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ABSTRACT
The Deepfake face manipulation technique has garnered significant
public attention due to its impacts on both enhancing human expe-
riences and posing security and privacy threats. Despite numerous
passive Deepfake detection algorithms that have been attempted to
thwart malicious Deepfake attacks, they mostly struggle with the
generalizability challenge when confronted with hyper-realistic
synthetic facial images contemporarily. To tackle the problem, this
paper proposes a proactive Deepfake detection approach by in-
troducing a novel training-free landmark perceptual watermark,
LampMark for short. Firstly, we analyze the structure-sensitive char-
acteristics of Deepfake manipulations and devise a secure and confi-
dential transformation pipeline from the structural representations,
i.e. facial landmarks, to binary landmark perceptual watermarks.
Subsequently, we present an end-to-end watermarking framework
that robustly and imperceptibly embeds and extracts watermarks
concerning the images to be protected. Relying on promising water-
mark recovery accuracies, Deepfake detection is accomplished by
assessing the consistency between the content-matched landmark
perceptual watermark and the robustly recovered watermark of
the suspect Deepfake image. Experimental results demonstrate the
superior performance of our approach in watermark recovery and
Deepfake detection compared to state-of-the-art methods across
in-dataset, cross-dataset, and cross-manipulation scenarios.

CCS CONCEPTS
• Security and privacy→ Digital rights management; Social as-
pects of security and privacy; • Computing methodologies→
Computer vision problems.

KEYWORDS
Deepfake detection, landmark perceptual watermark, digital foren-
sics, robust watermarking.
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1 INTRODUCTION
Deepfake, a deep neural network based facial manipulation tech-
nique, has yielded substantial effects on society from both positive
and negative perspectives [40]. While being adopted in industries
such as filmmaking and education for benign utilization, Deep-
fake attacks have severely jeopardized the privacy and security of
human beings. To satisfy the demand of preventing the current
and potential risks accordingly, abundant attempts for Deepfake
detection have been conducted in the research domain.

Most existing Deepfake detection approaches fall in the cate-
gory of passive detection. In essence, the algorithms are designed
to distinguish between real and fake facial images after Deepfake
has manipulated the original real images. While fake images can
mostly be detected by tracing the synthetic artifacts within image
feature domains in early stages, most methods have struggled with
bottlenecks when facing hyper-realistic Deepfake contents since
no obvious manipulation trace can be explicitly or implicitly lo-
cated. This is also reflected in the unsatisfactory and fluctuating
generalizability of the passive detectors on unseen manipulations
and datasets.

Recently, the concept of proactive defense has been raised such
that invisible signals are inserted into benign images in advance of
potential manipulations and falsifications can be addressed regard-
ing their existence. This concept encompasses two topics, distorting
and watermarking. While the former [14, 35] directly adds learned
noises into images to disable Deepfake manipulations regardless
of malicious and benign purposes, the latter protects the images
in relatively subtle manners. On the one hand, semi-fragile wa-
termarks [26, 50] are vulnerable to Deepfake manipulations, and
the detection is executed based on the absence of watermarks. On
the other hand, robust watermarks [38, 51] are used for attribu-
tion, detection, and source tracing purposes, owing to their distinct
characteristics and semantics. Despite preliminary attempts in the
domain, considerable research gaps persist, particularly concerning
the robustness and generalizability of proactive watermarks.

To mitigate these problems, we delve into the common behaviors
of Deepfake manipulations in the widely known two categories,
face swapping and face reenactment. Face swapping modifies facial
identities and maintains other facial attributes unchanged. Con-
versely, face reenactment reconstructs facial expressions and head
poses but preserves the facial identities. Although they each follow
a unique protocol in the synthetic pipeline, the facial structures are
generally modified regardless of identities, expressions, and head
poses. In this paper, we exploit the facial landmarks to represent the
structural information of facial images and construct landmark per-
ceptual watermarks accordingly for proactive Deepfake detection.
As Figure 1 depicts, facial landmarks of the images after benign
image processing operations and Deepfake manipulations are ex-
tracted and compared with those of the original raw images. In
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Figure 1: Demonstration of the structure-sensitive charac-
teristic. Left: visualization of landmark offsets in Euclidean
distances (𝜌) between manipulated images (in blue) and the
original target image (in red). Right: Landmark offset distri-
butions of sampled common and Deepfake manipulations.

the left sub-figure, obvious offsets can be observed regarding face
swapping (SimSwap [6]) and face reenactment (StarGAN [7]) ma-
nipulations. In contrast, only relatively imperceptible offsets are
caused by the benign manipulation (GaussianNoise). Scientifically,
10K images are randomly sampled from the CelebA-HQ [18] dataset
to demonstrate a prevalent pattern in landmark offsets caused by im-
age manipulations. In particular, four benign manipulations (Jpeg,
GaussianNoise, GaussianBlur, MedianBlur), two face swapping ma-
nipulations (SimSwap and InfoSwap [9]), and two face reenactment
manipulations (StarGAN and StyleMask [3]) are adopted to pro-
duce images on the 10K ones. As exhibited in the right sub-figure
of Figure 1, a pellucid gap is observed between landmark offset
distributions in Euclidean distances caused by benign and Deep-
fake manipulations. In a nutshell, structures of facial landmarks are
unavoidably modified upon Deepfake manipulations, while benign
image operations generally maintain the original image content.

In this study, to proactively protect images against malicious
Deepfake manipulations, we analyze the structural consistency of
facial landmarks before and after image manipulations and pro-
pose a landmark perceptual watermarking framework, namely,
LampMark. First, we introduce a training-free watermark construc-
tion pipeline that projects the coordinates of facial landmarks to
binary watermarks with fixed lengths while preserving the char-
acteristics and distributions as displayed in Figure 1. Then, we
devise a cellular automaton encryption system to securely encrypt
the watermarks with unpredictable and complex manners, guar-
anteeing strong watermark confidentiality. Thereafter, we train an
end-to-end watermarking framework that robustly embeds and
recovers watermarks against benign image processing operations
and Deepfake manipulations. For a watermarked image that is sus-
pected to be fake, Deepfake detection is achieved by analyzing
the similarity between the recovered watermark and the landmark
perceptual watermark with respect to the suspect image. Exten-
sive experiments demonstrate outstanding watermark robustness
with average bit-wise watermark recovery accuracies of 91.83%
and 91.86% on CelebA-HQ at 128 and 256 resolutions, respectively.
Furthermore, obtaining 98.39% and 98.55% AUC scores on detecting
a mixed set of seven Deepfake manipulations demonstrates the

state-of-the-art performance of our approach. The contributions of
this work can be summarized as follows:

• We exploit the structure-sensitive characteristic of facial
landmarks regarding Deepfake manipulations and devise
novel training-free landmark perceptual watermarks with
confidentiality to defend against Deepfake proactively.

• We propose a framework that robustly inserts and extracts
the landmark perceptual watermarks into and from facial
images. To the best of our knowledge, we are the first to
simultaneously detect face swapping and face reenactment
Deepfake manipulations with a single robust watermark.

• Extensive experiments under in-dataset, cross-dataset, and
cross-manipulation settings demonstrate the promising wa-
termark recovery and Deepfake detection performance of
our method, outperforming the state-of-the-art algorithms.

2 RELATEDWORK
2.1 Deepfake Generation
Ever since the first occurrence raised on Reddit1 in 2017, the term
‘Deepfake’ has attracted abundant public attention. Throughout
the evolution of Deepfake technology, the generative algorithms
have been broadly classified into two categories: face swapping
and face reenactment. Face swapping [6, 9, 19, 20, 23, 27, 29, 39, 47]
aims to swap the facial identity from a source image onto the target
one while preserving the remaining image semantics. On the con-
trary, face reenactment [2, 3, 7, 11, 45, 49, 52] transfers the facial
attributes, including expressions and poses, from a source image
onto the target one but maintains the original facial identity. Both
categories reconstruct the target image with the desired content
modifications that mostly happen on the facial structures. Recently,
unlike the early ones that exhibit obvious synthetic traces, Deep-
fake algorithms employing generative adversarial networks [10]
(GANs) have shown promising and efficient performance in pro-
ducing hyper-realistic synthetic content. These advanced synthetic
models have achieved seamless generations without visual artifacts
by incorporating modules that implicitly update the underlying fea-
tures and smoothly enforce changes within the facial areas. While
benefiting the industry in several aspects, this has brought severe
challenges to the domain of multimedia forensics, especially to the
passive Deepfake detection algorithms.

2.2 Proactive Deepfake Detection
While the passive Deepfake detection algorithms progressively
advance the steps to address the underlying synthetic artifacts,
experiencing the evolution of CNN based approaches [1, 55], CNN
backbone based approaches [21, 28, 31, 37], integrated architectures
[24, 36, 53], dataset enrichment strategies [5, 32, 33, 54], and deep
analysis on implicit feature domains [4, 8, 22], they mainly lack
generalization ability when encountering newly occurred Deepfake
models and datasets. Moreover, the high-quality synthetic outputs
of recent generative algorithms further aggravate the challenges in
distinguishing the fakes.

Recently, instead of passively engaging in the expensive compe-
tition, several studies have been undertaken to proactively defend

1https://www.reddit.com/
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Figure 2: Overall framework of the proposed method. The landmark perceptual watermarks are produced via pipeline 𝐺𝑚
and encoded into raw images. After benign and Deepfake manipulations, the watermarked images are passed to the decoder
for watermark recovery. By comparing the landmark perceptual watermarks of the manipulated images with the recovered
watermarks, Deepfake detection is accomplished.

against Deepfake and preemptively protect the raw images in ad-
vance. In 2020, Ruiz, Bargal, and Sclarof [30] raised the idea of
‘disrupting deepfakes’ with a gradient-based method that adds an
invisible perturbation 𝜂 to the image 𝑥 following 𝑥 = 𝑥 +𝜂 such that
the resulting image 𝑥 is able to disrupt the generation of Deepfake.
Thereafter, several follow-up studies step further. Huang et al. [16]
designed a two-stage training framework that superposes perturba-
tions onto images to nullify face attribute editing and reenactment
manipulations. While later approaches [14, 35, 41, 57] progressively
advance the disruption performance, they unfortunately disable the
benign utilization of Deepfake, and the visual qualities of images are
unavoidably affected due to directly added perturbations. To resolve
the above issues, subsequent attempts are made via watermark-
ing. Yu et al. [51] trained a framework that inserts model-specific
fingerprints for the attribution purpose. FaceGuard [50] and Face-
Signs [26] determine the falsification based on the existence of
the embedded semi-fragile watermarks. ARWGAN [15] contains
an attention-guided robust watermarking framework that resists
GAN model attacks. Wu, Liao, and Ou [46] proposed SepMark, a
separable watermarking framework that incorporates semi-fragile
and robust watermarks, to perform detection and source tracing
via analyzing each watermark. Wang et al. [38] fulfilled the entire
pipeline of Deepfake face swapping detection by training a robust
watermarking framework with watermarks containing identity
semantics.

3 METHODOLOGY
3.1 Problem Formulation
Contrary to the passive detection methods which analyze explicit
and implicit artifacts to identify Deepfake images, proactive defense
approaches focus on safeguarding the original images before poten-
tial synthetic manipulations happen. This is achieved by inserting
visually imperceptible information within the image contents. In
this study, we introduce a training-free pipeline, denoted as 𝐺𝑚 ,

designed to transform facial landmarks of facial images into land-
mark perceptual watermarks of fixed lengths. Subsequently, we
devise an auto-encoder architecture to robustly embed and recover
the watermarks into and from the images, respectively. Finally, we
address falsifications by comparing the recovered watermarks with
the landmark perceptual watermarks of the manipulated images
that are watermark-protected.

In practice, a real image 𝐼raw is embedded with the correspond-
ing landmark perceptual watermark𝑚raw, derived following the
pipeline𝐺𝑚 , to provide proactive protection, and the watermarked
image 𝐼rec is then reconstructed. When a Deepfake manipulation
occurs on 𝐼rec, generating the synthetic image 𝐼fake, two water-
marks are obtained accordingly. Firstly, the embedded watermark
can be recovered as𝑚rec, faithfully similar to𝑚raw due to its ro-
bustness. Meanwhile, the landmark perceptual watermark𝑚fake
can be obtained via 𝐺𝑚 based on the image content of 𝐼fake. The
bit-wise matching rate between𝑚rec and𝑚fake is expected to be
relatively low since they are produced based on different images
with unique facial landmarks. Additionally, 𝐼rec typically undergoes
visual quality degradation (e.g., compression, noising, and blur-
ring) upon uploading and spreading on the internet, becoming the
processed image 𝐼benign. Consequently, the matching rate between
𝑚rec and𝑚benign is expected to be high, as their visual contents are
generally similar. Ultimately, these matching rate values can assist
in determining falsifications.

3.2 Landmark Perceptual Watermarks
Motivated by the structural variations in facial images caused by
Deepfake manipulations and the structure-sensitive characteristic
regarding facial landmarks as demonstrated in Figure 1, we con-
struct landmark perceptual watermarks tailored to this purpose.
The watermarks are crafted to differentiate Deepfake-manipulated
facial images by verifying the watermark consistency in a secure
and confidential manner. Generally, we aim to fit an optimum map-
ping H(·) : 𝐿 → 𝑀 from facial landmarks 𝐿 to watermarks𝑀 that

3
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strictly possesses three characteristics: Discrimination, Confiden-
tiality, and Robustness.

3.2.1 Discrimination. Considering the limited capacity in conceal-
ing watermarks seamlessly in images, for facial landmarks with a
fixed number of points, we propose to reduce the feature dimensions
of landmarks while preserving the integrity of the original distribu-
tion as summarized in Figure 1. Specifically, principle component
analysis (PCA) is employed to transform the landmark points with
dimension (𝑑𝑙𝑚, 2) to vector features with length 𝑙 . Upon choosing
a data corpus with sufficient quantity and diversity, the landmark
points are first flattened to vectors of length 2𝑑𝑙𝑚 , denoted as 𝐸𝑙𝑚
for the corpus, following the order of {𝑥0, 𝑦0, 𝑥1, 𝑦1, ..., 𝑥𝑑𝑙𝑚−1, 𝑦𝑑𝑙𝑚−1}
such that 𝑥𝑖 and 𝑦𝑖 are the coordinates. Then, following the algo-
rithm of PCA, the covariance matrix of 𝐸𝑙𝑚 is computed as

Cov(𝐸𝑙𝑚) = 1
len(𝐸𝑙𝑚) (𝐸𝑙𝑚 − 𝜇𝐸𝑙𝑚 )T (𝐸𝑙𝑚 − 𝜇𝐸𝑙𝑚 ), (1)

where 𝜇𝐸𝑙𝑚 refers to the mean vector of 𝐸𝑙𝑚 . Thereafter, the corre-
sponding eigenvectors v and eigenvalues 𝜆 are obtained by solving
the eigendecomposition equation

Cov(𝐸𝑙𝑚)v = 𝜆v. (2)

The eigenvectors are sorted with respect to the eigenvalues in
descending order, representing the principal components of 𝐸𝑙𝑚 .
Thenceforth, we preserve the top 𝑙 eigenvectors to form the pro-
jection matrix W and the transformed vectors with length 𝑙 are
derived following

𝐸trans = 𝐸𝑙𝑚 ·W. (3)

Since the eigenvectors with the best 𝑙 values are maintained, fea-
tures with the least importance are eliminated during dimension
reduction, preserving the uttermost information of features and the
original distribution.

Finally, to construct watermarks with binary values, we scale
the 𝑙 features of each vector in 𝐸trans to the range of [0, 1]. In detail,
we normalize 𝐸trans with respect to the upper and lower bounds of
all the vector features,

𝐸norm =
𝐸trans [:, 𝑖] −min(𝐸trans [:, 𝑖])

max(𝐸trans [:, 𝑖]) −min(𝐸trans [:, 𝑖])
, (4)

for feature values at all 𝑙 indices where 0 <= 𝑖 < 𝑙 . Lastly, setting the
threshold at 0.5 enforces all vectors in 𝐸norm contain only binary
values, denoted as 𝐸bin.

3.2.2 Confidentiality. By having access to the pipeline of generat-
ing the landmark perceptual watermarks, an attacker may inten-
tionally replace the embedded watermark with a content-matched
one so that Deepfake detection is disabled. To ensure the confiden-
tiality of the watermarks, in this study, we leverage the concept of
cellular automata [34], which refers to a mathematical modeling
paradigm for complex systems, and design a cellular automaton
[42, 43] encryption system with a specific transform rule to provide
random and chaotic behaviors for the watermarks. Particularly,
regarding a binary encryption key with length 𝑙 in the cellular
automaton, the state of each bit at the next time step is determined
by the transform rule and the neighboring bits, such that

𝑠𝑡+1𝑖 = 𝑅(𝑠𝑡𝑖−1, 𝑠
𝑡
𝑖 , 𝑠

𝑡
𝑖+1), (5)

where 𝑠𝑡+1
𝑖

denotes the state at bit index 𝑖 for time step 𝑡+1 following
the transform rule 𝑅.

In this study, Rule 30 [44] is applied and the key set 𝐾 with an
initial key 𝑘0 for watermark encryption is derived following

𝑠𝑡+1𝑖 =


𝑠𝑡
𝑙−1 ⊕ (𝑠𝑡0 ∨ 𝑠

𝑡
1), for 𝑖 = 0,

𝑠𝑡𝑖−1 ⊕ (𝑠𝑡𝑖 ∨ 𝑠
𝑡
𝑖+1), for 0 < 𝑖 < 𝑙 − 1,

𝑠𝑡
𝑙−2 ⊕ (𝑠𝑡

𝑙
∨ 𝑠𝑡0), for 𝑖 = 𝑙 − 1.

(6)

The encryption key 𝑘𝑡 at time step 𝑡 contains bit values 𝑠𝑡
𝑖
at bit

index 𝑖 , and the key set 𝐾 = {𝑘0, 𝑘1, ..., 𝑘𝑛} is then obtained by
executing Eqn. (6) for 𝑛 iterations. We randomly select 𝑝 keys
𝐾

′
= {𝑘 ′

0, 𝑘
′
1, ..., 𝑘

′
𝑝−1} from 𝐾 where 0 < 𝑝 <= 𝑛 + 1 and sequen-

tially perform logical exclusive OR (XOR) operations on the corre-
sponding raw binary watermark𝑚0 ∈ 𝐸bin of image 𝐼 following

𝑚𝑖+1 =𝑚𝑖 ⊕ 𝑘
′
𝑖 , for 0 <= 𝑖 < 𝑝, (7)

and 𝑚𝑝 ∈ 𝑀 after 𝑝 sequential XOR denotes the ultimately en-
crypted watermark.

The encrypted watermarks are unpredictable and complex fol-
lowing the encryption pipeline and are used to proactively detect
Deepfake materials. On the other hand, while guaranteeing confi-
dentiality by preventing deciphering the original information from
unauthorized attackers, an authorized user who owns explicit in-
formation regarding the transform pipeline and has access to the
value and order of𝐾

′
may recover the original watermarks via XOR

operations in an inverse sequence.

3.2.3 Robustness. To fulfill the goal of Deepfake detection, the
embedded watermarks are designed to have robust manners when
facing both benign and Deepfake manipulations. On the one hand,
in real-life scenarios, the visual quality of images is unavoidably
degraded upon posting and spreading through different protocols
(e.g., on Twitter or Instagram). Consequently, the watermarks are
expected to resist benign image processing operations such as com-
pression, noising, and blurring. Therefore, we construct a benign
manipulation pool 𝑃benign that contains the benign image process-
ing operations to adversarially enforce the watermark robustness.
On the other hand, to achieve the main objective of this study, we
construct a Deepfake manipulation pool 𝑃deepfake that consists of
various Deepfake face manipulation algorithms.

In specific, 𝑃benign = {GaussianNoise(0, 0.1), GaussianBlur(2, 3),
MedianBlur(3), Jpeg(50)} and 𝑃deepfake = {SimSwap, InfoSwap,
UniFace, E4S, StarGAN, StyleMask, HyperReenact} are constructed
as the two pools during evaluation to validate that the watermarks
are robust against a diverse of adversaries, while the model sees
only Jpeg(50) and SimSwap during the training phase.

3.3 Auto-Encoder
We devise an auto-encoder framework and train it end-to-end for
watermark embedding and recovery. The overall framework is il-
lustrated in Figure 2. In a nutshell, we adopt mainly convolutional
neural networks (CNNs) in the framework. Specifically, following a
convolutional block (Conv. Block) to expand the feature dimension,
repeated convolutional attention blocks (Conv. Attn. Block) are
constructed to analyze the intra-correlation within the feature do-
main, locating the proper feature positions to hide the watermarks.

4
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Figure 3: Visual effects of the manipulations on the watermarked images. The raw and watermarked images are displayed in the
bottom and middle rows. Manipulated outputs via different operations on the watermarked images are placed in the top row.
The left four columns present results by benign manipulations and the remaining exhibit those by Deepfake manipulations.

The attention mechanism is conducted separately and sequentially
in channel-wise and spatial-wise perspectives via convolutional
operations that preserve channel and spatial dimensions, respec-
tively. The channel-wise attention is accomplished via squeeze-and-
excitation networks (SENet) [12] and the spatial-wise attention is
denoted by max pooling and average pooling along the channels.
On the other hand, to ensure robustness, we first diffuse the wa-
termark 𝑚 to match the dimension of image features, and then
study the intra-correlation within the watermark features via a
sequence of convolutional attention blocks. As the image and wa-
termark features are both analyzed regarding the optimal strategies
for embedding the watermarks, we concatenate the features and
reconstruct the watermarked image 𝐼rec.

Image manipulation algorithms are adopted from 𝑃benign and
𝑃deepfake and applied upon the watermarked image before passing
to the decoder for watermark recovery. This setting provides repre-
sentations after image manipulations so that the encoder is aware of
the types of adversaries it is battling with when staying robust and
the decoder can precisely recover the watermarks accordingly. As
for the decoder, after a convolutional block that expands the feature
channels, consecutive convolutional squeeze-and-excitation blocks
(Conv. SE. Block) are applied. Unlike blocks in the encoder, the
watermark features are simply refined by expanding the channels
while squeezing the spatial maps without attention mechanisms.
In the end, the features are flattened and linearly projected to the
length of the watermarks.

In the training phase, a discriminator is established to adversari-
ally tune the encoder for better image visual qualities. In particular,
the discrimination is of similar architecture as the decoder without
expanding the channel dimension, performing as a binary classifier
to determine the existence of watermarks.

3.4 Objective Functions
Since the process of fitting the binary watermarks from facial land-
marks is training-free, we focus on designing objective functions
for the auto-encoder when embedding and recovering watermarks.
In general, there are four objectives to be concurrently considered.

The watermarks are expected to be invisible, therefore, we ap-
ply an 𝐿2 constraint to ensure reasonable visual qualities of the
reconstructed watermarked images following

𝐿𝐼 = ∥𝐼rec − 𝐼 ∥2, (8)

where 𝐼 and 𝐼rec are the raw and watermarked images.
At the same time, the decoder is designed to faithfully recover

the embedded watermarks. Therefore, we assign an 𝐿2 constraint
on the decoder following

𝐿𝑚 = ∥𝑚rec −𝑚∥2, (9)

where𝑚 and𝑚rec denote the original and recovered watermarks.
While training the watermarking framework end-to-end, a dis-

criminator 𝐷 that tries to distinguish raw and watermarked images
is established to adversarially improve the visual qualities of the
watermarked images by

𝐿adv = −E(log(𝐷 (𝐼 ))) + E(log(1 − 𝐷 (𝐼rec))) . (10)

Lastly, we reserve the benign utilization of Deepfake in the indus-
try and employ the 𝐿2 constraint to preserve the synthetic quality
of Deepfake even for the target images that are watermarked,

𝐿𝐺 = ∥𝐺 (𝐼 , 𝐼𝑠 ) −𝐺 (𝐼rec, 𝐼𝑠 )∥2, (11)

where 𝐺 represents the Deepfake synthetic model and 𝐼𝑠 denotes
the source image that provides synthetic information.

4 EXPERIMENTS
4.1 Implementation Details
In this study, we adopted the popular CelebA-HQ [18] and LFW
[13] datasets, which both contain sufficient diversity in facial im-
ages. Specifically, we leveraged CelebA-HQ with 30,000 images
and followed the official split for training, validation, and testing.
Meanwhile, CelebA-HQ is employed as the data corpus to fit the
transform ruleW for watermark construction in pipeline𝐺𝑚 . LFW
with 5,749 unique facial identities is used for the cross-dataset vali-
dation. While the transformation from landmarks to watermarks is
training-free, we train the auto-encoder end-to-end with a learning
rate of 2𝑒 − 2 on 4 Tesla A100 GPUs.
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Table 1: Quantitative visual quality evaluation of the water-
marked images. Information includes model name, image
resolution, watermark length, PSNR (dB), and SSIM.

Model Resolution Length PSNR↑ SSIM↑
HiDDeN [56] 128 × 128 30 33.26 0.888
MBRS [17] 128 × 128 30 33.01 0.775
RDA [51] 128 × 128 100 43.93 0.975
CIN [25] 128 × 128 30 43.37 0.967
ARWGAN [15] 128 × 128 30 39.58 0.919
SepMark [46] 128 × 128 30 38.51 0.959
Ours 128 × 128 64 44.75 0.992

MBRS [17] 256 × 256 256 44.14 0.969
FaceSigns [26] 256 × 256 128 36.99 0.889
SepMark [46] 256 × 256 128 38.56 0.933
Ours 256 × 256 128 45.45 0.995

4.2 Performance Evaluation on CelebA-HQ
In this section, we validated the performance of the proposed
method onCelebA-HQ [18] by evaluating the visual quality, bit-wise
watermark recovery accuracy, and Deepfake detection AUC score.
Contrastive methods include robust watermarking frameworks
(HiDDeN [56], MBRS [17], and CIN [25]), semi-fragile proactive
Deepfake watermarking frameworks (FaceSigns [26]), and robust
proactive Deepfake watermarking frameworks (SepMark [46] and
ARWGAN [15]). Algorithms with source code available are repro-
duced in all experiments.

4.2.1 VisualQuality. The sampled images are exhibited in Figure 3.
Specifically, we visualized the original images, watermarked images,
and manipulated watermarked images from bottom to top. The first
four columns refer to the benign manipulations assigned with the
listed parameters, and the remaining columns exhibit the effects of
Deepfake manipulations, omitting the source images that provide
desired identities, expressions, and head poses. It can be observed
that the watermarks merely affect the visual qualities of images,
and the Deepfake manipulations are regularly executed even on
images with watermarks embedded.

In quantitative experiments, we computed the average peak
signal-to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM) regarding the raw and watermarked images. The two
metrics evaluate the level of noise and structural similarity of the
watermarking framework, respectively. As Table 1 lists, our method
retains outstanding visual quality in both 128 and 256 resolutions.
In specific, we achieved the best performance for the two resolu-
tions, outperforming the previous state-of-the-art algorithms. The
promisingly high PSNR and SSIM values imply the imperceptible vi-
sual perturbations brought by the watermarks towards raw images.
Additionally, while the early approaches generally demonstrate
mere advantages, RDA [51] and CIN [25] have shown likewise
reasonable visual qualities with competitive statistics at the 128
resolution, and MBRS [17] is observed to be more reliable at the
256 resolution with the second best performance.

4.2.2 Watermark Recovery Accuracy. We compared the similarity
between the original watermark𝑚 and the recovered watermark

Table 2: Quantitative comparison on CelebA-HQ regarding
the bit-wise watermark recovery accuracy of the watermarks
under benign manipulations. GausNoise, GausBlur, and Med-
Blur are abbreviations of Gaussian Noise, Gaussian Blur, and
Median Blur for space saving.

Model GausNoise GausBlur MedBlur Jpeg

HiDDeN [56] 51.36% 73.04% 82.72% 67.84%
MBRS [17] 99.60% 99.99% 99.99% 99.49%
RDA [51] 60.18% 99.95% 99.98% 66.85%
CIN [25] 86.00% 99.99% 97.03% 96.86%
ARWGAN [15] 53.45% 85.22% 96.66% 57.42%
SepMark [46] 99.25% 99.99% 99.99% 99.78%
Ours 99.71% 99.99% 99.99% 99.89%

MBRS [17] 58.31% 72.05% 98.06% 99.69%
FaceSigns [26] 53.61% 98.68% 99.86% 82.64%
SepMark [46] 99.94% 99.99% 99.99% 99.99%
Ours 99.99% 99.99% 99.99% 99.99%

𝑚rec, denoting the watermark recovery accuracy. Specifically, since
the watermarks are binary strings with the fixed length 𝑙 , the accu-
racy is derived by

ACC(𝑚rec,𝑚) = 1 −
Σ𝑙−1
𝑖=0

��𝑚𝑖
rec −𝑚𝑖

��
𝑙

, (12)

where𝑚𝑖
rec and𝑚𝑖 refers to the bit values at index 𝑖 of each water-

mark. In this section, to verify the model robustness, watermarks
are recovered after each manipulation from 𝑃benign and 𝑃deepfake is
executed.

As illustrated in Table 2 and Table 3, our proposed algorithm con-
sistently outperforms the contrastive state-of-the-art ones. In Table
2, the benign manipulations, GaussianNoise, GaussianBlur, Median-
Blur, and Jpeg, are adopted for evaluation. It can be observed that,
although most watermarking frameworks suffer accuracy damping
due to the distortions and noises brought by the manipulations,
SepMark [46] and our method generally maintain robustness in
all circumstances for both resolution levels. In summary, Gaus-
sianNoise and Jpeg are observed to be the most challenging ones
for all models, including ours. It is also worth noting that, despite
achieving satisfactorily high statistics at the 128 resolution, results
of MBRS [17] are unreliable because of the unexpectedly low visual
quality in Table 1. Contrarily, while MBRS maintains reasonable
visual quality at the 256 resolution, the corresponding watermark
recovery accuracies in Table 2 are poor. As a result, combining
the performance in Table 1 and Table 2, our approach favorably
achieves state-of-the-art average watermark recovery accuracies
of 99.89% and 99.99% at the 128 and 256 resolutions, respectively,
against benign image manipulations while concurrently ensuring
satisfactory image visual qualities.

Regarding the malicious Deepfake manipulations, watermarks
are expected to stay robust so that proactive detection can be ac-
complished consistently. The watermark recovery accuracies at the
128 and 256 resolutions are reported in Table 3. In general, except
for SepMark [46] and our approach, all remaining comparative
models have derived accuracies mostly around 50%. This implies
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Table 3: Quantitative comparison on CelebA-HQ regarding the bit-wise watermark recovery accuracy of the watermarks under
Deepfake manipulations. The top half refers to the 128 resolution and the bottom half refers to 256.

SimSwap [6] InfoSwap [9] UniFace [47] E4S [23] StarGAN [7] StyleMask [3] HyperReenact [2] Average

HiDDeN [56] 50.02% 50.07% 54.98% 49.19% 50.24% 49.99% 50.15% 50.66%
MBRS [17] 49.98% 50.82% 50.22% 50.07% 49.95% 50.08% 50.08% 50.17%
RDA [51] 50.00% 50.01% 71.15% 63.03% 47.45% 48.94% 56.65% 55.32%
CIN [25] 50.28% 50.60% 46.01% 50.55% 50.05% 50.24% 50.43% 49.74%
ARWGAN [15] 52.06% 47.94% 59.30% 49.81% 50.51% 50.10% 49.86% 51.37%
SepMark [46] 86.17% 77.27% 66.13% 81.62% 49.05% 50.16% 50.05% 65.78%
Ours 99.95% 97.99% 99.72 92.09% 73.12% 74.19% 73.53% 87.23%

MBRS [17] 50.00% 50.71% 49.98% 50.07% 49.95% 50.00% 50.07% 50.11%
FaceSigns [26] 49.74% 50.00% 50.59% 49.73% 50.51% 49.10% 49.28% 49.85%
SepMark [46] 92.09% 81.49% 57.44% 77.32% 50.11% 50.06% 50.02% 65.50%
Ours 99.98% 98.31% 94.28% 93.27% 74.66% 75.83% 74.18% 87.21%

that their watermarks are ruined by Deepfake manipulations such
that the decoders are unable to recover the correct messages. As
a result, although most robust watermarking frameworks are able
to achieve certain levels of robustness regarding some of the be-
nign image manipulations, they are unfavorably unsatisfied against
Deepfake manipulations. In addition, FaceSigns [26], although de-
signed as a semi-fragile watermarking framework that is supposed
to be vulnerable and have low accuracies when facing Deepfake
manipulations, fails to stay robust against benign image manipu-
lations. Meanwhile, although trained against SimSwap, SepMark
still suffers considerable watermark recovery errors with 86.17%
and 92.09% accuracies for the two resolutions. Furthermore, strong
fluctuations can be observed under the cross-manipulation scenario
such that unseen Deepfake manipulations have caused significant
challenges to SepMark by destroying the underlying watermarks.

In conclusion, our proposed algorithm maintains the best ro-
bustness for benign and Deepfake manipulations and achieves
87.23% and 87.21% average accuracies in Table 3 for the 128 and 256
resolutions, respectively. At the same time, despite being trained
against SimSwap [6] solely regarding Deepfake manipulations, our
model demonstrates state-of-the-art cross-manipulation perfor-
mance when tested with other Deepfake manipulations. Addition-
ally, while statistics for face swapping models are all above 90%,
those for face reenactment models are only around 75%. This is
possibly caused by wiping out the background information in face
reenactment results, making it more difficult to recover the original
watermarks.

4.2.3 Deepfake Detection. In this study, the ultimate goal of main-
taining watermark robustness is to ensure the reliability of wa-
termarks and enforce proactive Deepfake detection accordingly.
Particularly, for a watermarked image 𝐼rec with embedded land-
mark perceptual watermark𝑚raw derived from the raw image 𝐼raw
following the pipeline 𝐺𝑚 , falsification is addressed based on the
recovered watermark 𝑚rec and landmark perceptual watermark
𝑚sus of a suspect image 𝐼sus. If 𝐼sus is derived via benign manipu-
lations, the structural content is not modified and the similarity
between 𝐼sus and𝑚rec is, therefore, expectedly high. On the other
hand, if 𝐼sus is a Deepfake image, due to structural changes in the

image content, 𝐼sus and𝑚rec are dissimilar. Based on this rule, we
conducted Deepfake detection on the seven Deepfake manipulation
algorithms and computed the AUC scores by concurrently introduc-
ing benign image manipulations upon the raw images to produce
real samples.

In Table 4, we compared the detection performance with four
popular and state-of-the-art passive Deepfake detectors2, namely,
Xception [31], SBIs [32], RECCE [4], and CADDM [8]. While the
four passive detectors have demonstrated superior detection ability
in lab-controlled scenarios on the FaceForensics++ [31] dataset, as
listed in the last row of Table 4, they are generally fooled by the up-
to-date synthetic algorithms with as low as less than 40% for AUC
scores. Specifically, besides the lower resolution level bringing more
difficulty with indistinguishable underlying artifacts and noises,
the hyper-realistic output images by E4S, StarGAN, and StyleMask
have limited the AUC scores of detectors all below 80%. On the
other hand, SBIs and CADDM are observed to be the most powerful
passive detectors by closely approaching 90% for AUC scores on
some Deepfake manipulations.

As for our proposed proactive approach, relying on the outstand-
ing watermark recovery accuracy for all benign and Deepfake ma-
nipulations, the extracted watermarks by the decoder are faithfully
similar to the originally embedded ones. Therefore, comparing 𝐼sus
and𝑚rec leads to reliable Deepfake detection results. As reported in
Table 4, our approach demonstrates superior detection ability with
AUC scores all above 95% regardless of manipulation algorithms. In
other words, the similarities between 𝐼sus and𝑚rec for the benign
manipulations are expectedly higher than those for the Deepfake
manipulations. To conclude, our approach is proved to have the
best performance of 98.39% and 98.55% for AUC scores even with a
mixture of all seven Deepfake manipulations.

4.3 Cross-Dataset Evaluation
Under the cross-dataset setting, we further evaluated the generaliz-
ability of our proposed LampMark on unseen datasets. In particular,
we adopted the LFW dataset and conducted experiments at the 128
2The proactive approaches are excluded since the unsatisfactory watermark recovery
accuracies make the corresponding detection unconvincing. In addition, since their
watermarks are semantically void, the pipeline for Deepfake detection is incomplete.
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Table 4: Deepfake detection performance in AUC scores against different face manipulation algorithms on CelebA-HQ at 128
and 256 resolutions. The row of ‘Mixed’ evaluates the detection performance on a mixed testing set of all seven algorithms.

Xception [48] SBIs [32] RECCE [4] CADDM [8] Ours

Resolution 128 256 128 256 128 256 128 256 128 256

SimSwap [6] 39.37% 71.15% 75.30% 88.94% 60.37% 69.01% 55.91% 87.66% 97.80% 99.01%
InfoSwap [9] 60.82% 65.50% 85.11% 80.50% 55.51% 52.13% 48.29% 61.39% 98.59% 99.18%
UniFace [47] 71.79% 70.34% 72.45% 79.41% 61.58% 67.35% 82.16% 82.73% 96.76% 97.03%
E4S [23] 43.40% 53.70% 63.63% 61.05% 60.88% 47.19% 64.93% 73.13% 98.99% 99.10%
StarGAN [7] 37.14% 40.30% 48.98% 65.86% 35.82% 41.55% 37.41% 44.34% 98.96% 99.32%
StyleMask [3] 29.41% 40.23% 38.45% 48.45% 31.08% 23.87% 34.87% 39.73% 98.62% 98.98%
HyperReenact [2] 38.96% 76.27% 52.36% 53.35% 82.23% 78.23% 35.87% 42.87% 98.87% 99.02%
Mixed 41.28% 41.42% 60.39% 68.62% 54.09% 52.51% 52.04% 59.84% 98.39% 98.55%

FF++ [31] 97.60% 90.50% 96.81% 95.57% –

Table 5: Quantitative experiments on LFW at the 128 resolution for visual quality and bit-wise watermark recovery accuracy
under benign and Deepfake manipulations.

Hidden [56] MBRS [17] RDA [51] CIN [25] ARWGAN [15] SepMark [46] Ours

GaussianNoise 51.30% 99.80% 60.83% 87.54% 53.11% 81.90% 99.90%
GaussianBlur 72.89% 99.99% 99.88% 99.99% 86.39% 91.97% 99.99%
MedianBlur 82.35% 99.99% 99.98% 99.98% 96.93% 89.72% 99.99%
Jpeg 56.17% 99.42% 66.77% 97.06% 70.86% 83.42% 99.95%
Average 65.68% 99.80% 81.87% 96.14% 76.82% 86.75% 99.95%

SimSwap [6] 49.96% 49.92% 50.04% 50.25% 50.00% 59.72% 99.58%
InfoSwap [9] 50.06% 50.04% 50.10% 50.95% 50.86% 76.17% 91.59%
UniFace [47] 53.74% 49.78% 70.37% 49.92% 59.16% 63.10% 97.58%
E4S [23] 49.34% 50.08% 67.78% 50.22% 48.64% 88.14% 94.53%
StarGAN [7] 50.09% 49.97% 48.95% 50.25% 49.83% 50.05% 66.15%
StyleMask [3] 50.08% 49.97% 49.59% 50.14% 40.83% 49.07% 70.42%
HyperReenact [2] 50.13% 49.91% 56.41% 50.21% 49.83% 49.02% 66.28%
Average 50.49% 49.95% 56.13% 50.28% 40.88% 62.18% 83.73%

PSNR↑ 33.27 32.78 42.71 42.89 39.94 37.03 43.14
SSIM↑ 0.883 0.761 0.959 0.982 0.926 0.947 0.983

resolution following the same pipeline as Section 4.2 illustrates.
Experimental results are reported in Table 5. It can be seen that the
watermarking frameworks generally perform similarly to those on
CelebA-HQ. Specifically, besides the visual qualities of RDA [51],
CIN [25], and ours being generally acceptable, GaussianNoise and
Jpeg are still the most challenging benign image manipulations that
have caused the most trouble in watermark recovery.

Meanwhile, the watermarks behave in like manners as in Table
2 when evaluated against Deepfake manipulations such that most
of them become fragile when being manipulated by Deepfake. As a
result, although slightly suffers the cross-dataset challenge when
tested against the face reenactment models, the proposed method
consistently reaches state-of-the-art performance with an 89.73%
recovery accuracy on average for all manipulations. Furthermore,
SepMark, besides consistently demonstrating fragile characteristics
when facing unseenmanipulations, encounters similar performance
damping as ours under the cross-dataset setting.

5 CONCLUSION
In this work, we exploit the structure-sensitive characteristic of
Deepfake manipulations and present a proactive Deepfake detec-
tion approach, LampMark, that relies on landmark perceptual wa-
termarks. We propose a training-free pipeline to transform facial
landmarks into binary watermarks, securely protected by a sophis-
ticated cellular automaton encryption system. Then, an end-to-end
auto-encoder architecture is trained to embed and extract water-
marks robustly. Extensive experiments demonstrate the state-of-
the-art performance of our method in watermark recovery and
Deepfake detection. Lastly, despite successfully stepping forward
with the innovative idea, the existing performance gap from per-
fect statistics points out the future direction of our research to
continuously advance the model generalizability, especially for
the cross-manipulation watermark recovery ability against face
reenactment manipulations.
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