
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STABLE OFFLINE VALUE FUNCTION LEARNING WITH
BISIMULATION-BASED REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, offline value function learning is the procedure of using
an offline dataset to estimate the expected discounted return from each state when
taking actions according to a fixed target policy. The stability of this procedure,
i.e., whether it converges to its fixed-point, critically depends on the represen-
tations of the state-action pairs. Poorly learned representations can make value
function learning unstable, or even divergent. Therefore, it is critical to stabilize
value function learning by explicitly shaping the state-action representations. Re-
cently, the class of bisimulation-based algorithms have shown promise in shaping
representations for control. However, it is still unclear if this class of methods can
stabilize value function learning. In this work, we investigate this question and
answer it affirmatively. We introduce a bisimulation-based algorithm called ker-
nel representations for offline policy evaluation (KROPE). KROPE uses a kernel to
shape state-action representations such that state-action pairs that have similar im-
mediate rewards and lead to similar next state-action pairs under the target policy
also have similar representations. We show that KROPE: 1) learns stable repre-
sentations and 2) leads to lower value error than baselines. Our analysis provides
new theoretical insight into the stability properties of bisimulation-based meth-
ods and suggests that practitioners can use these methods for stable and accurate
evaluation of offline reinforcement learning agents.

1 INTRODUCTION

Learning the value function of a policy is a critical component of many reinforcement learning (RL)
algorithms (Sutton & Barto, 2018). While value function learning algorithms such as temporal-
difference learning (TD) have been successful, they can be unreliable. In particular, the deadly
triad, i.e., the combination of off-policy updates, function approximation, and bootstrapping, can
make TD-based methods diverge (Sutton & Barto, 2018; Tsitsiklis & Van Roy, 1997; Baird, 1995).
Function approximation is a critical component of value function learning since it determines the
representations of state-action pairs, which in turn defines the space of expressible value functions.
Depending on how this value function space is represented, value function learning algorithms may
diverge (Ghosh & Bellemare, 2020). That is, the value function learning algorithm may not converge
to its fixed-point, or may even diverge away from it. In this work, we investigate how to explicitly
learn state-action representations to stabilize value function learning.

In seeking such representations, we turn to π-bisimulation algorithms. These algorithms define
a metric to capture behavioral similarity between state-action pairs such that similarity is based
on immediate rewards received and the similarity of next state-action pairs visited by π (Castro,
2019). The algorithms then use this metric to learn representations such that state-action pairs that
are similar under this metric have similar representations. Ultimately, the goal of π-bisimulation
methods is to learn representations such that state-actions pairs with similar values under π also have
similar representations (see Figure 1). While these algorithms have shown promise in improving the
expected return of RL algorithms, it remains unclear whether they contribute to stability (Castro
et al., 2023; Zhang et al., 2021; Castro et al., 2022). In this paper, we aim to understand whether
π-bisimulation-based representations stabilize value function learning.

In this work, we focus on offline value function learning. Given a fixed, offline dataset generated
by unknown and possibly multiple behavior policies, the goal is to estimate the value function of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The figure illustrates the native state-action repre-
sentations X and π-bisimulation representations Φπ−BISIM. π-
bisimulation algorithms use a similarity function k that captures
similarity between state-action pairs based on immediate rewards
and similarity of next state-action pairs under π to shape their rep-
resentations. Ultimately, the goal of π-bisimulation methods is to
learn representations such that state-actions pairs with similar val-
ues under π also have similar representations. The function k out-
puts high values within the blue (and orange) state-actions but low
values between blue and orange state-actions. Therefore, the blue
(and orange) state-actions have similar representations, but differ-
ent representations between the distinct colors.

a fixed, target policy. We introduce kernel representations for offline policy evaluation (KROPE), a
bisimulation-based representation learning algorithm. KROPE defines a kernel that captures simi-
larity between state-action pairs based on immediate rewards received and similarity of next state-
action pairs under the target policy. It then shapes the state-action representations such that state-
action pairs that are similar according to this kernel have similar representations. We use KROPE as
the representative algorithm for the class of bisimulation-based representation learning algorithms
to investigate the following question:

Can bisimulation-based representation learning stabilize offline value function learning?

Through theoretical and empirical analysis, we answer this question affirmatively and make the
following contributions:

1. We introduce kernel representations for offline policy evaluation (KROPE) for stable and
accurate offline value function learning (Section 3).

2. We prove that KROPE’s representations stabilize least-squares policy evaluation (LSPE), a
popular value function learning algorithm (Sections 3.2).

3. We prove that KROPE representations are Bellman complete, another indication of stability
(Sections 3.3).

4. We empirically validate that KROPE representations lead to more stable and accurate offline
value function learning compared to non-bisimulation baselines (Section 4).

5. We empirically analyze the sensitivity of the KROPE learning procedure under the deadly
triad. These experiments shed light on when representation pre-training may be easier than
direct value function learning with LSPE (Appendix C.3.1).

2 BACKGROUND

In this section, we present our problem setup and discuss prior work.

2.1 PROBLEM SETUP AND NOTATION

We consider the infinite-horizon Markov decision process (MDP) framework (Puterman, 2014),
M = ⟨S,A, r, P, γ, d0⟩, where S is the state space, A is the action space, r : S × A → [−1, 1]
is the deterministic reward function, P : S × A → ∆(S) is the transition dynamics function,
γ ∈ [0, 1) is the discount factor, and d0 ∈ ∆(S) is the initial state distribution, where ∆(X) repre-
sents the set of all probability distributions over a set X . We refer to the joint state-action space as
X := S×A. The agent acting according to policy π : S → ∆(A) in the MDP generates a trajectory:
S0, A0, R0, S1, A1, R1, ..., where S0 ∼ d0,At ∼ π(·|St),Rt := r(St, At), and St+1 ∼ P (·|St, At)
for t ≥ 0.

We define the action-value function of a policy π for a given state-action pair as qπ(s, a) :=
Eπ[
∑∞

t=0 γ
tr(St, At)|S0 = s,A0 = a], i.e., the expected discounted return when starting from state

swith initial action a and then following policy π. The Bellman evaluation operator T π : RX → RX

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

is defined as (T πf)(s, a) := r(s, a) + γES′∼P (·|s,a),A′∼π[f(S
′, A′)],∀f ∈ RX . Accordingly, the

action-value function satisfies the Bellman equation, i.e., q(s, a) = r(s, a) + γEP,πe [q(S
′, A′)].

It will be convenient to consider the matrix notation equivalents of the above functions. Since a
policy π induces a Markov chain on X , we can denote the transition matrix of this Markov chain
by Pπ ∈ R|X |×|X|. Here, each entry Pπ(i, j) is the probability of transitioning from state-actions
i to j. Similarly, we have the action-value function qπ ∈ R|X | and reward vector r ∈ R|X |, where
the entry qπ(i) and r(i) are the expected discounted return from state-action i under π and reward
received at state-action i respectively.

In this work, we study the representations of the state-action space. We use ϕ : S ×A → Rd to de-
note the state-action representations, which maps state-action pairs into a d-dimensional Euclidean
space. We denote the matrix of all the state-action features as Φ ∈ R|X |×d, where each row is the
state-action feature ϕ(s, a) ∈ Rd for state-action pair (s, a). When dealing with the offline dataset
D, Φ’s dimensions are |D| × d, where |D| is the number state-actions in the dataset D. Note that
Φ can be the native state-action features of the MDP, or the output of some representation learning
algorithm, or the penultimate features of the action-value function when using a neural network.
Throughout this paper, we will view ϕ as an encoder or state-action abstraction (Li et al., 2006).
Note that the state-action abstraction view enables us to view ϕ as a state-action aggregator from the
space of state-actions X to the space of state-action groups X ϕ.

2.2 OFFLINE POLICY EVALUATION AND VALUE FUNCTION LEARNING

In offline policy evaluation (OPE), the goal is to evaluate a fixed target policy, πe, using a fixed
dataset of m transition tuples D := {(si, ai, s′i, ri)}mi=1. In this work, we evaluate πe by estimating
the action-value function qπe using D. Crucially, D may have been generated by a set of unknown
behavior policies that are different from πe, which means that simply averaging the discounted
returns in D will produce an inconsistent estimate of qπe . In our theoretical results, we make the
standard coverage assumption that ∀s ∈ S,∀a ∈ A if πe(a|s) > 0, then the state-action pair (s, a)
has non-zero probability of appearing in D (Sutton & Barto, 2018; Precup et al., 2000).

We measure the accuracy of the value function estimate with the mean squared value error (MSVE).
Let q̂πe be the estimate returned by a value function learning method using D. The MSVE of this
estimate is defined as MSVE[q̂πe] := E(S,A)∼D[(q̂

πe(S,A) − qπe(S,A))2]. In environments with
continuous state-action spaces, where it is impossible to compute qπe for all state-actions, we adopt
a common evaluation procedure from the OPE literature of measuring the MSE across only the ini-
tial state-action distribution, i.e., MSE[q̂πe] := ES0∼d0,A0∼πe

[(q̂πe(S0, A0) − qπe(S0, A0))
2]. For

this procedure, we assume access to d0 (Voloshin et al., 2021; Fu et al., 2021). While in practice
qπe is unknown, it is standard for the sake of empirical analysis to estimate qπe by executing unbi-
ased Monte Carlo rollouts of πe or computing qπe exactly using dynamic programming in tabular
environments (Voloshin et al., 2021; Fu et al., 2021).

Least-Squares Policy Evaluation Least-squares policy evaluation (LSPE) is a value function
learning algorithm, which models the action-value function as a linear function: q̂πe

θ (s, a) :=

ϕ(s, a)⊤θ, where θ ∈ Rd (Nedic & Bertsekas, 2003). LSPE iteratively learns θ with the follow-
ing updates per iteration step t:

θt+1 ← (ED[Φ
⊤Φ])−1ED,πe

[Φ⊤(r + γPπeΦθt)], (1)

where the expectations are taken with respect to the randomness of the dataset D and πe. Note
that E[Φ⊤Φ] is the feature covariance matrix. Assuming LSPE converges, it will converge to the
same fixed-point as TD(0) (Szepesvari, 2010), which we denote as θLSPE. In this work, we follow
a two-stage approach to applying LSPE: we first obtain the encoder ϕ either through representation
learning or using the native features of the MDP, and then feed the obtained ϕ along with D and πe
as input to LSPE, which outputs q̂πe

θ (Nedic & Bertsekas, 2003; Chang et al., 2022). This two-stage
approach of learning a linear function on top of fixed representations is called the linear evaluation
protocol (Chang et al., 2022; Farebrother et al., 2023; 2024; Grill et al., 2020; He et al., 2020). This
protocol enables us to cleanly analyze the nature of the learned representations within the context of
well-understood value function learning algorithms such as LSPE. In Appendix A, we include the
pseudo-code for LSPE.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 STABLE, REALIZABLE, AND GENERALIZABLE REPRESENTATIONS

We define stability of LSPE and related TD-methods following Ghosh & Bellemare (2020):

Definition 1 (Stability). LSPE is said to be stable if for any initial θ0 ∈ Rd, limt→∞ θt = θLSPE

when θt is updated according to Equation (1).

When determining the stability of LSPE, we have following proposition from prior work:

Proposition 1 (Asadi et al. (2024); Wang et al. (2021a)). LSPE is stable if and only if the spectral
radius of (E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]), i.e., its maximum absolute eigenvalue, is less than 1.

Therefore, the stability of LSPE largely depends on the representations Φ and the distribution shift
between the data distribution of D and πe. In this work, we study the stability of LSPE for a fixed
distribution of D and learn Φ. If a given Φ stabilizes LSPE, we say Φ is a stable representation.

In addition to stability, we also care about the realizability and generalizability of Φ. We say Φ is a
realizable representation if qπe ∈ Span(Φ),where Span(Φ) is the subspace of all expressible action-
value functions with Φ. Note that even if Φ is a realizable and stable representation, LSPE may not
recover the qπe solution (Sutton & Barto, 2018). While generalization can have multiple interpreta-
tions, we say Φ generalizes well if the state-action features that are close in the representation space
also have similar qπe values (Lyle et al., 2022; Lan et al., 2021).

2.4 RELATED WORKS

In this section, we discuss the most relevant prior literature on OPE and representation learning.
Representations for Offline RL and OPE. There are several works that have shown shaping rep-
resentations can be effective for offline RL (Yang & Nachum, 2021; Islam et al., 2023; Nachum &
Yang, 2024; Zang et al., 2023a; Arora et al., 2020; Uehara et al., 2021; Chen & Jiang, 2019; Pavse
& Hanna, 2023b). Ghosh & Bellemare (2020) presented a theoretical understanding of how various
representations can stabilize TD learning. However, they did not discuss bisimulation-based repre-
sentations. Kumar et al. (2021); Ma et al. (2024); He et al. (2024) promote the stability of TD-based
methods by increasing the rank of the representations to prevent representation collapse. However,
as we show in Section 4, these types of representations can still lead to inaccurate OPE. On the
other hand, KROPE mitigates representation collapse and leads to accurate OPE. Chang et al. (2022)
introduced BCRL to learn Bellman complete representations for stable OPE. While in theory, BC
representations are desirable, we found that BCRL is sensitive to hyperparameter tuning. In contrast,
we show that KROPE is more robust to hyperparameter tuning. Pavse & Hanna (2023a) showed that
bisimulation-based representations mitigate the divergence of FQE; however, they did not provide
an explanation for divergence mitigation. Our work provides theoretical insight into the stability
properties of bisimulation-based algorithms.
Bisimulation-based Representation Learning. Recently, there has been lot of interest in π-
bisimulation algorithms for better generalization (Ferns et al., 2004; 2011; Ferns & Precup, 2014;
Castro, 2019; Zang et al., 2023b). These algorithms measure similarity between two state-action
pairs based on immediate rewards received and the similarity of next state-action pairs visited by
π. These algorithms first define a distance metric that captures this π-bisimilarity, and then use
this metric to learn representations such that π-bisimular states have similar representations (Castro
et al., 2022; Castro, 2019; Zhang et al., 2021; Castro et al., 2023; Chen & Pan, 2022; Kemertas &
Jepson, 2022). Zhang et al. (2021); Castro (2019) introduced a π-bisimulation learning algorithm
but assume that the transition dynamics are either deterministic or Gaussian. Gelada et al. (2019)
introduced a method closely related to bisimulation methods but required a reconstruction loss to
work in practice. Castro et al. (2022) introduced MICO which allows for stochastic transition dynam-
ics and no reconstruction loss, but was difficult to theoretically analyze. To overcome this difficulty,
Castro et al. (2023) took a kernel perspective of π-bisimulation methods, which made their algorithm
amenable to theoretical analysis. To the best of our knowledge, no works have studied the stability
properties of π-bisimulation algorithms. In our work, we address this gap in the literature. We first
extend Castro et al. (2023)’s kernel-based formulation from states to state-actions, and then show
that this formulation stabilizes offline value function learning. The proofs for KROPE’s basic theo-
retical properties (Section 3.1) follow those by Castro et al. (2023). Our stability-related theoretical
results (Sections 3.2 and 3.3) and empirical analysis (Section 4) are novel to this work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 KERNEL REPRESENTATIONS FOR OFFLINE POLICY EVALUATION

We now present our bisimulation-based representation learning algorithm, kernel representations
for OPE (KROPE). We present the desired KROPE kernel, define the KROPE operator, present its
theoretical properties, prove stability properties of KROPE representations, and present a practical
learning algorithm to learn them. We defer the proofs to Appendix B.

3.1 KROPE KERNEL AND OPERATOR

Prior π-bisimulation works define similarity between states in terms of the immediate rewards re-
ceived and similarity of next states under π (see Figure 1) (Castro, 2019). In this work, we follow
Castro et al. (2023) and define a kernel kπe : X × X → R that captures this notion of similarity
under πe, but for pairs of state-actions. We refer to kπe as the KROPE kernel.

kπe(s1, a1; s2, a2) = k1(s1, a1; s2, a2) + γk2(k
πe)(Pπe(·|s1, a1), Pπe(·|s2, a2)]. (2)

where k1(s1, a1; s2, a2) := 1 − |r(s1,a1)−r(s2,a2)|
|rmax−rmin| and k2(k

πe)(Pπe(·|s1, a1), Pπe(·|s2, a2)) :=

Es′1,a
′
1∼Pπe (·|s1,a1),s′2,a

′
2∼Pπe (·|s2,a2)[k

πe(s′1, a
′
1; s

′
2, a

′
2)]. Here, k1 measures short-term similarity

based on rewards received and k2 measures long-term similarity between probability distributions
by measuring similarity between samples of the distributions according to kπe (Castro et al., 2023).

Given this definition of the KROPE kernel, we now present an operator that converges to kπe :
Definition 2 (KROPE operator). Given a target policy πe, the KROPE operator Fπe : RX×X →
RX×X is defined as follows: for each kernel k : X × X → R, ∀(s1, a1; s2, a2) ∈ X × X ,

Fπe(k)(s1, a1; s2, a2) := k1(s1, a1; s2, a2)︸ ︷︷ ︸
short-term similarity

+γ Es′1,s
′
2∼P,a′

1,a
′
2∼πe

[k(s′1, a
′
1; s

′
2, a

′
2)]︸ ︷︷ ︸

long-term similarity

(3)

where s′1 ∼ P (s′1|s1, a1), s′2 ∼ P (s′2|s2, a2), a′1 ∼ πe(·|s′1), a′2 ∼ πe(·|s′2), and
k1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| is a positive semidefinite kernel.

Proposition 2, proved in Appendix B.1, tells us that for some initial kernel k, repeatedly applying
Fπe to it will result in convergence kπe . Ultimately, kπe outputs a high (or low) similarity measure
for two state-action pairs if their action-values under πe are similar (or dissimilar). This intuition
is formalized in Lemma 3, which states that the absolute action-value difference between any two
state-action pairs under πe is upper-bounded by the distance function induced by kπe plus an ad-
ditive constant. Since KROPE’s contraction, metric space completeness, and fixed-point uniqueness
properties are similar to Castro et al. (2023)’s kernel, we defer the details to Appendix B.1.

3.2 STABILITY OF KROPE REPRESENTATIONS

In the previous section, we defined the KROPE kernel. Ultimately, however, we are interested in
representations that satisfy the relationship in Equation (2). We modify Equation (2) accordingly
by giving kπe some functional form in terms of state-action representations. We do so with the dot
product: ⟨u, v⟩ = u⊤v,∀u, v ∈ Rd, i.e., kπe(s1, a1; s2, a2) = ϕ(s1, a1)

⊤ϕ(s2, a2). With this setup,
we write Equation (2) in matrix notation and define the KROPE representations as follows:
Definition 3 (KROPE Representations). Consider state-action representations Φ ∈ R|X |×d that are
embedded in Rd with kπe(s1, a1; s2, a2) = ϕ(s1, a1)

⊤ϕ(s2, a2). We say Φ is a KROPE representa-
tion if it satisfies the following:

ED[ΦΦ
⊤] = ED[K1] + γED,πe [P

πeΦ(PπeΦ)⊤] (4)

where each entry of K1 ∈ R|X |×|X| represents the short-term similarity, k1, between every pair of
state-actions, i.e., K1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| .

Given this definition, we present our novel result proving the stability of KROPE representations:

Theorem 1. If Φ is a KROPE representation as defined in Definition 3, then the spectral
radius of (E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ] is less than 1. That is, Φ stabilizes LSPE.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1, proved in Appendix B.2, tells us that KROPE representations stabilize OPE with LSPE.
Intuitively, they are stable since when (E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ]’s spectral radius is less than 1,
each update to θt in Equation (1) is non-expansive. That is, each update brings θt closer to θLSPE.

3.3 CONNECTION TO BELLMAN COMPLETENESS

In this section, we draw a novel connection between KROPE representations and Bellman complete-
ness. We say a function class F is Bellman complete if it is complete under the Bellman operator:
T πef ⊆ F ,∀f ∈ F . For instance, suppose F is the class of linear functions spanned by Φ,
F := {f ∈ RX : f := Φw}, w ∈ Rd. Then if T πef, ∀f ∈ F is also a linear function within the
span of Φ, we say Φ is a Bellman complete representation. Bellman completeness is an alternative
condition for stability and is typically assumed to ensure to data-efficient policy evaluation (Wang
et al., 2021b; Szepesvári & Munos, 2005; Chang et al., 2022). We now present our second main
result. It states that KROPE representations are Bellman complete:

Theorem 2. Let ϕ : X → X ϕ be the state-action abstraction induced by grouping state-
actions x, y ∈ X such that if dKROPE(x, y) = 0, then ϕ(x) = ϕ(y),∀x, y ∈ X . Then ϕ
is Bellman complete if the abstract reward function rϕ : X ϕ ↣ (−1, 1) is injective (i.e.,
distinct abstract rewards).

Takeaway #1: Stability of Bisimulation-based Representations

KROPE representations induce non-expansive value function updates and are Bellman com-
plete. They avoid divergence of offline value function learning.

3.4 KROPE LEARNING ALGORITHM

In this section, we present an algorithm that learns the KROPE representations from data. We include
the pseudo-code of KROPE in Appendix A. The KROPE learning algorithm uses an encoder ϕω :
S×A → Rd, which is parameterized by weights ω of a function approximator. It then parameterizes
the kernel with the dot product, i.e, k̃ω(s1, a1; s2, a2) := ϕω(s1, a1)

⊤ϕω(s2, a2) (see Equation (4)).
Finally, the algorithm then minimizes the following loss function, which is similar to how the value
function is learned in deep RL (Mnih et al., 2015):

LKROPE(ω) := ED

[(
1− |r(s1, a1)− r(s2, a2)|

|rmax − rmin|
+ γEπe

[k̃ω̄(s
′
1, a

′
1; s

′
2, a

′
2)]︸ ︷︷ ︸

target estimate

− k̃ω(s1, a1; s2, a2)︸ ︷︷ ︸
current estimate

)2
]
,

(5)
where the state-action pairs are sampled from D, and ω̄ are weights of the target network that are
periodically copied from ω (Mnih et al., 2015). In this work, we use KROPE as an auxiliary task,
which introduces only a learning rate as an additional hyperparameter. We note that this fixed-point
optimization procedure is similar to how the action-value function is learned in other RL fixed-point
algorithms such as fitted q-evaluation (FQE) (Le et al., 2019).

4 EMPIRICAL RESULTS

In this section, we present our empirical study designed to answer the following questions.

1. Does KROPE lead to stable representations with good realization and generalization?

2. Do KROPE representations lead to stable MSVE and low MSVE?

4.1 EMPIRICAL SETUP

In this section, we describe the main details of our empirical setup. For further details such as
datasets, policies, hyperparameters, and evaluation protocol please refer to Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Baselines Our primary representation learning baseline is fitted q-evaluation (FQE) (Le et al.,
2019). FQE is the most fundamental deep RL OPE algorithm that learns representations
of state-actions to predict the long-term performance of a policy. While FQE is typically
used as an OPE algorithm, it can also be viewed as a value-predictive representation learn-
ing algorithm (Lehnert & Littman, 2020). More specifically, consider its loss function:
E(s,a,s′)∼D

[(
r(s, a) + γEa′∼πe

[qξ̄(s
′, a′)]− qξ(s, a)

)2]
, where qξ(s, a) := ϕξ′(s, a)

⊤w and ξ =

{ξ′, w}. We view ξ as the neural network weights of an action-value neural network and w as the
linear weights of the network applied on the output of the penultimate layer ϕξ′(s, a) of the neu-
ral network. Then minimizing this loss function shapes the representations ϕξ′(s, a) to predict the
expected future discounted return. As noted in Section 2, we follow the linear evaluation protocol
where ϕξ′ is shaped by different auxiliary tasks and is then used with LSPE for OPE since it helps us
understand the properties of the representations within the context of a well-understood value func-
tion learning algorithm (Grill et al., 2020; Chang et al., 2022; Farebrother et al., 2024; Wang et al.,
2021a). We provide the pseudocode of this setup in Appendix A. We also note that in Appendix C,
we present results of performing OPE using FQE instead LSPE, and find that KROPE still reliably
produces stable OPE estimates.

We consider the following four non-bisimulation auxiliary representation learning algorithms that
are typically paired with FQE for stability: 1) KROPE (ours), 2) BCRL-EXP-NA, which simultane-
ously optimizes three objectives: immediate reward prediction, next-state self-prediction loss, and
maximization of the exploratory nature of E[Φ⊤Φ] by improving its condition number (Chang et al.,
2022), 3) Absolute DR3 regularizer (Kumar et al., 2021; Ma et al., 2024), which promotes stability
by minimizing the feature co-adaptation between successive features, i.e., ϕ(s, a)⊤ϕ(s′, a′), and 4)
BEER regularizer (He et al., 2024), which is similar to DR3 but lower bounds ϕ(s, a)⊤ϕ(s′, a′). In
all cases, the penultimate layer features of FQE’s action-value encoder ϕξ′ are fed into LSPE for OPE.
Our experiments focus on analyzing the properties of ϕξ′ . Note that since BCRL was not designed
as an auxiliary task (Chang et al., 2022), we evaluate it as a non-auxiliary (NA) task algorithm. We
provide additional details on the baselines in Appendix C.

Domains We conduct our evaluation on a variety of domains: 1) Garnet MDPs, which are a class
of tabular stochastic MDPs that are randomly generated given a fixed number of states and actions
(Archibald et al., 1995); 2) 4 DM Control environments: CartPoleSwingUp, CheetahRun, Fin-
gerEasy, WalkerStand (Tassa et al., 2018); and 3) 9 D4RL datasets (Fu et al., 2020; 2021). The first
domain enables us to analyze the algorithms’ performance across a wide range of stochastic tabular
MDPs. The second and third set of domains test the algorithms in continuous higher-dimensional
state-action environments. Due to space constraints, we defer the D4RL results to Appendix C.3.2.

4.2 ANALYZING FUNDAMENTAL PROPERTIES OF THE LEARNED REPRESENTATIONS

In this set of experiments on the Garnet MDPs domain, we answer our first question of whether
KROPE representations lead to stable representations with good realization and generalization prop-
erties. We present the results in Figure 2. Our Garnet MDPs were generated with 8 states and 5
actions, with a total of |X | = 40 state-actions, and each native (s, a) representation is a 1-hot vector.
In these experiments, the native representation is fed into a linear encoder with a bias component
and no activation function. All algorithms are trained for 500 epochs and we report the results by
evaluating the final learned representations for different latent dimensions d.
Stability. Based on Theorem 1, a representation is stable if it induces a spectral radius of
(E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) that is less than 1. In Figure 2(a), we present the fraction of runs
that result in such representations. We find that up till d = 30, 100% of KROPE and BEER runs have
spectral radius less than 1. We also find that BCRL-EXP-NA produces stable representations up till
d = 40. At d = 50, all algorithms produce unstable representations. These results suggest that
KROPE, BEER, and BCRL-EXP-NA are reliable in producing stable representations when projecting
state-actions into low dimensions. When d ≥ |X |, the covariance matrix E[Φ⊤Φ] is more likely to
be a singular matrix, which implies higher chance of instability.
Realizability. A basic criterion for learning qπe is realizability. That is, we want ϵ := ∥Φŵ −
qπe∥22, where ŵ := argminw ∥Φw − qπe∥22, to be low. In our experiments, we compute ϵ and
plot it as a function of d in Figure 2(b). A critical message from our results is that stability and
realizability do not always go hand-in-hand. While BCRL-EXP-NA has favorable spectral radius

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Spectral Radius (b) Realizability Error (c) Orthogonality

Figure 2: Evaluation of basic representation properties on Garnet MDPs with 40 state-actions vs. out-
put dimension d. Figure 2(a): Fractions of runs out of 30 trials that resulted in spectral radius of
(E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) to be less than 1; higher is better. Figure 2(b): Realizability error; lower is
better. Figure 2(c): Pearson correlation between orthogonality between pairs of latent features vs. their corre-
sponding absolute qπe action-value difference; higher is better. All results are averaged over 30 trials and the
shaded region is the 95% confidence interval.

properties (Figure 2(a)), it has poor realizability, which will negatively affect its OPE accuracy.
KROPE, on the other hand, has favorable stability and realizability properties up till d = 30. When
d ≥ 40, the realizability error is 0 for all algorithms since the subspace spanned by Φ is large enough
to contain the true action-value function (Ghosh & Bellemare, 2020). While the realizability error
is 0 for d ≥ 40, the representations can be unstable (Figure 2(a)).

Generalization. Finally, we say that the representations have generalized well when state-actions
that have similar qπe values are close to each other in the representation space (Lyle et al., 2022).
We assess generalization by measuring the orthogonality: 1 − |⟨ϕ(s1,a1),ϕ(s2,a2)⟩|

∥ϕ(s1,a1)∥∥ϕ(s2,a2)∥ (Wang et al.,
2024) between every state-action pair, (s1, a1; s2, a2), and the absolute action-value difference:
|qπe(s1, a1)−qπe(s2, a2)|. We then compute the Pearson correlation between these values for every
pair and plot the correlation for each d in Figure 2(c). A correlation coefficient close to 1 indicates
that the representations generalize well. We find that KROPE representations satisfy this property
almost perfectly since it specifically tries to learn representations such that state-action pairs with
similar values under πe are similar. We observe that the other algorithms typically have zero or even
negative correlation. A negative correlation indicates that state-actions with different action-values
may be similar in latent space, which can result in higher realizability error (Figure 2(b)). A near-
zero correlation but low realizability error such as in the case of FQE implies that accurate offline
value prediction is still possible but that it generalizes poorly, which may slow down convergence to
its OPE solution (Lyle et al., 2022).

4.3 OFFLINE POLICY EVALUATION

In this set of experiments, we conduct experiments on four DM control environments to answer our
second empirical question: whether KROPE representations lead to stable and low MSVE? We also
evaluate BCRL-NA, which is BCRL without the exploration maximization regularizer. To stabilize
training for all algorithms, we use wide neural networks with layernorm (Gallici et al., 2024; Ota
et al., 2021). Note that while wide networks and layernorm stabilize training, they may not lead to
stable LSPE under the linear evaluation protocol. During representation learning, we periodically
evaluate the learned representations for OPE using LSPE. The corresponding (normalized) squared
value errors are presented in Figure 3.

In general, we find that KROPE representations lead to low and stable MSVE. On the other hand,
we find that the other auxiliary tasks inconsistently produce stable OPE estimates across all environ-
ments. For example, the performance of the ABS-DR3 and BEER regularizer suggests that explicitly
trying to increase the rank of the features of the penultimate layer may hurt stability, and even if
the OPE error is stable, it can hurt accuracy. We also make a similar observation for BCRL. How-
ever, in this case, we attribute poor performance to difficulty in optimizing the BCRL objective. In
fact, in Figure 4(c), we will see that BCRL is sensitive to hyperparameter tuning. We also observe

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) CartPoleSwingUp (b) CheetahRun (c) FingerEasy (d) WalkerStand

Figure 3: Normalized squared value error achieved by LSPE when using a particular representation vs. repre-
sentation training epochs. LSPE estimates are computed every 10 epochs. Results are averaged over 20 trials
and the shaded region is the 95% confidence interval. Lower and less erratic is better.

results consistent with a known result that BCRL-EXP-NA performs better than BCRL-NA indicat-
ing the known result that exploration maximization of the covariance matrix helps produce stable
representations (Chang et al., 2022). Finally, while FQE achieves lower OPE error than KROPE on
WalkerStand, it is very unstable on CartPoleSwingUp and Finger Easy, which motivates the need to
shape the representations for stable and accurate OPE. We note that in the WalkerStand instance, the
higher error of KROPE is unsurprising since Lemma 3 suggests that KROPE may lose realizability (see
Appendix B.1). We refer the reader to Appendix C.1 for details of each algorithm. We also conduct
the same experiment on 9 D4RL datasets and reach the similar conclusions (see Appendix C.3.2).

(a) Feature Co-adaptation (b) Condition Number (c) Hyperparameter Sensitivity

Figure 4: Stability-related metrics to understand the properties of KROPE on CartPoleSwingUp. Values are
plotted as a function of training epochs. All results are averaged over 20 trials and shaded region is the 95%
confidence interval. For hyperparameter sensitivity, larger area under the curve is better.

4.3.1 ANALYZING STABILITY-RELATED METRICS

While KROPE performs well on the downstream task of OPE, it is important to analyze upstream
stability-related metrics during the course of learning. These results give insight into the properties
of the learned representations. We present the results in Figure 4 for CartPoleSwingUp and defer
the remaining results to the Appendix C.

Feature co-adaptation. The feature-co-adaptation metric, i.e.,
∑

(s,a,s′)∈D,a′∼πe
ϕ(s, a)⊤ϕ(s′, a′)

was shown to correlate with instability as high values can indicate representation collapse (Kumar
et al., 2021). From Figure 4(a), we find that KROPE mitigates representation collapse of FQE (low-
ers feature co-adaptation from 106 to 105). Its relatively moderate value indicates that it is able to
balance generalization and maintain distinctness between state-action representations. While low
co-adaptation is preferred, extremely low values such as those achieved by ABS-DR3 do not neces-
sarily lead to accurate OPE (see Figure 3). These results tell us which algorithms are more prone to
representation collapse.

Condition number. Another metric that we analyze is the condition number of the covariance ma-
trix M := E[Φ⊤Φ]. A low condition number indicates numerical stability of the learning algorithm,
i.e., solutions recovered by LSPE (see Equation (1)) or general TD algorithms (Asadi et al., 2024)
are less likely to change with small perturbations to M (Chang et al., 2022). From Figure 4(b),

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

we find that KROPE achieves lower condition number than FQE (from 104 to 101). As excepted,
we observe that BCRL-EXP-NA achieves an even lower condition since it explicitly optimizes for a
well-conditioned covariance matrix (104 to 103). While there is no ideal value, these results indicate
the reliability of the representations in enabling TD-based algorithms to recover their value function
solution. We observe qualitatively similar results for other environments (see Appendix C).

Hyperparameter Sensitivity. In OPE, hyperparameter tuning can be challenging since it may be
infeasible to get access to ground truth performance of πe (Fu et al., 2021). Therefore, we prefer
algorithms that are robust to hyperparameter tuning, i.e, they reliably produce accurate OPE estimates
for a wide range of hyperparameters. In Figure 4(c), we present the performance profile for each
algorithm across all hyperparameter combinations and all trials (Agarwal et al., 2021). We tune the
hyperparameters discussed in Appendix C.1. We find that 100% KROPE runs across all instances
produce MSVE ≤ 1, which is not the case with other algorithms.

Takeaway #2: Practical Stable and Accurate Offline Policy Evaluation

OPE practitioners can use KROPE for stable and accurate evaluation of offline RL agents.

5 LIMITATIONS AND FUTURE WORK

In this section, we discuss limitations and future work. A shortcoming of our work is that KROPE’s
learning algorithm is susceptible to instability since it is a semi-gradient method (Sutton & Barto,
2018). Moreover, its fixed-point optimization means it does not solve any objective function (Feng
et al., 2019). In our work, we employed commonly-used techniques such as layernorm and wide
neural networks to mitigate instability (Ota et al., 2021; Gallici et al., 2024). While these tech-
niques potentially side-step the issue, the consequences of a semi-gradient method may still exist.
In Appendix C.3.1, we present an empirical analysis to gauge when KROPE’s learning algorithm
may be unstable. We find that while individual off-policy transitions can determine the instability of
fixed-point and semi-gradient algorithms such as FQE, pairs of off-policy transitions can determine
KROPE’s instability. Since we are unlikely to have control over the distribution over pairs of transi-
tions in practice, we need to resort to fundamental changes to the algorithm. One potential change is
based on that by Feng et al. (2019). Their key insight is to leverage the Legendre-Fenchel transfor-
mation from optimization theory and replace the fixed-point loss function of semi-gradient methods
with an equivalent expression that avoids semi-gradient learning (Rockafellar & Wets, 1998). How-
ever, a drawback with this approach is that the new learning objective is a minimax procedure,
which can be challenging to optimize in practice. In future work, we will explore the viability of
this approach to design a provably convergent version of KROPE.

6 CONCLUSION

In this work, we tackled the problem of stabilizing offline value function learning in reinforcement
learning. We introduced a bisimulation-based representation learning algorithm, kernel represen-
tations for OPE (KROPE), that shapes the state-action representations to stabilize this procedure.
Theoretically, we showed that KROPE representations are stable from two perspectives: 1) non-
expansiveness, i.e., they lead to value function learning updates that enable convergence to a fixed-
point and 2) Bellman completeness, i.e., they satisfy a condition for data-efficient policy evaluation.
Empirically, we showed that KROPE leads to more stable and accurate offline value function learn-
ing than baselines. Our work showed that bisimulation-based representation learning effectively
stabilizes long-term performance evaluations of offline reinforcement learning agents.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Thomas Welsh Archibald, K. I. M. McKinnon, and Lyn C. Thomas. On the generation of markov
decision processes. Journal of the Operational Research Society, 46:354–361, 1995. URL
https://api.semanticscholar.org/CorpusID:56653344.

Sanjeev Arora, Simon S. Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable rep-
resentation learning for imitation learning via bi-level optimization, 2020. URL https:
//arxiv.org/abs/2002.10544.

Kavosh Asadi, Shoham Sabach, Yao Liu, Omer Gottesman, and Rasool Fakoor. Td convergence:
an optimization perspective. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Leemon C. Baird. Residual algorithms: Reinforcement learning with function approxima-
tion. In International Conference on Machine Learning, 1995. URL https://api.
semanticscholar.org/CorpusID:621595.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic Markov
Decision Processes, November 2019. URL http://arxiv.org/abs/1911.09291.
arXiv:1911.09291 [cs, stat].

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. MICo: Im-
proved representations via sampling-based state similarity for Markov decision processes.
arXiv:2106.08229 [cs], January 2022. URL http://arxiv.org/abs/2106.08229.
arXiv: 2106.08229.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. A kernel
perspective on behavioural metrics for markov decision processes. TMLR, 2023. URL
https://openreview.net/forum?id=nHfPXl1ly7&referrer=%5BAuthor%
20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions).

Jonathan Chang, Kaiwen Wang, Nathan Kallus, and Wen Sun. Learning Bellman Complete Repre-
sentations for Offline Policy Evaluation. In Proceedings of the 39th International Conference on
Machine Learning, pp. 2938–2971. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/chang22b.html. ISSN: 2640-3498.

Jianda Chen and Sinno Pan. Learning representations via a robust behavioral met-
ric for deep reinforcement learning. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 36654–36666. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
eda9523faa5e7191aee1c2eaff669716-Paper-Conference.pdf.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learn-
ing. In International Conference on Machine Learning, 2019. URL https://api.
semanticscholar.org/CorpusID:141460093.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learn-
ing with auxiliary tasks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=oGDKSt9JrZi.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Ir-
pan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal.
Stop regressing: Training value functions via classification for scalable deep RL. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=dVpFKfqF3R.

Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the bellman equa-
tion. ArXiv, abs/1905.10506, 2019. URL https://api.semanticscholar.org/
CorpusID:166228108.

Norm Ferns and Doina Precup. Bisimulation metrics are optimal value functions. In Proceedings of
the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, pp. 210–219, Arling-
ton, Virginia, USA, 2014. AUAI Press. ISBN 9780974903910.

11

https://api.semanticscholar.org/CorpusID:56653344
https://arxiv.org/abs/2002.10544
https://arxiv.org/abs/2002.10544
https://api.semanticscholar.org/CorpusID:621595
https://api.semanticscholar.org/CorpusID:621595
http://arxiv.org/abs/1911.09291
http://arxiv.org/abs/2106.08229
https://openreview.net/forum?id=nHfPXl1ly7&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
https://openreview.net/forum?id=nHfPXl1ly7&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
https://proceedings.mlr.press/v162/chang22b.html
https://proceedings.mlr.press/v162/chang22b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/eda9523faa5e7191aee1c2eaff669716-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/eda9523faa5e7191aee1c2eaff669716-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:141460093
https://api.semanticscholar.org/CorpusID:141460093
https://openreview.net/forum?id=oGDKSt9JrZi
https://openreview.net/forum?id=dVpFKfqF3R
https://openreview.net/forum?id=dVpFKfqF3R
https://api.semanticscholar.org/CorpusID:166228108
https://api.semanticscholar.org/CorpusID:166228108

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, pp.
162–169, Arlington, Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011. doi: 10.1137/
10080484X. URL https://doi.org/10.1137/10080484X.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R. Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine,
and Thomas Paine. Benchmarks for deep off-policy evaluation. In ICLR, 2021. URL https:
//openreview.net/forum?id=kWSeGEeHvF8.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should i
trust you, bellman? evaluating the bellman objective with off-policy data, 2022. URL https:
//openreview.net/forum?id=MUpxS9vDbZr.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning, 2024. URL https:
//arxiv.org/abs/2407.04811.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deep-
MDP: Learning Continuous Latent Space Models for Representation Learning. Technical Re-
port arXiv:1906.02736, arXiv, June 2019. URL http://arxiv.org/abs/1906.02736.
arXiv:1906.02736 [cs, stat] type: article.

Dibya Ghosh and Marc G. Bellemare. Representations for stable off-policy reinforcement learning.
In Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL
http://jmlr.org/papers/v13/gretton12a.html.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent
a new approach to self-supervised learning. In Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9726–9735, 2020. doi: 10.1109/CVPR42600.2020.00975.

Qiang He, Tianyi Zhou, Meng Fang, and Setareh Maghsudi. Adaptive regularization of represen-
tation rank as an implicit constraint of bellman equation. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
apXtolxDaJ.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipen-
dra Misra, Xin Li, Harm van Seijen, Remi Tachet des Combes, and John Langford. Agent-
controller representations: Principled offline rl with rich exogenous information, 2023. URL
https://arxiv.org/abs/2211.00164.

12

https://doi.org/10.1137/10080484X
https://openreview.net/forum?id=kWSeGEeHvF8
https://openreview.net/forum?id=kWSeGEeHvF8
https://openreview.net/forum?id=MUpxS9vDbZr
https://openreview.net/forum?id=MUpxS9vDbZr
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
http://arxiv.org/abs/1906.02736
http://jmlr.org/papers/v13/gretton12a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=apXtolxDaJ
https://openreview.net/forum?id=apXtolxDaJ
https://arxiv.org/abs/2211.00164

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
4764–4777, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
256bf8e6923a52fda8ddf7dc050a1148-Abstract.html.

Mete Kemertas and Allan Jepson. Approximate policy iteration with bisimulation metrics, 2022.
URL https://arxiv.org/abs/2202.02881.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
Dr3: Value-based deep reinforcement learning requires explicit regularization, 2021. URL
https://arxiv.org/abs/2112.04716.

Charline Le Lan, Marc G. Bellemare, and Pablo Samuel Castro. Metrics and continuity in reinforce-
ment learning. 2021.

Hoang M. Le, Cameron Voloshin, and Yisong Yue. Batch Policy Learning under Constraints. In
International Conference on Machine Learning (ICML). arXiv, March 2019. URL http://
arxiv.org/abs/1903.08738. arXiv:1903.08738 [cs, math, stat].

Lucas Lehnert and Michael L. Littman. Successor features combine elements of model-free and
model-based reinforcement learning. Journal of Machine Learning Research, 21(196):1–53,
2020. URL http://jmlr.org/papers/v21/19-060.html.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a Unified Theory of State Abstraction
for MDPs. pp. 10, 2006.

Clare Lyle, Mark Rowland, Will Dabney, Marta Z. Kwiatkowska, and Yarin Gal. Learning dynamics
and generalization in reinforcement learning. ArXiv, abs/2206.02126, 2022. URL https://
api.semanticscholar.org/CorpusID:249146731.

Yi Ma, Hongyao Tang, Dong Li, and Zhaopeng Meng. Reining generalization in offline reinforce-
ment learning via representation distinction. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Asso-
ciates Inc.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive
fourier features. In Proceedings of the 35th International Conference on Neural Information
Processing Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
9781713845393.

Angelia Nedic and Dimitri Bertsekas. Least squares policy evaluation algorithms with linear func-
tion approximation. Discrete Event Dynamic Systems, 13:79–110, 01 2003. doi: 10.1023/A:
1022192903948.

Keita Ota, Devesh K. Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. ArXiv, abs/2102.07920, 2021. URL https://api.semanticscholar.org/
CorpusID:231934052.

Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert
Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.

Brahma S. Pavse and Josiah P. Hanna. State-Action Similarity-Based Representations for Off-Policy
Evaluation. In Proceedings of Advances in Neural Information Processing Systems (NeurIPS),
December 2023a.

13

https://proceedings.neurips.cc/paper/2021/hash/256bf8e6923a52fda8ddf7dc050a1148-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/256bf8e6923a52fda8ddf7dc050a1148-Abstract.html
https://arxiv.org/abs/2202.02881
https://arxiv.org/abs/2112.04716
http://arxiv.org/abs/1903.08738
http://arxiv.org/abs/1903.08738
http://jmlr.org/papers/v21/19-060.html
https://api.semanticscholar.org/CorpusID:249146731
https://api.semanticscholar.org/CorpusID:249146731
http://dx.doi.org/10.1038/nature14236
https://api.semanticscholar.org/CorpusID:231934052
https://api.semanticscholar.org/CorpusID:231934052

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Brahma S Pavse and Josiah P Hanna. Scaling Marginalized Importance Sampling to High-
Dimensional State-Spaces via State Abstraction. In Proceedings of the AAAI Conference on
Artificial Intelligence, February 2023b.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the Seventeenth International Conference on Machine Learning,
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.
ISBN 1558607072.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg,
Berlin, New York, 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, 2010.
ISBN 1608454924.

Csaba Szepesvári and Rémi Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, pp. 880–887,
New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595931805. doi:
10.1145/1102351.1102462. URL https://doi.org/10.1145/1102351.1102462.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Ávila Pires, Yash Chan-
dak, Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle,
András György, Shantanu Thakoor, Will Dabney, Bilal Piot, Daniele Calandriello, and Michal
Valko. Understanding self-predictive learning for reinforcement learning. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Mar-
tin A. Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018. URL http:
//arxiv.org/abs/1801.00690.

J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997. doi: 10.1109/9.580874.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl
in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

Cameron Voloshin, Hoang Minh Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track (Round 1), 2021. URL https:
//openreview.net/forum?id=IsK8iKbL-I.

Han Wang, Erfan Miahi, Martha White, Marlos C. Machado, Zaheer Abbas, Raksha Kumaraswamy,
Vincent Liu, and Adam White. Investigating the properties of neural network representations
in reinforcement learning. Artificial Intelligence, 330:104100, 2024. ISSN 0004-3702. doi:
https://doi.org/10.1016/j.artint.2024.104100. URL https://www.sciencedirect.com/
science/article/pii/S0004370224000365.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham Kakade. Instabilities of Offline RL
with Pre-Trained Neural Representation. In Proceedings of the 38th International Conference on
Machine Learning, pp. 10948–10960. PMLR, July 2021a. URL https://proceedings.
mlr.press/v139/wang21z.html. ISSN: 2640-3498.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham M. Kakade. Instabilities of offline RL
with pre-trained neural representation. CoRR, abs/2103.04947, 2021b. URL https://arxiv.
org/abs/2103.04947.

14

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/1102351.1102462
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://openreview.net/forum?id=IsK8iKbL-I
https://openreview.net/forum?id=IsK8iKbL-I
https://www.sciencedirect.com/science/article/pii/S0004370224000365
https://www.sciencedirect.com/science/article/pii/S0004370224000365
https://proceedings.mlr.press/v139/wang21z.html
https://proceedings.mlr.press/v139/wang21z.html
https://arxiv.org/abs/2103.04947
https://arxiv.org/abs/2103.04947

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mengjiao Yang and Ofir Nachum. Representation Matters: Offline Pretraining for Sequential De-
cision Making. In Proceedings of the 38th International Conference on Machine Learning,
pp. 11784–11794. PMLR, July 2021. URL https://proceedings.mlr.press/v139/
yang21h.html. ISSN: 2640-3498.

Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and Romain
Laroche. Behavior prior representation learning for offline reinforcement learning, 2023a. URL
https://arxiv.org/abs/2211.00863.

Hongyu Zang, Xin Li, Leiji Zhang, Yang Liu, Baigui Sun, Riashat Islam, Remi Tachet des Combes,
and Romain Laroche. Understanding and addressing the pitfalls of bisimulation-based representa-
tions in offline reinforcement learning. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023b. URL https://openreview.net/forum?id=sQyRQjun46.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning In-
variant Representations for Reinforcement Learning without Reconstruction, April 2021. URL
http://arxiv.org/abs/2006.10742. arXiv:2006.10742 [cs, stat].

15

https://proceedings.mlr.press/v139/yang21h.html
https://proceedings.mlr.press/v139/yang21h.html
https://arxiv.org/abs/2211.00863
https://openreview.net/forum?id=sQyRQjun46
http://arxiv.org/abs/2006.10742

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A BACKGROUND

In this section, we present the theoretical background.

A.1 BISIMULATION METRICS

In this section, we present background information on bisimulations and its associated metrics.
Our proposed representation learning algorithm is a bisimulation-based algorithm. Bisimulation ab-
stractions are those under which two states with identical reward functions and that lead to identical
groups of next states under any action are classified as similar (Ferns et al., 2004; 2011; Ferns &
Precup, 2014). Bisimulations are the strictest forms of abstractions. In practice, the exact bisimula-
tion criterion is difficult to satisfy computationally and statistically. A more relaxed version of this
notion is the π-bisimulation metrics. These metrics capture the similarity between two states such
that two states are considered similar if they have identical expected reward functions and expected
transitions to identical groups of next states under a fixed policy π (Castro, 2019).

We first give the definition of bisimulation.

Definition 4. (Li et al., 2006) An abstraction ϕ : S → Sϕ over the state space S is a bisimulation
if for any action a and any abstract state sϕ ∈ Sϕ, ϕ is such that for any two states s1, s2 ∈ X ,
ϕ(s1) = ϕ(s2) implies that r(s1, a) = r(s2, a) and

∑
s′∈sϕ P (s

′|s1, a) =
∑

s′∈sϕ P (s
′|s2, a).

Below we define π-bisimulations for state-actions instead of states:

Definition 5. (Castro, 2019) An abstraction ϕ : X → X ϕ over the state-action space X is a π-
bisimulation for a fixed policy π if for any two state-actions x, y ∈ X and abstract state-action
xϕ ∈ X ϕ, ϕ is such that ϕ(x) = ϕ(y) implies that r(x) = r(y) and

∑
x′∈xϕ Pπ(x′|x) =∑

x′∈xϕ Pπ(x′|y).

The above definitions are based on exact groupings between state-actions. This strictness motivates
the use of bisimulation and π-bisimulation metrics, which we define below.

Theorem 3. (Ferns et al., 2004) Let M(S) be the space of bounded pseudometrics on the state-
space S. Then define B :M(S)→M(S) such that for each d ∈M(S):

B(d)(s1, s2) = max
a∈A

(|r(s1, a)− r(s2, a)|+ γW(d)(P (·|s1, a), P (·|s2, a)),

whereW is Wasserstein distance between the two distributions under metric d. Then B has a unique
fixed point, d∗, and d∗ is a bisimulation metric.

Similarly, we have the π-bisimulation metric:

Theorem 4. (Castro, 2019) LetM(X) be the space of bounded pseudometrics on the state-action
space X and π be a fixed policy. Then define B :M(X)→M(X) such that for each d ∈M(S):

B(d)(x, y) = |r(x)− r(y)|+ γW(d)(Pπ(·|x), Pπ(·|y)),

whereW is Wasserstein distance between the two distributions under metric d. Then B has a unique
fixed point, d∗, and d∗ is a π-bisimulation metric.

Using the above metrics, prior works have introduced several representation learning algorithms to
learn representations such that the distance between representations in latent space model the above
distance metrics (Castro et al., 2022; 2023; Zhang et al., 2021; Kemertas & Aumentado-Armstrong,
2021; Pavse & Hanna, 2023a).

A.2 REPRODUCING KERNEL HILBERT SPACES

Let X be a finite set and define a function k : X × X → R to be a positive semidefinite ker-
nel if it is symmetric and positive semidefinite. We then have for any {x1, x2, ..., xn} ∈ X and
{c1, c2, ..., cn} ∈ R:

n∑
i=1

n∑
j=1

ci, cjk(xi, xj) ≥ 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Note that if the above inequality is strictly greater than zero whenever {c1, . . . , cn} has at least one
nonzero, we say the kernel is positive definite. Given a kernel k on X with the reproducing property,
we can construct a space of functions Hk referred to as a reproducing kernel Hilbert space (RKHS)
with the following steps:

1. Construct a vector space of real-valued functions on X of the form {k(x, ·) : x ∈ X}.

2. Equip this space with an inner product given by ⟨k(x, ·), k(y, ·)⟩Hk
= k(x, y).

3. Take the completion of the vector space with respect to the above inner product.

Our resulting vector spaceHk is then an RKHS.

It is often convenient to write ψ(x) := k(x, ·) ∈ Hk, which is called the feature map and is an
embedding of x inHk. One can also embed probability distributions intoHk. That is, Φ : P(X)→
Hk, which maps probability distributions over X toHk. We define Φ(µ) = EX∼µ[ψ(X)], which is
the mean embedding inHk under µ.

Given these embeddings in the Hilbert space, we can quantify the distances between elements in X
and P(X) in terms of the embeddings.

Definition 6. Given a positive semidefinite kernel k, define ρk as its induced distance:

ρk := ∥ψ(x)− ψ(y)∥Hk
.

By expanding the inner product, the squared distance can be written in terms of k:

ρ2k(x, y) = k(x, x) + k(y, y)− 2k(x, y).

Similarly, we have distances on P(X) using Φ:

Definition 7. (Gretton et al., 2012) Let k be a kernel on X and Φ : P(X) → Hk be as defined
above. Then the Maximum Mean Discrepancy (MMD) is a pseudo metric on P(X) defined by:

MMD(k)(µ, ν) = ∥Φ(µ)− Φ(ν)∥Hk
.

The core usage of the RKHS is to precisely characterize the nature of the KROPE kernel. In practice,
we deal with neural network representations, which are embedded in Euclidean space. Therefore,
our goal is to learn representations in Euclidean space that approximate the properties of representa-
tions in the RKHS. For more details on the RKHS, we refer readers to Castro et al. (2023) and Gretton
et al. (2012).

A.3 ALGORITHM PSEUDOCODE

In this section, we present the pseudocode for LSPE and for our FQE + auxiliary task with LSPE for
OPE setup.

Algorithm 1 LSPE

1: Input: policy to evaluate πe, batch D, fixed encoder function ϕ : S ×A → Rd.
2: Initialize θ0 ∈ Rd randomly.
3: Apply ϕ to D to generate Φ.
4: for t = 0, 1, 2, ... T − 1 do
5: θt+1 ← (E[Φ⊤Φ])−1E[Φ⊤(r + γPπeΦθt)]
6: end for
7: Return θT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 2 FQE + representation learning auxiliary task with LSPE for OPE

1: Input: policy to evaluate πe, batchD, encoder parameters class Ω, encoder function ϕ : S×A →
Rd, action-value linear function q : Rd → R, α ∈ [0, 1].

2: for epoch = 1, 2, 3, ... T do
3: L(ω) := αAux-Task(ϕω,D, πe)+(1−α)E(s,a,s′)∼D

[(
r(s, a) + γEa′∼πe

[qξ̄(ϕω̂(s
′, a′))]− qξ(ϕω̂(s, a))

)2]
{where the penultimate features ϕ are fed into an auxiliary representation learning algorithm
such as KROPE, DR3, BEER etc.}

4: ω̂t := argminω∈Ω L(ω)
5: Periodically run LSPE, θ := LSPE(πe,D, ϕω).
6: Compute estimated action-values, q̂ := Φω̂t

θ. {where ϕω̂ is applied to D to get Φω}
7: end for
8: Return q̂ := Φω̂T

θ. {Estimated action-value function of πe, qπe .}

B THEORETICAL RESULTS

In this section, we present the proofs of our main and supporting theoretical results. The first set of
proofs in Section B.1 show that KROPE is a valid operator. While new to our work, the proofs follow
those by Castro et al. (2023). The next set of proofs in Section B.2 prove the stability of KROPE
representations and are novel to our work. For presentation purposes, it will often be convenient to
refer to a state-action pair as x ∈ X instead of (s, a).

B.1 KROPE OPERATOR VALIDITY

We now present the proofs demonstrating the validity of the KROPE operator. All the proofs in this
sub-section model those by Castro et al. (2023). The primary difference is that our operator is for
state-actions instead of states.
Lemma 1. Let K(X) be the space of positive semidefinite kernels on X . The KROPE operator Fπe

is a contraction with modulus γ in ∥ · ∥∞.

Proof. Let k1, k2 ∈ K(X). We then have:

∥Fπe(k1)−Fπe(k2)∥∞
= max

(x,y)∈X×X
|Fπe(k1)(x, y)−Fπe(k2)(x, y)|

= γ max
(x,y)∈X×X

|EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k1(X
′, Y ′)]− EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k2(X

′, Y ′)]|

= γ max
(x,y)∈X×X

|EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k1(X
′, Y ′)− k2(X ′, Y ′)]|

≤ γ∥k1 − k2∥∞.
This completes the proof of the lemma.

Lemma 2. Let K(X) be the space of positive semidefinite kernels on X . Then the metric space
(K(X), ∥ · ∥∞) is complete.

Proof. To show that K(X) is complete it suffices to show that every Cauchy sequence {kn}n≥0 has
a limiting point in K(X). Since X is a finite, the space of function RX×X is a finite-dimensional
vector space, which is complete under ∥ · ∥∞. Thus, the limiting point k ∈ RX×X of the Cauchy
sequence {kn}n≥0 lies in RX×X . Moreover, since we are considering only positive semidefinite
kernel elements in the Cauchy sequence and they uniformly converge to k ∈ RX×X , k must also be
positive semidefinite. Thus, K(X) is complete under ∥ · ∥∞.

Proposition 2. The KROPE operator Fπe has a unique fixed point in K(X). That is, there is a
unique kernel kπe ∈ K(X) satisfying

kπe(s1, a1; s2, a2) = 1− |r(s1, a1)− r(s2, a2)|
|rmax − rmin|

+ γEs′1,s
′
2∼P,a′

1,a
′
2∼πe

[kπe(s′1, a
′
1; s

′
2, a

′
2)].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. Due to Lemmas 1 and 2, Fπe is a contraction in a complete metric space. Therefore, by
Banach’s fixed point theorem, the unique fixed point kπe exists.

Proposition 3. The KROPE similarity metric dKROPE satisfies:

∀x, y ∈ X , dKROPE(x, y) = |r(x)− r(y)|+ γMMD2(kπe)(Pπe(·|x), Pπe(·|y)).

Proof. To see this fact, we can write out the squared Hilbert space distance:

dKROPE(x, y) = ∥ψπe(x)− ψπe(y)∥2Hπe
k

= kπe(x, x) + kπe(y, y)− 2kπe(x, y)

= |r(x)− r(y)|+ γ⟨Φ(Pπe(·|x)),Φ(Pπe(·|x))⟩Hπe
k

+ γ⟨Φ(Pπe(·|y)),Φ(Pπe(·|y))⟩Hπe
k

−2γ⟨Φ(Pπe(·|x)),Φ(Pπe(·|y))⟩Hπe
k

= |r(x)− r(y)|+ γMMD2(kπe)(Pπe(·|x), Pπe(·|y)),

where the third line uses

kπe(x, x) = γEX′
1,X

′
2∼Pπe (·|x)[k

πe(X ′
1, X

′
2)] = γ⟨Φ(Pπe(·|x), Pπe(·|x)⟩Hπe

k
.

This completes the proof.

Before presenting Lemma 3, we define the distance metric dKROPE : X × X → R induced by the
KROPE kernel kπe as follows:

∀x, y ∈ X : dKROPE(x, y) := kπe(x, x) + kπe(y, y)− 2kπe(x, y).

Lemma 3. We have |qπe(x) − qπe(y)| ≤ dKROPE(x, y) + C, where C = 1
2

∑
n≥0 γ

n(∆πe
n (x) +

∆πe
n (y)) and ∆πe

n (x) = EX′∼(Pπe (·|x))n
[
EX

′′
1 ,X

′′
2 ∼Pπe (·|X′)

[
|r(X ′′

1)− r(X
′′

2)|
]]

.

Proof. We will prove this with induction. We first define the relevant terms involved. We consider
the sequences of functions {km}m≥0 and {qm}m≥0, where k0, q0 = 0. Since Fπe and T πe are
contraction mappings, we know that limm→∞ km = kπe and limm→∞ qm = qπe as Fπe and T πe

are applied respectively at each iteration m. At the mth application of the operators, we have the
corresponding kernel function km along with its induced distance function dm(x, y) = km(x, x) +
km(y, y)− 2km(x, y). We will now prove the following for all m:

|qm(x)− qm(y)| ≤ dm(x, y) +
1

2

m∑
n≥0

γn(∆πe
n (x) + ∆πe

n (y)) (6)

where ∆πe
n (x) = EX′∼(Pπe (·|x))n [EX

′′
1 ,X

′′
2 ∼Pπe (·|X′)[|r(X

′′

1)− r(X
′′

2)|]].

The base case m = 0 follows immediately since the LHS is zero while the RHS can be non-zero.
We now assume the induction hypothesis in Equation (6) is true. We then consider iteration m+ 1:

|qm+1(x)− qm+1(y)|
=
∣∣r(x) + γEX′∼Pπe (·|x)[qm(X ′)]− r(y)− γEY ′∼Pπe (·|y)[qm(Y ′)]

∣∣
≤ |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[|qm(X ′)− qm(Y ′)|]

≤ |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m∑
n=0

γn(∆πe
n (X ′) + ∆πe

n (Y ′))

]

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where we have used the fact that EX′∼Pπe (·|x)[∆
πe
n (X ′)] = ∆πe

n+1(x). We can then proceed from
above as follows:

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

]
≤|r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[dm(X ′, Y ′)]

+
1

2
EX′

1,X
′
2∼Pπe (·|x)

Y ′
1 ,Y

′
2∼Pπe (·|y)

[|r(X ′
1)− r(X ′

2)|+ |r(Y ′
1)− r(Y ′

2)|]

+
1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[dm(X ′, Y ′)] +
1

2

m+1∑
n=0

γn(∆πe
n (x) + ∆πe

n (y))

= dm+1(x, y) +
1

2

m+1∑
n=0

γn(∆πe
n (x) + ∆πe

n (y))

We thus have |qm+1(x)− qm+1(y)| ≤ dm+1(x, y) +
1
2

∑m+1
n=0 γ

n(∆πe
n (x) +∆πe

n (y)), which com-
pletes the proof.

Lemma 3 tells us that the KROPE state-actions that are close in latent space also have similar action-
values upto a constant C := 1

2

∑m+1
n=0 γ

n(∆πe
n (x) + ∆πe

n (y)). Intuitively, ∆πe
n (x) is the expected

absolute reward difference between two trajectories at the nth step after πe is rolled out from x. If
the transition dynamics and πe are deterministic, we have C = 0 (Castro, 2019; Zhang et al., 2021).
Note that while the deterministic transition dynamics assumption is eliminated, the bound suggests
that KROPE may hurt accuracy of q̂πe since when dKROPE(x, y) = 0, we get |qπe(x)− qπe(y)| ≤ C.
This indicates that two state-actions that may have different action-values are considered the same
under KROPE. This implies that while x and y should have different representations, they actually
may have the same representation.

B.2 KROPE STABILITY

In this section we present our main results. We present supporting theoretical results in Section B.2.1
and main theoretical results in Section B.3. To the best of our knowledge, even the supporting proofs
in Section B.2.1 are new.

B.2.1 SUPPORTING THEORETICAL RESULTS

We present the following definitions that we refer to in our proofs.
Definition 8 (Bellman completeness (Chen & Jiang, 2019)). The function class F is said to be
Bellman complete if ∀f ∈ F , it holds that T πef ∈ F . That is supf∈F infg∈F ∥g − T πef∥∞ = 0,
where F ⊂ X → [rmin

1−γ ,
rmax
1−γ], and T πe is the Bellman operator.

Definition 9 (Piece-wise constant functions (Chen & Jiang, 2019)). Given a state-action abstraction
ϕ, let Fϕ ⊂ X → [rmin

1−γ ,
rmax
1−γ]. Then f ∈ Fϕ is said to be a piece-wise constant function if

∀x, y ∈ X where ϕ(x) = ϕ(y), we have f(x) = f(y).

Proposition 4. If a state-action abstraction function ϕ : X → X ϕ is a πe-bisimulation abstraction,
then Fϕ is Bellman complete, that is, supf∈Fϕ inff ′∈Fϕ ∥f ′ − T πef∥∞ = 0.

Proof. We first define πe-bisimulation Castro (2019). Note that Castro (2019) considered only state
abstractions, while we consider state-action abstractions. ϕ is considered a πe-bisimulation abstrac-
tion if it induces a mapping between X and X ϕ such that for any x, y ∈ X such that x, y ∈ ϕ(x),
we have:

1. r(x) = r(y)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2. ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y)

Given our πe-bisimulation abstraction function ϕ, we can group state-actions actions according to
its definition above. Once we have this grouping, according to Definition 9, ϕ induces a piece-wise
constant (PWC) function class Fϕ. Note that by definition of ϕ we have:

ϵr := max
x1,x2:ϕ(x1)=ϕ(x2)

|r(x1)− r(x2)| = 0

ϵp := max
x1,x2:ϕ(x1)=ϕ(x2)

∣∣∣∣∣∣
∑

x′∈xϕ

Pπe(x′|x1)−
∑

x′∈xϕ

Pπe(x′|x2)

∣∣∣∣∣∣ = 0,∀xϕ ∈ X ϕ.

Once we have ϕ, we consider the following to show Bellman completeness. Our proof closely
follows the proof of Proposition 20 from Chen & Jiang (2019). First recall the definition of Bellman
completeness from Definition 8: ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ = 0. Given
that the smallest value ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ can take on is zero,
we will prove our claim by showing that ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ is
upper-bounded by zero when ϕ is a πe-bisimulation.

We will prove the upper bound by showing that there exists a function f ′ ∈ Fϕ such that ∥f ′ −
T πef∥∞ ≤ 0, which implies that inff ′∈Fϕ ∥f ′ − T πef∥∞ ≤ 0.

We now construct such a f ′ ∈ Fϕ. We first define the following terms for a given abstract state-
action xϕ ∈ X ϕ: x+ := argmaxx∈ϕ−1(xϕ)(T πef)(x) and x− := argminx∈ϕ−1(xϕ)(T πef)(x).
We can then define f ′ as follows:

f ′(x) :=
1

2
((T πef)(x+) + (T πef)(x−)),∀x ∈ xϕ.

And since this holds true for ∀x ∈ xϕ, f ′1 is piece-wise constant function. We can then upper bound
∥f ′ − T πef∥∞ as follows:

f ′1(x)− (T πef)(x)

≤ 1

2
((T πef)(x+) + (T πef)(x−))− (T πef)(x−)

=
1

2
((T πef)(x+)− (T πef)(x−))

=
1

2
(r(x+) + γEx′

+∼Pπe (x+)[f
πe(x′+)]− r(x−)− γEx′

−∼Pπe (x−)[f
πe(x′−)])

≤ γ

2

∣∣∣Ex′
+∼Pπe (x+)[f

πe(x′+)]− Ex′
−∼Pπe (x−)[f

πe(x′−)]
∣∣∣ (1)

=
γ

2

∣∣∣∣∣∑
x′∈X

[fπe(x′)(Pπe(x′|x+)− Pπe(x′|x−))]

∣∣∣∣∣
=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

 ∑
x′∈xϕ

fπe(x′)Pπe(x′|x+)−
∑

x′∈xϕ

fπe(x′)Pπe(x′|x−)

∣∣∣∣∣∣
=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

fπe(xϕ)

 ∑
x′∈xϕ

Pπe(x′|x+)−
∑

x′∈xϕ

Pπe(x′|x−)

∣∣∣∣∣∣ (2)

=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

fπe(xϕ)
(
Pr(xϕ|x+)− Pr(xϕ|x−)

)∣∣∣∣∣∣ (3)

≤ γ

2

∥∥Pr(xϕ|x+)− Pr(xϕ|x−)
∥∥
1
· ∥fπe(xϕ)∥∞ (4)

≤ 0 ϵp = 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where Pr denotes probability, (1) is due to maxx1,x2:ϕ(x1)=ϕ(x2) |r(x1) − r(x2)| = 0, (2) is due to
fπe(xϕ) = fπe(x),∀x ∈ xϕ since PWC, (3) is due to Pr(xϕ|x) =

∑
x′∈xϕ Pπe(x′|x), and (4) is

due to Hölder’s, ∥f(g)g(x)∥1 ≤ ∥f(x)∥1∥g(x)∥∞.

Similarly, we can show the other way around: (T πef)(x) − f ′1(x) ≤ 0 by giving the symmet-
ric argument starting with (T πef)(x) − f ′1(x) ≤ (T πef)(x+) − 1

2 ((T
πef)(x+) + (T πef)(x−)).

Therefore, when ϕ is a πe-bisimulation, we have supf∈Fϕ inff ′Fϕ ∥f ′ − T πef∥∞ = 0.

Lemma 4. Define the matrix K1 ∈ R|X |×|X| such that each entry is the short-term similarity, k1,
between every pair of state-actions, i.e., K1(s1, a1; s2, a2) := 1− 1

|rmax−rmin| |r(s1, a1)− r(s2, a2)|.
Then K1 is a positive semidefinite matrix.

Proof. Proposition 2.21 from Paulsen & Raghupathi (2016) states that any kernel k is positive
semidefinite if it takes the form: k(a, b) = min{a, b} where a, b ∈ [0,∞).

First, recall that r(s, a) ∈ [−1, 1], we then have each entry in the K1 matrix of the following kernel
form K1(x, y) = 1− 1

2 |x− y|. We can then re-write k1 as follows:

k1(x, y) = 1− 1

2
|x− y|

= 1 +
1

2
min{−x,−y}+ 1

2
min{x, y}

=
1

2
min{1− x, 1− y}︸ ︷︷ ︸

ka

+
1

2
min{1 + x, 1 + y}︸ ︷︷ ︸

kb

.

That is,

k1(x, y) = ka(x, y) + kb(x, y).

Since x ∈ [−1, 1], each term in the min function is non-negative. Thus, ka and kb are both positive
semidefinite kernels, which means k1 is also a positive semidefinite kernel. We then have that K1 is
a positive semidefinite matrix.

Lemma 5. Given a finite set X and a kernel k defined on X , let K = (k(x, y))x,y∈X ∈ R|X |×|X|

be the corresponding kernel matrix. If K is full-rank and MMD(k)(p, q) = 0 for two probability
distributions p and q on X , then p = q.

Proof. From Gretton et al. (2012), we have the definition of MMD between two probability distri-
butions p, q given kernel k:

MMD(k)(p, q) := ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥Hk
.

Now when MMD(k)(p, q) = 0, we have:

0 = ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥Hk
,

which implies

0 = ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥2
since all norms are equivalent in a finite-dimensional Hilbert space. With p and q viewed as vectors
in R|X |, the above equality means

0 = ∥Kp−Kq∥2.

Hence, K(p− q) = 0. Since K is full rank by assumption, we conclude that p = q.

Lemma 6. Suppose we have a reproducing kernel k defined on the finite space X , which produces
a reproducing kernel Hilbert space (RKHS) Hk, with the induced distance function d such that
d(x, y) = k(x, x) + k(y, y)− 2k(x, y),∀x, y ∈ X . When d(x, y) = 0, then k(x, ·) = k(y, ·).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. When d(x, y) = 0, we have 2k(x, y) = k(x, x) + k(y, y). Therefore, we the following
equalities:

k(x, x) + k(y, y) = 2k(x, y)

k(x, x)− k(x, y) = k(x, y)− k(y, y)
⟨k(x, ·), k(x, ·)⟩Hk

− ⟨k(x, ·), k(y, ·)⟩Hk
= ⟨k(x, ·), k(y, ·)⟩Hk

− ⟨k(y, ·), k(y, ·)⟩Hk
(1)

⟨k(x, ·), k(x, ·)− k(y, ·)⟩Hk
= ⟨k(x, ·)− k(y, ·), k(y, ·)⟩Hk

(2)
⟨k(x, ·), k(x, ·)− k(y, ·)⟩Hk

= ⟨k(y, ·), k(x, ·)− k(y, ·)⟩Hk
(3)

=⇒ k(x, ·) = k(y, ·)

where (1), (2), and (3) are is due to RKHS definition, linearity of inner product, and symmetry of
inner product respectively.

Proposition 5. Let x1, . . . , xn ∈ (0,∞) be n distinct and strictly positive numbers. Let K ∈ Rn×n

be the matrix with entries Kij = min{xi, xj}. Then K is a positive definite matrix.

Proof. By Proposition 2.21 in Paulsen & Raghupathi (2016), the matrix K is positive semidefinite,
so we only need to show that K is full rank. WLOG assume that 0 < x1 < x2 < · · · < xn. We
prove by induction on n. The base case with n = 1 clearly holds. Suppose the claim holds for n− 1
numbers. Now consider n numbers. Let α = (α1, . . . , αn)

⊤ ∈ Rn. It suffices to show that Kα = 0
implies α = 0. We write K in block matrix form as

K = x1Jn +

0 0 · · · 0
0 x2 − x1 · · · x2 − x1
... · · ·

. . . · · ·
0 x2 − x1 · · · xn − x1

 = x1

[
1 1 · · · 1
1 1 · · · 1

]
+

[
0 0 · · · 0
0 u2 · · · un

]
,

where Jn is the n-by-n all one matrix, 1 ∈ Rn−1 the all one vector, 0 ∈ Rn−1 the all zero vector,
and ui ∈ Rn−1, i = 2, . . . , n. It follow that

0 = Kα =

[
x1
∑n

i=1 αi

(x1
∑n

i=1 αi)1+
∑n

i=2 αiui

]
,

that is,

x1

n∑
i=1

αi = 0, (7)(
x1

n∑
i=1

αi

)
1+

n∑
i=2

αiui = 0. (8)

Plugging equation (7) into equation (8), we get
∑n

i=2 αiui = 0. By the induction hypothesis, the
(n− 1)-by-(n− 1) matrix

[u2 · · · un] =
[
min {xi − x1, xj − x1}

]
i,j=2,...,n

has full rank since the (n − 1) numbers x2 − x1, . . . , xn − x1 are distinct and strictly positive.
Therefore, we must have α2 = · · · = αn = 0. Plugging back into equation (7) and using x1 > 0,
we obtain α1 = 0.

B.3 MAIN KROPE THEORETICAL RESULTS

We now present the main theoretical contributions of our work.
Theorem 1. If Φ is a KROPE representation as defined in Definition 3, then the spectral radius of
(E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ] is less than 1. That is, Φ stabilizes LSPE.

Proof. Recall from Definition 3, we have:

E[ΦΦ⊤] = K1 + γE[PπeΦ(PπeΦ)⊤],

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where K1 ∈ R|X |×|X| such that each entry is the short-term similarity, k1, between every pair of
state-actions i.e. K1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| .

From this definition, we can proceed by left and right multiplying Φ⊤ and Φ respectively to get:

E[Φ⊤ΦΦ⊤Φ] = E[Φ⊤K1Φ] + γE[Φ⊤PπeΦ(PπeΦ)⊤Φ].

Notice that B := E[Φ⊤Φ] is the feature covariance matrix and C := E[Φ⊤PπeΦ] is the cross-
covariance matrix. By making the appropriate substitutions, we get:

BB⊤ = E[Φ⊤K1Φ] + γCC⊤.

We can then left and right multiply by B−1 and B−⊤ to get the following where L := γB−1C:

I = B−1E[Φ⊤K1Φ]B
−⊤ +

1

γ
LL⊤.

Rearranging terms gives

I − 1

γ
LL⊤ = B−1E[Φ⊤K1Φ]B

−⊤.

From Lemma 4, we know that K1 is positive semidefinite, which means that B−1E[Φ⊤K1Φ]B
−⊤

is also positive semidefinite. Therefore, the eigenvalues of LHS above must also be greater than or
equal to zero. Letting λ be the eigenvalue of L, we know that that the following must hold:

1− λ2

γ
≥ 0 =⇒ |λ| ≤ √γ.

Since γ < 1, the spectral radius of L = (E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) is always less than 1. Thus,
KROPE representations are stable. Finally, since KROPE representations are stable and due to Propo-
sition 1, KROPE representations stabilize LSPE.

Theorem 2. Let ϕ : X → X ϕ be the state-action abstraction induced by grouping state-actions
x, y ∈ X such that if dKROPE(x, y) = 0, then ϕ(x) = ϕ(y),∀x, y ∈ X . Then ϕ is Bellman complete
if the abstract reward function rϕ : X ϕ ↣ (−1, 1) is injective (i.e., distinct abstract rewards).

Proof. Our proof strategy is to show that the abstraction function ϕ due to KROPE is a πe-
bisimulation, which implies it is Bellman complete due to Proposition 4.

According to Propsition 3, dKROPE(x, y) = |r(x) − r(y)| + γMMD(kπe)(Pπe(·|x), Pπe(·|y)).
When dKROPE(x, y) = 0 for any two state-actions, it implies that r(x) = r(y) and
MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0.

For ϕ to be a πe-bisimulation, we need ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y) to
be true for any x, y ∈ X such that ϕ(x) = ϕ(y). While MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0,
it is possible that Pπe(·|x) ̸= Pπe(·|y). However, as we will show, under the assumption that
the abstract rewards rϕ are distinct ∀xϕ ∈ X ϕ, we do have ∀xϕ ∈ X ϕ,

∑
x′∈xϕ Pπe(x′|x) =∑

x′∈xϕ Pπe(x′|y). Before we proceed, we make the following technical assumption on the reward
function: r(x) ∈ (−1, 1),∀x ∈ X . The exclusion of the rewards −1 and 1 allows us to use
Proposition 5 to show that the KROPE kernel is positive definite instead of positive semi-definite.

Once we group state-actions x, y ∈ X together such that dKROPE(x, y) = 0, we have the corre-
sponding abstraction function ϕ : X → X ϕ. Accordingly, ϕ induces a Markov reward process,
Mϕ := ⟨X ϕ, rϕ, Pϕ, γ⟩ where rϕ is the abstract reward function rϕ : X ϕ → (−1, 1) and Pϕ is the
transition dynamics on the abstract MRP i.e. Pϕ(·|xϕ). We can also consider the abstract KROPE
kernel, kϕ(xϕ, yϕ), which measures the KROPE relation on X ϕ. Note that all these quantities are a
function of πe. We drop the notation for clarity. By this construction, we have:

rϕ(xϕ) = r(x),∀x ∈ xϕ Since all rewards are equal within xϕ

kϕ(xϕ, ·) = k(x, ·),∀x ∈ xϕ Lemma 6

Now, under the assumption that all abstract rewards rϕ(xϕ) are distinct ∀xϕ ∈ X ϕ, we have that
the kernel matrix Kϕ ∈ RXϕ×Xϕ

where each entry kϕ(xϕ, yϕ) is positive definite. To see this fact,
consider that:

kϕ(xϕ, yϕ) = kϕ1 (x
ϕ, yϕ) + γEXϕ∼Pϕ(·|xϕ),Y ϕ∼Pϕ(·|yϕ)[k

ϕ(Xϕ, Y ϕ)], (9)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where kϕ1 (x
ϕ, yϕ) := 1− 1

rϕmax−rϕmin
|rϕ(xϕ)− rϕ(yϕ)|. From Lemma 4, we know that kϕ1 is positive

semidefinite. However, under the assumption that all abstract rewards rϕ are distinct, Proposition 5
tells us that kϕ1 is positive definite. Given that kϕ(xϕ, yϕ) (Equation (9)) is just a summation of
positive definite kernels, kϕ is positive definite, which means Kϕ is positive definite.

We now consider when the MMD is zero. Again, by construction, we have the following when
MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0. For clarity, we use k instead of kπe .

0 = ∥EX′∼Pπe (·|x)[k(X
′, ·)]− EX′∼Pπe (·|y)[k(X

′, ·)]∥Hk

= ∥EX′∼Pπe (·|x)[k(X
′, ·)]− EX′∼Pπe (·|y)[k(X

′, ·)]∥2
= ∥

∑
x′∈X

Pπe(x′|x)k(x′, ·)−
∑
x′∈X

Pπe(x′|y)k(x′, ·)∥2

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

∑
x′∈xϕ

Pπe(x′|x)k(x′, ·)−
∑

xϕ∈Xϕ

∑
x′∈xϕ

Pπe(x′|y)k(x′, ·)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

kϕ(xϕ, ·)
∑

x′∈xϕ

Pπe(x′|x)−
∑

xϕ∈Xϕ

kϕ(xϕ, ·)
∑

x′∈xϕ

Pπe(x′|y)

∥∥∥∥∥∥
2

(1)

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

kϕ(xϕ, ·) Pr(xϕ|x)−
∑

xϕ∈Xϕ

kϕ(xϕ, ·) Pr(xϕ|y)

∥∥∥∥∥∥
2

Pr denotes probability

where (1) is due to kϕ(xϕ, ·) = k(x, ·),∀x ∈ xϕ From above, we can see that the kernel and
probability distributions are over X ϕ. In matrix notation, we can write the above as follows where
pϕ := Pr(·|x) and qϕ := Pr(·|y) are viewed as probability distribution vectors in R|Xϕ|.

0 =
∥∥Kϕpϕ −Kϕqϕ

∥∥
2

=⇒ pϕ = qϕ since Kϕ is positive definite, from Lemma 5.

We thus have ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y) to be true for any x, y ∈ X
such that ϕ(x) = ϕ(y). Given this condition holds true and r(x) = r(y),∀x, y ∈ X such that
ϕ(x) = ϕ(y), ϕ is a πe-bisimulation. From Proposition 4 we then have that ϕ is Bellman complete.

C EMPIRICAL DETAILS

In this section, we provide specific details on the empirical setup and additional results.

C.1 EMPIRICAL SETUP

General Training Details. In all the continuous state-action experiments, we use a neural net-
work with 1 layer and 1024 neurons using RELU activation function and layernorm to represent the
encoder ϕ : X → Rd (Gallici et al., 2024). We use mini-batch gradient descent to train the net-
work with mini-batch sizes of 2048 and for 500 epochs, where a single epoch is a pass over the
full dataset. We use the Adam optimizer with learning rate {1e−5, 2e−5, 5e−5} and weight decay
1e−2. The target network is updated with a hard update after every epoch. The output dimension
d is {|X |/4, |X |/2, 3|X |/4}, where |X | is the dimension of the original state-action space of the
environment. All our results involve analyzing this learned ϕ. Since FQE outputs a scalar, we add a
linear layer on top of the d-dimensional vector to output a scalar. The entire network is then trained
end-to-end. The discount factor is γ = 0.99. The auxiliary task weight with FQE for all representa-
tion learning algorithms is α = 0.1. When using LSPE for OPE, we invert the covariance matrix by
computing the pseudoinverse.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

In the tabular environments, we use a similar setup as above. The only changes are that we use a
linear network with a bias component but no activation function and fix the learning rate to be 1e−3.
For experiment in Appendix C.3.1, α = 0.8. We refer the reader pseudo-code in Appendix A.

Evaluation Protocol: OPE Error . As noted earlier, we measure OPE error by measuring
MSVE. To ensure comparable and interpretable values, we normalize the MSVE by dividing with
MSVE[qRAND] := E(S,A)∼D[(q

RAND(S,A) − qπe(S,A))2], where qRAND is the action-value func-
tion of a random-policy. Similarly, in the continuous state-action environments, we normalize by
MSVE[qRAND] := ES0∼d0,A0∼πe

[(qRAND(S0, A0) − qπe(S0, A0))
2]. Values less than one mean that

the algorithm estimates the true performance of πe better than a random policy.

Evaluation Protocol: Realizability Error. In tabular experiments, we normalize the realizability
error. After solving the least-squares problem ϵ := ∥Φŵ − qπe∥22, where ŵ := argminw ∥Φw −
qπe∥22. We divide ϵ by 1

|X |
∑

i |qπe(xi)| and plot this value.

Pearson Correlation. The formula for the Pearson correlation used in the main experiments is:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ and ȳ are the means of all the xi’s and yi’s respectively.

Custom Datasets. We generated the datasets by first training policies in the environment using
SAC (Haarnoja et al., 2018) and recording the trained policies during the course of training. For
each environment, we select 3 policies, where each contributes equally to generate a given dataset.
We set πe to be one of these policies. The expected discounted return of the policies and datasets for
each domain is given in Table 1 (γ = 0.99). In all environments, πe = π1

b (see Table 1). The values
for the evaluation and behavior policies were computed by running each for 300 unbiased Monte
Carlo rollouts, which was more than a sufficient amount for the estimate to converge. This process
results in total of 4 datasets, each of which consisted of 100K transitions.

Environments πe π1
b π2

b

CartPoleSwingUp 50 20 5
FingerEasy 100 71 32
HalfCheetah 51 27 2
WalkerStand 90 55 40

Table 1: Policy values of the target policy and behavior policy on DM-control (Tassa et al., 2018).

D4RL Datasets. Due to known discrepancy issues between newer environments of gym1, we gen-
erat our datasets instead of using the publicly available ones. To generate the datasets, we use the
publicly available policies 2. For each domain, the expert (and target policy) was the 10th (last
policy) from training. The medium (and behavior policy) was the 5th policy. We added a noise of
0.1 to the policies. The values for the evaluation and behavior policies were computed by running
each for 300 unbiased Monte Carlo rollouts , which was more than a sufficient amount for the es-
timate to converge. We set γ = 0.99. We evaluate on the Cheetah, Walker, and Hopper domains.
This generation process for three environments, led to 9 datasets, each of which consisted of 100K
transitions.

C.2 BASELINES

We provide details of the baselines in this section.

BCRL. Unlike the other algorithms, BCRL is not used as an auxiliary loss with FQE (Chang et al.,
2022). We use the same learning rates as mentioned above for {1e−5, 2e−5, 5e−5} when training

1https://github.com/Farama-Foundation/D4RL/tree/master
2https://github.com/google-research/deep_ope

26

https://github.com/Farama-Foundation/D4RL/tree/master
https://github.com/google-research/deep_ope

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

ϕ. As suggested by prior work, self-predictive algorithms such BCRL work well when network that
outputs the predicted next state-action is trained at a faster rate (Tang et al., 2023; Grill et al., 2020).
Accordingly, we set its learning rate to be 1e−4. For BCRL-EXP, which involves the log determinant
regularizer, we set this coefficient to 1e−2. BCRL’s hyperparameters are: the learning rates for ϕ,
M , and ρ; the output dimension of ϕ; and the log determinant coefficient (see Equation (10)).

DR3. The DR3 regularizer minimizes the total feature co-adaptation by adding the term∑
(s,a,s′)∈D,a′∼πe

ϕ(s, a)⊤ϕ(s′, a′) as an auxiliary task to the main FQE loss (Kumar et al., 2021).
Ma et al. (2024) introduced an improvement to this auxiliary loss by suggesting that the absolute
value of the feature co-adaptation be minimized, i.e.,

∑
(s,a,s′)∈D,a′∼πe

|ϕ(s, a)⊤ϕ(s′, a′)|. e use
α = 0.1 as its auxiliary task weight. Absolute DR3’s only hyperparameters are the auxiliary task
weight α and the ϕ output dimension.

BEER. He et al. (2024) introduced an alternative regularizer to DR3 rank regularizer since they sug-
gested that the minimization of the unbounded feature co-adaptation can undermine performance.
They introduced their bounded rank regularizer BEER (see Equation (12) in He et al. (2024)). BEER
introduces only the auxiliary task weight α as the additional hyperparameter.

KROPE. KROPE’s only hyperparameters are the output dimension of ϕ and the learning rate of the
KROPE learning algorithm.

C.3 ADDITIONAL RESULTS

In this section, we include additional empirical results.

C.3.1 UNDERSTANDING THE STABILITY OF THE KROPE LEARNING PROCEDURE

In this section analyze how the deadly triad affects KROPE learning procedure. Since KROPE’s
learning algorithm is a semi-gradient method, it is susceptible to instability (Tsitsiklis & Van Roy,
1997). As such, these experiments aim to understand when we might expect KROPE to diverge and
when it might mitigate the divergence of FQE.

We conduct our experiments on the Markov reward process in Figure 5(a), which was introduced
by Feng et al. (2019). The MRP consists of 4 non-terminal states, 1 terminal state (the box), and
only 1 action. The value function estimate is linear in the weight w = [w1, w2, w3], so the native
features of the states are [1, 0, 0], [0, 1, 0] , [0, 0, 2], and [0, 0, 1] (clockwise starting from left-most).
We set γ = 1, so the optimal weights are w∗ = [0.8, 1, 0]. In this setup, we say a transition is a
bad transition if the bootstrapping target is a moving target for the current state (Asadi et al., 2024).
For example, the transition from w3 to 2w3 is a bad transition since updates made to w3 may move
2w3 further away. When this transition is sampled at a frequency that is different from the on-policy
distribution, algorithms such as TD, LSPE, and FQE tend to diverge (Asadi et al., 2024).

(a) Divergence Counterexample (b) KROPE Training loss (c) FQE+KROPE Training loss

Figure 5: Figure 5(a): Markov reward process counterexample designed to illustrate divergence; r denotes the
rewards and p denotes the probability of transition (Feng et al., 2019). Figures 5(b) and 5(c): KROPE training
loss and FQE+KROPE training loss vs. epochs respectively when different datasets are paired with D1; results
are averaged over 20 trials, shaded region is the 95% confidence interval, and lower is better.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

To better understand the stability of the learning procedures, we design the following experiment.
We start with two datasets D1 and D2. D1 consists of 2000 on-policy transitions and 5000 off-
policy bad transitions from w3 to 2w3, while D2 consists of only 2000 on-policy transitions. We
then consider four different variations of D2: Dw1

2 , Dw2
2 , Dw3

2 , and D2w3
2 , where each variation

denotes a dataset where we add 5000 off-policy transitions from the specified state to D2. With this
setup, our goal is understand which dataset pairing withD1: (D1,Dw1

2), (D1,Dw2
2), (D1,Dw3

2), and
(D1,D2w3

2) increases the susceptibility of KROPE to divergence. Recall that at each training step,
KROPE samples pairs of transitions. Thus, in this setup, KROPE will sample one transition from D1

and the other transition from the other dataset.

In Figures 5(b) and 5(c), we show the training loss of KROPE only and FQE+KROPE with KROPE as
an auxiliary task. In both cases, the sampled state-actions are fed into a linear network encoder with
a bias component and no activation function which outputs a d = 3 representation. In case of FQE,
this representation is then fed into a linear function to output the scalar value. From Figure 5(b),
we find that even though D1 consists of mostly bad transitions, if KROPE also samples from Dw1

2

or Dw2
2 , its divergence is mitigated. However, as expected, if KROPE uses Dw3

2 or D2w3
2 , KROPE

diverges since the pairing of samples from (D1,Dw3
2), and (D1,D2w3

2) leads to KROPE chasing a
moving bootstrapped target, resulting in divergence. Building upon this insight, we can then better
understand when KROPE can mitigate FQE’s divergence. From Figure 5(c), we see the expected
result that when FQE uses D1 only, it diverges since D1 consists of many bad transitions. However,
if FQE uses KROPE as an auxiliary loss, KROPE may either reduce the divergence (Dw1

2 and Dw2
2)

or worsen it (Dw3
2 and D2w3

2) depending on which dataset is paired with D1. While in practice, it is
unclear to determine which situation is more likely, this result sheds light on the fact that the KROPE
learning procedure can potentially mitigate the divergence of FQE’s learning procedure depending
on which pairs of transitions are sampled.

Takeaway #3: Understanding KROPE Divergence

Depending on which pairs of transitions are sampled, KROPE can potentially mitigate or
worsen the divergence of FQE.

C.3.2 OFFLINE POLICY EVALUATION ON D4RL DATASETS

In this section, we present the offline policy evaluation results on the D4RL datasets. The setup is
the same as the one used in Section 4. We present the results in Figure 6.

Qualitatively, we reach the similar conclusions: KROPE is effective in producing stable and accurate
OPE estimates. However, in 3/9 instances, KROPE does diverge. This divergence is likely related
to the discussion in Section 5 and Appendix C.3.1. Recall that KROPE is a semi-gradient method,
which does not optimize any objective function and is susceptible to divergence (Feng et al., 2019;
Sutton & Barto, 2018). So while KROPE representations stabilize value function learning, KROPE’s
learning algorithm may diverge and not converge to KROPE representations. However, regardless of
this result, KROPE does improve the stability and accuracy of FQE in all cases.

C.3.3 STABILITY-RELATED ANALYSIS ON CUSTOM DATASETS

In this section, We include the remaining stability-related metric analysis that was deferred from the
main paper.

Feature Co-adaptation, Condition Number, and Hyperparameter Sensitivity. In this subsec-
tion, we include all the remaining results related to the stability metrics for all environments.

Bellman completeness. Another metric that is associated with stability is Bellman completeness
(BC) (Chang et al., 2022; Wang et al., 2021a). We find that KROPE is approximately Bellman com-
plete even though it does not explicitly optimize for it; this finding aligns with our Theorem 2. While
BC is difficult to approximate, we can minimize the proxy metric introduced given in Equation (10)
(Chang et al., 2022):

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Cheetah random (b) Cheetah medium (c) Cheetah medium-expert

(d) Hopper random (e) Hopper medium (f) Hopper medium-expert

(g) Walker random (h) Walker medium (i) Walker medium-expert

Figure 6: Normalized squared value error achieved by LSPE when using a particular representation vs. rep-
resentation training epochs on the D4RL datasets. LSPE estimates are computed every 10 epochs. Results are
averaged over 20 trials and the shaded region is the 95% confidence interval. Lower and less erratic is better.

(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 7: Feature co-adaptation on different environments as a function of training epochs. All results are
averaged over 20 trials and shaded region is the 95% confidence interval.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 8: Condition number of the covariance matrix on different environments as a function of training
epochs. All results are averaged over 20 trials and shaded region is the 95% confidence interval.

(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 9: Hyperparameter sensitivity on different environments as a function of training epochs; larger area
under the curve is better. All results are averaged over 20 trials for each hyperparameter configuration and
shaded region is the 95% confidence interval.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

L(M,ρ) := ED

∥∥∥∥[Mρ⊤
]
ϕ(s, a)−

[
γEs′∼P (·|s,a),a′∼πe(·|s′)[ϕ(s

′, a′)]
r(s, a)

]∥∥∥∥2
2

(10)

where (ρ,M) ∈ Rd×d, ϕ is fixed, andL(M,ρ) = 0 indicates Bellman completeness. Given the final
learned representation, we compute and report the BC error in Table 2. We find that KROPE is ap-
proximately Bellman complete even though it does not explicitly optimize for it; this finding aligns
with our Theorem 2. We note that BCRL-EXP is less Bellman complete since it also includes the
exploratory objective in its loss function, which if maximized can reduce the Bellman completeness.
While BCRL is more BC than BCRL-EXP, we found that it is less BC in general. We attribute this
finding due to the difficulty in explicitly optimizing the BCRL objective which involves multiple neu-
ral networks (M,ρ, ϕ) and multiple loss functions on different scales (reward, self-prediction, log
determinant regularization losses). KROPE can achieve approximate Bellman completeness without
these optimization-related difficulties.

Algorithm

Domain BCRL + EXP BCRL BEER DR3 FQE KROPE (ours)

CartPoleSwingUp 0.4± 0.1 0.2± 0.1 0.1± 0.0 0.0± 0.0 0.1± 0.0 0.0± 0.0
CheetahRun 3.3± 0.6 2.4± 0.5 0.7± 0.0 0.0± 0.0 0.7± 0.0 0.2± 0.0
FingerEasy 1.3± 0.6 0.7± 0.2 0.9± 0.0 137.0± 4.4 0.9± 0.0 0.2± 0.0
WalkerStand 10.4± 2.0 0.3± 0.1 0.5± 0.1 66.1± 0.6 0.6± 0.0 0.1± 0.0

Table 2: Bellman completeness measure for all algorithms across all domains. Results are averaged across 20
trials and the deviation shown is the 95% confidence interval. Values are rounded to the nearest single decimal.

C.3.4 USING FQE DIRECTLY FOR OPE

In our main empirical section (Section 4), we used FQE as a representation learning algorithm on
our custom datasets. We adopted the linear evaluation protocol, i.e., an approach of analyzing the
penultimate features of the action-value function network and applied LSPE on top of these features
for OPE. This protocol enabled us to better understand the nature of the learned features.

For the sake of completeness, we present results of FQE as an OPE algorithm where the action-value
network is directly used to estimate the performance of πe. We present the results in Figures 10 and
11. As done in Section 4, we evaluate the performance of FQE and KROPE based on how they shape
the penultimate features of the action-value network. However, when conducting OPE, we evaluate
two variants: 1) using LSPE (-L) and 2) using the same end-to-end FQE action-value network (-E2E).

From Figure 10, we find that there are hyperparameter configurations that can outperform the KROPE
variants. However, based on Figure 11, we find both KROPE variants are significantly more robust
to hyperparameter tuning. This latter result suggests that KROPE does improve stability with respect
to the hyperparameter sensitivity metric as well.

Regardless of FQE’s hyperparameter sensitivity, it is still interesting to observe that when FQE is
used as an OPE algorithm, it produces reasonably accurate OPE estimates. It even outperforms the
FQE+KROPE combination. However, as shown in Section 4, the penultimate features of this same
network actually have poor property values such as high feature co-adaptation, high condition num-
bers, and highly erratic OPE estimates with LSPE. Given that these features have weak properties,
it is unclear why FQE still can lead to accurate OPE. The primary difference between using FQE for
OPE vs. FQE features and LSPE for OPE is in how the last linear layer is trained. The former is trained
by gradient descent while the latter is trained with the iterative LSPE algorithm on the fixed features.
An interesting future direction will be to explore the learning dynamics of these two approaches.

On a related note, we point out that the training dynamics of FQE are still not well-understood. For
example, Fujimoto et al. (2022) show that the FQE loss function poorly correlates with value error.
That is, the FQE loss can be high but value error (and OPE error) can be low.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) CartPoleSwingUp (b) FingerEasy

(c) CheetahRun (d) WalkerStand

Figure 10: Normalized squared value error achieved by LSPE (-L) and FQE (-E2E) evaluated every 10 epochs
of training. Results are averaged over 20 trials and the shaded region is the 95% confidence interval. Lower
and less erratic is better.

(a) CartPoleSwingUp (b) FingerEasy

(c) CheetahRun (d) WalkerStand

Figure 11: Hyperparameter sensitivity on different environments as a function of training epochs; larger area
under the curve is better. All results are averaged over 10 trials for each hyperparameter configuration and
shaded region is the 95% confidence interval. We tuned the hyperparameters discussed in Appendix C.1.
KROPE-FE2E overlaps with KROPE-L.

32

	Introduction
	Background
	Problem Setup and Notation
	Offline Policy Evaluation and Value Function Learning
	Stable, Realizable, and Generalizable Representations
	Related Works

	Kernel Representations for Offline Policy Evaluation
	krope Kernel and Operator
	Stability of krope Representations
	Connection to Bellman Completeness
	krope Learning Algorithm

	Empirical Results
	Empirical Setup
	Analyzing Fundamental Properties of the Learned Representations
	Offline Policy Evaluation
	Analyzing Stability-Related Metrics

	Limitations and Future Work
	Conclusion
	Background
	Bisimulation Metrics
	Reproducing Kernel Hilbert Spaces
	Algorithm Pseudocode

	Theoretical Results
	krope Operator Validity
	krope Stability
	Supporting Theoretical Results

	Main krope Theoretical Results

	Empirical Details
	Empirical Setup
	Baselines
	Additional Results
	Understanding the Stability of the krope Learning Procedure
	Offline Policy Evaluation on d4rl Datasets
	Stability-related Analysis on Custom Datasets
	Using fqe Directly for ope

