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Abstract

In recent years, with the rapid development of neural network technology, the applica-
tion of deep learning in the field of artificial intelligence has made significant progress and
improvement. However, during the training of neural network models, the utilization of
datasets is involved, and these datasets may contain sensitive information from users. At-
tackers might exploit the well-trained models to gain access to this sensitive information,
leading to privacy breaches. Considering this risk, some deep learning algorithms incor-
porate differential privacy technology to safeguard the privacy of the trained model. This
protection comes at the cost of certain model performance, achieved by adding controllable
random noise. In this paper, we propose a differential privacy deep learning algorithm
based on the importance of each layer’s gradients, called DP-AdamILG. DP-AdamILG
further mitigates the impact of noise addition on model performance. It accomplishes this
by combining the dynamic privacy budget allocation strategy with the formation of noise
gradients based on the importance of each layer’s gradients. And the algorithm’s privacy
is theoretically proven. Experimental results show that the DP-AdamILG algorithm can
reach good performance of the neural network model and show strong robustness.

Keywords: deep learning, differential privacy, dynamic privacy budget, layer-wise gradient
processing.

1. Introduction

Differential privacy (Dwork (2006)) provides a provable privacy guarantee for the protection
of users’ sensitive information. The core concept of differential privacy is to introduce
controllable random noise in the data processing process to perturb the user’s sensitive
information in a certain way, so as to ensure that individual privacy will not be disclosed in
data analysis or query. Based on the robust privacy protection performance of differential
privacy and its uncomplicated implementation, differential privacy has been widely applied
in various contexts, including the fields of deep learning (Zhu et al. (2022)), reinforcement
learning (Liao et al. (2023)), and so on. In the context of differential privacy deep learning, it
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primarily fall into two categories: data-based perturbation and gradient-based perturbation.
Many research efforts in differential privacy for deep learning have focused on gradient-based
perturbation. This method generates noise gradients by adding noise to the gradients during
the back-propagation process in model training. Then these noise gradients are subsequently
utilized to update the weight parameters of the neural network model. In our paper, we
also use gradient-based perturbation method.

However, several of previous gradient-based works have some constraints: First, in work
(Abadi et al. (2016); Xu et al. (2020)), a fixed privacy budget is allocated throughout the
entire training process. Second, in works (Abadi et al. (2016); Yu et al. (2019); Lee and Kifer
(2018)), a uniform noise scale is used for all gradients, resulting in the sampling and addition
of noise with the same magnitude. These approaches does not consider both the inherent
distinctions in gradients between layers of neural networks and the variability in privacy
budget allocation, resulting in an imbalance between the utility of the model and the level of
privacy protection. Third, a few studies (Xiang et al. (2019, 2023); Chen et al. (2023)) have
taken both of the above limitations into account. Unfortunately, the algorithms designed
in these studies suffer from excessive complexity in their frameworks. This complexity
poses challenges in deploying them as a universal framework across various domains in deep
learning, significantly increasing algorithmic runtime and imposing heightened hardware
requirements on computers.

In this paper, taking into account the aforementioned limitations, we propose a differ-
ential privacy deep learning algorithm based on the importance of each layer’s gradients,
that is DP-AdamILG. Firstly, for fixed privacy budget, we employ a dynamic privacy bud-
get allocation strategy. This strategy allows the noise scale to decay dynamically based on
the number of training epochs. Secondly, for uniform noise scale, we propose a method of
importance-based adaptive layer-wise gradient processing. This approach can calculate the
L2 sensitivity and noise scale of each layer’s gradients according to their respective impor-
tance. This not only accomplishes the objective of applying distinct clipping thresholds to
various network layers, but also performs noise sampling in accordance with the noise scale
of each layer’s gradient. Thirdly, for algorithm generality, we made simple modifications
to the DP-SGD framework, ensuring a concise implementation without excessive compu-
tational overhead. Not only that, for a convenient and rigorous analysis of the cumulative
privacy loss of DP-AdamILG, we use zero-mean centralized differential privacy (zCDP)
(Bun and Steinke (2016), a variant of centralized differential privacy (CDP) proposed by
Dwork and Rothblum (2016).

We summarize the main contributions as follows:

• Dynamic Differential Privacy: We introduce a strategy for dynamic privacy budget
allocation, aiming to progressively reduce the noise scale throughout the training
process, all while incorporating the minimum privacy condition.

• Algorithm Design for Each Layer’s Gradient: We propose a novel gradient processing
approach, which is based on the importance of each layer’s gradients in the neural
network. This approach enables layer-wise gradient clipping and noise addition.

• Algorithm Generality: We present a novel framework for differential privacy deep
learning algorithm. This framework is designed to be simple, easily integrable, and
suitable for various deep learning scenarios.
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• Numerical Results: We evaluate the DP-AdamILG performance across five different
datasets, achieving improved test accuracy. Numerical results demonstrate the effec-
tive performance and robustness of DP-AdamILG in neural network model training
across various architectures and datasets.

The remainder of this paper is as follows. We cover the related work in Section 2,
review necessary background in Section 3. Followed by Section 4, we propose the algorithm
which combines dynamic privacy budget allocation with processing gradients based on the
importance of each layer’s gradients. We present the experimental evaluation in Section 5.
Finally, we conclude the paper in Section 6.

2. Related Work

Abadi et al. (2016) first introduced differential privacy to deep learning. They combined
differential privacy mechanism with the stochastic gradient descent algorithm to form a
new algorithm, called DP-SGD. Also, they presented the privacy analysis method “Mo-
ments Accountant”, which enhances the rigor of privacy loss analysis. Subsequently, Yu
et al. (2019) and Lee and Kifer (2018) enhanced the DP-SGD algorithm by presenting dy-
namic privacy budget allocation. Unlike the uniform allocation method, their approaches
dynamically adjusted the privacy budget throughout the entire iterative process. In con-
trast to the two methods mentioned above, Xu et al. (2020) incorporated adaptive noise
with varying magnitudes based on gradient L2 sensitivity. They also employed an adaptive
learning rate strategy when updating parameters. In addition to enhancing DP-SGD in
terms of adaptive noise, Andrew et al. (2021) proposed the concept of adaptive clipping.
They outlined a method for autonomously and adaptively adjusting the clipping threshold.
At the same year, Hu et al. (2021) used clustering techniques to categorize gradients, and
calculated the clipping threshold according to these groups for gradient clipping. Both of
them transformed the fixed clipping threshold in the DP-SGD algorithm into an adaptive,
dynamically changing threshold.

However, the improvement methods suggested for DP-SGD in these works either use a
uniform noise scale or have a fixed privacy budget allocated throughout the entire training
process. These limitations resulted in a suboptimal balance between model utility and
privacy protection. Some works have taken into account these two shortcomings. Such as
Xiang et al. (2019, 2023) improved the DP-SGD algorithm in terms of optimization. Chen
et al. (2023) enhanced the DP-SGD algorithm with respect to gradient relevance. Although
their methods can mitigate the aforementioned issues, but the implementations are overly
complex and not suitable as a general framework.

3. Background

In this section, we will present the background of differential privacy, and introduce stochas-
tic optimization techniques widely employed in deep learning.

3.1. Differential Privacy

Differential privacy (Dwork (2006)) provides a promising privacy protection mechanism for
deep learning.
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Definition 1 (Neighbor Datasets) Two datasets D and D′ are neighbor datasets, if their
L1 norm is at most 1.

Definition 2 (Differential privacy (Dwork (2006))) A randomized mechanismM is called
(ϵ, δ)-differential privacy if for any two neighboring datasets D and D′, for ∀o ⊆ Range(M),
it holds that

Pr(M(D) ∈ o) ≤ eϵPr(M(D′) ∈ o) + δ, (1)

where ϵ is the privacy budget and δ is the failure probability.

Especially, M implements approximate differential privacy if δ > 0, and achieves a
strictly stronger notion of pure differential privacy, named ϵ-differential privacy, if δ = 0.
In the remainder of this paper, we write (ϵ, δ)-DP and ϵ-DP for short.

One way to gain (ϵ, δ)-DP and ϵ-DP by using the sensitivity method, that is to adds
noise sampled from Gaussian and Laplace distributions respectively, where the noise is
proportional to the sensitivity of the query function.

Definition 3 (Sensitivity (Dwork et al. (2006))) Given two neighboring data sets D and
D′, the L2 sensitivity of a query function q : D → Rd is the maximum change in the output
of q over all possible inputs:

∆ = max
D,D′,||D−D′||1=1

||q(D)− q(D′)||2. (2)

Theorem 4 (Gaussian Mechanism (Dwork et al. (2014))) Consider an arbitrary value
ϵ ∈ (0, 1) and q be a query function with L2 sensitivity of ∆. The Gaussian Mechanism
with variance σ2, which adds noise N(0, σ2∆2I) to the output of q(D), is (ϵ, δ)-DP if σ ≥
1
ϵ

√
2 log(1.25/δ) holds.

To enhanced the trade-off between privacy and practicality of differential privacy pro-
tection, Bun and Steinke (2016) propose a variant of differential privacy, called zero-
concentrated differential privacy (zCDP). It offers a flexible and adaptable framework for
privacy protection, simplifying the analysis of privacy loss accumulation and ensuring robust
privacy protection.

Definition 5 (Zero-Concentrated Differential Privacy(zCDP) (Bun and Steinke (2016)))
A randomized mechanismM is said to be ρ-zero concentrated differential privacy (ρ-zCDP),
if for any two neighboring databases D and D′, and for all α ∈ (1,∞), the α-Rényi diver-
gence between the distributions of M(D) and M(D′), denoted as Dα (M(D)∥M (D′)), it
holds that:

Dα

(
M(D)∥M

(
D′)) ≜ 1

α− 1
log

(
E
[
e(α−1)S(o)

])
≤ ρα. (3)

Where S(o) represents the privacy-loss random variable of mechanismM and can be pre-
sented by

S(o) = log
Pr[M(D) = o]

Pr [M (D′) = o]
, (4)

for any output o ∈ range(M).
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To restrict the moment generating function of the privacy loss S(o), ρ-zCDP demands
its concentration around zero. It needs to hold that:

E
[
e(α−1)S(o)

]
≤ e(α−1)αρ,∀α ∈ (1,∞). (5)

In this paper, we utilize the following lemma for zCDP.

Lemma 6 (Additive closure (Bun and Steinke (2016))) Given two mechanisms that satisfy
ρ1-zCDP and ρ2-zCDP, their combination guarantees (ρ1 + ρ2)-zCDP.

Lemma 7 (ρ-zCDP Gaussian Mechanism (Bun and Steinke (2016))) For a query function
q with L2 sensitivity of ∆, the Gaussian mechanism with variance σ2, which outputs q(D)+
N(0, σ2∆2I), then it holds that 1/(2σ2)-zCDP.

Lemma 8 (ρ-zCDP to (ϵ, δ)-DP (Bun and Steinke (2016))) Suppose mechanismM satis-
fies ρ-zCDP, thenM also satisfies (ϵ, δ)-DP for any δ > 0, where ϵ = ρ+ 2

√
ρ log(1/δ).

3.2. Stochastic optimization techniques

Stochastic gradient descent (i.e., SGD) is a widely used optimization technique in deep
learning model training. This algorithm aims to iteratively update the model parameters,
with the goal of driving them towards a local minimum of the loss function. Typically,
the training process of a neural network model is organized into epochs, and each epoch
contains all the batches of the training dataset, meaning that within a single epoch, the
entire dataset is processed once.

At present, several enhanced variants of SGD have been introduced, such as RMSprop,
AdaGrad, Adadelta, Adam, etc., among which Adam proposed by Kingma and Ba (2014)
stands out as one of the most widely used optimization algorithms in current practice.
Adam combines the strengths of RMSprop and AdaGrad, handling sparse gradients and
non-stationary targets. Additionally, it incorporates historical gradient information for more
refined parameter updates. Our algorithm also utilizes Adam for gradient optimization.

4. Our Approach

DP-AdamILG algorithm adopts a method that combines dynamic privacy budget alloca-
tion with processing gradients based on the importance of each layer’s gradients of neural
network. A overview of our proposed framework is illustrated in Fig.1.

In this section, we will introduce the dynamic privacy budget allocation strategy. Addi-
tionally, we cover the implementation details of gradient processing based on the importance
of each layer’s gradients. Furthermore, we will provide the proof of privacy assurance for
the DP-AdamILG algorithm. We also elaborate on the computation process for cumulative
privacy loss during the training phase.

4.1. Dynamic privacy budget allocation

As training progresses, gradients converge and require a slower, more precise descent with
minimal noise to avoid skipping local optima. Conversely, early iterations allow faster
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Figure 1: The Overview of DP-AdamILG

descent with higher noise tolerance, meaning additional noise has little impact on the final
model’s performance. However, maintaining a fixed privacy budget throughout training can
add excessive noise when gradients are close to convergence. This surplus noise may alter
the descent direction or cause overly rapid descent, bypassing local maxima, thus disrupting
the balance between model utility and privacy protection. Therefore, to address the above
problem, we use the method of dynamic privacy budget allocation.

The implementation of dynamic privacy budget is that:

Phase 1: Parameters input phase. We allocate the total privacy budget for
model training in this phase.
Phase 2: Training initialization phase. A relatively substantial noise scale is
employed for noise sampling within the model.
Phase 3: Training convergence phase. As epochs accumulate, the noise scale
gradually decays, reducing the noise added to the gradients.

This strategy effectively reduces the impact of noise addition on model performance.
In our DP-AdamILG algorithm, we use the time-based decay function, through which

the noise scale can decrease with the accumulation of epoch number. Its mathematical form
is defined as:

σt = Decay(σ0, k, t) = σ0/(1 + k · t), (6)

where σ0 is the initial input noise scale value, k is the decay rate. And t represents the
cumulative change in training epochs. However, our observations indicate that using a
time-based decay function for dynamic privacy budget allocation can cause issues. After a
certain number of epochs, the noise scale may decay too close to zero, compromising privacy
protection by reducing the added noise to nearly zero. Therefore, in contrast to previous
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works (Yu et al. (2019)), we introduced an innovative improvement, which involves incorpo-
rating a minimum privacy condition restriction ϵLim ∈ (0, 1) within the decay function, and
calculates the noise scale threshold σ∗ based on this condition. The noise scale threshold
σ∗ is calculated as:

σ∗ =
√
2 log(1.25/δ)/ϵLim. (7)

This improvement enables the function to conduct a condition check before each noise
scale decay, ensuring that the decayed noise scale meets the minimum privacy criteria. If
it is met (i.e., σt > σ∗), the decay noise scale σt is used for the training model. Otherwise,
the decay function inputs the noise scale threshold σ∗.

4.2. Adaptive Gradient Processing

An important component of our algorithm is adaptive gradient processing. We implement
gradient clipping and noise addition based on the importance of each layer’s gradients.

A key issue in gradient processing is establishing criteria for assessing importance. We
observe variations in the L2 norms of gradients across different layers. A larger L2 norm
indicates a higher overall gradient value and more information, highlighting the layer’s
importance. Conversely, lower L2 norms indicate lesser significance. Therefore, in the DP-
AdamILG algorithm, we use the L2 norm to assess the importance of each layer’s gradients.

The implementation of adaptive gradient processing is that: firstly, we calculate the L2

sensitivities sj of every layers based on the L2 norm of each layer’s gradients.

sj = ||gj
t ||2 · α/

√
nj , (8)

where 1 ≤ j ≤ J denotes jth layer of the neural network model with a total of J layers,
||gj

t ||2 represents the L2 norm of jth layer gradient of a batch in the t iteration, α is the
clipping factor and nj signifies the dimension of jth layer gradient.

Secondly, we employ these L2 sensitivities sj as the clipping thresholds to clip the
gradients of each layer respectively.

gj
t = Clip(gj

t , sj) = min{max{gjit ,−sj}, sj}, (9)

where gjit represents ith dimension of jth layer’s gradients and ∀i = 1, 2, · · · , nj . Unlike
per-example clipping in DP-SGD, our approach accomplishes layer-wise gradient clipping.

Finally, according to each layer’s L2 sensitivity sj , each layer’s noise scale σj is cal-
culated, followed by adaptive Gaussian noise sampling. Subsequently, these noises are
incorporated into the gradients to create the noisy gradients. To satisfy the conditions of
Lemma 9 (given later), the noise scale σj of each layer is assessed as:

σj = sj ·
√
nj · σt, (10)

where σt is the decayed noise scale input for the current epoch.

Compared to previous differential privacy deep learning algorithms, such as ADADP
((Xu et al. (2020))), which estimates the current gradient sensitivities by recording historical
gradient values, we introduce the concept of gradient importance of each layer, and use
the L2 norm as an index to calculate each layer’s L2 sensitivity and noise scale. On one
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hand, our algorithm scientifically implements layer-wise gradient clipping by considering
variations in L2 sensitivity across layers. Layers with higher L2 norms require more noise
due to greater sensitivity. On the other hand, as gradients converge and their magnitudes
diminish, noise sampling based on each layer’s L2 norm ensures that noise magnitude decays
appropriately. This approach adapts the noise distribution throughout the gradient descent
process according to the importance of each layer’s gradients.

We outlines each step of our algorithm at Algorithm 1. It builds on the basic DP-SGD
algorithm with a few key computations, making it easy to reproduce and apply.

Algorithm 1 DP-AdamILG

Input: Training dataset D, learning-rate η, loss function L(ω, d), initial noise scale σ0,
batch size B, clipping factor α, decay rate k, privacy condition restriction ϵLim,
total privacy budget ρtot

Output: ωT

for t = 1 : T do
Allocate privacy budget: σt ← Decay(σ0, k, t);
if σt < σ∗(calculated by Eq.7), σt ← σ∗;
Calculate the remaining privacy budget: ρtot ← ρtot − 1/(2 · σ2

t );
if ρtot < 0, break;
Take a random sample Bt with size B from D;
Compute the gradient of Bt: For each i ∈ Bt, gt(di)← ∇L(ωt, di);
gt ← 1

B

∑
i gt(di);

for the jth layer of the neural network do

Compute the sensitivity: sj ← ||gj
t ||2 · α/

√
nj ;

Gradient clipping: gj
t ← Clip(gj

t , sj);
Compute the noise scale: σj ← sj ·

√
nj · σt;

Add the adaptive noise:g̃j
t ← gj

t +N(0, σ2
j I);

end
Use Adam update the parameter;

end

4.3. Privacy Analytics

Lemma 9 (Xu et al. (2020)) Consider a mechanism M(D) = f(D) + Z is (ϵ, δ)-DP,
where D is the input dataset, f(·) is an m-dimension function with L2 sensitivity ∆ ≤ 1,
and noise Z ∼ N(0, σ2

t ). Now, another mechanism M′(D) = f ′(D) + Z ′ is also (ϵ, δ)-DP

if
∑m

i=1
s2i
σ2
i
≤ 1

σ2
t
, where f ′(·) is also an m-dimension function, Z ′ = (z′1, · · · , z′m)T with

z′i ∼ N(0, σ2
i ), si is the L2 sensitivity of the ith dimension of f ′(·), for i = 1, 2, · · · ,m.

Based on Lemma 9 and Theorem 4, along with rigorous privacy analysis and experi-
mental comparisons, our proposed algorithm leads to the following corollaries:

Corollary 10 Algorithm 1 satisfies (ϵ, δ)-DP.
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Proof Consider the gradients returned by the current batch Bt are that f(ωt, Bt) +
N(0, σ2

j I) = f(ωt, Bt)+N(0, σ2
t ·∆2I), where f(ωt, Bt) denotes the clipped gradient values

for the subset Bt with parameters ωt, and ∆2 = s2j ·nj . Followed by Theorem 4, the overall

gradients returned by this iteration satisfies(ϵ, δ)-DP, and ϵ =
√

2 log (1.25/δ)/σt. At the
same time, to meet the condition ϵ ∈ (0, 1), the noise scale of the initial input is limited by
σt ≥

√
2 log(1.25/δ).

Let ωj
i represent ith weight parameter of jth layer. Each layer of the neural network is

composed of multiple parameters ωj = (ωj
1, ω

j
2, · · · , ω

j
n), and the noise added to the gradient

of each layer should also be n-dimension.
DP-AdamILG algorithm first calculates the L2 norm of each layer gradients: ||gj

t ||2,
according to which the L2 sensitivity sj of each layer is obtained (calculated by Eq.8).
Then the noise scale σj of each layer is gained (calculated by Eq.10). For the gradient

of jth layer we can obtain :
∑nj

i=1

s2j
σ2
j
=

∑nj

i=1

s2j
σ2
t ·s2j ·nj

= 1
σ2
t
, satisfying the inequality :∑nj

i=1

s2j
σ2
j
≤ 1

σ2
t
. According to Lemma 9, the noise gradients of each layer returned by the

Alg 1 are satisfied (ϵ, δ)-DP.

Theorem 11 (Parallel Composability (Yu et al. (2019))) LetM be a composite mechanism
consisting of a sequence of k adaptive mechanisms, denoted as M1, . . . ,Mk. Each Mi :∏i−1

j=1Rj × D → Ri and satisfies ρi-zCDP (1 ≤ i ≤ k). Consider D1, D2, . . . , Dk resulting
from a randomized partitioning of the input dataset D. The composite mechanismM(D) =
(M1(D ∩D1), . . . ,Mk(D ∩Dk)) adheres to max

i
ρi-zCDP.

Suppose there is ρi = ρ for all i ∈ (1, · · · , k) , then in this case, the mechanism M
satisfies ρ-zCDP according to Theorem 11.

The neural network training process involves reshuffling the dataset into batches for
each iteration. An epoch consists of training on disjoint subsets D = (D1, . . . , Dk), where
each subset Di is distinct. If the input noise scale is σt, the noise scale for any subset Bi

is also σt. According to Theorem 11, the privacy cost for the current epoch ρt is given
by Lemma 7: ρt = 1

2σ2
t
. For N epochs, followed by Lemma 6, the total privacy cost

is ρtot =
∑N

t=1 ρt, resulting in ρtot-zCDP. Based on Lemma 8, the total training process
satisfies (ρtot + 2

√
ρtot log(1/δ), δ)-DP, and each epoch satisfies (ρt + 2

√
ρt log(1/δ), δ)-DP.

5. Experiment Evaluation

In this section, we answer the following three question:
• Q1: Can DP-AdamILG achieve good convergence speed and generalization performance?
• Q2: Is DP-AdamILG exhibit a certain stability with respect to hyperparameter tuning?
• Q3: Does the DP-AdamILG exhibit good robustness?

5.1. Experimental settings

Our primary evaluation relies on five datasets: MNIST (LeCun et al. (1998)) , Fashion-
MNIST(FMNIST) (Xiao et al. (2017)) , CIFAR-10 (Krizhevsky et al. (2009)) , CIFAR-100
(Krizhevsky et al. (2009)) and SVHN (Netzer et al. (2011)).
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For the entire experiments, we fixed the failure probability δ = 10−5. And for clarity, we
present the other parameter settings in Table 1. Unless specified otherwise, the experimental
parameters follow the settings in Table 1. Specially, the selection of ρtot is guided by Yu
et al. (2019), with the aim of facilitating experimental comparisons and ensuring that the
training process maintains a certain number of epochs. All experiments are conducted on
an Intel 8 core i7-10700 U CPU@2.90 GHz machine with an NVIDIA A10 GPU.

Table 1: Summary of parameter setting

CIFAR-10, CIFAR-100 and SVHN MNIST and FMNIST

σ0 6 10
ρtot 1.5625 0.78125
k 0.001 0.05
B 200 600
α 1.2 1.2

Neural Network ResNet-18 I.P.R.O.1

1 I.P.R.O. represents the neural network structure consisting of the input layer,
PCA layer, ReLU layer, and output layer.

5.2. Experimental Result

5.2.1. Comparison of Different Algorithms Performance and Privacy Cost

To answer Q1, we conduct comparative analysis of our algorithm against DP-SGD (Abadi
et al. (2016)), DP-SGD (decay) (Yu et al. (2019)) and ADADP (Xu et al. (2020)) to evaluate
its performance. We selected these three algorithms for comparison for the following rea-
sons: Firstly, DP-SGD incorporates differential privacy by adding noise to gradients at each
iteration, serving as a universal framework in differential privacy deep learning. Secondly,
DP-SGD (decay) extends DP-SGD with dynamic privacy budget allocation, inspiring the
adaptive privacy strategy in our proposed algorithm. Lastly, ADADP algorithm leverages
RMSprop to integrate adaptive learning rates and noise into DP-SGD. It stands out as a
relatively new and effective algorithm in the realm of differential privacy deep learning.

Experimental Results and Analysis: We compared the convergence speed and generaliza-
tion performance of the aforementioned algorithm on five datasets. It can be observed from
Fig.2 that, for the training tasks on the CIFAR-10 and CIFAR-100 datasets, our proposed
algorithm outperforms DP-SGD, DP-SGD(decay) and ADADP. For MNIST and SVHN,
the accuracy trends of the four algorithms are quite close, but our algorithm still exhibits
better performance. While ADADP achieves slightly higher final training and testing ac-
curacy compared to DP-AdamILG on the FMNIST dataset, our approach maintains an
advantage in terms of convergence speed. This reveal that the proposed algorithm, incor-
porating dynamic privacy budget and gradients processing based on the importance of each
layer’s gradients, outperforms ADADP, DP-SGD and DP-SGD(decay) in both convergence
speed and generalization performance. At the same time, the gap between the training and
testing accuracy for DP-AdamILG is 1% to 4%, which is an acceptable range compared
with other algorithms. Therefore, there are no indications of over-fitting.

We also measured the privacy costs of DP-AdamILG, ADADP, and DP-SGD (decay) in
achieving predefined accuracy levels on five datasets. The experimental results in Table 2
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Figure 2: Comparative Analysis of Model Training Using Different Algorithms

Table 2: Experimental Results on the privacy cost of different Algorithm

Dataset Accuracy(%) δ DP-AdamILG
ADADP

(Xu et al. (2020))
DP-SGD(decay)
(Yu et al. (2019))

MNIST 96.5 10−5 2.238 3.703 6.885 ϵ
12 33 39 Epoch

FMNIST 85.5 10−5 1.948 2.172 7.091 ϵ
10 12 40 Epoch

SVHN 90.2 10−5 1.862 5.299 9.227 ϵ
5 64 89 Epoch

CIFAR-10 65.2 10−5 2.220 4.051 8.705 ϵ
7 39 81 Epoch

CIFAR-100 23.5 10−5 2.382 3.938 8.305 ϵ
8 37 75 Epoch

display the privacy cost(ϵ) required by each algorithm to achieve the desired accuracy, along-
side the corresponding number of epochs. It can be seen that DP-AdamILG significantly
outperforms both ADADP and DP-SGD (decay) in terms of training epochs and privacy
cost on the five datasets. Compared to ADADP and DP-SGD(decay), DP-AdamILG re-
duces the privacy cost by an average of 39.6% and 67.5% on MNIST, 10.3% and 72.5% on
FMNIST, 64.7% and 79.8% on SVHN, 45.2% and 74.5% on CIFAR-10, 39.5% and 71.3%
on CIFAR-100. This demonstrates that the proposed algorithm achieves a good balance
between accuracy and privacy cost. Furthermore, DP-AdamILG requires fewer training
epochs to reach the predefined accuracy level, indicating a faster convergence speed.

5.2.2. Hyper-parameter Effects

The DP-AdamILG algorithm involves two key hyperparameters, namely the clipping factor
α and the privacy budget decay rate k. The different values of these two hyperparameters
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may affect the training of the model. So in this section we investigate the impact of these two
hyperparameters to answer Q2. We will use the datasets MNIST, CIFAR-10, and SVHN
for this experiment. This experiment will employ the control variable method. Unless
otherwise specified, all parameters will remain at their default values as Table.1, except for
the hyperparameters under investigation.
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Figure 3: The Impact of Various Clipping Factors on Model Performance

Analysis of Experimental Results with Different Clipping Factors: The clipping factor
α controls the scales of each layer’s gradients of neural network. A smaller α removes more
gradient information, whereas a larger one introduces more noise. Fig.3 shows that, for the
MNIST and SVHN dataset, the impact of the clipping factor α is relatively stable, with
no significant fluctuations. Additionally, the algorithm achieves its highest performance
when the α is around 1.0. However, training on CIFAR-10 exhibits a distinct behavior. As
α increases, model performance gradually decreases, particularly for CIFAR-10, which is
more sensitive to noise. The increased noise significantly impacts CIFAR-10’s performance,
leading to a continuous decline. Hence, to preserve meaningful gradient information and
incorporate noise of an appropriate magnitude, a reasonable setting for α is to take a value
slightly greater than 1.0.
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Figure 4: The Impact of Various Decay Rates on Model Performance

Analysis of Experimental Results with Different Decay Rates: The decay rate k deter-
mines the speed at which the noise scale decreases. Given the total privacy budget, a higher
decay rate consumes the privacy budget more quickly, resulting in fewer total epochs. Fig.4
shows that the decay rate k has minimal impact on the training of the proposed algorithm,
remaining stable across different k values. The results show that the performance gap be-
tween the highest and lowest model performance with varying decay rates does not exceed
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0.5%. This indicates that DP-AdamILG achieves faster gradient convergence and main-
tains stability during training, ensuring consistent final model performance despite changes
in the decay rate. The findings also suggest that the rapid convergence characteristic of
the DP-AdamILG algorithm is applicable across different datasets. To achieve comparable
results with ADADP and DP-SGD(decay) effectively, the default values for the decay rate
parameter k in experiments are set as Table 1.

The experimental results indicate that DP-AdamILG’s hyperparameters have minimal
impact on overall training outcomes, despite variations in clipping factors and decay rates.
However, the clipping factor α significantly affects the CIFAR-10 dataset.

5.2.3. The Impact of Different Network Architectures

To answer Q3, we evaluate DP-AdamILG’s robustness by training ResNet-18 (He et al.
(2016)), VGG-19 (Simonyan and Zisserman (2014)), GoogLeNet (Szegedy et al. (2015)),
and SimpleDLA (Yu et al. (2018)) on the CIFAR-10 dataset. This evaluation compares
DP-AdamILG with DP-SGD, DP-SGD (decay), and ADADP.

ResNet-18 VGG-19 GoogleNet SimpleDLA
Network Architectures

50

60

70

80

90

Tr
ai

ni
ng

 A
cc

ur
ac

y(
%

)

DP-AdamILG
ADADP
DP-SGD(decay)
DP-SGD

(a) Training Accuracy

ResNet-18 VGG-19 GoogleNet SimpleDLA
Network Architectures

50

60

70

80

Te
st

 A
cc

ur
ac

y(
%

)

DP-AdamILG
ADADP
DP-SGD(decay)
DP-SGD

(b) Test Accuracy

Figure 5: Different Algorithms Performance Across Different Network Architectures

Analysis of Experimental Results: Different algorithms exhibit varying training effects
on different neural networks. Fig.5 shows that, with the same parameters, DP-AdamILG
and ADADP achieve the best performance with GoogLeNet, while DP-SGD and DP-SGD
(decay) perform best with ResNet-18. Nonetheless, when training on the CIFAR-10 dataset
using four classical network architectures, the DP-AdamILG algorithm consistently shows
superior performance in both training and test accuracy. This indicates that DP-AdamILG
achieves rapid convergence and strong generalization across various network architectures.
Thus, demonstrating robustness and adaptability in model training across diverse models.

We also evaluated the operational efficiency of DP-SGD, DP-SGD (decay), ADADP, and
DP-AdamILG by measuring their runtime per epoch. Fig.6 indicates that our algorithm,
being an improvement on accuracy and framework upon DP-SGD and DP-SGD(decay),
exhibits slightly longer runtime compared to both. In contrast, our algorithm demonstrates
significant improvement in operational efficiency compared to ADADP, suggesting its struc-
tural simplicity and ease of implementation.

The three aforementioned experiments validate DP-AdamILG from three key perspec-
tives: algorithm performance, hyperparameter stability, and algorithm robustness. The
Table 3 summarizes the training results of DP-SGD, DP-SGD (decay), ADADP, and DP-
AdamILG across different datasets and network architectures. For each algorithm, the first
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Figure 6: Running Time of Different Datasets and Network Architectures

Table 3: Experimental results on various datasets and network architectures

Datasets Network Architectures

MNIST FMNIST SVNH CIFAR-10 CIFAR-100 ResNet-18 VGG-19 GoogleNet SimpleDLA

DP-SGD
(Abadi et al. (2016))

99.347 85.735 90.993 64.964 24.972 64.964 50.266 61.370 42.854

96.960 83.490 89.259 65.430 25.050 65.430 51.810 60.860 44.270

10.291 10.688 39.041 29.920 30.154 29.920 25.415 81.566 39.929

DP-SGD(decay)
(Yu et al. (2019))

98.497 89.897 91.713 66.406 26.468 66.506 51.450 64.816 51.718

96.460 85.430 90.500 66.160 26.580 66.160 53.640 64.680 52.480

10.303 10.682 39.045 29.929 30.033 29.929 25.456 81.782 39.940

ADADP
(Xu et al. (2020))

98.335 92.580 95.127 77.195 38.400 77.794 74.338 87.764 77.694

97.190 88.330 92.605 76.190 37.330 76.190 73.750 82.660 75.240

10.432 10.744 45.915 34.664 34.495 34.664 30.619 100.160 48.642

Our

99.353 91.398 97.181 86.174 54.446 86.174 80.180 92.190 88.400

97.950 88.050 93.800 83.600 51.000 83.660 79.560 87.420 84.790

10.208 10.684 40.678 30.754 33.855 30.754 27.565 91.614 43.101

row represents training accuracy(%), the second row indicates test accuracy(%) and the
thirh row denotes per epoch running time(s).

6. Conclusion

In this paper, we propose a novel differential privacy deep learning algorithm framework,
called DP-AdamILG. Firstly, we introduce an enhanced strategy for dynamically allocating
privacy budget. This adaptation ensures that the privacy budget decays gradually, bet-
ter meeting practical requirements. Secondly, we implement gradient clipping and noise
addition based on the importance of each layer’s gradients. Additionally, we elaborate on
the privacy protection in DP-AdamILG and present a cumulative method for privacy loss
calculation. Experimental results demonstrate the good performance and great robustness
of our DP-AdamILG algorithm. Future work will involve comparing our algorithm with
more differential privacy deep learning methods.
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