
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SHORTGPT: LAYERS IN LARGE LANGUAGE MODELS
ARE MORE REDUNDANT THAN YOU EXPECT

Anonymous authors
Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) continue to advance in performance, their
size has increased significantly, with current LLMs containing billions or even tril-
lions of parameters. In this study, we identify notable redundancy across the layers
of LLMs, where some layers contribute minimally to overall network functional-
ity. To quantify this, we introduce a metric called Block Influence (BI) which use
the similarity between layer’s input and output to measure the importance of each
layer. Based on the observation of layer redundancy, we propose a straightforward
pruning method: layer removal, which eliminates redundant layers based on their
BI scores. Our approach, termed ShortGPT, demonstrates superior performance
over previous state-of-the-art pruning methods. Moreover, ShortGPT is orthog-
onal to quantization-like methods, enabling further reduction in parameters and
computation. The ability to achieve better results through simple layer removal,
as opposed to more complex pruning techniques, suggests a high degree of redun-
dancy across layers, not only in transformer models but also in non-transformer
models. We hope this work will contribute to future research in LLM compres-
sion.

1 INTRODUCTION

The field of large language models (LLMs) has witnessed rapid development recently, with LLMs
achieving impressive performance across various domains. Guided by the scaling laws identified
in prior work (Kaplan et al., 2020; Hoffmann et al., 2022), current LLM research tend to increase
model parameters to boost performance. As a result, modern LLMs, which can comprise billions to
trillions of parameters, require significant hardware resources for deployment, creating substantial
barriers to their practical use.

To mitigate the hardware demands of large models, model compression techniques have become a
critical area of focus (Zhu et al., 2023). These techniques are generally divided into quantization
(Liu et al., 2021; Gholami et al., 2022; Dettmers et al., 2022; 2024) and pruning(LeCun et al., 1989;
Han et al., 2015; Frantar & Alistarh, 2023). Quantization reduces the precision of model parameters,
but its effectiveness often requires specific hardware support. In contrast, pruning method removes
redundant parameters to decrease the model’s size and computation, offering a more flexible and
hardware-agnostic approach. Despite its advantages, many existing pruning methods are complex;
for example, some require gradient information (Ma et al., 2024), which limits their practicality.

In this paper, we focus on the issue of layer redundancy in LLMs and propose a novel approach for
simplifying these models. We introduce Block Influence (BI), a metric that quantifies how much the
hidden state changes after passing through each layer, providing a more direct measure of a layer’s
importance. Leveraging this insight, we propose a simple yet effective pruning method ShortGPT,
which identifies and removes layers with lower BI scores, significantly reducing model size without
sacrificing much performance.

To evaluate our approach, we conducted evaluation across comprehensive benchmarks. Our experi-
ments revealed that our method exhibits a smaller performance decrement compared to the previous
methods. For instance, removing 10 layers (25% of the total 40 layers) from the LLaMA 2-13B
model resulted in only a slight drop in performance on the MMLU benchmark (Hendrycks et al.,
2020), from 55.0 to 52.2. Our findings highlight substantial redundancy in current LLMs and suggest

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Layer id

101

102

103

104

Pe
rp

le
xi

ty

Baichuan2-7B-Base
Llama2-7B-Base
Llama2-7B-Base-Baseline
Baichuan2-7B-Base-Baseline

(a) Perplxity

0 5 10 15 20 25 30
Layer id

25

30

35

40

45

50

55

Pe
rp

le
xi

ty

Baichuan2-7B-Base
Llama2-7B-Base
Llama2-7B-Base-Baseline
Baichuan2-7B-Base-Baseline

(b) MMLU

Figure 1: Performance of removing certain layer from LLMs. We can see that certain layers are
redundant, and their removal results in minimal performance degradation.

potential avenues for improving the efficiency of model training by reducing inherent redundancy in
the future.

The main contributions of our paper are summarized as follows:

• We analyze the redundancy in large language models (LLMs) and find that they exhibit
significant redundancy at the layer level. This finding inspire us to prune LLMs by simply
removing redundant layers.

• We propose a metric called Block Influence (BI) as an indicator of layer importance. Based
on BI, our layer removal method maintains approximately 90% performance while reduc-
ing approximately 25% of parameters, outperforming previous state-of-the-art methods.

• Furthermore, we demonstrate that our layer pruning approach is orthogonal to quantization
methods, meaning it can be combined with quantization techniques to further reduce the
deployment overhead of LLMs.

2 MOTIVATION

2.1 BACKGROUND

0 5 10 15 20 25 30 35 40 45 50

Tokens(B)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
ar

it
y

pre norm 0-th layer

pre norm 1-th layer

pre norm 3-th layer

pre norm 7-th layer

pre norm 15-th layer

pre norm 31-th layer

post norm 0-th layer

post norm 1-th layer

post norm 3-th layer

post norm 7-th layer

post norm 15-th layer

post norm 31-th layer

Figure 2: The cosine similarity between a layer’s input
and output during the training process. The horizontal
axis (X-axis) represents the number of training tokens,
while the vertical axis (Y-axis) depicts the degree of sim-
ilarity. Notably, the model employing post-normalization
exhibits divergence after approximately ∼26B tokens of
training. Training setting is provided in E.

The predominant LLMs are primar-
ily based on the Transformer architec-
ture (Vaswani et al., 2017), with the
pre-norm configuration being the most
commonly adopted, as in models like
LLaMA (Touvron et al., 2023). The pre-
norm configuration, where layer nor-
malization is applied before the self-
attention and feed-forward layers, of-
fers several advantages such as faster
convergence, improved training stabil-
ity, and better scalability for deeper net-
works (Xiong et al., 2020; Liu et al.,
2020; Wang et al., 2024). Due to these
benefits, the pre-norm approach has
been adopted even in non-transformer
models, such as Mamba (Gu & Dao,
2023) and RWKV (Peng et al., 2023).
For the sake of simplicity in descrip-
tions, our analysis primarily focuses
on the Transformer architecture, though
we extend our experiments to non-
Transformer structures in Section 4.4.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

However, we observe that when pre-norm is adopted, the similarity between the input and output
of transformer layers tends to be higher, as illustrated in Figure 2. This high similarity indicates
that certain layers induce minimal changes to the hidden states, suggesting they contribute little to
the model’s overall function. A detailed mathematical explanation for this phenomenon is provided
in Appendix A. Which suggests that the deep layers of the model with pre-norm might not play a
critical role in the overall function, and that the layers in large language models could be more
redundant than expected, which motivates the layer-removal based pruning method we explore in
the next section.

2.2 LAYER REDUNDANCY

Table 1: Ablation of removing FFN and At-
tention of Llama2-7B-Base. We sample 100
instances from PG19 (Rae et al., 2019) to cal-
culate PPL.

Delete PPL
None 7.60
The whole last layer 13.37
Attention of the last layer 7.65
FFN of the last layer 12.35

As discussed in the previous section, we speculate
that the LLMs exhibit layer redundancy. To verify
this, we assess the performance degradation caused
by removing individual layers of two popular mod-
els, Llama2-7B-Base (Touvron et al., 2023), an En-
glish based LLMs, and Baichuan2-7B-Base (Yang
et al., 2023) which is mainly focused on Chinese.
Figure 1 confirms our speculation, which reveals that
some layers do not play a crucial role in LLMs, caus-
ing little degradation when omitting them individu-
ally. Moreover, this redundancy is primarily mani-
fested in the middle to later layers of the network,
with the initial layers and the last layer often being
more critical. Notably, we found the last layer to be
particularly important, aligning with findings from LLM Pruner (Ma et al., 2024). This observation
contradicts our mathematical explanation in Appendix A which suggests that deeper layers tend to
be more redundant. We posit that this discrepancy arises because the final FFN effectively func-
tions as part of the token classifier and should be considered in conjunction with the language model
head.To verify our hypothesis, we conducted further investigation, detailed in Table 1. The results
show that within the last layer, the FFN component is crucial, while the Attention module is less
significant. This finding supports our interpretation of the final layer’s importance.

3 METHODOLOGY

In this section, we present the methodological framework of our layer removal approach for LLMs,
elucidating the underlying principles and techniques employed. We begin by introducing Block
Influence (BI), a novel metric designed to assess the hidden states transformation of each layer.
Leveraging BI, we then detail our layer removal method.

3.1 LAYER IMPORTANCE

As outlined in the preceding section, the layers of LLMs exhibit redundancy, with varying degrees
of redundancy across different layers. To capture this, we introduce a new metric, Block Influence
(BI), to measure the degree of transformation performed by each layer. The BI score of ith layer can
be calculated as follows:

BIi = 1− EX,t

XT
i,tXi+1,t

||Xi,t||2||Xi+1,t||2
, (1)

where Xi,t means the tth row of hidden states of ith layer. Lower BI score imply that Xi and
Xi+1 exhibit high cosine similarity, suggesting that the layer makes minimal transformations to the
hidden states and is therefore less important. We plot the BI scores of a single layer and the PPL
after removing it separately, as shown in the Figure 3. The results demonstrate a positive correlation
between the BI score and the importance of a layer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30

Layer id

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

B
I s

co
re

0

5

10

15

20

Pe
rp

le
xi

ty

BI score Perplexity

(a) Llama2 7B

0 5 10 15 20 25 30

Layer id

0.1

0.2

0.3

0.4

0.5

B
I s

co
re

0

5

10

15

20

25

Pe
rp

le
xi

ty

BI score Perplexity

(b) Baichuan2 7B

Figure 3: The BI score of a layer and the PPL after removing the layer.

3.2 LAYER REMOVAL

Our goal is to obtain a pruned model that remains as close as possible to the original model. Since
an LLM functions as a series of transformations applied to hidden states across its layers and we
can determine the importance of each layer, we propose a straightforward pruning method: layer
removal, which we refer to as ShortGPT. We delete certain layers in LLMs based on BI score. First
of all, we construct a calibration set, which is a set of unlabelled text samples such as PG19 (Rae
et al., 2019). Then we collect the hidden states of each layer during inference on these samples.
Next, we calculate the BI score based on the collected hidden states. Finally, we sort layers in
ascending order according to the BI, and delete the layers with the lower BI score. The number of
layers to be deleted can vary to trade off the speed and performance. The details of our layer removal
setting can be found in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. To validate the effectiveness of our method, we conducted experiments on existing pop-
ular open-source language models, including Llama2-7B (Touvron et al., 2023), Llama2-13B,
Baichuan2-7B, and Baichuan2-13B. They are all large language models based on the decoder-only
Transformer architecture. LLaMA 2 was trained on more than 2 trillion tokens. Baichuan-series was
mainly trained in Chinese and its 13-Billion model replaced the RoPE (Su et al., 2024) positional
embedding with ALiBi (Press et al., 2021).

Benchmarks. In order to comprehensively evaluate the changes in the ability of large language
models before and after pruning, we conducted comprehensive evaluation from five aspect: Rea-
soning: CMNLI (Li et al., 2024), HellaSwag (HeSw) (Zellers et al., 2019), PIQA (Bisk et al.,
2020). Language: CHID (Zheng et al., 2019), WSC (Levesque et al., 2012). Knowledge: Com-
monSenseQA (CoQA) (Reddy et al., 2019), BoolQ (Clark et al., 2019). Examination: MMLU
(Hendrycks et al., 2020), CMMLU (Li et al., 2024). Understanding: Race-High/Middle (H/M)
(Lai et al., 2017), XSum (Hasan et al., 2021), C3 (Sun et al., 2020) and PG19 (Rae et al., 2019). For
more details, please refer to Appendix G

Baselines. To evaluate the effectiveness of our method, we compared several structured pruning
methods for large language models, including:

1) LLMPru (Ma et al., 2024), which adopts structural pruning that selectively removes non-critical
coupled structures based on gradient information, maximally preserving the majority of the LLM’s
functionality. LLMPru. applies post training to the pruned model, but for fair comparison, we do
not apply post training to it.

2) SliceGPT (Ashkboos et al., 2024), which is a post-training sparsification scheme that replaces
each weight matrix with a smaller matrix, reducing the embedding dimension of the network.
Specifically, they applied PCA to the hidden representation from shallow to deep layers, and in-
corporated the dimension reduction matrix into existing network parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Comparison of pruning methods on multiple natural language benchmarks. The results of
LLMPrun., SliceGPT and LaCo are reported from LaCo.

LLM Method Ratio
Benchmarks Ave. Per.

CMNLI HeSw PIQA CHID WSC CoQA BoolQ Race-H Race-M XSum C3 MMLU CMMLU

Llama2-7B

Dense 0.00% 32.99 71.26 77.91 41.66 50.00 64.62 71.62 35.71 34.19 19.40 43.56 45.39 32.92 47.78 100.00

LLMPrun. 27.0% 34.33 56.46 71.22 25.25 36.54 42.51 55.20 22.56 22.35 11.51 25.64 23.33 25.25 34.78 72.79

SliceGPT 26.4% 31.70 50.27 66.21 20.79 36.54 41.36 38.32 21.07 21.66 4.89 39.78 28.92 25.37 32.84 68.73

LaCo 27.1% 34.43 55.69 69.80 36.14 40.38 45.70 64.07 22.61 23.61 15.64 39.67 26.45 25.24 38.41 80.39

ShortGPT 27.1% 32.95 53.02 66.43 24.68 52.46 47.99 74.71 32.25 35.17 0.67 39.62 43.96 32.25 41.24 86.31

Llama2-13B

Dense 0.00% 32.99 74.78 79.71 47.35 50.00 66.91 82.39 57.95 60.38 23.45 47.51 55.00 38.40 55.14 100.00

LLMPrun. 24.4% 33.03 67.76 76.66 35.64 40.38 50.86 56.42 22.47 22.08 19.17 32.33 25.21 24.71 38.97 70.67

SliceGPT 23.6% 29.82 55.71 69.04 19.31 36.54 47.26 37.86 23.41 24.03 5.27 41.92 37.14 25.79 34.85 63.20

LaCo 24.6% 32.86 64.39 63.20 40.10 52.88 52.66 63.98 54.49 56.55 14.45 44.93 45.93 32.62 47.62 86.36

ShortGPT 24.6% 33.00 66.64 73.45 36.61 50.00 58.64 62.48 58.35 60.17 17.59 46.90 54.69 38.38 50.53 91.64

Baichuan2-7B

Dense 0.00% 33.37 67.56 76.17 85.56 50.00 63.14 74.10 52.63 51.04 20.82 64.55 53.87 56.95 57.67 100.00

LLMPrun. 24.2% 32.28 53.66 71.82 69.80 53.85 47.83 61.19 21.96 22.28 15.98 41.64 24.93 25.69 41.76 72.41

SliceGPT 22.2% 32.07 25.29 50.33 14.85 36.54 19.57 39.30 23.53 22.49 0.00 26.58 25.18 25.25 26.23 45.48

LaCo 24.2% 33.00 52.28 68.50 76.24 42.31 47.26 56.15 28.99 27.72 12.03 50.85 31.53 31.24 42.93 74.44

ShortGPT 24.2% 33.30 56.96 67.68 65.63 50.00 46.70 67.83 53.26 46.76 0.04 56.33 45.77 47.87 49.08 85.10

Baichuan2-13B

Dense 0.00% 33.21 71.10 78.07 86.51 50.00 65.6 77.89 67.27 68.94 25.02 65.64 59.50 61.30 62.31 100.00

LLMPrun. 24.3% 33.80 53.57 71.82 72.77 37.50 38.82 56.54 21.17 21.61 13.67 39.89 23.19 25.18 39.20 62.91

SliceGPT 22.8% 32.07 25.85 51.03 10.40 36.54 18.02 37.83 21.56 21.52 0.00 24.99 22.95 25.26 25.23 40.49

LaCo 24.7% 33.03 60.71 68.88 76.73 44.23 55.45 62.35 56.92 57.80 12.32 61.10 51.35 53.65 53.43 85.75

ShortGPT 24.7% 32.81 60.55 71.60 80.17 47.13 54.30 62.54 55.77 56.41 15.14 60.16 52.11 58.86 54.43 87.35

3) LaCo (Yang et al., 2024), which is a pruning method for large language models based on reducing
layers. LaCo gradually merges similar layers from deep to shallow and sets a threshold to avoid
continuously merging too many layers.

For our evaluation, we use PG19 for layer importance and perplexity calculation. The models,
baselines and evaluate benchmarks is the same as LaCo.

4.2 MAIN RESULTS

To validate the efficacy of our proposed method, we conducted comparative experiments against
baseline techniques commonly employed in large language model evaluation. Considering the cur-
rent structured pruning methods generally reduce parameters by no more than 30%, we performed
experiments with approximately 1/4 of the parameters pruned. The experimental results are pre-
sented in Table 2. Additional experiments exploring different parameter reduction proportions will
be discussed in the subsequent section.

The results demonstrate that the performance of the model pruned by our method significantly sur-
passes that of the baseline methods, maintaining most of the large language model’s capabilities.
Furthermore, we note that the approach of reducing the number of layers (ShortGPT/LaCo) out-
performs the method of reducing the embedding dimensions (LLMPru./SliceGPT), implying that
the model exhibits more redundancy in depth than in width. Further experimental analysis will be
presented in the ensuing section.

In Table 2, we fully adopted the benchmark, model, and pruning ratio in the LaCo paper. In order
to make a more fair comparison with LLMprun. and SliceGPT, we compared them with the same
benchmark, model, and pruning ratio in their original paper. The experimental results are shown
in Appendix C. Consistent with our findings in Table 2, these experiments further demonstrate the
significant layer redundancy present in existing large language models, and ShortGPT achieves su-
perior performance compared to other pruning methods.

The results show that coarse-grained pruning methods, such as removing entire layers, often outper-
form fine-grained approaches like Slice GPT or LLM Pruner. We speculate that the reason is that
the large language model is actually very robust, as shown in Figure 1, removing any deep layer
individually actually has very little impact on the final output, which means it is difficult to define
the importance of a finer grained module and perform pruning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 VARYING METRIC AND PRUNING RATIO

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5
B

I

BI

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
0

5

10

15

20

25

N
or

m

Norm

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
layer_id

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
m

ag
ni

tu
de

Relative magnitude

Baichuan-7B-Base
Llama2-7B-Base

0 5 10 15 20 25 30
layer_id

101

102

103

104

Pe
rp

le
xi

ty

Perplexity

Baichuan-7B-Base
Llama2-7B-Base

Figure 4: Comparison of different importance metrics. Perplexity is calculated by removing each
single layer, other metrics is calculated by hidden states of each layer.

The core principle of our method is to rank layers by their importance and remove the less significant
ones. The choice of importance metric significantly influences the outcome. In this section, we
define and compare several different importance metrics:

• Sequential: The importance is directly proportional to the sequence order, with shallower
layers being less important. This can be implemented by assigning the negative value of
each layer’s index as its importance metric.

• Norm/Reverse-order: This metric posits that importance is inversely proportional to the
sequence order. It assigns higher importance scores to the shallower layers. This method
gives the same order as measuring importance by hidden states norm as Figure 4 shows.

• Relative Magnitude: Proposed in Samragh et al. (2023), this metric assumes layers with
larger || f(x)

x+f(x) || are of higher importance, where f is the layer transformation function.

• BI: we calculate the BI score mentioned in Section 3.1 as importance metric.

Figure 4 demonstrates the different metrics. We observe that shallower layers in the LLM network
are more crucial than deeper ones. Figure 5 shows the results of removing layers by different metrics,
demonstrating that Our proposed BI outperforms other metrics. The method of Relative Magnitude
is highly competitive, indicating that relative values can also reflect the importance to some extent.
It is worth noting that the hidden states norm seems to be a good metric when only considering the
MMLU benchmark, but the perplexity is relatively poor.

As a pruning method, we further validated the effects of different pruning ratios on model perfor-
mance. Experiments were conducted on the Llama2 and Baichuan2 models, observing the Per-
plexity and MMLU. The results for Llama2, as shown in Figure 5, demonstrate that the model’s
performance generally declines as the pruning ratio increases. However, we observe a notable phe-
nomenon: the MMLU score exhibits a sharp drop at a specific layer. This sudden decrease suggests
the presence of certain critical layers within the network that play a particularly important role in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 9 19 28 38 47 56 66 75 84 94

101

102

103

104

105

106

Pe
rp

le
xi

ty

Llama2-7B-Base

0 8 15 22 30 38 45 52 60 68 75 82 90 98

101

102

103

104

105

106

Llama2-13B-Base

0 9 19 28 38 47 56 66 75 84 94
Pruning Ratio(%)

25

30

35

40

45

M
M

LU

0 8 15 22 30 38 45 52 60 68 75 82 90 98
Pruning Ratio(%)

25

30

35

40

45

50

55

Sequential Reverse-order Relative Magnitude BI

Figure 5: Performance of MMLU and perplexity when we prune by different metrics, with increas-
ing pruning ratio. We can see that as the pruning ratio increases, the performance of the model
declines.

Table 3: ShortGPT pruning on RWKV and Mamba.

Model Pruning ratio CMNLI HeSw PIQA CHID WSC CoQA BoolQ Race-H Race-M XSum C3 MMLU CMMLU Ave. Per.

Mamba2.8B

0% 35.97 61.84 75.52 35.56 49.69 56.35 60.67 24.9 25.3 15.03 42.08 26.29 25.32 41.12 100.00

10.9% 32.95 59.71 73.01 32.52 49.28 52.66 51.41 24.27 25.21 14.95 41.1 26.01 25.00 39.08 95.04

20.3% 31.29 55.69 69.64 29.12 48.36 48.32 62.2 23.61 23.61 14.71 41.59 25.69 25.37 38.36 93.29

25% 29.96 52.38 68.77 26.02 48.26 44.96 62.2 23.67 23.26 14.00 40.71 24.32 24.89 37.18 90.42

31.3% 28.25 47.02 64.91 21.38 49.69 44.96 62.17 21.87 22.77 13.77 40.44 24.48 24.77 35.59 86.55

RWKV7B

0% 32.07 65.98 77.09 85.36 50.00 62.65 62.72 38.56 45.47 16.5 57.97 31.85 28.54 50.37 100.00

9.4% 32.6 56.41 73.94 78.12 50.00 49.55 62.35 25.9 25.77 9.57 54.68 27.29 25.03 43.94 87.23

18.8% 32.11 49.47 71.55 65.63 50.00 40.54 61.19 22.04 23.75 8.13 49.15 26.35 25 40.38 80.17

25% 32.41 39.73 65.13 52.6 50.00 29.65 60.92 22.56 21.59 12.02 41.86 25.52 25.08 36.85 73.16

28.1% 33.11 32.22 60.01 32.47 50.1 28.34 60.85 22.27 21.31 10.43 37.81 25.64 25.15 33.82 67.14

maintaining performance. Similar patterns are observed in the Baichuan2 model, as illustrated in
Appendix B.

4.4 REDUNDANCY ON NON-TRANSFORMER LLM

To determine whether the observed depth redundancy is specific to the Transformer architecture, we
extended our investigation to include two popular non-Transformer models, RWKV-7B1 (Peng et al.,
2023) and Mamba-2.8B 2 (Gu & Dao, 2023). Our experiments revealed that these models also ex-
hibit resilience to layer removal, maintaining performance despite the elimination of certain layers.
This finding suggests that the redundancy phenomenon may not be unique to Transformer-based
models, but rather a common characteristic across current large language models. Table 3 shows
that our method is applicable and effective for both Mamba and RWKV models, suggesting that the
redundancy is universal across current LLMs. However, it is worth noting that the RWKV model
appears less redundant than Mamba and Transformer models, which warrants further investigation.

1We use rwkv-v5-world-7B from https://huggingface.co/RWKV/v5-Eagle-7B-HF
2We take the model from https://huggingface.co/state-spaces/mamba-2.8b-hf

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Layer removal results on Llama2-7B-Base-GPTQ.

Model Ratio/Layer Perplexity MMLU Throughput (speed up)

Baseline 0%/32 8.03 43.17 4331.23 Token/s (1.00x)
3.1%/31 8.37 42.88 4399.31 Token/s (1.02x)
9.4%/29 9.44 42.31 4602.26 Token/s (1.06x)

ShortGPT 12.5%/28 10.24 41.62 4680.68 Token/s (1.08x)
15.6%/27 11.42 43.17 4756.94 Token/s (1.10x)
25.0%/24 22.29 41.68 5045.59 Token/s (1.16x)
27.1%/23 40.78 43.35 5146.99 Token/s (1.19x)

Table 5: Performance comparison of different methods

Method MMLU CMMLU

Llama2-7B-Baseline 45.4 32.9

4-bit quantization 44.9 32.5

Layer removal (27.1%) 44.0 32.3

4-bit quantization then layer removal 42.4 31.0

Layer removal then 4-bit quantization 41.2 30.5

4.5 ORTHOGONAL TO QUANTIZATION

In this section, we show that our method is orthogonal to quantization methods. We apply our
method to Llama2-7B 3 quantized by GPTQ algorithm. Table 4 shows that our method is com-
patible with the quantization-like method. In addition, we compared the performance of applying
pruning before quantization 4. The results shown in the Table 5 further indicates that quantization
and ShortGPT are orthogonal operations.

4.6 POST TRAINING TO RESTORE PERFORMANCE

To mitigate the performance loss resulting from layer removal, we explored post-training strategies
inspired by Chen et al. (2024). Our approach comprised two key steps: 1)Replacement: We sub-
stituted the removed layers with lightweight Multi-Layer Perceptron (MLP) modules. 2)Retraining:
We subsequently retrained the modified model. The results in Table 6 demonstrate the potential of
post-train in recover performance loss. Appendix F list the training details.

Table 6: Post-train Llama2-7B to restore performance.

Method Avg. Ratio CMNLI HeSw PIQA CHID WSC CoQA BoolQ Race-H Race-M XSum C3 MMLU CMMLU

Dense 47.78 0% 32.99 71.26 77.91 41.66 50.00 64.62 71.62 35.71 34.19 19.40 43.56 45.39 32.92
ShortGPT 41.22 27.1% 32.95 53.02 66.43 24.68 52.46 47.99 74.41 32.25 35.17 0.67 39.62 43.96 32.25
ShortGPT+post-train 43.16 24.0% 32.99 54.83 68.12 31.82 51.37 58.32 72.36 34.18 34.68 4.89 40.37 44.47 32.73

5 LIMITATION

Although our method demonstrates strong competitiveness compared to current pruning methods,
there are some phenomena that have not been explained. Our experiments reveal that the negative
effect of layer removal is more significant on generative tasks compared to multiple-choice tasks.
When we remove 25% layers from Llama2-7B or Baichuan2-7B, the performance in generative

3We take the model from https://huggingface.co/TheBloke/Llama-2-7B-GPTQ
4We use GPTQ algorithm for quantization from https://github.com/AutoGPTQ/AutoGPTQ

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tasks such as XSum and C3 deceases to nearly zero, although the performance decline was not as
significant on the larger model of the 13B. We speculate that compared to multiple-choice tasks,
generative tasks face the problem of accumulated errors and large model is more robust than small
one. The reasons behind it still need to be explored. The post-training techniques discussed in
Section 4.6 have the potential to mitigate this issue and warrant further exploration.

6 RELATED WORKS

To reduce the inference cost of large language models and increase their practical applications, there
have been many recent works on compressing models, which can be classified into two categories:
model pruning and quantization. Besides, there are some works aim to study the redundancy of
model which is essential for compressing models.

Model pruning: model pruning (LeCun et al., 1989; Han et al., 2015) is a classic and effective
method of reducing model redundancy modules to compress models. The model pruning methods
mainly include unstructured pruning and structured pruning. The unstructured pruning simplifies an
LLM by removing specific parameters without considering its internal structure, such as SparseGPT
(Frantar & Alistarh, 2023) and LoRAPrune (Zhang et al., 2023). However, this method disregards
the overall LLM structure, resulting in an irregular sparse model composition. Another more practi-
cal approach is structured pruning, GUM(Syed et al., 2023) makes an analysis of several structured
pruning methods for decoder-only LLMs. LLM-Pruner (Ma et al., 2024) selectively removes non-
critical structures according to gradient information. ShearedLLaMA (Xia et al., 2023) employs
targeted structured pruning and dynamic batch loading. LaCo (Yang et al., 2024) used layer merg-
ing to compress the model. Compared to the previous method, our method is a simple and efficient
structured pruning method.

Quantization: quantization (Liu et al., 2021; Gholami et al., 2022; Dettmers et al., 2022; 2024)
is a widely accepted technique in the field of model compression, which can significantly save the
storage and computational costs of deep learning models. Traditional models are generally stored as
floating-point numbers, but quantization converts them into integers or other discrete forms. LUT-
GEMM (Park et al., 2022) quantifies only weights and optimizes matrix multiplication in LLM using
BCQ format. SPQR (Dettmers et al., 2023) identifies and isolates abnormal weights, stores them
with higher accuracy, and compresses all other weights into 3-4 bits. Our model pruning method
and quantization method are orthogonal, which means quantification based on our pruned model can
further compress the model.

Model redundancy: researchers have long noticed the significant redundancy in nonlinear models
(Catchpole & Morgan, 1997). In recent years, the transformer model architecture has been widely
applied, and researchers have also studied its redundancy. In (Bian et al., 2021), researchers ana-
lyzed redundancy in attention mechanisms, in which clear and similar redundancy patterns (cluster
structure) are observed among attention heads. In (Dalvi et al., 2020), researchers dissect two pre-
trained models, BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019), studying how much
redundancy they exhibit at a representation level and a more fine-grained neuron-level. However,
the redundancy in current large language models based on decoder-only structures still needs to be
explored.

7 CONCLUSION

In this work, we uncovered the significant layer-wise redundancy of LLMs, Our research demon-
strates that certain layers contribute minimally to overall network functionality and can be removed
without substantially compromising model performance. Based on our observation, We introduce
Block influence to quantify the importance of each layer and propose a simple and straightforward
pruning method: layer removal. Our experiments demonstrates that it is possible to maintain up
to approximately 90% of a LLM’s performance while reducing the model’s parameter amount and
computational requirements by approximately 25%. Besides, our method is orthogonal to quan-
tization methods and can be further improved by continual training. We hope that our work can
provide some insight for future model compression techniques. Moreover, our work suggests poten-
tial avenues for improving the efficiency of model training by reducing inherent redundancy in the
future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, and Kenneth Church. On attention redun-
dancy: A comprehensive study. In Proceedings of the 2021 conference of the north american
chapter of the association for computational linguistics: human language technologies, pp. 930–
945, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
pp. 7432–7439, 2020.

Edward A Catchpole and Byron JT Morgan. Detecting parameter redundancy. Biometrika, 84(1):
187–196, 1997.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in pre-
trained transformer models, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
arXiv preprint arXiv:2301.00774, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin
Kang, M Sohel Rahman, and Rifat Shahriyar. Xl-sum: Large-scale multilingual abstractive sum-
marization for 44 languages. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 4693–4703, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794, 2017.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese, 2024.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, 2020.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quanti-
zation for vision transformer. Advances in Neural Information Processing Systems, 34:28092–
28103, 2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36, 2024.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv preprint arXiv:2206.09557, 2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. In International Conference on
Learning Representations, 2019.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Mohammad Samragh, Mehrdad Farajtabar, Sachin Mehta, Raviteja Vemulapalli, Fartash Faghri,
Devang Naik, Oncel Tuzel, and Mohammad Rastegari. Weight subcloning: direct initialization
of transformers using larger pretrained ones, 2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging
chinese machine reading comprehension. Transactions of the Association for Computational
Linguistics, 8:141–155, 2020.

Aaquib Syed, Phillip Huang Guo, and Vijaykaarti Sundarapandiyan. Prune and tune: Improving
efficient pruning techniques for massive language models. Arxiv, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. Clue: A chinese language understanding evaluation benchmark. In Proceedings
of the 28th International Conference on Computational Linguistics, pp. 4762–4772, 2020.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse,
2024.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Mingyang Zhang, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, Bohan Zhuang, et al. Pruning
meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

Chujie Zheng, Minlie Huang, and Aixin Sun. Chid: A large-scale chinese idiom dataset for cloze
test. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 778–787, 2019.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A MATHEMATICAL EXPLANATION FOR WHY PRE-NORM BRINGS HIGH
SIMILARITY

We provide a simple explanation here about how pre-norm leads to high deep similarity in this
section, here we adopt RMSNorm (Zhang & Sennrich, 2019) for convenient, which is also the
popular pre-norm used in many recent LLMs, such as Llama and Mamba.
Lemma 1. (Xiong et al., 2020) At initialization, for the Pre-LN Transformer, (1 + L

2)d ≤
E(||xL,i||22) ≤ (1 + 3L

2)d for all L > 0 and i. Expectations are taken over the input and the
randomness of initialization, where the hidden state of Lth layer is xL.

From Lemma 1, the hidden state of the pre-norm model will continuously increase as the number of
layers increases. And under the assumption of each component of xl has a mean of 0, we can obtain
||xL|| = Θ(

√
L).

Then we consider xL+1 = xL + fL(xL, θL), where fL is a operation such as Attention or MLP,
θL is learnable parameters. Then fL(xL, θL) = O(1) respect to L, for Attention as example,
||fL(xL, θL)|| = ||(softmax(QTK)XL/||XL|| · (σrms))WvWq|| = O(||σrms||||Wv||||Wo||) =
O(1) respect to L.

Then we can get:

cos similarity(XL+1, XL) =
xL+1xL

||xL+1||||xL||
=

||xL||2

||xL+1||||xL||
+

fL(xL, θ)xL

||xL+1||||xL||
(2)

≥ ||xL||2

||xL+1||||xL||
− ||fL(xL, θ)||||xL||

||xL+1||||xL||
(3)

=
||xL||

||xL+1||
− ||fL(xL, θ)||

xL+1
= Θ(

√
L

L+ 1
)−O(

√
1

L+ 1
) (4)

This means that as the number of layers L increases, the similarity between the input and output of
the layer will be high. This means that the role of fL may be relatively small, and removing it from
the network may have a relatively small impact to the model.

Although the above theoretical analysis is only for randomly initialized models, this phenomenon
that deep layer has similar input and output exists in both our own trained models shown in Figure
2 and existing models in Figure 4.

B LAYER REMOVAL ON BAICHUAN2-SERIES MODEL

0 9 19 28 38 47 56 66 75 84 94

102

104

106

108

P
er

p
le

x
it
y

Baichuan2-7B-Base

0 8 15 22 30 38 45 52 60 68 75 82 90 98

101

102

103

104

105

106

107

Baichuan2-13B-Base

0 9 19 28 38 47 56 66 75 84 94

Pruning Ratio(%)

25

30

35

40

45

50

55

M
M

L
U

0 8 15 22 30 38 45 52 60 68 75 82 90 98

Pruning Ratio(%)

30

40

50

60

Sequential Reverse-order Relative Magnitude BI

Figure 6: Pruning by different metrics on Baichuan2-series model.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C A FAIR COMPARISON WITH SLICEGPT AND LLMPRUN.

In Table 2, we fully adopted the benchmark, model, and pruning ratio in the LaCo’s paper. For
a fair comparison with LLM pruner and SliceGPT, we do the same experiments in the original
paper of LLM pruner and SliceGPT. The results is provided in Table 7 and Table 8. We take the
same benchmarks, models and pruning ratio as the corresponding original paper. The results
demonstrate that our method is highly competitive.

Table 7: Comparison between ShortGPT and LLM-pruner. The Table is corresponding to
the Table 1 of LLM pruner(Zhang et al., 2023).

Model Pruning ratio Method BoolQ PIQA Hellaswag Winogrande Arc-e Arc-c OBQA Avg.

Llama-7B
Ratio=0% Baseline 73.18 78.35 72.99 67.01 67.45 41.38 42.4 63.25

Ratio=20% LLM-pruner 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82
Ratio=21.9 % ShortGPT 68.26 72.28 61.7 63.77 60.22 39 41.6 58.12

Llama-13B
Ratio=0% Baseline 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97

Ratio=20% LLM-pruner 67.68 77.15 73.41 65.11 68.35 38.4 42.4 61.79
Ratio=20% ShortGPT 68.41 76.36 72.9 67.4 68.62 39.2 41 61.98

Table 8: Comparison between ShortGPT and SliceGPT. The Table is corre-
sponding to the Table 7 of SliceGPT(Ashkboos et al., 2024).

Model Pruning ratio Method PIQA Hellaswag Winogrande Arc-e Arc-c Avg.

Llama-2-7B
0% Baseline 79.11 75.99 69.06 74.58 46.25 69

20% SliceGPT 71.87 58.1 63.04 69.87 43.09 63.45
25% SliceGPT 68.55 58.1 62.04 57.46 35.07 56.15
30% SliceGPT 66.1 52.69 56.82 35.07 56.82 56.15

21.9% ShortGPT 72.76 66.39 66.27 59.39 39.85 60.93
25% ShortGPT 70.53 62.68 64.7 58.39 39.51 59.16

31.6% ShortGPT 67.87 62.19 64.38 56.57 40.86 58.37

Llama-2-13B
0% Baseline 80.47 79.39 72.22 77.48 49.23 71.76

20% SliceGPT 71.87 69.38 63.04 69.87 43.09 63.45
25% SliceGPT 68.55 67.48 58.1 62.5 37.88 58.9
30% SliceGPT 66.1 65.11 52.69 56.82 35.07 55.16
20% ShortGPT 76.95 74.67 71.14 69.56 45.63 67.59
25% ShortGPT 74.39 71.65 70.98 67.09 43.93 65.61
30% ShortGPT 72.11 71.93 67.19 61.09 40.88 62.64

Llama-2-70B
0% Baseline 82.7 83.84 77.98 80.98 57.34 76.57

20% SliceGPT 76.61 72.98 74.92 80.51 55.2 72.34
25% SliceGPT 74.92 68.74 74.92 77.9 51.71 69.75
30% SliceGPT 72.31 63.69 73.4 51.71 47.61 66.11
20% ShortGPT 76.02 78.87 71.69 76.02 52.95 71.68
25% ShortGPT 73.2 76.72 71.85 73.2 49.9 69.79
30% ShortGPT 74.44 75.31 72.33 74.44 49.22 69.4

D DETAILED STRATEGIES FOR LAYER REMOVAL

We list the details of different layer removal strategies in Table 10. The concrete removed layers by
ShortGPT in Table 2 are listed in Table 9

Table 9: Setup of Removed Layers for Benchmark Models.

Model Removed Layers

Llama-2-7B 27, 26, 25, 28, 24, 29, 23, 21, 22
Llama-2-13B 33, 31, 32, 30, 29, 34, 28, 35, 27, 26
Baichuan-2-7B 26, 27, 25, 28, 24, 29, 23, 22, 30
Baichuan-2-13B 32, 31, 33, 30, 34, 29, 28, 35, 27, 26

E SETUP FOR TRAINING POST-NORM MODEL AND PRE-NORM MODEL

We have listed the specific training settings for pre norm and post norm in Table 11.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Strategies for Layer Removal in Models.

Strategy Description

Sequential Layers are removed sequentially from the beginning of the
model. The process starts with layer 0 and progressively in-
cludes more layers for removal (e.g., {0}, {0, 1}, . . .).

Reverse-order This strategy involves starting from the model’s final layer and
progressively removing layers in reverse order (e.g., {-1}, {-1,
-2}, . . .).

Relative Magnitude Layers are removed in ascending order based on their Rela-
tive Magnitude values. The removal process accumulates layers
from those with the smallest to the largest values, mirroring the
sequential strategy’s accumulation method.

BI (Block Influence) Follows a similar accumulation approach as the Sequential
strategy, but layers are ordered and removed according to their
BI values, starting from the lowest and moving to the highest.

Table 11: Training Parameters.

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 4e-4
Min Learning Rate 5e-5
Warm-up steps 3000
Training Tokens 200B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0
Tokenizer Llama2
Layers 32
Hidden state 2048
Attention heads 32
Head dim 64
FFN size 5504
Activation function Silu

F POST-TRAINING SETTINGS

We replace the removed layer with a lightweight gated MLP layer with hidden size = 2048. Table
12 show the post training settings.

Table 12: Post-training Parameters.

Parameter Value

Global Batch Size 2048
Sequence length 4096
Precision bf16
Learning Rate Scheduler cosine
Max Learning Rate 2e-5
Min Learning Rate 1e-5
Warm-up steps 3000
Training Tokens 50B
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.98
Gradient Clip 1.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G EVALUATION BENCHMARKS

In order to comprehensively evaluate the changes in the ability of large language models before and
after pruning, we conducted evaluations on the most commonly used Benchmark MMLU Hendrycks
et al. (2020), CMMLU Li et al. (2024) for evaluating large models. In addition, we also followed
LaCo Yang et al. (2024) to evaluate a wider dataset.

MMLU Hendrycks et al. (2020) is a benchmark aimed at measuring the knowledge acquired dur-
ing pre-training by specifically evaluating models in zero-shot and few-shot settings. This makes
benchmarks more challenging and similar to the way we evaluate humans. This benchmark covers
57 subjects including STEM, humanities, social sciences, etc. Its difficulty ranges from beginner to
advanced professional level, and it tests world knowledge and problem-solving ability.

CMMLU Li et al. (2024) is a comprehensive Chinese language assessment dataset designed specif-
ically to evaluate LLM’s advanced knowledge and reasoning abilities in the context of Chinese
language and culture. CMMLU covers 67 topics, from elementary school to university or profes-
sional level. Including natural sciences, as well as humanities and social sciences, it also includes
many contents with Chinese characteristics.

CMNLI Xu et al. (2020) is part of the Chinese language understanding assessment benchmark. It
consists of two parts: XNLI and MNLI. HellaSwag (HeSw) Zellers et al. (2019) is a challenging
dataset for evaluating commonsense NLI that is especially hard for state-of-the-art models, though
its questions are trivial for humans. PIQA Bisk et al. (2020) is a multi-choice question and answer
dataset that focuses on daily scenarios. This dataset explores the model’s grasp of the laws of the real
physical world through daily scenarios. CHID Zheng et al. (2019) is an idiom cloze test dataset that
mainly focuses on the selection of candidate words and the representation of idioms. CoQA Reddy
et al. (2019) is a large-scale dataset used for conversational question-answering tasks, containing
over 127000 questions and their corresponding answers. BoolQ Clark et al. (2019) is a question-
answer dataset containing 15942 examples of yes/no questions. These problems occur naturally -
they are generated in an environment that is silent and unconstrained. Race Lai et al. (2017) is a
large-scale reading comprehension dataset collected from English examinations in China, which are
designed for middle school and high school students. XSumHasan et al. (2021) is used to evaluate
abstract single document summarization systems. The goal is to create a short, one-sentence new
summary of what the article is about. C3 Sun et al. (2020) is a machine reading comprehension
dataset with multiple choices, consisting of multiple-choice questions, reading materials from Chi-
nese proficiency exams, and ethnic Chinese exams. PG19 Rae et al. (2019) is a long document
dataset from books used to test the effectiveness of language modeling.

H HARDWARE ENVIRONMENT

The platform we use to experiment is GPU heterogeneous platform. The hardware of our platform
is shown in Table 13

Table 13: Setup of Removed Layers for Benchmark Models.

Name Details

CPU 2x Intel(R) Xeon(R) Gold 6430 CPU @ 2.1GHz
GPU 8x NVIDIA A100-80GB Tensor Core GPU

16

	Introduction
	Motivation
	Background
	Layer redundancy

	Methodology
	Layer importance
	Layer Removal

	Experiments
	Experimental Setup
	Main Results
	Varying metric and pruning ratio
	Redundancy on non-transformer LLM
	Orthogonal to Quantization
	Post training to restore performance

	Limitation
	Related works
	Conclusion
	Mathematical explanation for why pre-norm brings high similarity
	Layer Removal on Baichuan2-series Model
	A Fair comparison with SliceGPT and LLMprun.
	Detailed Strategies for Layer Removal
	Setup for training post-norm model and pre-norm model
	post-training settings
	Evaluation Benchmarks
	Hardware Environment

