optimizer must have a minimum of 75 percent sequence similarity to at least one of
the 10 template amino acid sequences in Table H.4. These 10 templates were mined from extinct
organisms and selected by Wan et al. [50]. The motivation of the template constrained task is to
design peptides specifically likely to evade antibiotic resistance by producing “extinct-like” peptides
that bacteria have not encountered in nature in thousands of years. For MOCOBO and all BO baselines
(TuRBO, LOL-BO, ROBOT, and MORBO), we handle the optimization constraint by adapting techniques
from SCBO [51]. For CluSO and random sampling, we handle the constraint with rejection sampling.

Ranolazine MPO molecule design. Ranolazine is a drug used to treat chest pain. The original
Ranolazine MPO task from the Guacamol benchmark suite of molecular design tasks [52] aims to
design an alternative to this drug: a molecule with a high fingerprint similarity to Ranolazine that
includes fluorine. We extend this task to the multi-objective optimization setting by searching for
alternatives to Ranolazine that include T = 6 reactive nonmetal elements not found in Ranolazine:
fluorine, chlorine, bromine, selenium, sulfur, and phosphorus. We aim to cover the T = 6 objectives
with K = 3 molecules. We use the SELFIES-VAE introduced by Maus et al. [47] to map the
molecular space to a continuous 256 dimensional space.

Rover. The rover optimization task introduced by Wang et al. [53] consists of finding a 60-
dimensional policy that allows a rover to move along some trajectory while avoiding a fixed set of
obstacles. To frame this as a multi-objective optimization task, we design T unique obstacle courses

7

New combined abl and MICs for NeurIPS version

B1 (-)
B2 (-)

B3 (-)
B4 (-)

B5 (-)
B6 (-)

B7 (-)
B8 (+)

B9 (+)
B10 (+)

B11 (+)

TC2

TC1

TF2

TF1

20

40

60

M
IC

 (
μm

ol
 L

⁻¹)

2 32 8 16 64 16

1 2 4 16 1 4 32 32 4 1

1 8 0.5 0.25 8 2 4 16 64 2

1 2 0.25 2 8 1 2 64 8 2

Figure 3: In vitro results for the two best “template free" (TF1, TF2) and two best “template
constrained" (TC1, TC2) runs of MOCOBO for the peptide design task. Columns are the best/lowest in
vitro MIC among the K = 4 peptides found by MOCOBO for each target pathogenic bacteria B1, . . . ,
B11 listed in Table H.3. (-) and (+) indicate Gram negative and Gram positive respectively. TF1 and
TC1 correspond to the single runs of MOCOBO shown in Table 1 and Table B.1 respectively. Methods
used to obtain in vitro MICs are provided in Appendix A.

Figure 4: Ablation study comparing MOCOBO to optimization performance where a known “good”
partitioning of the T objectives into K subsets is available in advance. We individually optimize K
solutions, one for each partition.

for the rover to navigate. The obstacle courses are designed such that no single policy can successfully
navigate all courses. We seek K < T policies so that at least one policy enables the rover to avoid
obstacles in each course. We evaluate on three unique instances with varying numbers of obstacle
courses. For the instances of this task with T = 4 and T = 8, we seek to cover the objectives with
K = 2 solutions. For the T = 12 instance, we seek to cover the objectives with K = 4 solutions.

Image tone mapping. In high dynamic range (HDR) images, some pixels (often associated with
light sources) can dominate overall contrast, requiring adjustments to reveal detail in low-contrast
areas, a problem known as tone mapping [54, Section 6]. Tone mapping algorithms involve various
tunable parameters, resulting in a high-dimensional optimization problem of subjectively perceived
quality. We seek a covering set of K = 4 solutions to optimize a set of T = 7 image aesthetic (IAA)
and quality (IQA) assessment metrics from the pyiqa library [55] (see metrics listed in Table H.1).
Our practical goal is that, while we do not know a priori which metric is best for a particular
image, covering all metrics may result in at least one high quality image. We optimize over the
13-dimensional parameter space of an established tone mapping pipeline to tone-map the “Stanford
Memorial Church" [56] and “desk lamp" [57] benchmark images. See Appendix H.1 for details.

4.2 Optimization Results

In Figure 2, we provide optimization results comparing MOCOBO to the baselines discussed above
on all tasks. The results show that MOCOBO finds sets of K solutions that achieve higher coverage
scores across tasks. The “T Individually Optimized Solutions" baseline appears as a horizontal dotted
line in all plots of Figure 2, representing the average coverage score of T individually optimized
solutions, serving as an approximation of the best possible performance without the constraint of a
limited K < T solution set. Results in Figure 2 demonstrate that the smaller set of K < T solutions
identified by MOCOBO nearly equals the performance of the complete set of T individually optimized
solutions. This result depends on using domain knowledge to choose K large enough to achieve it.

8

Results in Figure 2 show that matching the performance of T optimized solutions is possible with
some values of K ≪ T .

Although CluSO exhibits substantially lower performance than other baselines across the tasks we
consider—including baselines not explicitly designed for the coverage problem—this should not be
viewed as a criticism of the method. Rather, it reflects that CluSO was developed for low-dimensional
black-box problems and does not scale effectively to the high-dimensional and structured optimization
settings we study, further motivating the need for our scalable MOCOBO approach.

Peptide design results. In Table 1, we provide the K = 4 peptides found by one run of MOCOBO for
the template free (TF) peptide design task. For each peptide, we provide the the APEX 1.1 model’s
predicted MIC for each of the 11 target bacteria. MIC values ≤ 16 µmol L−1 are considered to be
“highly active" against the target pathogenic bacteria [50]. We highlight in Table 1 the comparison
between the second peptide with the other three peptides. B1-B7 are Gram negative (GN) bacteria,
while B8-B11 are Gram positive (GP). Peptide 2 specialized to the GP bacteria (B8-B11 scores
predicted highly active compared to the other peptides) at the expense of broad spectrum activity for
the GN bacteria (B5, B6, B7 predicted inactive). By specializing its solutions to GN and GP bacteria
separately, MOCOBO achieves low MIC across the target bacteria with only K = 4 peptides. A similar
table of results is also provided for the template constrained (TC) peptide design task (see Table B.1).

Desk + Rover4

Rover Blue
instead of
cyan, bigger
end points

Figure 5: T = 4 varied obstacle courses as multiple objectives for the rover task and K = 2 covering
trajectories (blue, magenta) found by MOCOBO. The first trajectory (magenta) successfully navigates
obstacle courses 2 and 3 (second and third panels from the left). The second trajectory (blue) navigates
obstacle courses 1 and 4 (first and fourth panels from the left).

Desk + Rover4

Rover Blue
instead of
cyan, bigger
end points

Figure 6: (Leftmost Panel) Initial hdr desk image for the desk variation of the “image tone mapping"
task. (Four Rightmost Panels) Images obtained by transforming the hdr desk image using the best
covering set of K = 4 solutions found by a single run of MOCOBO.

In Figure 3, we provide in vitro results for the two best TF and two best TC runs of MOCOBO for
the peptide design task. Here, “best" means runs that achieved highest coverage scores according
to the APEX 1.1 model. For each run, Figure 3 provides the best/lowest in vitro MIC among the
K = 4 peptides found by MOCOBO for each target bacteria. Results demonstrate that solutions found
by MOCOBO optimizing against the in-silico APEX 1.1 model achieve good coverage of the 11 target
pathogenic bacteria in vitro. In Figure B.1, we provide the full set of in vitro results for each these
runs of MOCOBO, with MIC values obtained by each of the K = 4 peptides found for each target
bacteria. Methods used to obtain in vitro MICs are provided in Appendix A.

Molecule design results. In Table B.2, we provide results for the K = 3 molecules found by one
run of MOCOBO for the molecule design task. Each of the 6 target elements is successfully present
in one of the K = 3 molecules in the best covering set. These three molecules therefore effectively
cover the T = 6 objectives, with each objective having a max score > 0.9.

Rover results. In Figure 5, we depict the 4 varied obstacle courses used for the T = 4 variation
of the rover task and K = 2 covering trajectories found by a single run of MOCOBO. In Figure B.3
and B.4, we provide analogous figures for the T = 8 and T = 12 variations. In each example, the
MOCOBO optimized set of trajectories covers all obstacle courses such that all obstacles are avoided.

Image tone mapping results. In Figure 6 and Figure B.2, we provide the original HDR images
and the images obtained by the K = 4 solutions found by a single run of MOCOBO for the church
and desk test images, respectively. In both variations, three of the four solutions result in adequately

9

tone-mapped images, while one results in a poor-quality image (see the middle-right church image
and the rightmost desk image). The poor quality images were each generated by the one solution
that MOCOBO used to cover metrics 5 and 6 (see metric ID numbers in Table H.1). This indicates that
metrics 5 and 6 are poor indicators of true image quality in this setting. This result highlights a useful
application of MOCOBO: By dedicating one of the K solutions to maximizing the misleading metrics
(5 and 6), the other three solutions to can focus on the remaining subjectively better metrics.

4.3 Ablation study
A challenging aspect of our problem setting is that we do not know a priori the best way(s) to divide
the T objectives into K subsets such that good coverage can be obtained. In this section, we seek to
answer the question: what is the efficiency lost by MOCOBO due to not knowing an efficient partitioning
of the objectives in advance? To construct a proxy “efficient” partition to measure this, we first run
MOCOBO to completion on a task, and then consider optimization as if we had known the partitioning
of objectives found at the end in advance.

With such an “oracle” partitioning in hand ahead of time, we can efficiently optimize by running
K independent optimization runs: one to find a single solution for each subset in the fixed, given
partition. With a fixed partition, the coverage score in (2) reduces to optimizing the sum of objectives
in each relevant subset independently. In Figure 4, we compare this strategy directly to MOCOBO
on three optimization tasks. We plot the best coverage score obtained by K independent runs of
TuRBO/LOL-BO on the fixed oracle K-partitioning of the objectives by combining their solutions into a
single set. MOCOBO achieves the same average best coverage scores with minimal loss in optimization
efficiency despite having to discover an efficient partitioning during optimization. See Appendix B.2
for additional ablation studies.

5 Related Works
The coverage optimization problem setting considered in this paper has not been previously explored
in the Bayesian optimization literature. However, similar problem settings [17–19] have been
studied in the context of gradient-based multi-objective optimization. For instance, Ding et al. [17]
demonstrated that the coverage problem generalizes various clustering methods, including k-means
clustering, and proposed an algorithm that extends k-means++ [58] and Lloyd’s algorithm [59]
to efficiently solve the coverage problem using gradient descent. Li et al. [18] introduced Many-
objective Multi-solution Transport (MosT), a novel framework that scales multi-objective gradient-
based optimization to a large number of objectives. MosT uses an optimal transport to establish a
balanced assignment between objectives and solutions, allowing each solution to focus on a specific
subset of objectives and ensuring that the collective set of solutions covers all objectives. Lin et al.
[19] introduced a novel Tchebycheff set (TCH-Set) scalarization approach for covering multiple
conflicting objectives using a small set of collaborative solutions. They further propose a smooth
Tchebycheff set (STCH-Set) scalarization method to handle non-smoothness in TCH-Set scalarization.
The reliance on gradients makes these previous approaches inapplicable to the black-box setting.

For the black-box setting, Liu et al. [20] was the first to consider the coverage problem. They propose
an analogous formalization of the coverage problem in the context of multi-objective black-box
optimization, along with a clustering-based swarm optimization algorithm (CluSO) designed to solve
it. In Section 4, we provide empirical results demonstrating that our Bayesian optimization approach
(MOCOBO) consistently outperforms CluSO by a large margin across all tasks considered.

Lastly, we note that Malkomes et al. [29] proposed a method with the same name as the ECI we
defined in Section 3, which was later extended in [60]. The resemblance is only in the name, as
their work addresses a fundamentally different notion of coverage. Mainly, they attempt to cover the
input space by identifying a diverse set of feasible solutions that span a subspace defined by known
threshold constraints on each objective. In contrast, we attempt to “cover” the different objectives.

6 Conclusions

By bridging the gap between traditional multi-objective Bayesian optimization (BO) and practical
coverage requirements, MOCOBO offers an effective approach to tackle critical problems in drug
design and beyond. This framework extends the reach of Bayesian optimization into new domains,
providing a robust solution to the challenges posed by extreme trade-offs and the need for specialized,
collaborative solutions. See Appendix D for additional discussion and limitations of MOCOBO.

10

Acknowledgments and Disclosure of Funding

N. Maus was supported by the National Science Foundation Graduate Research Fellowship; K.
Kim was supported by a gift from AWS AI to Penn Engineering’s ASSET Center for Trustworthy
AI; J. R. Gardner was supported by NSF awards IIS-2145644 and DBI-2400135; C. de la Fuente-
Nunez was supported by NIH grant R35GM138201 and Defense Threat Reduction Agency grants
HDTRA11810041, HDTRA1-21-1-0014, and HDTRA1-23-1-0001.

References
[1] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of

expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.
[2] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking

the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

[3] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.
[4] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, November 2005.
[5] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine

learning algorithms. In Advances in Neural Information Processing Systems, volume 25, pages
2951–2959. Curran Associates, Inc., 2012.

[6] Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and
Isabelle Guyon. Bayesian optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In Proceedings
of the NeurIPS 2020 Competition and Demonstration Track, volume 133 of PMLR, pages 3–26,
2021.

[7] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained Bayesian
optimization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

[8] José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-
Guzik. Parallel and distributed Thompson sampling for large-scale accelerated exploration
of chemical space. In Proceedings of the International Conference on Machine Learning,
volume 70 of PMLR, pages 1470–1479. JMLR, 2017.

[9] Diana M Negoescu, Peter I Frazier, and Warren B Powell. The knowledge-gradient algorithm for
sequencing experiments in drug discovery. INFORMS Journal on Computing, 23(3):346–363,
2011.

[10] Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Amar Shah, and Ryan P. Adams.
Predictive entropy search for multi-objective Bayesian optimization. In Proceedings of the
International Conference on Machine Learning,, volume 48 of PMLR, pages 1492–1501. JMLR,
2016.

[11] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for
multi-objective Bayesian optimization. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[12] Matteo Turchetta, Andreas Krause, and Sebastian Trimpe. Robust model-free reinforcement
learning with multi-objective Bayesian optimization. In Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 2020.

[13] Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. Diversity-guided multi-
objective Bayesian optimization with batch evaluations. In Advances in Neural Information
Processing Systems, volume 33, pages 17708–17720. Curran Associates, Inc., 2020.

[14] Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective
Bayesian optimization over high-dimensional search spaces. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, volume 180 of PMLR, pages 507–517. JMLR, 2021.

[15] Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton
Greenside, and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological
sequence design with denoising autoencoders. In Proceedings of the International Conference
on Machine Learning, volume 162 of PMLR, pages 20459–20478. JMLR, 2022.

11

[16] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janardhan Rao Doppa.
Uncertainty-aware search framework for multi-objective Bayesian optimization. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 30. AAAI Press, 2020.

[17] Lisang Ding, Ziang Chen, Xinshang Wang, and Wotao Yin. Efficient algorithms for sum-of-
minimum optimization. In Proceedings of the International Conference on Machine Learning,
volume 235 of PMLR, pages 10927–10959. JMLR, 2024.

[18] Ziyue Li, Tian Li, Virginia Smith, Jeff Bilmes, and Tianyi Zhou. Many-objective multi-solution
transport. In Proceedings of International Conference on Learning Representations, 2025.

[19] Xi Lin, Yilu Liu, Xiaoyuan Zhang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Few for many:
Tchebycheff set scalarization for many-objective optimization. In Proceedings of International
Conference on Learning Representations, 2025.

[20] Yilu Liu, Chengyu Lu, Xi Lin, and Qingfu Zhang. Many-objective cover problem: Discovering
few solutions to cover many objectives. In Parallel Problem Solving from Nature - PPSN XVIII,
volume 15151 of LNCS, page 68–82. Springer-Verlag, 2024.

[21] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local Bayesian optimization. In Advances in Neural Information
Processing Systems, volume 32, pages 5496–5507. Curran Associates, Inc., 2019.

[22] Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Sø ren
Hauberg, and Wouter Boomsma. A survey and benchmark of high-dimensional bayesian
optimization of discrete sequences. In Advances in Neural Information Processing Systems,
volume 37, pages 140478–140508. Curran Associates, Inc., 2024.

[23] Marcelo D. T. Torres, Yimeng Zeng, Fangping Wan, Natalie Maus, Jacob Gardner, and Cesar
de la Fuente-Nunez. A generative artificial intelligence approach for antibiotic optimization.
bioRxiv Preprint 2024.11.27.625757, bioRxiv, 2024.

[24] Di Wu, Natalie Maus, Anupama Jha, Kevin Yang, Benjamin D Wales-McGrath, San Jewell,
Anna Tangiyan, Peter Choi, Jacob R Gardner, and Yoseph Barash. Generative modeling for
RNA splicing predictions and design. March 2025.

[25] Asif Khan, Alexander I. Cowen-Rivers, Antoine Grosnit, Derrick-Goh-Xin Deik, Philippe A.
Robert, Victor Greiff, Eva Smorodina, Puneet Rawat, Rahmad Akbar, Kamil Dreczkowski,
Rasul Tutunov, Dany Bou-Ammar, Jun Wang, Amos Storkey, and Haitham Bou-Ammar. Toward
real-world automated antibody design with combinatorial Bayesian optimization. Cell Reports
Methods, 3(1), 2023.

[26] Jonas Mockus. The Bayesian approach to global optimization. In System Modeling and
Optimization, pages 473–481. Springer, 1982.

[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical Programming, 14:265–294, 1978.

[28] Natalie Maus, Kaiwen Wu, David Eriksson, and Jacob Gardner. Discovering many diverse
solutions with Bayesian optimization. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, volume 206 of PMLR, pages 1779–1798. JMLR, April
2023.

[29] Gustavo Malkomes, Bolong Cheng, Eric H Lee, and Mike Mccourt. Beyond the pareto efficient
frontier: Constraint active search for multiobjective experimental design. In Proceedings of
the International Conference on Machine Learning, volume 139 of PMLR, pages 7423–7434.
JMLR, 2021.

[30] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):
634–652, July 1998.

[31] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for
Bayesian optimization. In Advances in Neural Information Processing Systems, pages 9884–
9895. Curran Associates, Inc., 2018.

[32] Jialei Wang, Scott C. Clark, Eric Liu, and Peter I. Frazier. Parallel Bayesian global optimization
of expensive functions. Operations Research, 68(6):1850–1865, 2020.

[33] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo

12

Bayesian optimization. In Advances in Neural Information Processing Systems, volume 33,
pages 21524–21538. Curran Associates, Inc., 2020.

[34] Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew G. Wilson.
GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In
Advances in Neural Information Processing Systems, volume 31, pages 7576–7586. Curran
Associates, Inc., 2018.

[35] Martin Jankowiak, Geoff Pleiss, and Jacob R. Gardner. Parametric Gaussian process regressors.
In Proceedings of the International Conference on Machine Learning, volume 119 of PMLR,
pages 4702–4712. JMLR, 2020.

[36] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the
International Conference on Learning Representations, Banff, AB, Canada, April 2014.

[37] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the International
Conference on Machine Learning, volume 32 of PMLR, pages 1278–1286. JMLR, June 2014.

[38] Stephan Eissman, Daniel Levy, Rui Shu, Stefan Bartzsch, and Stefano Ermon. Bayesian
optimization and attribute adjustment. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence. AUAI Press, 2018.

[39] Pascal Notin, José Miguel Hernández-Lobato, and Yarin Gal. Improving black-box optimization
in vae latent space using decoder uncertainty. In Advances in Neural Information Processing
Systems, volume 34, pages 802–814. Curran Associates, Inc., 2021.

[40] Seunghun Lee, Jaewon Chu, Sihyeon Kim, Juyeon Ko, and Hyunwoo J Kim. Advancing
bayesian optimization via learning correlated latent space. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 48906–48917. Curran Associates, Inc., 2023.

[41] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In Proceedings of the International Conference on Machine Learning, volume 70
of PMLR, pages 1945–1954. PMLR, 2017.

[42] Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil Lawrence. Structured variationally auto-
encoded optimization. In Proceedings of the International Conference on Machine Learning,
volume 80 of PMLR, pages 3267–3275. JMLR, 10–15 Jul 2018.

[43] Austin Tripp, Erik A. Daxberger, and José Miguel Hernández-Lobato. Sample-efficient opti-
mization in the latent space of deep generative models via weighted retraining. In Advances in
Neural Information Processing Systems 33. Curran Associates, Inc., 2020.

[44] Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexan-
der Imani Cowen-Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, Jan
Peters, and Haitham Bou-Ammar. High-dimensional Bayesian optimisation with variational
autoencoders and deep metric learning. arXiv Preprint arXiv:2106.03609, arXiv, 2021.

[45] Eero Siivola, Andrei Paleyes, Javier González, and Aki Vehtari. Good practices for Bayesian
optimization of high dimensional structured spaces. Applied AI Letters, 2(2):e24, 2021.

[46] Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In Proceedings of the International Conference on Machine
Learning, volume 80, pages 2323–2332. JMLR, 2018.

[47] Natalie Maus, Haydn Jones, Juston Moore, Matt J. Kusner, John Bradshaw, and Jacob Gard-
ner. Local latent space Bayesian optimization over structured inputs. In Advances in Neural
Information Processing Systems, volume 35, pages 34505–34518, December 2022.

[48] Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J. Kim. Latent
Bayesian optimization via autoregressive normalizing flows. In Proceedings of the International
Conference on Learning Representations, 2025.

[49] Beata Kowalska-Krochmal and Ruth Dudek-Wicher. The minimum inhibitory concentration of
antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2):165, 2021.

[50] Fangping Wan, Marcelo D. T. Torres, Jacqueline Peng, and Cesar de la Fuente-Nunez. Deep-
learning-enabled antibiotic discovery through molecular de-extinction. Nature Biomedical
Engineering, 8(7):854–871, Jul 2024.

13

[51] David Eriksson and Matthias Poloczek. Scalable constrained Bayesian optimization. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, volume
130 of PMLR, pages 730–738. JMLR, 2021.

[52] Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. Guacamol: Bench-
marking models for de novo molecular design. Journal of Chemical Information and Modeling,
59(3):1096–1108, Mar 2019.

[53] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian
optimization in high-dimensional spaces. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, volume 84 of PMLR, pages 745–754. JMLR, March 2018.

[54] Erik Reinhard, Greg Ward, Sumanta Pattanaik, and Paul Debevec. High Dynamic Range
Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in
Computer Graphics). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[55] Chaofeng Chen and Jiadi Mo. IQA-PyTorch: Pytorch toolbox for image quality assessment.
[Online]. Available: https://github.com/chaofengc/IQA-PyTorch, 2022.

[56] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from
photographs. In Proceedings of the Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’97, page 369–378. ACM Press/Addison-Wesley Publishing Co., 1997.

[57] Martin Čadík. Perceptually Based Image Quality Assessment and Image Transformations. Ph.D.
thesis, Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, January 2008. URL https://cadik.posvete.cz/
diss/.

[58] David Arthur and Sergei Vassilvitskii. K-Means++: The advantages of careful seeding. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, page
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics.

[59] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

[60] Eric Hans Lee, Bolong Cheng, and Michael McCourt. Achieving diversity in objective space for
sample-efficient search of multiobjective optimization problems. In Proceedings of the Winter
Simulation Conference, WSC ’22, page 3146–3157. IEEE, 2023.

[61] Angela Cesaro, Marcelo Der Torossian Torres, and Cesar de la Fuente-Nunez. Methods for the
design and characterization of peptide antibiotics. In Leslie M. Hicks, editor, Antimicrobial
Peptides, volume 663 of Methods in Enzymology, chapter 13, pages 303–326. Academic Press,
2022.

[62] David Weininger. SMILES, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences, 28
(1):31–36, 1988.

[63] Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla bayesian optimization performs
great in high dimensions. In Proceedings of the International Conference on Machine Learning,
volume 235 of PMLR, pages 20793–20817. JMLR, 2024.

[64] Miguel González-Duque, Richard Michael, Simon Bartels, Yevgen Zainchkovskyy, Søren
Hauberg, and Wouter Boomsma. A survey and benchmark of high-dimensional bayesian
optimization of discrete sequences. In Advances in Neural Information Processing Systems
(Track on Database and Benchmarks), volume 37, pages 140478–140508. Curran Associates,
Inc., 2024.

[65] Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. Dual use of artificial-
intelligence-powered drug discovery. Nature Machine Intelligence, 4:189–191, 2020.

[66] Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic variational
deep kernel learning. In Advances in Neural Information Processing Systems, volume 29, pages
2586–2594. Curran Associates, Inc., 2016.

[67] Xinwei Jiang, Junbin Gao, Xiaobo Liu, Zhihua Cai, Dongmei Zhang, and Yuanxing Liu. Shared
deep kernel learning for dimensionality reduction. In Advances in Knowledge Discovery and
Data Mining, pages 297–308, Cham, 2018. Springer International Publishing.

14

https://github.com/chaofengc/IQA-PyTorch
https://cadik.posvete.cz/diss/
https://cadik.posvete.cz/diss/

[68] Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O' Boyle, and Amos J
Storkey. Bayesian meta-learning for the few-shot setting via deep kernels. In Advances in
Neural Information Processing Systems, volume 33, pages 16108–16118. Curran Associates,
Inc., 2020.

[69] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations, 2015.

[70] Hossein Talebi and Peyman Milanfar. NIMA: Neural image assessment. IEEE Transactions on
Image Processing, 27(8):3998–4011, 2018.

[71] Naila Murray, Luca Marchesotti, and Florent Perronnin. AVA: A large-scale database for
aesthetic visual analysis. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2012.

[72] Chaofeng Chen, Jiadi Mo, Jingwen Hou, Haoning Wu, Liang Liao, Wenxiu Sun, Qiong Yan,
and Weisi Lin. TOPIQ: A top-down approach from semantics to distortions for image quality
assessment. IEEE Transactions on Image Processing, 33:2404–2418, 2024.

[73] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk,
and Jenia Jitsev. LAION-5B: An open large-scale dataset for training next generation image-text
models. In Advances in Neural Information Processing Systems, volume 35, pages 25278–25294.
Curran Associates, Inc., 2022.

[74] Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang.
Blindly assess image quality in the wild guided by a self-adaptive hyper network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3664–3673,
2020.

[75] S. Alireza Golestaneh, Saba Dadsetan, and Kris M. Kitani. No-reference image quality assess-
ment via transformers, relative ranking, and self-consistency. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages 1220–1230, January 2022.

[76] Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
assessment via vision-language correspondence: A multitask learning perspective. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14071–14081, June 2023.

[77] Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard Szeliski. Interactive local
adjustment of tonal values. ACM Transactions on Graphics, 25(3):646–653, July 2006.

[78] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. Sequential line search for
efficient visual design optimization by crowds. ACM Transations on Graphics, 36(4), July 2017.

[79] Yuki Koyama, Issei Sato, and Masataka Goto. Sequential gallery for interactive visual design
optimization. ACM Transactions on Graphics, 39(4), August 2020.

[80] Jack Tumblin and Greg Turk. LCIS: A boundary hierarchy for detail-preserving contrast
reduction. In Proceedings of the Annual Conference on Computer Graphics and Interactive
Techniques, page 83–90, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[81] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range
images. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, page 257–266, New York, NY, USA, 2002. Association for
Computing Machinery.

[82] Yuanzhen Li, Lavanya Sharan, and Edward H. Adelson. Compressing and companding high
dynamic range images with subband architectures. ACM Transactions on Graphics, 24(3):
836–844, July 2005.

[83] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(6):1397–1409, 2013.

[84] Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. Edge-preserving decom-
positions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3):
1–10, August 2008.

[85] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

15

Contents

1 Introduction 1

2 Background 2

3 Multi-Objective Coverage Bayesian Optimization 3

3.1 Coverage Optimization . 3

3.2 Multi-Objective Coverage Bayesian Optimization (MOCOBO) 3

3.2.1 Candidate Selection with Expected Coverage Improvement (ECI) 4

3.2.2 Greedy Approximation of Best Observed Covering Set 4

3.2.3 Extending ECI to the Batch Acquisition Setting (q-ECI) 5

3.2.4 MOCOBO with Trust Regions . 5

4 Experiments 5

4.1 Tasks . 7

4.2 Optimization Results . 8

4.3 Ablation study . 10

5 Related Works 10

6 Conclusions 10

A Obtaining In Vitro Minimal Inhibitory Concentration (MIC) Data 18

B Additional Results 19

B.1 Additional Covering Sets of Solutions Found by MOCOBO 19

B.2 Additional Ablation Studies . 20

B.2.1 Ablation: Settings Where All Objectives are Highly Conflicting 20

B.2.2 Ablation: MOCOBO Covering Set Size . 22

B.2.3 Ablation: MOCOBO Surrogate Model Quality 23

B.2.4 Ablation: MOCOBO Batch Size . 23

B.2.5 Ablation: MOCOBO Trust Regions . 23

B.2.6 Ablation: MOCOBO Expected Coverage Improvement (ECI) Acquisition Function 25

B.3 Execution Time of Greedy Approximation Algorithm 25

C Batch Acquisition with Expected Coverage Improvement (ECI) 27

D Limitations and Future Works 28

E Broader Impact 28

F Compute Resources 29

G Additional Implementation Details 30

16

G.1 Trust Region Hyperparameters . 30

G.2 Surrogate Model . 30

G.3 Initialization Data . 30

G.4 Diversity Constraints and Associated Hyperparameters for the ROBOT Baseline . . . 31

H Additional Task Details 32

H.1 HDR Image Tone Mapping . 32

H.2 Peptide Design . 33

I Proof that Finding the Best Observed Covering Set is NP-hard 34

J Approximation Proof for Greedy Algorithm 36

17

A Obtaining In Vitro Minimal Inhibitory Concentration (MIC) Data

In this section, we provide the methods used to produce all in vitro minimal inhibitory concentration
(MIC) values reported in this paper.

Peptide synthesis. All peptides were synthesized by solid-phase peptide synthesis using the Fmoc
strategy and purchased from AAPPTec.

Bacterial strains and growth conditions used in the experiments. The following Gram-negative
bacteria were used in our study: Acinetobacter baumannii ATCC 19606, Escherichia coli ATCC
11775, E. coli AIC221 (E. coli MG1655 phnE2::FRT), E. coli AIC222 (E. coli MG1655 pmrA53
phnE2::FRT (colistin resistant)), Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa
PAO1, and P. aeruginosa PA14. The following Gram-positive bacteria were also used in our study:
Staphylococcus aureus ATCC 12600, S. aureus ATCC BAA-1556 (methicillin-resistant strain),
Enetrococcus faecalis ATCC 700802 (vancomycin-resistant strain) and E. faecium ATCC 700221
(vancomycin-resistant strain). Bacteria were grown from frozen stocks and plated on Luria-Bertani
(LB) or Pseudomonas isolation agar plates (P. aeruginosa strains) and incubated overnight at 37 ◦C.
After the incubation period, a single colony was transferred to 6mL of LB medium, and cultures
were incubated overnight (16 h) at 37 ◦C. The following day, an inoculum was prepared by diluting
the overnight cultures 1 : 100 in 6mL of the respective media and incubating them at 37 ◦C until
bacteria reached logarithmic phase (OD600 = 0.3− 0.5).

Antibacterial assays. The in vitro antimicrobial activity of the peptides was assessed by using the
broth microdilution assay [61]. Minimal inhibitory concentration (MIC) values of the peptides were
determined with an initial inoculum of 2× 106 cellsmL−1 in LB in microtiter 96-well flat-bottom
transparent plates. Aqueous solutions of the peptides were added to the plate at concentrations ranging
from 0.0625 to 64 µmol L−1. The lowest concentration of peptide that inhibited 100 percent of the
visible growth of bacteria was established as the MIC value in an experiment of 20 h of exposure
at 37 ◦C. The optical density of the plates was measured at 600 nm using a spectrophotometer. All
assays were done as three biological replicates.

18

B Additional Results

In this section, we provide all additional empirical results not included in the main text.

B.1 Additional Covering Sets of Solutions Found by MOCOBO

In this section, we provide additional examples of covering sets of solutions found by MOCOBO for
various tasks from Section 4.

1.0 2.0 0.25 2.0 8.0 1.0 2.0 64.0 8.0

 8.0 8.0

4.0 4.0 8.0 8.0 4.0 2.0

4.0 8.0 2.0 8.0 8.0 16.0 8.0

1.0 16.0 2.0 4.0 8.0 64.0 16.0

1.0 8.0 0.5 0.25 8.0 2.0 4.0 16.0

4.0 64.0 2.0 64.0

2.0 16.0 64.0 2.0

64.0 32.0 8.0 16.0 32.0 64.0 64.0

1.0 2.0 4.0 16.0 1.0 4.0 32.0 32.0 1.0

 4.0

 16.0

 64.0

2.0 32.0 8.0 16.0

B1 (-)
B2 (-)

B3 (-)
B4 (-)

B5 (-)
B6 (-)

B7 (-)
B8 (+)

B9 (+)
B10 (+)

B11 (+)

TC2-4

TC2-3

TC2-2

TC2-1

TC1-4

TC1-3

TC1-2

TC1-1

TF2-4

TF2-3

TF2-2

TF2-1

TF1-4

TF1-3

TF1-2

TF1-1

10

20

30

40

50

60

M
in

im
um

 I
nh

ib
it
or

y
C
on

ce
nt

ra
ti
on

 (
μm

ol
 L

⁻¹)

Figure B.1: In vitro results for the two best “template free" (TF1, TF2) and two best “template
constrained" (TC1, TC2) runs of MOCOBO for the peptide design task. Here, “best" means runs that
achieved highest coverage scores according to the APEX 1.1 model. Each row is a single peptide
found by a run of MOCOBO. Row TFi-j indicates template free run i, peptide j. Similarly, TCi-j
indicates template constrained run i, peptide j. Columns are the in vitro MICs for each target
pathogenic bacteria B1, . . . , B11 listed in Table H.3. (-) and (+) indicate Gram negative and Gram
positive respectively. TF1 and TC1 correspond to the single runs of MOCOBO shown in Table 1 and
Table B.1 respectively. Methods used to obtain in vitro MICs are provided in Appendix A.

In Figure B.1, we provide In vitro results for the two best “template free" and two best “template
constrained" runs of MOCOBO for the peptide design task. Here, “best" means runs that achieved
highest coverage scores according to the APEX 1.1 model. Figure B.1 provides in vitro MICs for each
of the K = 4 peptides found by each of these runs of MOCOBO, for each of the 11 target pathogenic
bacteria. Methods used to obtain in vitro MICs are provided in Appendix A.

Table B.1: The best set of K = 4 peptide sequences found by one run of MOCOBO for the “template
free" peptide design task described in Section 4.1. For each of the four sequences, we provide the MIC
according to the APEX model for each of the 11 target pathogenic bacteria. The target pathogenic
bacteria B1, . . . , B11 are listed in Table H.3. (-) and (+) indicate Gram negative and Gram positive
pathogenic bacteria respectively. The best/lowest MIC achieved for each pathogenic bacteria is in
bold in each column. See row “TC1" in Figure 3, and Figure B.1 for in vitro MICs for this set of
K = 4 peptides.

Peptide Amino Acid Sequence B1(-) B2(-) B3(-) B4(-) B5(-) B6(-) B7(-) B8(+) B9(+) B10(+) B11(+)

KKLKIIRLLFK 18.594 17.067 4.278 5.352 13.460 50.442 24.543 456.831 431.276 441.292 20.305
WAIRGLKLATWLSLNNKF 6.771 20.358 14.644 10.477 65.172 97.404 59.195 19.846 33.459 237.697 7.708
RWARNLVRYVKWLKKLKKVI 2.171 4.589 2.641 3.073 54.400 11.444 19.150 75.588 89.977 413.386 2.913
HWITIAFFRLSISLKI 225.260 346.589 56.583 58.253 458.963 475.616 538.352 293.852 338.047 34.230 22.153

In Table B.1, we provide an example of a covering set of peptides found by MOCOBO for the “template
constrained" variation of the peptide design task.

In Figure B.2, we provide the original HDR image (leftmost panel), and the K = 4 images produced
using the K = 4 solutions found by a single run of MOCOBO for the church image variation of the

19

image tone mapping task. An analogous result for the desk image variation of the image tone mapping
task can be found in the main text in Figure 6. A notable apparent limitation of the existing IAA/IQA
metrics we used for the image tone mapping tasks is that they all favored monochromatic images for
both the church and desk images. As such, the tone-mapped images obtained appear less colorful
than their hand-tuned counterparts reported in prior work.

In Table B.2, we provide an example of a covering set of K = 3 molecules found by MOCOBO for the
molecule design task. As mentioned in Section 4, these three molecules effectively cover the T = 6
objectives, as evidenced by the presence of all T = 6 target elements in one of the K = 3 molecules
designed by MOCOBO.

In Figure B.3 and Figure B.4, we provide examples of a covering set of trajectories found for the
T = 8 and T = 12 variations of the rover task respectively. In each figure, a panel is shown for each
of the T obstacles courses, with obstacles colored in red. The required starting point for the rover
is a green point in the bottom left of each panel. The “goal" end point that the rover aims to reach
without hitting any obstacles is the red point in the top right of each panel. Each panel also shows
the best among the K trajectories found by a run of MOCOBO for navigating each obstacle course. An
analogous plot for the T = 4 variation of the rover optimization task is provided in the main text in
Figure 5.

Figure B.2: (Leftmost Panel) Image obtained by naively compressing the dynamic range of the
HDR church image in the “image tone mapping" task. (Four Rightmost Panels) Images obtained by
applying tone mapping to the church image using the best covering set of K = 4 solutions found by
a single run of MOCOBO.

Table B.2: The best set of K = 3 molecules found by one run of MOCOBO for the Ranolazine MPO
multiple element molecule design task described in Section 4.1. For each of the three molecules, we
provide the objective value obtained for each of the T = 6 objectives. The best/highest objective
value is in bold in each column. Each objective aims to add a different target element to Ranolazine
(F, Cl, Br, Se, S, and P). The T = 6 target elements are bold and colored blue in the SMILES string
[62] representation of each molecule.

Molecule (SMILES String) Obj 1 (add F) Obj 2 (add Cl) Obj 3 (add Br) Obj 4 (add Se) Obj 5 (add S) Obj 6 (add P)

CC=C(C)C(OC(=O)C(O)CCCCCCC(=O)O)
=CC=CCCCCCC[Se]CC(=O)NC1=CC=CC=C1C 0.8038 0.8038 0.8038 0.9108 0.8038 0.8038

CC=C(C)C(OC(=O)CCCCCCC(O)C(=S)Cl)
=CC=CCOCCCCC(O)CC(=O)NC1=CC=CC=C1C 0.8043 0.9114 0.8043 0.8043 0.9114 0.8043

CC=C(C)C(OC(=O)C(O)CCCCCCC(=O)CBr)
=CC=COCPCCCCN(C)CC(=O)[NH1]C1=CC=C(F)C=C1C 0.9097 0.8028 0.9097 0.8028 0.8028 0.9097

B.2 Additional Ablation Studies

In this section, we provide additional ablation studies not included in the main text.

B.2.1 Ablation: Settings Where All Objectives are Highly Conflicting

MOCOBO is designed for cases where some, but not all, of the objectives are highly conflicting, and
this is the case for all of the tasks considered in Section 4. The conflicting pairs of the objectives
prevent a single solution from optimizing all objectives well. The fact that not all pairs of objectives
are completely conflicting, is the reason why it is possible to cover all T objectives with a small set of

20

Figure B.3: The 8 panels depict the 8 obstacle courses that the rover must navigate for the T = 8
variation of the rover task, with obstacles colored in red. The required starting point for the rover is a
green point in the bottom left of each panel. The “goal" end point that the rover aims to reach without
hitting any obstacles is the red point in the top right of each panel. The line in each panel shows
the best trajectory for navigating the obstacle course from among the K = 2 covering trajectories
found by a single run of MOCOBO. The first trajectory in the covering set is shown in magenta and
successfully navigates obstacle courses 5, 6, 7, and 8 (Bottom Row). The second is shown in blue
and successfully navigates obstacle courses 1, 2, 3, and 4 (Top Row).

Figure B.4: The 12 panels depict the 12 obstacle courses that the rover must navigate for the T = 12
variation of the rover task, with obstacles colored in red. The required starting point for the rover is a
green point in the bottom left of each panel. The “goal" end point that the rover aims to reach without
hitting any obstacles is the red point in the top right of each panel. The line in each panel shows the
best trajectory for navigating each obstacle course from among the K = 4 covering trajectories found
by a run of MOCOBO. The first trajectory in the covering set is shown in magenta and successfully
navigates obstacle courses 6 and 7 (Middle Row: Center Left and Center Right Panels). The
second is shown in blue and successfully navigates obstacle courses 2 and 8 (Top Row: Center Left
Panel, Middle Row: Rightmost Panel). The third is shown in purple and successfully navigates
obstacle courses 4, 5, and 11 (Top Row: Rightmost Panel, Middle Row: Leftmost Panel, and
Bottom Row: Center Right Panel). The fourth trajectory is shown in orange and successfully
navigates obstacle courses 1, 3, 9, 10, and 12 (Top Row: Leftmost Panel and Center Right Panel,
Bottom Row: Leftmost, Center Left, and Rightmost Panels).

K solutions. If all pairs of the T objectives are highly conflicting, there is by definition no possible
set of K < T solutions such that all objectives are well optimized. In this case, it’s best to use T
individually optimized solutions if your goal is to find at least one solution that well optimizes each
objective. However, it is still interesting to consider the performance of MOCOBO in the setting of

21

T objectives that are pairwise highly conflicting. To investigate this, we construct a new variation
of the multi-objective rover task described in Section 4.1. We design T=3 obstacle courses such
that it is impossible for the rover to take any single path that avoids all obstacles in any pair of the
obstacle courses. This results in T=3 objectives that are pairwise highly conflicting. We then run
20 replications of MOCOBO on this problem with K=2, asking MOCOBO to design K=2 solutions that
cover the T=3 pairwise highly conflicting objectives. For this task, MOCOBO got an average coverage
score of 2.932, while T individually optimized solutions got an average coverage score of 12.899. It
is unsurprising that T individually optimized solutions achieved better coverage here since all three
objectives are pairwise highly conflicting. However, this result demonstrates that MOCOBO is able to
design sets of K=2 solutions that still achieve fairly high coverage scores.

Ablation: All T=3 Objectives Highly Conflicting

Figure B.5: The three panels depict the T=3 obstacle courses that the rover must navigate for the
ablation variation of the rover task where all T=3 objectives pairwise highly conflicting. Obstacles
are colored in red. The three obstacle courses are designed such that any single path that successfully
avoids all obstacles in one obstacle course, must hit some obstacles in both of the other obstacle
courses. The required starting point for the rover is a green point in the bottom left of each panel. The
“goal" end point that the rover aims to reach without hitting any obstacles is the red point in the top
right of each panel. The line in each panel shows the best trajectory for navigating the obstacle course
from among the K=2 covering trajectories found by a single run of MOCOBO. The first trajectory in
the covering set is shown in magenta and is the best trajectory for navigating obstacle courses 2 and
3 (Middle Panel and Rightmost Panels). The second is shown in blue and successfully navigates
obstacle course 1 (Leftmost Panel).

Figure B.5 provides a diagram of the T=3 pairwise highly conflicting obstacle courses, and an example
of one of the covering sets of K=2 trajectories found by a single run of MOCOBO. One optimized
trajectory (shown in blue) is designed by MOCOBO such that it specializes to navigate the first obstacle
course, navigating it without hitting any obstacles (Leftmost Panel). The other optimized trajectory
(shown in magenta) is designed by MOCOBO such that it avoids all obstacles in the third obstacle
course (Rightmost Panel), while also minimizing total amount of impact with the obstacles in the
second obstacle course (Middle Panel). Since it is by-design impossible to avoid all obstacles in all
T=3 obstacle courses with only K=2 solutions, Figure B.5 demonstrates that MOCOBO was able to
successfully balance trade-offs among the objectives, designing a set of K=2 solutions that minimized
the total amount of obstacle impact across the three obstacle courses.

B.2.2 Ablation: MOCOBO Covering Set Size

In this section, we ablate K, the user-specified hyperparameter that dictates of size of the set that
MOCOBO designs to cover the T objectives. For this ablation, we use the rover task with T = 4
obstacle courses as defined in Section 4.1. Note that in the main text we provide results comparing
MOCOBO to baseline methods using K = 2 for this task. In Figure B.6, we provide results from
running MOCOBO with each of K = 1, 2, 3, and 4. With the ability to use more than 2 solutions to
cover the T objectives (K = 3, 4), the optimization problem becomes easier and MOCOBO is able to
converge more quickly. However, the loss in optimization efficiency inured by using the smaller
covering set size of K = 2, rather than a higher value of K, is marginal, highlighting MOCOBO’s
ability of efficiency design smaller sets of high performing solutions.

With only one solution (K = 1), it is by definition not possible to cover all T = 4 objectives since
several pairs of the obstacle courses are specifically designed to be completely conflicting (no one
trajectory can successfully avoid the obstacles in all T = 4 obstacle courses). MOCOBO with K = 1
therefore obtains a substantially lower final coverage score.

22

0 20000 40000 60000 80000
Number of Oracle Calls

15

10

5

0

5

10

15

M
ea

n
B

es
t C

ov
er

ag
e

Sc
or

e
Fo

un
d

Rover with Four Obstacle Courses

MOCOBO K=1
MOCOBO K=2
MOCOBO K=3
MOCOBO K=4
T Individually Optimized Solutions

Figure B.6: Ablating the hyperparameter K used to run MOCOBO on the rover task with T = 4 obstacle
courses (see task definition in Section 4.1).

B.2.3 Ablation: MOCOBO Surrogate Model Quality

In this section, we ablate the quality of the surrogate model used by MOCOBO. To run MOCOBO with
surrogate models of varying quality, we vary the MOCOBO hyperparameter m: the number of inducing
points used to define the approximate Gaussian process (GP) surrogate model (see surrogate model
details in Appendix G). It is well established in the literature that approximate GP models perform
better with a larger number of inducing points, as the inducing point approximation used by the
model is improved. However, there is an inherent trade-off as the computational cost of training the
model increases with the number of inducing points. In practice, we therefore often to select the
smallest possible value of m (to maximize computational efficiency) such that we don’t incur any
significant performance degradation.

For this ablation, we use the rover task with T = 4 obstacle courses as defined in Section 4.1. In
Figure B.7, we provide results from running MOCOBO with each of m = 4, 16, 64, 256, 1024, and
4096. In all other experiments in this paper, we use m = 1024. Results in Figure B.7 support our
choice of m = 1024 as results demonstrate that no significant performance improvement is gained
by using the larger value of m = 4096, and that performance starts to degrade with smaller values of
m ≤ 256.

B.2.4 Ablation: MOCOBO Batch Size

In this section, we ablate the MOCOBO hyperparameter q, the acquisition batch size which dictates
how many points are selected for evaluation from each trust region on each iteration of MOCOBO.
For this ablation, we use the rover task with T = 4 obstacle courses as defined in Section 4.1. In
Figure B.8, we provide results from running MOCOBO with each of q = 1, 2, 5, 10, 20, and 40. In all
other experiments in this paper, we use q = 20. Results in Figure B.8 demonstrate the robustness
MOCOBO to changes in q, as there is little to no significant change in the performance of MOCOBO with
different the values of q.

B.2.5 Ablation: MOCOBO Trust Regions

In this section, we ablate the use of trust regions in MOCOBO. For this ablation, we use the rover
task with T = 4 obstacle courses as defined in Section 4.1. To ablate the use of trust regions, we
compare to MOCOBO (as defined in Section 3 with trust regions), to running MOCOBO without trust
regions. Results in Figure B.9 demonstrate that MOCOBO performs significantly better with the use
of trust regions. This result confirms that trust regions significantly improve performance in the
high-dimensional settings we consider.

23

0 10000 20000 30000 40000 50000 60000
Number of Oracle Calls

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
B

es
t C

ov
er

ag
e

Sc
or

e
Fo

un
d

Rover with Four Obstacle Courses

MOCOBO m = 4
MOCOBO m = 16
MOCOBO m = 64
MOCOBO m = 256
MOCOBO m = 1024
MOCOBO m = 4096
T Individually Optimized Solutions

Figure B.7: Ablating the MOCOBO hyperparameter m (the number of inducing points used by the
surrogate model) on the rover task with T = 4 obstacle courses (see task definition in Section 4.1).
Lower values of m correspond to lower surrogate model quality.

0 20000 40000 60000 80000
Number of Oracle Calls

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
B

es
t C

ov
er

ag
e

Sc
or

e
Fo

un
d

Rover with Four Obstacle Courses

MOCOBO q = 1
MOCOBO q = 2
MOCOBO q = 5
MOCOBO q = 10
MOCOBO q = 20
MOCOBO q = 40
T Individually Optimized Solutions

Figure B.8: Ablating the MOCOBO hyperparameter q (the number of points selected for evaluation
during the acquisition step on each iteration) on the rover task with T = 4 obstacle courses (see task
definition in Section 4.1).

Why trust regions It has been well-established in the Bayesian optimization (BO) literature
that standard BO (without trust regions or other high-dimensional adaptations) performs poorly
in high dimensions. Eriksson et al. [21] introduced trust regions as a principled way to improve
performance of high-dimensional BO. Since then, trust regions have become a standard tool for any
high-dimensional BO task. Since all of the tasks we consider in this paper are high-dimensional, this
precisely why we adopt trust regions. We note that recent work has proposed alternative approaches
to improve high-dimensional BO without trust regions (e.g., [63]). However, there remain concerns
about the applicability of these approaches to structured domains (e.g., [64]).

24

0 20000 40000 60000 80000
Number of Oracle Calls

50

40

30

20

10

0

10

M
ea

n
B

es
t C

ov
er

ag
e

Sc
or

e
Fo

un
d

Rover with Four Obstacle Courses

MOCOBO (Ours)
MOCOBO-EIT
MOCOBO Without Trust Regions
T Individually Optimized Solutions

Figure B.9: Ablation comparing MOCOBO as defined in Section 3, to two variations each removing a
different component of MOCOBO. To ablate the use of trust regions in MOCOBO, we compare to MOCOBO
without trust regions. To ablate our proposed ECI acquisition function, we additionally compare to
MOCOBO-EIT, a variation of MOCOBO where we select candidates in acquisition by taking the maximum
of standard EI for each of the T objectives individually (EIT), rather than using ECI as described in
Section 3. We provide optimization results for MOCOBO and these two variations on the rover task
with T = 4 obstacle courses (see task definition in Section 4.1).

B.2.6 Ablation: MOCOBO Expected Coverage Improvement (ECI) Acquisition Function

In this section, we ablate our proposed expected coverage improvement (ECI) acquisition function.
For this ablation, we use the rover task with T = 4 obstacle courses as defined in Section 4.1. To
ablate the use of ECI, we compare to MOCOBO (as defined in Section 3 with ECI), to MOCOBO-EIT:
a variation of MOCOBO where on each iteration, we instead select points for evaluation by taking
the maximum of the standard expected improvement (EI) acquisition function for each of the T
objectives individually. Results in Figure B.9 demonstrate that MOCOBO performs significantly better
with our proposed ECI acquisition function, demonstrating the importance of ECI to the performance
of MOCOBO. Additionally, MOCOBO-EIT still performed fairly well, outperforming all other baseline
methods considered in the paper (e.g., all baselines in Figure 2). This highlights the importance of
other aspects MOCOBO.

B.3 Execution Time of Greedy Approximation Algorithm

In Table B.3, we provide an empirical evaluation of the average wall-clock runtime of Algorithm 1
with different values of N (the number of data points), K (the covering set size), and T (the number
of objectives). We provide average run times with N = 20, 200, 2000, 20000, 200000, and 2000000
for each combination of K and T that we ran MOCOBO on in Section 4. To improve the speed of
Algorithm 1, in all experiments, we compute the inner for loop (lines 5-6 in Algorithm 1) in parallel.
This involves simply computing the marginal coverage of adding all N data points at once in parallel,
and then updating A with the point that achieved maximum marginal converge improvement. Parallel
computation of the marginal coverage improvement of the N points is straightforward to implement
using PyTorch. In Table B.3, the “Runtime" column gives the average runtime of Algorithm 1 with
this parallel computation of the of the inner for loop, and the “Runtime No Parallelization" column
gives the average runtime without the parallel computation. Notice that as N grows large, this parallel
computation becomes essential to achieve the reasonably fast run times of Algorithm 1 needed to
run MOCOBO. Average run times reported in Table B.3 are computed by running Algorithm 1 on a
NVIDIA RTX A5000 GPU and averaging over 10 runs.

25

Table B.3: Average wall-clock runtime of Algorithm 1 for different values of N (the number of data
points), K (the covering set size), and T (the number of objectives). The “Runtime" column gives the
average runtime of Algorithm 1 with parallel computation of the of the marginal coverage of adding
the N data points (parallel computation of lines 5-6). The “Runtime No Parallelization" column gives
the average runtime of Algorithm 1 without this parallelization of the inner for loop. Average run
times are computed by running Algorithm 1 on a NVIDIA RTX A5000 GPU and averaging over 10
runs. Standard errors over the 10 runs are also provided.

N K T Runtime No Parallelization (seconds) Runtime (seconds)

20 2 4 0.00605± 0.00385 0.00864± 0.00795
200 2 4 0.0230± 0.00391 0.00901± 0.00828
2000 2 4 0.194± 0.00389 0.00850± 0.00781
20000 2 4 2.0523± 0.0259 0.00852± 0.00780
200000 2 4 20.845± 0.0446 0.00872± 0.00796
2000000 2 4 195.740± 0.114 0.00923± 0.00792

20 2 8 0.00596± 0.00375 0.00906± 0.00833
200 2 8 0.0269± 0.00446 0.00894± 0.00808
2000 2 8 0.197± 0.00386 0.00865± 0.00794
20000 2 8 1.947± 0.00348 0.00864± 0.00789
200000 2 8 19.508± 0.00964 0.00915± 0.00825
2000000 2 8 193.317± 0.218 0.00962± 0.00785

20 4 12 0.00861± 0.00430 0.00873± 0.00785
200 4 12 0.0440± 0.00371 0.00875± 0.00789
2000 4 12 0.386± 0.00642 0.00910± 0.00821
20000 4 12 4.303± 0.120 0.00869± 0.00776
200000 4 12 38.596± 0.0895 0.00889± 0.00784
2000000 4 12 395.325± 0.169 0.0111± 0.00772

20 3 6 0.00704± 0.00384 0.00887± 0.00809
200 3 6 0.0334± 0.00372 0.00840± 0.00764
2000 3 6 0.314± 0.00654 0.00897± 0.00817
20000 3 6 2.942± 0.00478 0.00872± 0.00785
200000 3 6 28.732± 0.0156 0.00862± 0.00775
2000000 3 6 312.825± 0.203 0.00985± 0.00799

20 4 7 0.00765± 0.00370 0.00880± 0.00793
200 4 7 0.0448± 0.00365 0.00847± 0.00760
2000 4 7 0.412± 0.00252 0.00887± 0.00798
20000 4 7 3.917± 0.00461 0.00882± 0.00789
200000 4 7 38.932± 0.0402 0.00889± 0.00791
2000000 4 7 389.272± 0.588 0.0105± 0.00809

20 4 11 0.00772± 0.00377 0.00955± 0.00853
200 4 11 0.0422± 0.00383 0.00859± 0.00775
2000 4 11 0.387± 0.00382 0.00931± 0.00837
20000 4 11 4.155± 0.00758 0.00887± 0.00792
200000 4 11 41.869± 0.0203 0.00880± 0.00777
2000000 4 11 381.313± 0.199 0.0114± 0.00803

Efficiency of Algorithm 1 Algorithm 1 could also be made more efficient by pruning the points in
Ds with zero marginal coverage improvement after each outer-loop, since these points will continue
to have zero marginal coverage improvement on subsequent loops. In future work, we plan to explore
this and any other tricks that might allow us to further improve the efficiency of Algorithm 1.

26

C Batch Acquisition with Expected Coverage Improvement (ECI)

In batch acquisition, we select a batch of q > 1 candidates for evaluation. In Equation (7), we
define q-ECI, a natural extension of the ECI acquisition function defined in Equation (5) to the batch
acquisition setting. q-ECI gives the expected improvement in the coverage score after simultaneously
observing the batch of q points X = {x1, . . . ,xq}. When using batch acquisition, we aim to select a
batch of q points that maximize q-ECI.

We will first discuss how one would estimate q-ECI using a Monte Carlo (MC) approximation. To
select a batch of candidates X̂, we sample m batches of q points B = {B1,B2, ...,Bm}. Here Bj

is a batch of q sampled points Bj = {bj1, . . . ,bjq}. For each batch Bj , we sample a realization
Ŷj = {ŷj1, . . . , ŷjq} from the GP surrogate model posterior. We leverage these samples to compute
an MC approximation to the q-ECI of each Bj :

q-CI(Bj) = max(0, max
r=1,...,q

c(S∗
Ds∪{(bjr,ŷjr)})− c(S∗

Ds
)). (8)

Here, c(S∗
Ds∪{(bjr,ŷjr)}) is the approximation of the coverage score of the new best covering set if

we choose to evaluate candidate bjr, assuming the candidate point will have the sampled objective
values ŷjr. We would like to select and evaluate the batch of candidates Bj with the largest q-CI.

Evaluating q-CI for a single candidate batch requires q evaluations of c(S∗
Ds∪{(bjr,ŷjr)}). Each

evaluation of c(S∗
Ds∪{(bjr,ŷjr)}) requires a call to Algorithm 1 to first construct S∗

Ds∪{(bjr,ŷjr)}.
Thus, batch acquisition with a full MC approximation of q-ECI requires O(q×m) calls of Algorithm 1.
Assuming a sufficiently large m to achieve a reliable MC approximation, this can become expensive
for large batch sizes q. We therefore propose a faster approximation of batch ECI for practical use
with large q.

Instead of sampling m batches of candidates, we sample m individual data points P =

{p1,p2, ...,pm}. For each sampled point pj , we sample a realization ŷj = (f̂1(pj), . . . , f̂T (pj)).
As in Section 3.2.1, we use the sampled realizations ŷj to compute an approximate coverage im-
provement CI(pj) as defined in Equation (6) for each point pj . To obtain a batch of q candidates,
we then greedily select the q points pj ∈ P with the q largest expected coverage improvements. Note
that this strategy does not involve sequential optimization of the q points, as the batch of q points is
selected simultaneously as the points with the top-q expected coverage improvements.

27

D Limitations and Future Works

Choosing K. A primary limitation of MOCOBO is that the choice of the hyperparameter K (the
covering set size) may not always be straightforward. For example, as we mention in Section 4, it
may require domain knowledge to choose K < T that is large enough that achieving good coverage
is possible despite multiple conflicting objectives. In many practical applications, we prefer the
smallest possible set size K such that good coverage can still be achieved. In future work, we plan to
explore methods for simultaneously optimizing both the solutions in the covering set, and the size of
the covering set, balancing the trade-off between minimizing the number of solutions needed and
maximizing overall coverage.

Unsupervised generative model pre-training for structured domains. We note that applying
MOCOBO to structured domains requires a pre-trained generative model, such as a Variational Au-
toencoder (VAE), to embed the discrete input space into a continuous latent space where MOCOBO
can be directly applied. Training such generative models typically demands significant computa-
tional resources and a large corpus of unlabeled data, which may not always be available in new
domains. For the two structured tasks considered in this paper—molecule and peptide design—we
leverage publicly available pre-trained VAEs from prior work. In contrast, MOCOBO does not require
a generative model for continuous input spaces, where optimization is performed directly in the
original domain. This distinction highlights a key practical limitation: deploying MOCOBO in new
structured domains would necessitate pre-training a new generative model, which may be a barrier in
resource-constrained settings.

Exploring lazy greedy evaluation approaches to improve computational efficiency. Another av-
enue for future work is improving the computational efficiency of Algorithm 1 by using a lazy greedy
evaluation strategy. Commonly employed in submodular maximization, lazy greedy approaches
maintain a priority queue of marginal gains and only recompute them when necessary, avoiding
redundant evaluations and reducing total computational cost.

Threshold-based coverage. The coverage optimization problem we consider in this paper provides
a principled way to pose the goal of finding a small set of K solutions such that each of the T
objectives is optimized as much as possible by at least one solution in the set. This captures the
setting we care about, for example, discovering K antibiotics such that each pathogen is targeted
as effectively as possible, not just adequately. In contrast, threshold-based coverage constitutes
a fundamentally different problem: it assumes that we know, a priori, a threshold value for each
objective beyond which we do not care to improve performance further. This setting is not aligned
with the domains we focus on in this paper where better objective values are always desirable and
thresholds are typically unknown or unhelpful. However, threshold-based coverage is a meaningful
formulation for many other domains, such as drug toxicity screening, where desired minimum
performance thresholds are known ahead of time. To address such domains, we plan to explore this
alternative problem setting of threshold-based coverage optimization in future work.

E Broader Impact

This research includes applications in molecule and peptide design. While AI-driven biological
design holds great promise for benefiting society, it is crucial to acknowledge its dual-use potential.
Specifically, AI techniques designed for drug discovery could be misused to create harmful biological
agents [65].

Our goal is to accelerate drug development by identifying promising candidates, but it is imperative
that experts maintain oversight, that all potential therapeutics undergo thorough testing and clinical
trials, and that strict regulatory frameworks governing drug development and approval are followed.

28

F Compute Resources

In this section, we provide all details about the compute resources used to produce all results in this
paper.

Table F.1: Setup of internal cluster used to run experiments.
Type Specifications

System Topology 20 nodes with 2 sockets each with 24 logical threads (total 48 threads)
Processor 1 Intel Xeon Silver 4310, 2.1 GHz (maximum 3.3 GHz) per socket
Cache 1.1 MiB L1, 30 MiB L2, and 36 MiB L3
Memory 250 GiB RAM
Accelerator 1 NVIDIA RTX A5000 per node, 2 GHZ, 24GB RAM

Compute specifications (type and memory). We use GPU works to run all experiments and
produce all empirical results provided in this paper. A single GPU was used per run of each method
compared on each task. Each each run uses approximately 12-18 GB of the GPU memory. Most
experiments were executed on our internal cluster of NVIDIA RTX A5000 GPUs (see internal cluster
compute details in Table F.1). We also used cloud compute resources for two weeks to complete
additional replications of some experiments. We used a total of eight RTX 4090 GPU workers from
runpod.io, each with approximately 24 GB of GPU memory.

Execution time. For the relatively inexpensive rover task, each optimization run takes approxi-
mately 1 day of execution time. For all other tasks considered, each optimization run takes approx-
imately 3 days of execution time. To create all coverage optimization plots, we ran all methods
compared 20 times each. Completing all of the runs needed to produce all of the results in this paper
required roughly 64000 total GPU hours.

Compute resources for preliminary experiments. Preliminary experiments refer to the initial
experiments for e.g. method development that are not included as results in the paper. All preliminary
experiments were run on our internal cluster of NVIDIA RTX A5000 GPUs (see internal cluster
compute details in Table F.1). We spent approximately 2000 hours of GPU time on preliminary
experiments.

29

G Additional Implementation Details

In this section, we provide additional implementation details for MOCOBO. We also refer readers to
the MOCOBO codebase for the full-extent of implementation details and experimental setup needed to
reproduce results provided https://github.com/nataliemaus/mocobo.

G.1 Trust Region Hyperparameters

For all trust region methods, the trust region hyperparameters are set to the TuRBO defaults used by
Eriksson et al. [21].

G.2 Surrogate Model

Since the tasks considered in this paper are challenging, high-dimensional tasks requiring a large
number of function evaluations, we use approximate Gaussian process (GP) surrogate models. In
particular, we use Parametric Gaussian Process Regressor (PPGPR) [35] surrogate models with a
constant mean, standard RBF kernel, and 1024 inducing points. Additionally, we use a deep kernel
(several fully connected layers between the search space and the GP kernel) [66]. We use two fully
connected layers with D nodes each, where D is the dimensionality of the search space.

We use the same PPGPR model(s) with the same configuration for MOCOBO, TuRBO, LOL-BO, and
ROBOT. For MOCOBO, to model the T -dimensional output space, we use T PPGPR models, one to
approximate each objective f1, . . . , fT . To allow information sharing between the models, we use a
shared deep kernel (the T PPGPR models share the same two-layer deep kernel) [67, 68].

Unlike the other methods compared, MORBO was designed for use with an exact GP model rather than
an approximate GP surrogate model. For fair comparison, we therefore run MORBO with an exact GP
using all default hyperparameters and the official codebase provided by Daulton et al. [14].

We train the PPGPR surrogate model(s) on data collected during optimization using the Adam
optimizer [69] with a learning rate of 0.001 and a mini-batch size of 256. On each step of optimization,
we update the model on collected data until we stop making progress (loss stops decreasing for
3 consecutive epochs), or exceed 30 epochs. Since we collect a large amount of data for each
optimization run (e.g., as many as 2e6 data points in a single run for the “template constrained"
peptide design task), we avoid updating the model on all data collected at once. On each step of
optimization, we update the current surrogate model only on a subset of 1000 of the collected data
points. This subset is constructed from the data that has obtained the highest objective values so far,
along with the most recent batch of data collected. By always updating on the most recent batch of
data collected, we ensure that the surrogate model is conditioned on every data point collected at
some point during the optimization run.

G.3 Initialization Data

In this section, we provide details regarding the data used to initialize all optimization runs for all
tasks in Section 4.

To initialize optimization for the molecule design task, we take a random subset of 10000 molecules
from the standardized unlabeled dataset of 1.27M molecules from the Guacamol benchmark software
[52]. We generate labels for these 10000 molecules once, and then use the labeled data to initialize
optimization for all methods compared.

To initialize optimization for the peptide design tasks, we generate a a set of 20000 peptide sequences
by making random edits (insertions, deletions, and mutations) to the 10 template peptide sequences
in Table H.4. We generate labels for these 20000 peptides once, and then use the labeled data to
initialize optimization for all methods compared.

For all other tasks, we initialize optimization with 2000 points sampled uniformly at random from
the search space.

30

https://github.com/nataliemaus/mocobo

G.4 Diversity Constraints and Associated Hyperparameters for the ROBOT Baseline

For a single objective, ROBOT seeks a diverse set of M solutions, requiring that the set of solutions
have a minimum pairwise diversity τ according to the user specified diversity function δ. Since Maus
et al. [28] also consider rover and molecule design tasks, we use the same diversity function δ and
diversity threshold τ used by Maus et al. [28] for these two tasks. For the peptide design tasks, we
define δ to be the edit distance between peptide sequences, and use a diversity threshold of τ = 3
edits. For the image optimization task, since there is no obvious semantically meaningful measure of
diversity between two sets of input parameters, we define δ to be the Euclidean distance between
solutions, and use τ = 1.45, the approximate average Euclidean distance between a randomly
selected pair of points in the search space.

31

H Additional Task Details

In this section we provide additional details for the chosen set of tasks we provide results for in
Section 4.

H.1 HDR Image Tone Mapping

Table H.1: pyiqa metric ID strings used to identify the T = 7 target image quality metrics used
for image tone mapping. Each metric is a no-reference image aesthetic (IAA) or quality (IQA)
assessment metric obtained from the pyiqa library [55].

Objective ID Pyiqa Metric ID Reference

1 nima 70
2 nima-vgg16-ava 70, 71
3 topiq-iaa-res50 72
4 laion-aes 73
5 hyperiqa 74
6 tres 75
7 liqe 76

In Table H.1, we list the names of the 7 image quality metrics used for the image tone mapping tasks
described in Section 4.1.

Target metrics. The target image quality (Image Quality Assessment, IQA) and aesthetic (Image
Aesthetic Assessment, IAA) metrics are organized in Table H.1, where all except nima are IAA
metrics, while nima is an IQA metric. For more detailed information about each metric and their
corresponding datasets, please refer to their original references.

Benchmark images. We use two benchmark images. The first is the “Stanford Memorial Church"
image obtained from https://www.pauldebevec.com/Research/HDR/ by courtesy of Paul E.
Debevec [56]. The second is the “desk lamp" image obtained from https://cadik.posvete.cz/
tmo/ by courtesy of Martin Čadík [57]. Because commonly used metrics are only correlated with
subjective image quality, prior work on tuning parameters for these and related benchmarks has been
done by trial and error and human-in-the-loop type schemes [77], including preferential BO-based
approaches [78, 79].

Imaging pipeline. We consider a tone mapping pipeline consisting of a multi-layer detail decom-
position [80–82] using the guided filter by He et al. [83] (3 detail layers and 1 base layer), followed
by gamma correction [54, Section 2.9], resulting in a 13-dimensional optimization problem. The
complete image processing pipeline is very similar to the classic approach proposed by Tumblin and
Turk [80], where the main difference is that, similarly to Farbman et al. [84], we replace the diffusion
smoothing filter with a more recent edge-preserving detail smoothing filter, the guided filter, by He
et al. [83]. First, given an HDR image in the RGB color space I = (Ir, Ir, Ib)), where Ir is the red
channel, Ir is the blue channel, and Ig is the green channel, we compute the luminance according to

L ≜ 0.2989Ir + 0.587Ig + 0.114Ib .

(The constants were taken from the code of Farbman et al. 84.) The luminance image L is then
logarithmically compressed and then decomposed into three detail layers and one base layer by
applying the guided filter three times, each with a different radius parameter ri and smoothing
parameter ϵi for i = 1, . . . , 3. Then, we amplify or attenuate each channel with a corresponding
gain coefficient gdetail,i i = 1, . . . , 3 for the detail and gbase for the base layers. The image is then
reconstructed by adding all the layers, including the colors. Following Tumblin and Turk [80], we
also apply a gain, gcolor, to the color channels. Finally, the resulting image is applied an overall gain
gout and then gamma-corrected [54, Section 2.9] with an exponent of 1/γ. The parameters for this
pipeline are organized in Table H.2. The implementation uses OpenCV [85], in particular, the guided
filter implementation in the extended image processing (ximgproc) submodule.

32

https://www.pauldebevec.com/Research/HDR/
https://cadik.posvete.cz/tmo/
https://cadik.posvete.cz/tmo/

Table H.2: pyiqa metric ID strings used to identify the T = 7 target image quality metrics used for
the image tone mapping task.

Parameter Description Domain

ri radius of the guided filter for generating the ith detailed layer {3, . . . , 32}
ϵi ϵ of the guided filter for generating the ith detailed layer [0.01, 10]

gdetail,i Gain of the ith detail layer [0, 1.5]
gbase Gain of the ith detail layer [0, 1]
gcolor Gain of the color layer [0.5, 1.5]
gout Gain of tone-mapped output [0.2, 2.0]

γ Gamma correction inverse exponent [1, 5]

Optimization problem setup. For optimization, we map the parameters

x = (r1, r2, r3, ϵ1, ϵ2, ϵ3, gdetail,1, gdetail,2, gdetail,3, gbase, gcolor, gout, γ)

to the unit hypercube [0, 1]
13. In particular, the mapped values on the unit interval [0, 1] linearly

interpolate the domain of each parameter shown in Table H.2. For the radius parameters r1, r2, r3,
which are categorical, we naively quantize the domain by rounding the output of the interpolation to
the nearest integer.

H.2 Peptide Design

Table H.3: Names of the T = 11 target bacteria used for the peptide design task. The first seven
bacteria are Gram negative (IDs B1-B7) and the last four (IDs B8-B11) are Gram positive.

Objective ID Target Pathogenic Bacteria

B1 A. baumannii ATCC 19606
B2 E. coli ATCC 11775
B3 E. coli AIC221
B4 E. coli AIC222-CRE
B5 K. pneumoniae ATCC 13883
B6 P. aeruginosa PAO1
B7 P. aeruginosa PA14
B8 S. aureus ATCC 12600
B9 S. aureus ATCC BAA-1556-MRSA
B10 E. faecalis ATCC 700802-VRE
B11 E. faecium ATCC 700221-VRE

Table H.4: Template amino acid sequences used for the “template constrained" peptide design task.
Template Amino Acid Sequences

RACLHARSIARLHKRWRPVHQGLGLK
KTLKIIRLLF

KRKRGLKLATALSLNNKF
KIYKKLSTPPFTLNIRTLPKVKFPK

RMARNLVRYVQGLKKKKVI
RNLVRYVQGLKKKKVIVIPVGIGPHANIK

CVLLFSQLPAVKARGTKHRIKWNRK
GHLLIHLIGKATLAL

RQKNHGIHFRVLAKALR
HWITINTIKLSISLKI

Table H.3 specifies the T = 11 target bacteria used for the peptide design task from Section 4. The
first seven bacteria are Gram negative bacteria (Objective IDs B1-B7) and the last four (Objective
IDs B8-B11) are Gram positive. Table H.4 gives the 10 template amino acid sequences used for the
“template constrained" variation of the peptide design task from Section 4.

33

I Proof that Finding the Best Observed Covering Set is NP-hard

In this section, we prove Theorem 3.1, that finding S∗
Ds

is NP-Hard.

Proof. We prove Theorem 3.1 by reduction from the well-known Maximum Coverage Problem
(MCP), which is NP-Hard.

Definition I.1 (Maximum Coverage Problem (MCP)). In the Maximum Coverage Problem, we are
given:

• A universe U = {e1, e2, . . . , em} of m elements.

• A collection of n subsets S = {A1, A2, . . . , An}, where Ai ⊆ U .

• An integer K, the number of subsets we can select.

The objective is to find a collection of K subsets S ′ ⊆ S such that the total number of elements
covered,

⋃
A∈S′ A, is maximized.

Proposition I.2 (MCP is NP-Hard). The Maximum Coverage Problem is NP-Hard.

Reduction from MCP to Finding S∗
Ds

: We reduce an instance of MCP to the problem of finding
S∗
Ds

as follows:

1. Let the universe U = {e1, e2, . . . , em} correspond to the objectives {1, 2, . . . , T} in the
optimal covering set problem, i.e., set T = m.

2. Let each subset Ai ∈ S correspond to a point xi ∈ Ds.

3. Define each objective ft : X → {0, 1}, and set ft(xi) = 1 if subset Ai contains element
et, and ft(xi) = 0 otherwise. Intuitively, this means that each point xi "covers" objective
ft if it achieves value 1 under that objective. While the design points xi are not literal
subsets, they induce coverage behavior that mirrors the structure of MCP through their
binary function values across the objectives.

4. Under this mapping, coverage score c(S) =
∑T

t=1 maxx∈S ft(x) is the total number of
objectives “covered” (i.e., the number of objectives for which at least one of the selected
points has value 1). It follows that the goal of the Maximum Coverage Problem (selecting
K “subsets" to maximize coverage) corresponds exactly to selecting K points xi ∈ Ds to
maximize the coverage score c(S).

Correctness of the Reduction: The reduction ensures that:

• Each subset Ai ∈ S is encoded by a design point xi ∈ Ds via its binary-valued outputs over
the objectives.

• Each element et ∈ U is mapped to objective ft, and is considered “covered” if some selected
point x ∈ S satisfies ft(x) = 1. In particular, if subset Ai covers/contains element et, then
ft(xi) = 1; otherwise, ft(xi) = 0.

• The MCP objective (maximize number of covered elements) is equivalent to maximizing the
coverage score c(S), which counts how many objectives are covered by the selected set S.

Thus, solving the optimal covering set problem is equivalent to solving MCP.

Implications: Since MCP is NP-Hard (Proposition I.2), and we have reduced MCP to the problem
of finding S∗

Ds
in polynomial time, it follows that finding S∗

Ds
is also NP-Hard.

34

Proof significance We do not claim the above proof of Theorem 3.1 as a novel contribution of
this work, as it follows straightforwardly from the fact that the well-known Maximum Coverage
Problem is NP-hard. Note that proving Theorem 3.1 would also follow straightforwardly from the
work of Ding et al. [17] who demonstrate that the coverage optimization problem generalizes k-means
clustering. Rather than providing additional novel contribution, the above proof of Theorem 3.1
serves to justify our use of a greedy approximation algorithm (Algorithm 1) to approximate S∗

Ds
on

each iteration of MOCOBO.

35

J Approximation Proof for Greedy Algorithm

In this section, we prove Theorem 3.2, that Algorithm 1 is a (1− 1
e)-Approximation.

Definition J.1 (Coverage Score). The coverage score of a set S ⊆ Ds, denoted c(S), is defined as:

c(S) =

T∑
t=1

max
x∈S

ft(x),

where ft(x) is the observed value of objective t at point x.
Definition J.2 (Optimal Covering Set). Let S∗

Ds
⊆ Ds denote the optimal covering set of size K:

S∗
Ds

= argmax
S⊆Ds,|S|=K

c(S).

Its coverage score is given by c(S∗
Ds

).
Definition J.3 (Contribution of Objective Function ft to Coverage Score). Given a covering set
S ⊆ Ds, we denote the contribution of objective ft ∈ {f1, f2, . . . , fT } to the overall coverage score
c(S) as gt(S) where

gt(S) = max
x∈S

ft(x).

It follows that from Theorem J.3 that:

c(S) =

T∑
t=1

gt(S).

Lemma J.4 (Monotonicity). The coverage score c(S) as defined in Theorem J.1 is monotone, i.e.,
for any S ⊆ S′ ⊆ Ds, we have:

c(S) ≤ c(S′).

Proof. Adding more points to a set can only increase or maintain the maximum values of ft for each
objective t, since for each objective:

gt(S
′) = max (gt(S), gt(S

′ \ S)) ≥ gt(S).

Hence, c(S) is monotone.

Lemma J.5 (Submodularity). The coverage score c(S) as defined in Theorem J.1 is submodular, i.e.,
for any S ⊆ S′ ⊆ Ds and any x∗ ∈ Ds \ S′, we have:

c(S ∪ {x∗})− c(S) ≥ c(S′ ∪ {x∗})− c(S′).

Proof. The marginal improvement of adding x∗ to S is:

c(S ∪ {x∗})− c(S) =

T∑
t=1

(gt(S ∪ {x∗})− gt(S))

=

T∑
t=1

max [ft(x
∗), gt(S)]− gt(S)

=

T∑
t=1

{
ft(x

∗)− gt(S) ft(x
∗) > gt(S)

0 otherwise
.

Likewise, for S′ this is:

c(S′ ∪ {x∗})− c(S′) =

T∑
t=1

{
ft(x

∗)− gt(S
′) ft(x

∗) > gt(S
′)

0 otherwise
.

Now, noting that for each term

gt(S
′) = max [gt(S), gt(S

′ \ S)] ≥ gt(S),

36

we know then that ft(x∗)− gt(S
′) ≤ ft(x

∗)− gt(S), and further that ft(x∗) > gt(S
′) implies that

ft(x
∗) > gt(S). Taken together, these imply that:

T∑
t=1

{
ft(x

∗)− gt(S
′) ft(x

∗) > gt(S
′)

0 otherwise
≤

T∑
t=1

{
ft(x

∗)− gt(S) ft(x
∗) > gt(S)

0 otherwise

and therefore:
c(S ∪ {x∗})− c(S) ≥ c(S′ ∪ {x∗})− c(S′).

Lemma J.6 (Greedy Achieves a (1 − 1
e)-Approximation for Monotone Submodular Functions).

For any monotone submodular function, the greedy submodular optimization strategy provides a
(1− 1

e)-approximation.

Proof. This is a well-known result about monotone submodular functions shown, for example, by
Nemhauser et al. [27].

Proof. Proof of Theorem 3.2 From Theorem J.4 and Theorem J.4, we know that c(S) is monotone
submodular.

Since c(S) is monotone submodular, and Algorithm 1 approximates A∗
Ds

using greedy submodular
optimization, it follows from Theorem J.6 that Algorithm 1 achieves:

c(A∗
Ds

) ≥
(
1− 1

e

)
c(S∗

Ds
).

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All stated claims are backed-up with results in Section 4 and the stated
focus/scope of the paper accurately reflects what is discussed throughout the rest of the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix D for discussion of limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

38

Answer: [Yes]

Justification: All theoretical claims can be found in Section 3.2.2. All sets of assumptions
and full proofs of each claim are provided in Section 3.2.2, Appendix I, and Appendix J. As
far as we are aware, each proof is complete and correct.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed explanation of how our method works in Section 3 and all
additional required details to reproduce results in Section 4 and Appendix G. Additionally,
we provide a link to a public GitHub repository containing the source code used to run our
method and produce results provided in this paper. This GitHub repository contains orga-
nized code that will allow any reader to run MOCOBO on all tasks in this paper. Additionally,
the README in the repository provides detailed instructions to make setting up the proper
environment and running the code easy for users.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

39

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a link to a public GitHub repository containing the source code
used to run our method and produce results provided in this paper. This GitHub repository
contains organized code that will allow any reader to run MOCOBO on all tasks in this paper.
Additionally, the README in the repository provides detailed instructions to make setting
up the proper environment and running the code easy for users.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All chosen hyper-parameters and implementation details are stated in section 4
and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: On all plots, we plot the mean taken over 20 random runs and include error
bars to show the standard error over the runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All compute details are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have made sure to adhere to the NeurIPS Code of Ethics in all aspects of
our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

41

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See discussion of broader societal impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new data or models with potential societal concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of all assets used to produce all results in this paper are cited in
Section 4. All assets used are open source software or models.

Guidelines:

42

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve any human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve any living participants.

43

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use LLMs in any way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

44

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Multi-Objective Coverage Bayesian Optimization
	Coverage Optimization
	Multi-Objective Coverage Bayesian Optimization (MOCOBO)
	Candidate Selection with Expected Coverage Improvement (ECI)
	Greedy Approximation of Best Observed Covering Set
	Extending ECI to the Batch Acquisition Setting (q-ECI)
	MOCOBO with Trust Regions

	Experiments
	Tasks
	Optimization Results
	Ablation study

	Related Works
	Conclusions
	Obtaining In Vitro Minimal Inhibitory Concentration (MIC) Data
	Additional Results
	Additional Covering Sets of Solutions Found by MOCOBO
	Additional Ablation Studies
	Ablation: Settings Where All Objectives are Highly Conflicting
	Ablation: MOCOBO Covering Set Size
	Ablation: MOCOBO Surrogate Model Quality
	Ablation: MOCOBO Batch Size
	Ablation: MOCOBO Trust Regions
	Ablation: MOCOBO Expected Coverage Improvement (ECI) Acquisition Function

	Execution Time of Greedy Approximation Algorithm

	Batch Acquisition with Expected Coverage Improvement (ECI)
	Limitations and Future Works
	Broader Impact
	Compute Resources
	Additional Implementation Details
	Trust Region Hyperparameters
	Surrogate Model
	Initialization Data
	Diversity Constraints and Associated Hyperparameters for the ROBOT Baseline

	Additional Task Details
	HDR Image Tone Mapping
	Peptide Design

	Proof that Finding the Best Observed Covering Set is NP-hard
	Approximation Proof for Greedy Algorithm

