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ABSTRACT

In reinforcement learning, offline value function learning is the procedure of using
an offline dataset to estimate the expected discounted return from each state when
taking actions according to a fixed target policy. The stability of this procedure,
i.e., whether it converges to its fixed-point, critically depends on the represen-
tations of the state-action pairs. Poorly learned representations can make value
function learning unstable, or even divergent. Therefore, it is critical to stabilize
value function learning by explicitly shaping the state-action representations. Re-
cently, the class of bisimulation-based algorithms have shown promise in shaping
representations for control. However, it is still unclear if this class of methods can
stabilize value function learning. In this work, we investigate this question and
answer it affirmatively. We introduce a bisimulation-based algorithm called ker-
nel representations for offline policy evaluation (KROPE). KROPE uses a kernel to
shape state-action representations such that state-action pairs that have similar im-
mediate rewards and lead to similar next state-action pairs under the target policy
also have similar representations. We show that KROPE: 1) learns stable repre-
sentations and 2) leads to lower value error than baselines. Our analysis provides
new theoretical insight into the stability properties of bisimulation-based meth-
ods and suggests that practitioners can use these methods for stable and accurate
evaluation of offline reinforcement learning agents.

1 INTRODUCTION

Learning the value function of a policy is a critical component of many reinforcement learning (RL)
algorithms (Sutton & Barto, 2018). While value function learning algorithms such as temporal-
difference learning (TD) have been successful, they can be unreliable. In particular, the deadly
triad, i.e., the combination of off-policy updates, function approximation, and bootstrapping, can
make TD-based methods diverge (Sutton & Barto, 2018; Tsitsiklis & Van Roy, 1997; Baird, 1995).
Function approximation is a critical component of value function learning since it determines the
representations of state-action pairs, which in turn defines the space of expressible value functions.
Depending on how this value function space is represented, value function learning algorithms may
diverge (Ghosh & Bellemare, 2020). That is, the value function learning algorithm may not converge
to its fixed-point, or may even diverge away from it. In this work, we investigate how to explicitly
learn state-action representations to stabilize value function learning.

In seeking such representations, we turn to π-bisimulation algorithms. These algorithms define
a metric to capture behavioral similarity between state-action pairs such that similarity is based
on immediate rewards received and the similarity of next state-action pairs visited by π (Castro,
2019). The algorithms then use this metric to learn representations such that state-action pairs that
are similar under this metric have similar representations. Ultimately, the goal of π-bisimulation
methods is to learn representations such that state-actions pairs with similar values under π also have
similar representations (see Figure 1). While these algorithms have shown promise in improving the
expected return of RL algorithms, it remains unclear whether they contribute to stability (Castro
et al., 2023; Zhang et al., 2021; Castro et al., 2022). In this paper, we aim to understand whether
π-bisimulation-based representations stabilize value function learning.

In this work, we focus on offline value function learning. Given a fixed, offline dataset generated
by unknown and possibly multiple behavior policies, the goal is to estimate the value function of
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Figure 1: The figure illustrates the native state-action repre-
sentations X and π-bisimulation representations Φπ−BISIM. π-
bisimulation algorithms use a similarity function k that captures
similarity between state-action pairs based on immediate rewards
and similarity of next state-action pairs under π to shape their rep-
resentations. Ultimately, the goal of π-bisimulation methods is to
learn representations such that state-actions pairs with similar val-
ues under π also have similar representations. The function k out-
puts high values within the blue (and orange) state-actions but low
values between blue and orange state-actions. Therefore, the blue
(and orange) state-actions have similar representations, but differ-
ent representations between the distinct colors.

a fixed, target policy. We introduce kernel representations for offline policy evaluation (KROPE), a
bisimulation-based representation learning algorithm. KROPE defines a kernel that captures simi-
larity between state-action pairs based on immediate rewards received and similarity of next state-
action pairs under the target policy. It then shapes the state-action representations such that state-
action pairs that are similar according to this kernel have similar representations. We use KROPE as
the representative algorithm for the class of bisimulation-based representation learning algorithms
to investigate the following question:

Can bisimulation-based representation learning stabilize offline value function learning?

Through theoretical and empirical analysis, we answer this question affirmatively and make the
following contributions:

1. We introduce kernel representations for offline policy evaluation (KROPE) for stable and
accurate offline value function learning (Section 3).

2. We prove that KROPE’s representations stabilize least-squares policy evaluation (LSPE), a
popular value function learning algorithm (Sections 3.2).

3. We prove that KROPE representations are Bellman complete, another indication of stability
(Sections 3.3).

4. We empirically validate that KROPE representations lead to more stable and accurate offline
value function learning compared to non-bisimulation baselines (Section 4).

5. We empirically analyze the sensitivity of the KROPE learning procedure under the deadly
triad. These experiments shed light on when representation pre-training may be easier than
direct value function learning with LSPE (Appendix C.3.1).

2 BACKGROUND

In this section, we present our problem setup and discuss prior work.

2.1 PROBLEM SETUP AND NOTATION

We consider the infinite-horizon Markov decision process (MDP) framework (Puterman, 2014),
M = ⟨S,A, r, P, γ, d0⟩, where S is the state space, A is the action space, r : S × A → [−1, 1]
is the deterministic reward function, P : S × A → ∆(S) is the transition dynamics function,
γ ∈ [0, 1) is the discount factor, and d0 ∈ ∆(S) is the initial state distribution, where ∆(X) repre-
sents the set of all probability distributions over a set X . We refer to the joint state-action space as
X := S×A. The agent acting according to policy π : S → ∆(A) in the MDP generates a trajectory:
S0, A0, R0, S1, A1, R1, ..., where S0 ∼ d0,At ∼ π(·|St),Rt := r(St, At), and St+1 ∼ P (·|St, At)
for t ≥ 0.

We define the action-value function of a policy π for a given state-action pair as qπ(s, a) :=
Eπ[
∑∞

t=0 γ
tr(St, At)|S0 = s,A0 = a], i.e., the expected discounted return when starting from state

swith initial action a and then following policy π. The Bellman evaluation operator T π : RX → RX
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is defined as (T πf)(s, a) := r(s, a) + γES′∼P (·|s,a),A′∼π[f(S
′, A′)],∀f ∈ RX . Accordingly, the

action-value function satisfies the Bellman equation, i.e., q(s, a) = r(s, a) + γEP,πe [q(S
′, A′)].

It will be convenient to consider the matrix notation equivalents of the above functions. Since a
policy π induces a Markov chain on X , we can denote the transition matrix of this Markov chain
by Pπ ∈ R|X |×|X|. Here, each entry Pπ(i, j) is the probability of transitioning from state-actions
i to j. Similarly, we have the action-value function qπ ∈ R|X | and reward vector r ∈ R|X |, where
the entry qπ(i) and r(i) are the expected discounted return from state-action i under π and reward
received at state-action i respectively.

In this work, we study the representations of the state-action space. We use ϕ : S ×A → Rd to de-
note the state-action representations, which maps state-action pairs into a d-dimensional Euclidean
space. We denote the matrix of all the state-action features as Φ ∈ R|X |×d, where each row is the
state-action feature ϕ(s, a) ∈ Rd for state-action pair (s, a). When dealing with the offline dataset
D, Φ’s dimensions are |D| × d, where |D| is the number state-actions in the dataset D. Note that
Φ can be the native state-action features of the MDP, or the output of some representation learning
algorithm, or the penultimate features of the action-value function when using a neural network.
Throughout this paper, we will view ϕ as an encoder or state-action abstraction (Li et al., 2006).
Note that the state-action abstraction view enables us to view ϕ as a state-action aggregator from the
space of state-actions X to the space of state-action groups X ϕ.

2.2 OFFLINE POLICY EVALUATION AND VALUE FUNCTION LEARNING

In offline policy evaluation (OPE), the goal is to evaluate a fixed target policy, πe, using a fixed
dataset of m transition tuples D := {(si, ai, s′i, ri)}mi=1. In this work, we evaluate πe by estimating
the action-value function qπe using D. Crucially, D may have been generated by a set of unknown
behavior policies that are different from πe, which means that simply averaging the discounted
returns in D will produce an inconsistent estimate of qπe . In our theoretical results, we make the
standard coverage assumption that ∀s ∈ S,∀a ∈ A if πe(a|s) > 0, then the state-action pair (s, a)
has non-zero probability of appearing in D (Sutton & Barto, 2018; Precup et al., 2000).

We measure the accuracy of the value function estimate with the mean squared value error (MSVE).
Let q̂πe be the estimate returned by a value function learning method using D. The MSVE of this
estimate is defined as MSVE[q̂πe ] := E(S,A)∼D[(q̂

πe(S,A) − qπe(S,A))2]. In environments with
continuous state-action spaces, where it is impossible to compute qπe for all state-actions, we adopt
a common evaluation procedure from the OPE literature of measuring the MSE across only the ini-
tial state-action distribution, i.e., MSE[q̂πe ] := ES0∼d0,A0∼πe

[(q̂πe(S0, A0) − qπe(S0, A0))
2]. For

this procedure, we assume access to d0 (Voloshin et al., 2021; Fu et al., 2021). While in practice
qπe is unknown, it is standard for the sake of empirical analysis to estimate qπe by executing unbi-
ased Monte Carlo rollouts of πe or computing qπe exactly using dynamic programming in tabular
environments (Voloshin et al., 2021; Fu et al., 2021).

Least-Squares Policy Evaluation Least-squares policy evaluation (LSPE) is a value function
learning algorithm, which models the action-value function as a linear function: q̂πe

θ (s, a) :=

ϕ(s, a)⊤θ, where θ ∈ Rd (Nedic & Bertsekas, 2003). LSPE iteratively learns θ with the follow-
ing updates per iteration step t:

θt+1 ← (ED[Φ
⊤Φ])−1ED,πe

[Φ⊤(r + γPπeΦθt)], (1)

where the expectations are taken with respect to the randomness of the dataset D and πe. Note
that E[Φ⊤Φ] is the feature covariance matrix. Assuming LSPE converges, it will converge to the
same fixed-point as TD(0) (Szepesvari, 2010), which we denote as θLSPE. In this work, we follow
a two-stage approach to applying LSPE: we first obtain the encoder ϕ either through representation
learning or using the native features of the MDP, and then feed the obtained ϕ along with D and πe
as input to LSPE, which outputs q̂πe

θ (Nedic & Bertsekas, 2003; Chang et al., 2022). This two-stage
approach of learning a linear function on top of fixed representations is called the linear evaluation
protocol (Chang et al., 2022; Farebrother et al., 2023; 2024; Grill et al., 2020; He et al., 2020). This
protocol enables us to cleanly analyze the nature of the learned representations within the context of
well-understood value function learning algorithms such as LSPE. In Appendix A, we include the
pseudo-code for LSPE.
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2.3 STABLE, REALIZABLE, AND GENERALIZABLE REPRESENTATIONS

We define stability of LSPE and related TD-methods following Ghosh & Bellemare (2020):

Definition 1 (Stability). LSPE is said to be stable if for any initial θ0 ∈ Rd, limt→∞ θt = θLSPE

when θt is updated according to Equation (1).

When determining the stability of LSPE, we have following proposition from prior work:

Proposition 1 (Asadi et al. (2024); Wang et al. (2021a)). LSPE is stable if and only if the spectral
radius of (E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]), i.e., its maximum absolute eigenvalue, is less than 1.

Therefore, the stability of LSPE largely depends on the representations Φ and the distribution shift
between the data distribution of D and πe. In this work, we study the stability of LSPE for a fixed
distribution of D and learn Φ. If a given Φ stabilizes LSPE, we say Φ is a stable representation.

In addition to stability, we also care about the realizability and generalizability of Φ. We say Φ is a
realizable representation if qπe ∈ Span(Φ),where Span(Φ) is the subspace of all expressible action-
value functions with Φ. Note that even if Φ is a realizable and stable representation, LSPE may not
recover the qπe solution (Sutton & Barto, 2018). While generalization can have multiple interpreta-
tions, we say Φ generalizes well if the state-action features that are close in the representation space
also have similar qπe values (Lyle et al., 2022; Lan et al., 2021).

2.4 RELATED WORKS

In this section, we discuss the most relevant prior literature on OPE and representation learning.
Representations for Offline RL and OPE. There are several works that have shown shaping rep-
resentations can be effective for offline RL (Yang & Nachum, 2021; Islam et al., 2023; Nachum &
Yang, 2024; Zang et al., 2023a; Arora et al., 2020; Uehara et al., 2021; Chen & Jiang, 2019; Pavse
& Hanna, 2023b). Ghosh & Bellemare (2020) presented a theoretical understanding of how various
representations can stabilize TD learning. However, they did not discuss bisimulation-based repre-
sentations. Kumar et al. (2021); Ma et al. (2024); He et al. (2024) promote the stability of TD-based
methods by increasing the rank of the representations to prevent representation collapse. However,
as we show in Section 4, these types of representations can still lead to inaccurate OPE. On the
other hand, KROPE mitigates representation collapse and leads to accurate OPE. Chang et al. (2022)
introduced BCRL to learn Bellman complete representations for stable OPE. While in theory, BC
representations are desirable, we found that BCRL is sensitive to hyperparameter tuning. In contrast,
we show that KROPE is more robust to hyperparameter tuning. Pavse & Hanna (2023a) showed that
bisimulation-based representations mitigate the divergence of FQE; however, they did not provide
an explanation for divergence mitigation. Our work provides theoretical insight into the stability
properties of bisimulation-based algorithms.
Bisimulation-based Representation Learning. Recently, there has been lot of interest in π-
bisimulation algorithms for better generalization (Ferns et al., 2004; 2011; Ferns & Precup, 2014;
Castro, 2019; Zang et al., 2023b). These algorithms measure similarity between two state-action
pairs based on immediate rewards received and the similarity of next state-action pairs visited by
π. These algorithms first define a distance metric that captures this π-bisimilarity, and then use
this metric to learn representations such that π-bisimular states have similar representations (Castro
et al., 2022; Castro, 2019; Zhang et al., 2021; Castro et al., 2023; Chen & Pan, 2022; Kemertas &
Jepson, 2022). Zhang et al. (2021); Castro (2019) introduced a π-bisimulation learning algorithm
but assume that the transition dynamics are either deterministic or Gaussian. Gelada et al. (2019)
introduced a method closely related to bisimulation methods but required a reconstruction loss to
work in practice. Castro et al. (2022) introduced MICO which allows for stochastic transition dynam-
ics and no reconstruction loss, but was difficult to theoretically analyze. To overcome this difficulty,
Castro et al. (2023) took a kernel perspective of π-bisimulation methods, which made their algorithm
amenable to theoretical analysis. To the best of our knowledge, no works have studied the stability
properties of π-bisimulation algorithms. In our work, we address this gap in the literature. We first
extend Castro et al. (2023)’s kernel-based formulation from states to state-actions, and then show
that this formulation stabilizes offline value function learning. The proofs for KROPE’s basic theo-
retical properties (Section 3.1) follow those by Castro et al. (2023). Our stability-related theoretical
results (Sections 3.2 and 3.3) and empirical analysis (Section 4) are novel to this work.
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3 KERNEL REPRESENTATIONS FOR OFFLINE POLICY EVALUATION

We now present our bisimulation-based representation learning algorithm, kernel representations
for OPE (KROPE). We present the desired KROPE kernel, define the KROPE operator, present its
theoretical properties, prove stability properties of KROPE representations, and present a practical
learning algorithm to learn them. We defer the proofs to Appendix B.

3.1 KROPE KERNEL AND OPERATOR

Prior π-bisimulation works define similarity between states in terms of the immediate rewards re-
ceived and similarity of next states under π (see Figure 1) (Castro, 2019). In this work, we follow
Castro et al. (2023) and define a kernel kπe : X × X → R that captures this notion of similarity
under πe, but for pairs of state-actions. We refer to kπe as the KROPE kernel.

kπe(s1, a1; s2, a2) = k1(s1, a1; s2, a2) + γk2(k
πe)(Pπe(·|s1, a1), Pπe(·|s2, a2)]. (2)

where k1(s1, a1; s2, a2) := 1 − |r(s1,a1)−r(s2,a2)|
|rmax−rmin| and k2(k

πe)(Pπe(·|s1, a1), Pπe(·|s2, a2)) :=

Es′1,a
′
1∼Pπe (·|s1,a1),s′2,a

′
2∼Pπe (·|s2,a2)[k

πe(s′1, a
′
1; s

′
2, a

′
2)]. Here, k1 measures short-term similarity

based on rewards received and k2 measures long-term similarity between probability distributions
by measuring similarity between samples of the distributions according to kπe (Castro et al., 2023).

Given this definition of the KROPE kernel, we now present an operator that converges to kπe :
Definition 2 (KROPE operator). Given a target policy πe, the KROPE operator Fπe : RX×X →
RX×X is defined as follows: for each kernel k : X × X → R, ∀(s1, a1; s2, a2) ∈ X × X ,

Fπe(k)(s1, a1; s2, a2) := k1(s1, a1; s2, a2)︸ ︷︷ ︸
short-term similarity

+γ Es′1,s
′
2∼P,a′

1,a
′
2∼πe

[k(s′1, a
′
1; s

′
2, a

′
2)]︸ ︷︷ ︸

long-term similarity

(3)

where s′1 ∼ P (s′1|s1, a1), s′2 ∼ P (s′2|s2, a2), a′1 ∼ πe(·|s′1), a′2 ∼ πe(·|s′2), and
k1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| is a positive semidefinite kernel.

Proposition 2, proved in Appendix B.1, tells us that for some initial kernel k, repeatedly applying
Fπe to it will result in convergence kπe . Ultimately, kπe outputs a high (or low) similarity measure
for two state-action pairs if their action-values under πe are similar (or dissimilar). This intuition
is formalized in Lemma 3, which states that the absolute action-value difference between any two
state-action pairs under πe is upper-bounded by the distance function induced by kπe plus an ad-
ditive constant. Since KROPE’s contraction, metric space completeness, and fixed-point uniqueness
properties are similar to Castro et al. (2023)’s kernel, we defer the details to Appendix B.1.

3.2 STABILITY OF KROPE REPRESENTATIONS

In the previous section, we defined the KROPE kernel. Ultimately, however, we are interested in
representations that satisfy the relationship in Equation (2). We modify Equation (2) accordingly
by giving kπe some functional form in terms of state-action representations. We do so with the dot
product: ⟨u, v⟩ = u⊤v,∀u, v ∈ Rd, i.e., kπe(s1, a1; s2, a2) = ϕ(s1, a1)

⊤ϕ(s2, a2). With this setup,
we write Equation (2) in matrix notation and define the KROPE representations as follows:
Definition 3 (KROPE Representations). Consider state-action representations Φ ∈ R|X |×d that are
embedded in Rd with kπe(s1, a1; s2, a2) = ϕ(s1, a1)

⊤ϕ(s2, a2). We say Φ is a KROPE representa-
tion if it satisfies the following:

ED[ΦΦ
⊤] = ED[K1] + γED,πe [P

πeΦ(PπeΦ)⊤] (4)

where each entry of K1 ∈ R|X |×|X| represents the short-term similarity, k1, between every pair of
state-actions, i.e., K1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| .

Given this definition, we present our novel result proving the stability of KROPE representations:

Theorem 1. If Φ is a KROPE representation as defined in Definition 3, then the spectral
radius of (E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ] is less than 1. That is, Φ stabilizes LSPE.
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Theorem 1, proved in Appendix B.2, tells us that KROPE representations stabilize OPE with LSPE.
Intuitively, they are stable since when (E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ]’s spectral radius is less than 1,
each update to θt in Equation (1) is non-expansive. That is, each update brings θt closer to θLSPE.

3.3 CONNECTION TO BELLMAN COMPLETENESS

In this section, we draw a novel connection between KROPE representations and Bellman complete-
ness. We say a function class F is Bellman complete if it is complete under the Bellman operator:
T πef ⊆ F ,∀f ∈ F . For instance, suppose F is the class of linear functions spanned by Φ,
F := {f ∈ RX : f := Φw}, w ∈ Rd. Then if T πef, ∀f ∈ F is also a linear function within the
span of Φ, we say Φ is a Bellman complete representation. Bellman completeness is an alternative
condition for stability and is typically assumed to ensure to data-efficient policy evaluation (Wang
et al., 2021b; Szepesvári & Munos, 2005; Chang et al., 2022). We now present our second main
result. It states that KROPE representations are Bellman complete:

Theorem 2. Let ϕ : X → X ϕ be the state-action abstraction induced by grouping state-
actions x, y ∈ X such that if dKROPE(x, y) = 0, then ϕ(x) = ϕ(y),∀x, y ∈ X . Then ϕ
is Bellman complete if the abstract reward function rϕ : X ϕ ↣ (−1, 1) is injective (i.e.,
distinct abstract rewards).

Takeaway #1: Stability of Bisimulation-based Representations

KROPE representations induce non-expansive value function updates and are Bellman com-
plete. They avoid divergence of offline value function learning.

3.4 KROPE LEARNING ALGORITHM

In this section, we present an algorithm that learns the KROPE representations from data. We include
the pseudo-code of KROPE in Appendix A. The KROPE learning algorithm uses an encoder ϕω :
S×A → Rd, which is parameterized by weights ω of a function approximator. It then parameterizes
the kernel with the dot product, i.e, k̃ω(s1, a1; s2, a2) := ϕω(s1, a1)

⊤ϕω(s2, a2) (see Equation (4)).
Finally, the algorithm then minimizes the following loss function, which is similar to how the value
function is learned in deep RL (Mnih et al., 2015):

LKROPE(ω) := ED

[(
1− |r(s1, a1)− r(s2, a2)|

|rmax − rmin|
+ γEπe

[k̃ω̄(s
′
1, a

′
1; s

′
2, a

′
2)]︸ ︷︷ ︸

target estimate

− k̃ω(s1, a1; s2, a2)︸ ︷︷ ︸
current estimate

)2
]
,

(5)
where the state-action pairs are sampled from D, and ω̄ are weights of the target network that are
periodically copied from ω (Mnih et al., 2015). In this work, we use KROPE as an auxiliary task,
which introduces only a learning rate as an additional hyperparameter. We note that this fixed-point
optimization procedure is similar to how the action-value function is learned in other RL fixed-point
algorithms such as fitted q-evaluation (FQE) (Le et al., 2019).

4 EMPIRICAL RESULTS

In this section, we present our empirical study designed to answer the following questions.

1. Does KROPE lead to stable representations with good realization and generalization?

2. Do KROPE representations lead to stable MSVE and low MSVE?

4.1 EMPIRICAL SETUP

In this section, we describe the main details of our empirical setup. For further details such as
datasets, policies, hyperparameters, and evaluation protocol please refer to Appendix C.
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Baselines Our primary representation learning baseline is fitted q-evaluation (FQE) (Le et al.,
2019). FQE is the most fundamental deep RL OPE algorithm that learns representations
of state-actions to predict the long-term performance of a policy. While FQE is typically
used as an OPE algorithm, it can also be viewed as a value-predictive representation learn-
ing algorithm (Lehnert & Littman, 2020). More specifically, consider its loss function:
E(s,a,s′)∼D

[(
r(s, a) + γEa′∼πe

[qξ̄(s
′, a′)]− qξ(s, a)

)2]
, where qξ(s, a) := ϕξ′(s, a)

⊤w and ξ =

{ξ′, w}. We view ξ as the neural network weights of an action-value neural network and w as the
linear weights of the network applied on the output of the penultimate layer ϕξ′(s, a) of the neu-
ral network. Then minimizing this loss function shapes the representations ϕξ′(s, a) to predict the
expected future discounted return. As noted in Section 2, we follow the linear evaluation protocol
where ϕξ′ is shaped by different auxiliary tasks and is then used with LSPE for OPE since it helps us
understand the properties of the representations within the context of a well-understood value func-
tion learning algorithm (Grill et al., 2020; Chang et al., 2022; Farebrother et al., 2024; Wang et al.,
2021a). We provide the pseudocode of this setup in Appendix A. We also note that in Appendix C,
we present results of performing OPE using FQE instead LSPE, and find that KROPE still reliably
produces stable OPE estimates.

We consider the following four non-bisimulation auxiliary representation learning algorithms that
are typically paired with FQE for stability: 1) KROPE (ours), 2) BCRL-EXP-NA, which simultane-
ously optimizes three objectives: immediate reward prediction, next-state self-prediction loss, and
maximization of the exploratory nature of E[Φ⊤Φ] by improving its condition number (Chang et al.,
2022), 3) Absolute DR3 regularizer (Kumar et al., 2021; Ma et al., 2024), which promotes stability
by minimizing the feature co-adaptation between successive features, i.e., ϕ(s, a)⊤ϕ(s′, a′), and 4)
BEER regularizer (He et al., 2024), which is similar to DR3 but lower bounds ϕ(s, a)⊤ϕ(s′, a′). In
all cases, the penultimate layer features of FQE’s action-value encoder ϕξ′ are fed into LSPE for OPE.
Our experiments focus on analyzing the properties of ϕξ′ . Note that since BCRL was not designed
as an auxiliary task (Chang et al., 2022), we evaluate it as a non-auxiliary (NA) task algorithm. We
provide additional details on the baselines in Appendix C.

Domains We conduct our evaluation on a variety of domains: 1) Garnet MDPs, which are a class
of tabular stochastic MDPs that are randomly generated given a fixed number of states and actions
(Archibald et al., 1995); 2) 4 DM Control environments: CartPoleSwingUp, CheetahRun, Fin-
gerEasy, WalkerStand (Tassa et al., 2018); and 3) 9 D4RL datasets (Fu et al., 2020; 2021). The first
domain enables us to analyze the algorithms’ performance across a wide range of stochastic tabular
MDPs. The second and third set of domains test the algorithms in continuous higher-dimensional
state-action environments. Due to space constraints, we defer the D4RL results to Appendix C.3.2.

4.2 ANALYZING FUNDAMENTAL PROPERTIES OF THE LEARNED REPRESENTATIONS

In this set of experiments on the Garnet MDPs domain, we answer our first question of whether
KROPE representations lead to stable representations with good realization and generalization prop-
erties. We present the results in Figure 2. Our Garnet MDPs were generated with 8 states and 5
actions, with a total of |X | = 40 state-actions, and each native (s, a) representation is a 1-hot vector.
In these experiments, the native representation is fed into a linear encoder with a bias component
and no activation function. All algorithms are trained for 500 epochs and we report the results by
evaluating the final learned representations for different latent dimensions d.
Stability. Based on Theorem 1, a representation is stable if it induces a spectral radius of
(E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) that is less than 1. In Figure 2(a), we present the fraction of runs
that result in such representations. We find that up till d = 30, 100% of KROPE and BEER runs have
spectral radius less than 1. We also find that BCRL-EXP-NA produces stable representations up till
d = 40. At d = 50, all algorithms produce unstable representations. These results suggest that
KROPE, BEER, and BCRL-EXP-NA are reliable in producing stable representations when projecting
state-actions into low dimensions. When d ≥ |X |, the covariance matrix E[Φ⊤Φ] is more likely to
be a singular matrix, which implies higher chance of instability.
Realizability. A basic criterion for learning qπe is realizability. That is, we want ϵ := ∥Φŵ −
qπe∥22, where ŵ := argminw ∥Φw − qπe∥22, to be low. In our experiments, we compute ϵ and
plot it as a function of d in Figure 2(b). A critical message from our results is that stability and
realizability do not always go hand-in-hand. While BCRL-EXP-NA has favorable spectral radius
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(a) Spectral Radius (b) Realizability Error (c) Orthogonality

Figure 2: Evaluation of basic representation properties on Garnet MDPs with 40 state-actions vs. out-
put dimension d. Figure 2(a): Fractions of runs out of 30 trials that resulted in spectral radius of
(E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) to be less than 1; higher is better. Figure 2(b): Realizability error; lower is
better. Figure 2(c): Pearson correlation between orthogonality between pairs of latent features vs. their corre-
sponding absolute qπe action-value difference; higher is better. All results are averaged over 30 trials and the
shaded region is the 95% confidence interval.

properties (Figure 2(a)), it has poor realizability, which will negatively affect its OPE accuracy.
KROPE, on the other hand, has favorable stability and realizability properties up till d = 30. When
d ≥ 40, the realizability error is 0 for all algorithms since the subspace spanned by Φ is large enough
to contain the true action-value function (Ghosh & Bellemare, 2020). While the realizability error
is 0 for d ≥ 40, the representations can be unstable (Figure 2(a)).

Generalization. Finally, we say that the representations have generalized well when state-actions
that have similar qπe values are close to each other in the representation space (Lyle et al., 2022).
We assess generalization by measuring the orthogonality: 1 − |⟨ϕ(s1,a1),ϕ(s2,a2)⟩|

∥ϕ(s1,a1)∥∥ϕ(s2,a2)∥ (Wang et al.,
2024) between every state-action pair, (s1, a1; s2, a2), and the absolute action-value difference:
|qπe(s1, a1)−qπe(s2, a2)|. We then compute the Pearson correlation between these values for every
pair and plot the correlation for each d in Figure 2(c). A correlation coefficient close to 1 indicates
that the representations generalize well. We find that KROPE representations satisfy this property
almost perfectly since it specifically tries to learn representations such that state-action pairs with
similar values under πe are similar. We observe that the other algorithms typically have zero or even
negative correlation. A negative correlation indicates that state-actions with different action-values
may be similar in latent space, which can result in higher realizability error (Figure 2(b)). A near-
zero correlation but low realizability error such as in the case of FQE implies that accurate offline
value prediction is still possible but that it generalizes poorly, which may slow down convergence to
its OPE solution (Lyle et al., 2022).

4.3 OFFLINE POLICY EVALUATION

In this set of experiments, we conduct experiments on four DM control environments to answer our
second empirical question: whether KROPE representations lead to stable and low MSVE? We also
evaluate BCRL-NA, which is BCRL without the exploration maximization regularizer. To stabilize
training for all algorithms, we use wide neural networks with layernorm (Gallici et al., 2024; Ota
et al., 2021). Note that while wide networks and layernorm stabilize training, they may not lead to
stable LSPE under the linear evaluation protocol. During representation learning, we periodically
evaluate the learned representations for OPE using LSPE. The corresponding (normalized) squared
value errors are presented in Figure 3.

In general, we find that KROPE representations lead to low and stable MSVE. On the other hand,
we find that the other auxiliary tasks inconsistently produce stable OPE estimates across all environ-
ments. For example, the performance of the ABS-DR3 and BEER regularizer suggests that explicitly
trying to increase the rank of the features of the penultimate layer may hurt stability, and even if
the OPE error is stable, it can hurt accuracy. We also make a similar observation for BCRL. How-
ever, in this case, we attribute poor performance to difficulty in optimizing the BCRL objective. In
fact, in Figure 4(c), we will see that BCRL is sensitive to hyperparameter tuning. We also observe
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(a) CartPoleSwingUp (b) CheetahRun (c) FingerEasy (d) WalkerStand

Figure 3: Normalized squared value error achieved by LSPE when using a particular representation vs. repre-
sentation training epochs. LSPE estimates are computed every 10 epochs. Results are averaged over 20 trials
and the shaded region is the 95% confidence interval. Lower and less erratic is better.

results consistent with a known result that BCRL-EXP-NA performs better than BCRL-NA indicat-
ing the known result that exploration maximization of the covariance matrix helps produce stable
representations (Chang et al., 2022). Finally, while FQE achieves lower OPE error than KROPE on
WalkerStand, it is very unstable on CartPoleSwingUp and Finger Easy, which motivates the need to
shape the representations for stable and accurate OPE. We note that in the WalkerStand instance, the
higher error of KROPE is unsurprising since Lemma 3 suggests that KROPE may lose realizability (see
Appendix B.1). We refer the reader to Appendix C.1 for details of each algorithm. We also conduct
the same experiment on 9 D4RL datasets and reach the similar conclusions (see Appendix C.3.2).

(a) Feature Co-adaptation (b) Condition Number (c) Hyperparameter Sensitivity

Figure 4: Stability-related metrics to understand the properties of KROPE on CartPoleSwingUp. Values are
plotted as a function of training epochs. All results are averaged over 20 trials and shaded region is the 95%
confidence interval. For hyperparameter sensitivity, larger area under the curve is better.

4.3.1 ANALYZING STABILITY-RELATED METRICS

While KROPE performs well on the downstream task of OPE, it is important to analyze upstream
stability-related metrics during the course of learning. These results give insight into the properties
of the learned representations. We present the results in Figure 4 for CartPoleSwingUp and defer
the remaining results to the Appendix C.

Feature co-adaptation. The feature-co-adaptation metric, i.e.,
∑

(s,a,s′)∈D,a′∼πe
ϕ(s, a)⊤ϕ(s′, a′)

was shown to correlate with instability as high values can indicate representation collapse (Kumar
et al., 2021). From Figure 4(a), we find that KROPE mitigates representation collapse of FQE (low-
ers feature co-adaptation from 106 to 105). Its relatively moderate value indicates that it is able to
balance generalization and maintain distinctness between state-action representations. While low
co-adaptation is preferred, extremely low values such as those achieved by ABS-DR3 do not neces-
sarily lead to accurate OPE (see Figure 3). These results tell us which algorithms are more prone to
representation collapse.

Condition number. Another metric that we analyze is the condition number of the covariance ma-
trix M := E[Φ⊤Φ]. A low condition number indicates numerical stability of the learning algorithm,
i.e., solutions recovered by LSPE (see Equation (1)) or general TD algorithms (Asadi et al., 2024)
are less likely to change with small perturbations to M (Chang et al., 2022). From Figure 4(b),
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we find that KROPE achieves lower condition number than FQE (from 104 to 101). As excepted,
we observe that BCRL-EXP-NA achieves an even lower condition since it explicitly optimizes for a
well-conditioned covariance matrix (104 to 103). While there is no ideal value, these results indicate
the reliability of the representations in enabling TD-based algorithms to recover their value function
solution. We observe qualitatively similar results for other environments (see Appendix C).

Hyperparameter Sensitivity. In OPE, hyperparameter tuning can be challenging since it may be
infeasible to get access to ground truth performance of πe (Fu et al., 2021). Therefore, we prefer
algorithms that are robust to hyperparameter tuning, i.e, they reliably produce accurate OPE estimates
for a wide range of hyperparameters. In Figure 4(c), we present the performance profile for each
algorithm across all hyperparameter combinations and all trials (Agarwal et al., 2021). We tune the
hyperparameters discussed in Appendix C.1. We find that 100% KROPE runs across all instances
produce MSVE ≤ 1, which is not the case with other algorithms.

Takeaway #2: Practical Stable and Accurate Offline Policy Evaluation

OPE practitioners can use KROPE for stable and accurate evaluation of offline RL agents.

5 LIMITATIONS AND FUTURE WORK

In this section, we discuss limitations and future work. A shortcoming of our work is that KROPE’s
learning algorithm is susceptible to instability since it is a semi-gradient method (Sutton & Barto,
2018). Moreover, its fixed-point optimization means it does not solve any objective function (Feng
et al., 2019). In our work, we employed commonly-used techniques such as layernorm and wide
neural networks to mitigate instability (Ota et al., 2021; Gallici et al., 2024). While these tech-
niques potentially side-step the issue, the consequences of a semi-gradient method may still exist.
In Appendix C.3.1, we present an empirical analysis to gauge when KROPE’s learning algorithm
may be unstable. We find that while individual off-policy transitions can determine the instability of
fixed-point and semi-gradient algorithms such as FQE, pairs of off-policy transitions can determine
KROPE’s instability. Since we are unlikely to have control over the distribution over pairs of transi-
tions in practice, we need to resort to fundamental changes to the algorithm. One potential change is
based on that by Feng et al. (2019). Their key insight is to leverage the Legendre-Fenchel transfor-
mation from optimization theory and replace the fixed-point loss function of semi-gradient methods
with an equivalent expression that avoids semi-gradient learning (Rockafellar & Wets, 1998). How-
ever, a drawback with this approach is that the new learning objective is a minimax procedure,
which can be challenging to optimize in practice. In future work, we will explore the viability of
this approach to design a provably convergent version of KROPE.

6 CONCLUSION

In this work, we tackled the problem of stabilizing offline value function learning in reinforcement
learning. We introduced a bisimulation-based representation learning algorithm, kernel represen-
tations for OPE (KROPE), that shapes the state-action representations to stabilize this procedure.
Theoretically, we showed that KROPE representations are stable from two perspectives: 1) non-
expansiveness, i.e., they lead to value function learning updates that enable convergence to a fixed-
point and 2) Bellman completeness, i.e., they satisfy a condition for data-efficient policy evaluation.
Empirically, we showed that KROPE leads to more stable and accurate offline value function learn-
ing than baselines. Our work showed that bisimulation-based representation learning effectively
stabilizes long-term performance evaluations of offline reinforcement learning agents.
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A BACKGROUND

In this section, we present the theoretical background.

A.1 BISIMULATION METRICS

In this section, we present background information on bisimulations and its associated metrics.
Our proposed representation learning algorithm is a bisimulation-based algorithm. Bisimulation ab-
stractions are those under which two states with identical reward functions and that lead to identical
groups of next states under any action are classified as similar (Ferns et al., 2004; 2011; Ferns &
Precup, 2014). Bisimulations are the strictest forms of abstractions. In practice, the exact bisimula-
tion criterion is difficult to satisfy computationally and statistically. A more relaxed version of this
notion is the π-bisimulation metrics. These metrics capture the similarity between two states such
that two states are considered similar if they have identical expected reward functions and expected
transitions to identical groups of next states under a fixed policy π (Castro, 2019).

We first give the definition of bisimulation.

Definition 4. (Li et al., 2006) An abstraction ϕ : S → Sϕ over the state space S is a bisimulation
if for any action a and any abstract state sϕ ∈ Sϕ, ϕ is such that for any two states s1, s2 ∈ X ,
ϕ(s1) = ϕ(s2) implies that r(s1, a) = r(s2, a) and

∑
s′∈sϕ P (s

′|s1, a) =
∑

s′∈sϕ P (s
′|s2, a).

Below we define π-bisimulations for state-actions instead of states:

Definition 5. (Castro, 2019) An abstraction ϕ : X → X ϕ over the state-action space X is a π-
bisimulation for a fixed policy π if for any two state-actions x, y ∈ X and abstract state-action
xϕ ∈ X ϕ, ϕ is such that ϕ(x) = ϕ(y) implies that r(x) = r(y) and

∑
x′∈xϕ Pπ(x′|x) =∑

x′∈xϕ Pπ(x′|y).

The above definitions are based on exact groupings between state-actions. This strictness motivates
the use of bisimulation and π-bisimulation metrics, which we define below.

Theorem 3. (Ferns et al., 2004) Let M(S) be the space of bounded pseudometrics on the state-
space S. Then define B :M(S)→M(S) such that for each d ∈M(S):

B(d)(s1, s2) = max
a∈A

(|r(s1, a)− r(s2, a)|+ γW(d)(P (·|s1, a), P (·|s2, a)),

whereW is Wasserstein distance between the two distributions under metric d. Then B has a unique
fixed point, d∗, and d∗ is a bisimulation metric.

Similarly, we have the π-bisimulation metric:

Theorem 4. (Castro, 2019) LetM(X ) be the space of bounded pseudometrics on the state-action
space X and π be a fixed policy. Then define B :M(X )→M(X ) such that for each d ∈M(S):

B(d)(x, y) = |r(x)− r(y)|+ γW(d)(Pπ(·|x), Pπ(·|y)),

whereW is Wasserstein distance between the two distributions under metric d. Then B has a unique
fixed point, d∗, and d∗ is a π-bisimulation metric.

Using the above metrics, prior works have introduced several representation learning algorithms to
learn representations such that the distance between representations in latent space model the above
distance metrics (Castro et al., 2022; 2023; Zhang et al., 2021; Kemertas & Aumentado-Armstrong,
2021; Pavse & Hanna, 2023a).

A.2 REPRODUCING KERNEL HILBERT SPACES

Let X be a finite set and define a function k : X × X → R to be a positive semidefinite ker-
nel if it is symmetric and positive semidefinite. We then have for any {x1, x2, ..., xn} ∈ X and
{c1, c2, ..., cn} ∈ R:

n∑
i=1

n∑
j=1

ci, cjk(xi, xj) ≥ 0
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Note that if the above inequality is strictly greater than zero whenever {c1, . . . , cn} has at least one
nonzero, we say the kernel is positive definite. Given a kernel k on X with the reproducing property,
we can construct a space of functions Hk referred to as a reproducing kernel Hilbert space (RKHS)
with the following steps:

1. Construct a vector space of real-valued functions on X of the form {k(x, ·) : x ∈ X}.

2. Equip this space with an inner product given by ⟨k(x, ·), k(y, ·)⟩Hk
= k(x, y).

3. Take the completion of the vector space with respect to the above inner product.

Our resulting vector spaceHk is then an RKHS.

It is often convenient to write ψ(x) := k(x, ·) ∈ Hk, which is called the feature map and is an
embedding of x inHk. One can also embed probability distributions intoHk. That is, Φ : P(X )→
Hk, which maps probability distributions over X toHk. We define Φ(µ) = EX∼µ[ψ(X)], which is
the mean embedding inHk under µ.

Given these embeddings in the Hilbert space, we can quantify the distances between elements in X
and P(X ) in terms of the embeddings.

Definition 6. Given a positive semidefinite kernel k, define ρk as its induced distance:

ρk := ∥ψ(x)− ψ(y)∥Hk
.

By expanding the inner product, the squared distance can be written in terms of k:

ρ2k(x, y) = k(x, x) + k(y, y)− 2k(x, y).

Similarly, we have distances on P(X ) using Φ:

Definition 7. (Gretton et al., 2012) Let k be a kernel on X and Φ : P(X ) → Hk be as defined
above. Then the Maximum Mean Discrepancy (MMD) is a pseudo metric on P(X ) defined by:

MMD(k)(µ, ν) = ∥Φ(µ)− Φ(ν)∥Hk
.

The core usage of the RKHS is to precisely characterize the nature of the KROPE kernel. In practice,
we deal with neural network representations, which are embedded in Euclidean space. Therefore,
our goal is to learn representations in Euclidean space that approximate the properties of representa-
tions in the RKHS. For more details on the RKHS, we refer readers to Castro et al. (2023) and Gretton
et al. (2012).

A.3 ALGORITHM PSEUDOCODE

In this section, we present the pseudocode for LSPE and for our FQE + auxiliary task with LSPE for
OPE setup.

Algorithm 1 LSPE

1: Input: policy to evaluate πe, batch D, fixed encoder function ϕ : S ×A → Rd.
2: Initialize θ0 ∈ Rd randomly.
3: Apply ϕ to D to generate Φ.
4: for t = 0, 1, 2, ... T − 1 do
5: θt+1 ← (E[Φ⊤Φ])−1E[Φ⊤(r + γPπeΦθt)]
6: end for
7: Return θT
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Algorithm 2 FQE + representation learning auxiliary task with LSPE for OPE

1: Input: policy to evaluate πe, batchD, encoder parameters class Ω, encoder function ϕ : S×A →
Rd, action-value linear function q : Rd → R, α ∈ [0, 1].

2: for epoch = 1, 2, 3, ... T do
3: L(ω) := αAux-Task(ϕω,D, πe)+(1−α)E(s,a,s′)∼D

[(
r(s, a) + γEa′∼πe

[qξ̄(ϕω̂(s
′, a′))]− qξ(ϕω̂(s, a))

)2]
{where the penultimate features ϕ are fed into an auxiliary representation learning algorithm
such as KROPE, DR3, BEER etc.}

4: ω̂t := argminω∈Ω L(ω)
5: Periodically run LSPE, θ := LSPE(πe,D, ϕω).
6: Compute estimated action-values, q̂ := Φω̂t

θ. {where ϕω̂ is applied to D to get Φω}
7: end for
8: Return q̂ := Φω̂T

θ. {Estimated action-value function of πe, qπe .}

B THEORETICAL RESULTS

In this section, we present the proofs of our main and supporting theoretical results. The first set of
proofs in Section B.1 show that KROPE is a valid operator. While new to our work, the proofs follow
those by Castro et al. (2023). The next set of proofs in Section B.2 prove the stability of KROPE
representations and are novel to our work. For presentation purposes, it will often be convenient to
refer to a state-action pair as x ∈ X instead of (s, a).

B.1 KROPE OPERATOR VALIDITY

We now present the proofs demonstrating the validity of the KROPE operator. All the proofs in this
sub-section model those by Castro et al. (2023). The primary difference is that our operator is for
state-actions instead of states.
Lemma 1. Let K(X ) be the space of positive semidefinite kernels on X . The KROPE operator Fπe

is a contraction with modulus γ in ∥ · ∥∞.

Proof. Let k1, k2 ∈ K(X ). We then have:

∥Fπe(k1)−Fπe(k2)∥∞
= max

(x,y)∈X×X
|Fπe(k1)(x, y)−Fπe(k2)(x, y)|

= γ max
(x,y)∈X×X

|EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k1(X
′, Y ′)]− EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k2(X

′, Y ′)]|

= γ max
(x,y)∈X×X

|EX′∼Pπe (·|x),Y ′∼Pπe (·|y)[k1(X
′, Y ′)− k2(X ′, Y ′)]|

≤ γ∥k1 − k2∥∞.
This completes the proof of the lemma.

Lemma 2. Let K(X ) be the space of positive semidefinite kernels on X . Then the metric space
(K(X ), ∥ · ∥∞) is complete.

Proof. To show that K(X ) is complete it suffices to show that every Cauchy sequence {kn}n≥0 has
a limiting point in K(X ). Since X is a finite, the space of function RX×X is a finite-dimensional
vector space, which is complete under ∥ · ∥∞. Thus, the limiting point k ∈ RX×X of the Cauchy
sequence {kn}n≥0 lies in RX×X . Moreover, since we are considering only positive semidefinite
kernel elements in the Cauchy sequence and they uniformly converge to k ∈ RX×X , k must also be
positive semidefinite. Thus, K(X ) is complete under ∥ · ∥∞.

Proposition 2. The KROPE operator Fπe has a unique fixed point in K(X ). That is, there is a
unique kernel kπe ∈ K(X ) satisfying

kπe(s1, a1; s2, a2) = 1− |r(s1, a1)− r(s2, a2)|
|rmax − rmin|

+ γEs′1,s
′
2∼P,a′

1,a
′
2∼πe

[kπe(s′1, a
′
1; s

′
2, a

′
2)].
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Proof. Due to Lemmas 1 and 2, Fπe is a contraction in a complete metric space. Therefore, by
Banach’s fixed point theorem, the unique fixed point kπe exists.

Proposition 3. The KROPE similarity metric dKROPE satisfies:

∀x, y ∈ X , dKROPE(x, y) = |r(x)− r(y)|+ γMMD2(kπe)(Pπe(·|x), Pπe(·|y)).

Proof. To see this fact, we can write out the squared Hilbert space distance:

dKROPE(x, y) = ∥ψπe(x)− ψπe(y)∥2Hπe
k

= kπe(x, x) + kπe(y, y)− 2kπe(x, y)

= |r(x)− r(y)|+ γ⟨Φ(Pπe(·|x)),Φ(Pπe(·|x))⟩Hπe
k

+ γ⟨Φ(Pπe(·|y)),Φ(Pπe(·|y))⟩Hπe
k

−2γ⟨Φ(Pπe(·|x)),Φ(Pπe(·|y))⟩Hπe
k

= |r(x)− r(y)|+ γMMD2(kπe)(Pπe(·|x), Pπe(·|y)),

where the third line uses

kπe(x, x) = γEX′
1,X

′
2∼Pπe (·|x)[k

πe(X ′
1, X

′
2)] = γ⟨Φ(Pπe(·|x), Pπe(·|x)⟩Hπe

k
.

This completes the proof.

Before presenting Lemma 3, we define the distance metric dKROPE : X × X → R induced by the
KROPE kernel kπe as follows:

∀x, y ∈ X : dKROPE(x, y) := kπe(x, x) + kπe(y, y)− 2kπe(x, y).

Lemma 3. We have |qπe(x) − qπe(y)| ≤ dKROPE(x, y) + C, where C = 1
2

∑
n≥0 γ

n(∆πe
n (x) +

∆πe
n (y)) and ∆πe

n (x) = EX′∼(Pπe (·|x))n
[
EX

′′
1 ,X

′′
2 ∼Pπe (·|X′)

[
|r(X ′′

1 )− r(X
′′

2 )|
]]

.

Proof. We will prove this with induction. We first define the relevant terms involved. We consider
the sequences of functions {km}m≥0 and {qm}m≥0, where k0, q0 = 0. Since Fπe and T πe are
contraction mappings, we know that limm→∞ km = kπe and limm→∞ qm = qπe as Fπe and T πe

are applied respectively at each iteration m. At the mth application of the operators, we have the
corresponding kernel function km along with its induced distance function dm(x, y) = km(x, x) +
km(y, y)− 2km(x, y). We will now prove the following for all m:

|qm(x)− qm(y)| ≤ dm(x, y) +
1

2

m∑
n≥0

γn(∆πe
n (x) + ∆πe

n (y)) (6)

where ∆πe
n (x) = EX′∼(Pπe (·|x))n [EX

′′
1 ,X

′′
2 ∼Pπe (·|X′)[|r(X

′′

1 )− r(X
′′

2 )|]].

The base case m = 0 follows immediately since the LHS is zero while the RHS can be non-zero.
We now assume the induction hypothesis in Equation (6) is true. We then consider iteration m+ 1:

|qm+1(x)− qm+1(y)|
=
∣∣r(x) + γEX′∼Pπe (·|x)[qm(X ′)]− r(y)− γEY ′∼Pπe (·|y)[qm(Y ′)]

∣∣
≤ |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[|qm(X ′)− qm(Y ′)|]

≤ |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m∑
n=0

γn(∆πe
n (X ′) + ∆πe

n (Y ′))

]

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

]
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where we have used the fact that EX′∼Pπe (·|x)[∆
πe
n (X ′)] = ∆πe

n+1(x). We can then proceed from
above as follows:

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)

[
dm(X ′, Y ′) +

1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

]
≤|r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[dm(X ′, Y ′)]

+
1

2
EX′

1,X
′
2∼Pπe (·|x)

Y ′
1 ,Y

′
2∼Pπe (·|y)

[|r(X ′
1)− r(X ′

2)|+ |r(Y ′
1)− r(Y ′

2)|]

+
1

2

m+1∑
n=1

γn(∆πe
n (x) + ∆πe

n (y))

= |r(x)− r(y)|+ γEX′∼Pπe (·|x),Y ′∼Pπe (·|y)[dm(X ′, Y ′)] +
1

2

m+1∑
n=0

γn(∆πe
n (x) + ∆πe

n (y))

= dm+1(x, y) +
1

2

m+1∑
n=0

γn(∆πe
n (x) + ∆πe

n (y))

We thus have |qm+1(x)− qm+1(y)| ≤ dm+1(x, y) +
1
2

∑m+1
n=0 γ

n(∆πe
n (x) +∆πe

n (y)), which com-
pletes the proof.

Lemma 3 tells us that the KROPE state-actions that are close in latent space also have similar action-
values upto a constant C := 1

2

∑m+1
n=0 γ

n(∆πe
n (x) + ∆πe

n (y)). Intuitively, ∆πe
n (x) is the expected

absolute reward difference between two trajectories at the nth step after πe is rolled out from x. If
the transition dynamics and πe are deterministic, we have C = 0 (Castro, 2019; Zhang et al., 2021).
Note that while the deterministic transition dynamics assumption is eliminated, the bound suggests
that KROPE may hurt accuracy of q̂πe since when dKROPE(x, y) = 0, we get |qπe(x)− qπe(y)| ≤ C.
This indicates that two state-actions that may have different action-values are considered the same
under KROPE. This implies that while x and y should have different representations, they actually
may have the same representation.

B.2 KROPE STABILITY

In this section we present our main results. We present supporting theoretical results in Section B.2.1
and main theoretical results in Section B.3. To the best of our knowledge, even the supporting proofs
in Section B.2.1 are new.

B.2.1 SUPPORTING THEORETICAL RESULTS

We present the following definitions that we refer to in our proofs.
Definition 8 (Bellman completeness (Chen & Jiang, 2019)). The function class F is said to be
Bellman complete if ∀f ∈ F , it holds that T πef ∈ F . That is supf∈F infg∈F ∥g − T πef∥∞ = 0,
where F ⊂ X → [ rmin

1−γ ,
rmax
1−γ ], and T πe is the Bellman operator.

Definition 9 (Piece-wise constant functions (Chen & Jiang, 2019)). Given a state-action abstraction
ϕ, let Fϕ ⊂ X → [ rmin

1−γ ,
rmax
1−γ ]. Then f ∈ Fϕ is said to be a piece-wise constant function if

∀x, y ∈ X where ϕ(x) = ϕ(y), we have f(x) = f(y).

Proposition 4. If a state-action abstraction function ϕ : X → X ϕ is a πe-bisimulation abstraction,
then Fϕ is Bellman complete, that is, supf∈Fϕ inff ′∈Fϕ ∥f ′ − T πef∥∞ = 0.

Proof. We first define πe-bisimulation Castro (2019). Note that Castro (2019) considered only state
abstractions, while we consider state-action abstractions. ϕ is considered a πe-bisimulation abstrac-
tion if it induces a mapping between X and X ϕ such that for any x, y ∈ X such that x, y ∈ ϕ(x),
we have:

1. r(x) = r(y)
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2. ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y)

Given our πe-bisimulation abstraction function ϕ, we can group state-actions actions according to
its definition above. Once we have this grouping, according to Definition 9, ϕ induces a piece-wise
constant (PWC) function class Fϕ. Note that by definition of ϕ we have:

ϵr := max
x1,x2:ϕ(x1)=ϕ(x2)

|r(x1)− r(x2)| = 0

ϵp := max
x1,x2:ϕ(x1)=ϕ(x2)

∣∣∣∣∣∣
∑

x′∈xϕ

Pπe(x′|x1)−
∑

x′∈xϕ

Pπe(x′|x2)

∣∣∣∣∣∣ = 0,∀xϕ ∈ X ϕ.

Once we have ϕ, we consider the following to show Bellman completeness. Our proof closely
follows the proof of Proposition 20 from Chen & Jiang (2019). First recall the definition of Bellman
completeness from Definition 8: ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ = 0. Given
that the smallest value ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ can take on is zero,
we will prove our claim by showing that ∀f ∈ F ,∀T πef ∈ G, supf∈F infg∈G ∥g − T πef∥∞ is
upper-bounded by zero when ϕ is a πe-bisimulation.

We will prove the upper bound by showing that there exists a function f ′ ∈ Fϕ such that ∥f ′ −
T πef∥∞ ≤ 0, which implies that inff ′∈Fϕ ∥f ′ − T πef∥∞ ≤ 0.

We now construct such a f ′ ∈ Fϕ. We first define the following terms for a given abstract state-
action xϕ ∈ X ϕ: x+ := argmaxx∈ϕ−1(xϕ)(T πef)(x) and x− := argminx∈ϕ−1(xϕ)(T πef)(x).
We can then define f ′ as follows:

f ′(x) :=
1

2
((T πef)(x+) + (T πef)(x−)),∀x ∈ xϕ.

And since this holds true for ∀x ∈ xϕ, f ′1 is piece-wise constant function. We can then upper bound
∥f ′ − T πef∥∞ as follows:

f ′1(x)− (T πef)(x)

≤ 1

2
((T πef)(x+) + (T πef)(x−))− (T πef)(x−)

=
1

2
((T πef)(x+)− (T πef)(x−))

=
1

2
(r(x+) + γEx′

+∼Pπe (x+)[f
πe(x′+)]− r(x−)− γEx′

−∼Pπe (x−)[f
πe(x′−)])

≤ γ

2

∣∣∣Ex′
+∼Pπe (x+)[f

πe(x′+)]− Ex′
−∼Pπe (x−)[f

πe(x′−)]
∣∣∣ (1)

=
γ

2

∣∣∣∣∣∑
x′∈X

[fπe(x′)(Pπe(x′|x+)− Pπe(x′|x−))]

∣∣∣∣∣
=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

 ∑
x′∈xϕ

fπe(x′)Pπe(x′|x+)−
∑

x′∈xϕ

fπe(x′)Pπe(x′|x−)

∣∣∣∣∣∣
=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

fπe(xϕ)

 ∑
x′∈xϕ

Pπe(x′|x+)−
∑

x′∈xϕ

Pπe(x′|x−)

∣∣∣∣∣∣ (2)

=
γ

2

∣∣∣∣∣∣
∑

xϕ∈Xϕ

fπe(xϕ)
(
Pr(xϕ|x+)− Pr(xϕ|x−)

)∣∣∣∣∣∣ (3)

≤ γ

2

∥∥Pr(xϕ|x+)− Pr(xϕ|x−)
∥∥
1
· ∥fπe(xϕ)∥∞ (4)

≤ 0 ϵp = 0
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where Pr denotes probability, (1) is due to maxx1,x2:ϕ(x1)=ϕ(x2) |r(x1) − r(x2)| = 0, (2) is due to
fπe(xϕ) = fπe(x),∀x ∈ xϕ since PWC, (3) is due to Pr(xϕ|x) =

∑
x′∈xϕ Pπe(x′|x), and (4) is

due to Hölder’s, ∥f(g)g(x)∥1 ≤ ∥f(x)∥1∥g(x)∥∞.

Similarly, we can show the other way around: (T πef)(x) − f ′1(x) ≤ 0 by giving the symmet-
ric argument starting with (T πef)(x) − f ′1(x) ≤ (T πef)(x+) − 1

2 ((T
πef)(x+) + (T πef)(x−)).

Therefore, when ϕ is a πe-bisimulation, we have supf∈Fϕ inff ′Fϕ ∥f ′ − T πef∥∞ = 0.

Lemma 4. Define the matrix K1 ∈ R|X |×|X| such that each entry is the short-term similarity, k1,
between every pair of state-actions, i.e., K1(s1, a1; s2, a2) := 1− 1

|rmax−rmin| |r(s1, a1)− r(s2, a2)|.
Then K1 is a positive semidefinite matrix.

Proof. Proposition 2.21 from Paulsen & Raghupathi (2016) states that any kernel k is positive
semidefinite if it takes the form: k(a, b) = min{a, b} where a, b ∈ [0,∞).

First, recall that r(s, a) ∈ [−1, 1], we then have each entry in the K1 matrix of the following kernel
form K1(x, y) = 1− 1

2 |x− y|. We can then re-write k1 as follows:

k1(x, y) = 1− 1

2
|x− y|

= 1 +
1

2
min{−x,−y}+ 1

2
min{x, y}

=
1

2
min{1− x, 1− y}︸ ︷︷ ︸

ka

+
1

2
min{1 + x, 1 + y}︸ ︷︷ ︸

kb

.

That is,

k1(x, y) = ka(x, y) + kb(x, y).

Since x ∈ [−1, 1], each term in the min function is non-negative. Thus, ka and kb are both positive
semidefinite kernels, which means k1 is also a positive semidefinite kernel. We then have that K1 is
a positive semidefinite matrix.

Lemma 5. Given a finite set X and a kernel k defined on X , let K = (k(x, y))x,y∈X ∈ R|X |×|X|

be the corresponding kernel matrix. If K is full-rank and MMD(k)(p, q) = 0 for two probability
distributions p and q on X , then p = q.

Proof. From Gretton et al. (2012), we have the definition of MMD between two probability distri-
butions p, q given kernel k:

MMD(k)(p, q) := ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥Hk
.

Now when MMD(k)(p, q) = 0, we have:

0 = ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥Hk
,

which implies

0 = ∥Ex∼p[k(x, ·)]− Ex∼q[k(x, ·)]∥2
since all norms are equivalent in a finite-dimensional Hilbert space. With p and q viewed as vectors
in R|X |, the above equality means

0 = ∥Kp−Kq∥2.

Hence, K(p− q) = 0. Since K is full rank by assumption, we conclude that p = q.

Lemma 6. Suppose we have a reproducing kernel k defined on the finite space X , which produces
a reproducing kernel Hilbert space (RKHS) Hk, with the induced distance function d such that
d(x, y) = k(x, x) + k(y, y)− 2k(x, y),∀x, y ∈ X . When d(x, y) = 0, then k(x, ·) = k(y, ·).
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Proof. When d(x, y) = 0, we have 2k(x, y) = k(x, x) + k(y, y). Therefore, we the following
equalities:

k(x, x) + k(y, y) = 2k(x, y)

k(x, x)− k(x, y) = k(x, y)− k(y, y)
⟨k(x, ·), k(x, ·)⟩Hk

− ⟨k(x, ·), k(y, ·)⟩Hk
= ⟨k(x, ·), k(y, ·)⟩Hk

− ⟨k(y, ·), k(y, ·)⟩Hk
(1)

⟨k(x, ·), k(x, ·)− k(y, ·)⟩Hk
= ⟨k(x, ·)− k(y, ·), k(y, ·)⟩Hk

(2)
⟨k(x, ·), k(x, ·)− k(y, ·)⟩Hk

= ⟨k(y, ·), k(x, ·)− k(y, ·)⟩Hk
(3)

=⇒ k(x, ·) = k(y, ·)

where (1), (2), and (3) are is due to RKHS definition, linearity of inner product, and symmetry of
inner product respectively.

Proposition 5. Let x1, . . . , xn ∈ (0,∞) be n distinct and strictly positive numbers. Let K ∈ Rn×n

be the matrix with entries Kij = min{xi, xj}. Then K is a positive definite matrix.

Proof. By Proposition 2.21 in Paulsen & Raghupathi (2016), the matrix K is positive semidefinite,
so we only need to show that K is full rank. WLOG assume that 0 < x1 < x2 < · · · < xn. We
prove by induction on n. The base case with n = 1 clearly holds. Suppose the claim holds for n− 1
numbers. Now consider n numbers. Let α = (α1, . . . , αn)

⊤ ∈ Rn. It suffices to show that Kα = 0
implies α = 0. We write K in block matrix form as

K = x1Jn +


0 0 · · · 0
0 x2 − x1 · · · x2 − x1
... · · ·

. . . · · ·
0 x2 − x1 · · · xn − x1

 = x1

[
1 1 · · · 1
1 1 · · · 1

]
+

[
0 0 · · · 0
0 u2 · · · un

]
,

where Jn is the n-by-n all one matrix, 1 ∈ Rn−1 the all one vector, 0 ∈ Rn−1 the all zero vector,
and ui ∈ Rn−1, i = 2, . . . , n. It follow that

0 = Kα =

[
x1
∑n

i=1 αi

(x1
∑n

i=1 αi)1+
∑n

i=2 αiui

]
,

that is,

x1

n∑
i=1

αi = 0, (7)(
x1

n∑
i=1

αi

)
1+

n∑
i=2

αiui = 0. (8)

Plugging equation (7) into equation (8), we get
∑n

i=2 αiui = 0. By the induction hypothesis, the
(n− 1)-by-(n− 1) matrix

[u2 · · · un] =
[
min {xi − x1, xj − x1}

]
i,j=2,...,n

has full rank since the (n − 1) numbers x2 − x1, . . . , xn − x1 are distinct and strictly positive.
Therefore, we must have α2 = · · · = αn = 0. Plugging back into equation (7) and using x1 > 0,
we obtain α1 = 0.

B.3 MAIN KROPE THEORETICAL RESULTS

We now present the main theoretical contributions of our work.
Theorem 1. If Φ is a KROPE representation as defined in Definition 3, then the spectral radius of
(E[Φ⊤Φ]))−1E[γΦ⊤PπeΦ] is less than 1. That is, Φ stabilizes LSPE.

Proof. Recall from Definition 3, we have:

E[ΦΦ⊤] = K1 + γE[PπeΦ(PπeΦ)⊤],
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where K1 ∈ R|X |×|X| such that each entry is the short-term similarity, k1, between every pair of
state-actions i.e. K1(s1, a1; s2, a2) := 1− |r(s1,a1)−r(s2,a2)|

|rmax−rmin| .

From this definition, we can proceed by left and right multiplying Φ⊤ and Φ respectively to get:

E[Φ⊤ΦΦ⊤Φ] = E[Φ⊤K1Φ] + γE[Φ⊤PπeΦ(PπeΦ)⊤Φ].

Notice that B := E[Φ⊤Φ] is the feature covariance matrix and C := E[Φ⊤PπeΦ] is the cross-
covariance matrix. By making the appropriate substitutions, we get:

BB⊤ = E[Φ⊤K1Φ] + γCC⊤.

We can then left and right multiply by B−1 and B−⊤ to get the following where L := γB−1C:

I = B−1E[Φ⊤K1Φ]B
−⊤ +

1

γ
LL⊤.

Rearranging terms gives

I − 1

γ
LL⊤ = B−1E[Φ⊤K1Φ]B

−⊤.

From Lemma 4, we know that K1 is positive semidefinite, which means that B−1E[Φ⊤K1Φ]B
−⊤

is also positive semidefinite. Therefore, the eigenvalues of LHS above must also be greater than or
equal to zero. Letting λ be the eigenvalue of L, we know that that the following must hold:

1− λ2

γ
≥ 0 =⇒ |λ| ≤ √γ.

Since γ < 1, the spectral radius of L = (E[Φ⊤Φ])−1(γE[Φ⊤PπeΦ]) is always less than 1. Thus,
KROPE representations are stable. Finally, since KROPE representations are stable and due to Propo-
sition 1, KROPE representations stabilize LSPE.

Theorem 2. Let ϕ : X → X ϕ be the state-action abstraction induced by grouping state-actions
x, y ∈ X such that if dKROPE(x, y) = 0, then ϕ(x) = ϕ(y),∀x, y ∈ X . Then ϕ is Bellman complete
if the abstract reward function rϕ : X ϕ ↣ (−1, 1) is injective (i.e., distinct abstract rewards).

Proof. Our proof strategy is to show that the abstraction function ϕ due to KROPE is a πe-
bisimulation, which implies it is Bellman complete due to Proposition 4.

According to Propsition 3, dKROPE(x, y) = |r(x) − r(y)| + γMMD(kπe)(Pπe(·|x), Pπe(·|y)).
When dKROPE(x, y) = 0 for any two state-actions, it implies that r(x) = r(y) and
MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0.

For ϕ to be a πe-bisimulation, we need ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y) to
be true for any x, y ∈ X such that ϕ(x) = ϕ(y). While MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0,
it is possible that Pπe(·|x) ̸= Pπe(·|y). However, as we will show, under the assumption that
the abstract rewards rϕ are distinct ∀xϕ ∈ X ϕ, we do have ∀xϕ ∈ X ϕ,

∑
x′∈xϕ Pπe(x′|x) =∑

x′∈xϕ Pπe(x′|y). Before we proceed, we make the following technical assumption on the reward
function: r(x) ∈ (−1, 1),∀x ∈ X . The exclusion of the rewards −1 and 1 allows us to use
Proposition 5 to show that the KROPE kernel is positive definite instead of positive semi-definite.

Once we group state-actions x, y ∈ X together such that dKROPE(x, y) = 0, we have the corre-
sponding abstraction function ϕ : X → X ϕ. Accordingly, ϕ induces a Markov reward process,
Mϕ := ⟨X ϕ, rϕ, Pϕ, γ⟩ where rϕ is the abstract reward function rϕ : X ϕ → (−1, 1) and Pϕ is the
transition dynamics on the abstract MRP i.e. Pϕ(·|xϕ). We can also consider the abstract KROPE
kernel, kϕ(xϕ, yϕ), which measures the KROPE relation on X ϕ. Note that all these quantities are a
function of πe. We drop the notation for clarity. By this construction, we have:

rϕ(xϕ) = r(x),∀x ∈ xϕ Since all rewards are equal within xϕ

kϕ(xϕ, ·) = k(x, ·),∀x ∈ xϕ Lemma 6

Now, under the assumption that all abstract rewards rϕ(xϕ) are distinct ∀xϕ ∈ X ϕ, we have that
the kernel matrix Kϕ ∈ RXϕ×Xϕ

where each entry kϕ(xϕ, yϕ) is positive definite. To see this fact,
consider that:

kϕ(xϕ, yϕ) = kϕ1 (x
ϕ, yϕ) + γEXϕ∼Pϕ(·|xϕ),Y ϕ∼Pϕ(·|yϕ)[k

ϕ(Xϕ, Y ϕ)], (9)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where kϕ1 (x
ϕ, yϕ) := 1− 1

rϕmax−rϕmin
|rϕ(xϕ)− rϕ(yϕ)|. From Lemma 4, we know that kϕ1 is positive

semidefinite. However, under the assumption that all abstract rewards rϕ are distinct, Proposition 5
tells us that kϕ1 is positive definite. Given that kϕ(xϕ, yϕ) (Equation (9)) is just a summation of
positive definite kernels, kϕ is positive definite, which means Kϕ is positive definite.

We now consider when the MMD is zero. Again, by construction, we have the following when
MMD(kπe)(Pπe(·|x), Pπe(·|y)) = 0. For clarity, we use k instead of kπe .

0 = ∥EX′∼Pπe (·|x)[k(X
′, ·)]− EX′∼Pπe (·|y)[k(X

′, ·)]∥Hk

= ∥EX′∼Pπe (·|x)[k(X
′, ·)]− EX′∼Pπe (·|y)[k(X

′, ·)]∥2
= ∥

∑
x′∈X

Pπe(x′|x)k(x′, ·)−
∑
x′∈X

Pπe(x′|y)k(x′, ·)∥2

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

∑
x′∈xϕ

Pπe(x′|x)k(x′, ·)−
∑

xϕ∈Xϕ

∑
x′∈xϕ

Pπe(x′|y)k(x′, ·)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

kϕ(xϕ, ·)
∑

x′∈xϕ

Pπe(x′|x)−
∑

xϕ∈Xϕ

kϕ(xϕ, ·)
∑

x′∈xϕ

Pπe(x′|y)

∥∥∥∥∥∥
2

(1)

=

∥∥∥∥∥∥
∑

xϕ∈Xϕ

kϕ(xϕ, ·) Pr(xϕ|x)−
∑

xϕ∈Xϕ

kϕ(xϕ, ·) Pr(xϕ|y)

∥∥∥∥∥∥
2

Pr denotes probability

where (1) is due to kϕ(xϕ, ·) = k(x, ·),∀x ∈ xϕ From above, we can see that the kernel and
probability distributions are over X ϕ. In matrix notation, we can write the above as follows where
pϕ := Pr(·|x) and qϕ := Pr(·|y) are viewed as probability distribution vectors in R|Xϕ|.

0 =
∥∥Kϕpϕ −Kϕqϕ

∥∥
2

=⇒ pϕ = qϕ since Kϕ is positive definite, from Lemma 5.

We thus have ∀xϕ ∈ X ϕ,
∑

x′∈xϕ Pπe(x′|x) =
∑

x′∈xϕ Pπe(x′|y) to be true for any x, y ∈ X
such that ϕ(x) = ϕ(y). Given this condition holds true and r(x) = r(y),∀x, y ∈ X such that
ϕ(x) = ϕ(y), ϕ is a πe-bisimulation. From Proposition 4 we then have that ϕ is Bellman complete.

C EMPIRICAL DETAILS

In this section, we provide specific details on the empirical setup and additional results.

C.1 EMPIRICAL SETUP

General Training Details. In all the continuous state-action experiments, we use a neural net-
work with 1 layer and 1024 neurons using RELU activation function and layernorm to represent the
encoder ϕ : X → Rd (Gallici et al., 2024). We use mini-batch gradient descent to train the net-
work with mini-batch sizes of 2048 and for 500 epochs, where a single epoch is a pass over the
full dataset. We use the Adam optimizer with learning rate {1e−5, 2e−5, 5e−5} and weight decay
1e−2. The target network is updated with a hard update after every epoch. The output dimension
d is {|X |/4, |X |/2, 3|X |/4}, where |X | is the dimension of the original state-action space of the
environment. All our results involve analyzing this learned ϕ. Since FQE outputs a scalar, we add a
linear layer on top of the d-dimensional vector to output a scalar. The entire network is then trained
end-to-end. The discount factor is γ = 0.99. The auxiliary task weight with FQE for all representa-
tion learning algorithms is α = 0.1. When using LSPE for OPE, we invert the covariance matrix by
computing the pseudoinverse.
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In the tabular environments, we use a similar setup as above. The only changes are that we use a
linear network with a bias component but no activation function and fix the learning rate to be 1e−3.
For experiment in Appendix C.3.1, α = 0.8. We refer the reader pseudo-code in Appendix A.

Evaluation Protocol: OPE Error . As noted earlier, we measure OPE error by measuring
MSVE. To ensure comparable and interpretable values, we normalize the MSVE by dividing with
MSVE[qRAND] := E(S,A)∼D[(q

RAND(S,A) − qπe(S,A))2], where qRAND is the action-value func-
tion of a random-policy. Similarly, in the continuous state-action environments, we normalize by
MSVE[qRAND] := ES0∼d0,A0∼πe

[(qRAND(S0, A0) − qπe(S0, A0))
2]. Values less than one mean that

the algorithm estimates the true performance of πe better than a random policy.

Evaluation Protocol: Realizability Error. In tabular experiments, we normalize the realizability
error. After solving the least-squares problem ϵ := ∥Φŵ − qπe∥22, where ŵ := argminw ∥Φw −
qπe∥22. We divide ϵ by 1

|X |
∑

i |qπe(xi)| and plot this value.

Pearson Correlation. The formula for the Pearson correlation used in the main experiments is:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ and ȳ are the means of all the xi’s and yi’s respectively.

Custom Datasets. We generated the datasets by first training policies in the environment using
SAC (Haarnoja et al., 2018) and recording the trained policies during the course of training. For
each environment, we select 3 policies, where each contributes equally to generate a given dataset.
We set πe to be one of these policies. The expected discounted return of the policies and datasets for
each domain is given in Table 1 (γ = 0.99). In all environments, πe = π1

b (see Table 1). The values
for the evaluation and behavior policies were computed by running each for 300 unbiased Monte
Carlo rollouts, which was more than a sufficient amount for the estimate to converge. This process
results in total of 4 datasets, each of which consisted of 100K transitions.

Environments πe π1
b π2

b

CartPoleSwingUp 50 20 5
FingerEasy 100 71 32
HalfCheetah 51 27 2
WalkerStand 90 55 40

Table 1: Policy values of the target policy and behavior policy on DM-control (Tassa et al., 2018).

D4RL Datasets. Due to known discrepancy issues between newer environments of gym1, we gen-
erat our datasets instead of using the publicly available ones. To generate the datasets, we use the
publicly available policies 2. For each domain, the expert (and target policy) was the 10th (last
policy) from training. The medium (and behavior policy) was the 5th policy. We added a noise of
0.1 to the policies. The values for the evaluation and behavior policies were computed by running
each for 300 unbiased Monte Carlo rollouts , which was more than a sufficient amount for the es-
timate to converge. We set γ = 0.99. We evaluate on the Cheetah, Walker, and Hopper domains.
This generation process for three environments, led to 9 datasets, each of which consisted of 100K
transitions.

C.2 BASELINES

We provide details of the baselines in this section.

BCRL. Unlike the other algorithms, BCRL is not used as an auxiliary loss with FQE (Chang et al.,
2022). We use the same learning rates as mentioned above for {1e−5, 2e−5, 5e−5} when training

1https://github.com/Farama-Foundation/D4RL/tree/master
2https://github.com/google-research/deep_ope
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ϕ. As suggested by prior work, self-predictive algorithms such BCRL work well when network that
outputs the predicted next state-action is trained at a faster rate (Tang et al., 2023; Grill et al., 2020).
Accordingly, we set its learning rate to be 1e−4. For BCRL-EXP, which involves the log determinant
regularizer, we set this coefficient to 1e−2. BCRL’s hyperparameters are: the learning rates for ϕ,
M , and ρ; the output dimension of ϕ; and the log determinant coefficient (see Equation (10)).

DR3. The DR3 regularizer minimizes the total feature co-adaptation by adding the term∑
(s,a,s′)∈D,a′∼πe

ϕ(s, a)⊤ϕ(s′, a′) as an auxiliary task to the main FQE loss (Kumar et al., 2021).
Ma et al. (2024) introduced an improvement to this auxiliary loss by suggesting that the absolute
value of the feature co-adaptation be minimized, i.e.,

∑
(s,a,s′)∈D,a′∼πe

|ϕ(s, a)⊤ϕ(s′, a′)|. e use
α = 0.1 as its auxiliary task weight. Absolute DR3’s only hyperparameters are the auxiliary task
weight α and the ϕ output dimension.

BEER. He et al. (2024) introduced an alternative regularizer to DR3 rank regularizer since they sug-
gested that the minimization of the unbounded feature co-adaptation can undermine performance.
They introduced their bounded rank regularizer BEER (see Equation (12) in He et al. (2024)). BEER
introduces only the auxiliary task weight α as the additional hyperparameter.

KROPE. KROPE’s only hyperparameters are the output dimension of ϕ and the learning rate of the
KROPE learning algorithm.

C.3 ADDITIONAL RESULTS

In this section, we include additional empirical results.

C.3.1 UNDERSTANDING THE STABILITY OF THE KROPE LEARNING PROCEDURE

In this section analyze how the deadly triad affects KROPE learning procedure. Since KROPE’s
learning algorithm is a semi-gradient method, it is susceptible to instability (Tsitsiklis & Van Roy,
1997). As such, these experiments aim to understand when we might expect KROPE to diverge and
when it might mitigate the divergence of FQE.

We conduct our experiments on the Markov reward process in Figure 5(a), which was introduced
by Feng et al. (2019). The MRP consists of 4 non-terminal states, 1 terminal state (the box), and
only 1 action. The value function estimate is linear in the weight w = [w1, w2, w3], so the native
features of the states are [1, 0, 0], [0, 1, 0] , [0, 0, 2], and [0, 0, 1] (clockwise starting from left-most).
We set γ = 1, so the optimal weights are w∗ = [0.8, 1, 0]. In this setup, we say a transition is a
bad transition if the bootstrapping target is a moving target for the current state (Asadi et al., 2024).
For example, the transition from w3 to 2w3 is a bad transition since updates made to w3 may move
2w3 further away. When this transition is sampled at a frequency that is different from the on-policy
distribution, algorithms such as TD, LSPE, and FQE tend to diverge (Asadi et al., 2024).

(a) Divergence Counterexample (b) KROPE Training loss (c) FQE+KROPE Training loss

Figure 5: Figure 5(a): Markov reward process counterexample designed to illustrate divergence; r denotes the
rewards and p denotes the probability of transition (Feng et al., 2019). Figures 5(b) and 5(c): KROPE training
loss and FQE+KROPE training loss vs. epochs respectively when different datasets are paired with D1; results
are averaged over 20 trials, shaded region is the 95% confidence interval, and lower is better.
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To better understand the stability of the learning procedures, we design the following experiment.
We start with two datasets D1 and D2. D1 consists of 2000 on-policy transitions and 5000 off-
policy bad transitions from w3 to 2w3, while D2 consists of only 2000 on-policy transitions. We
then consider four different variations of D2: Dw1

2 , Dw2
2 , Dw3

2 , and D2w3
2 , where each variation

denotes a dataset where we add 5000 off-policy transitions from the specified state to D2. With this
setup, our goal is understand which dataset pairing withD1: (D1,Dw1

2 ), (D1,Dw2
2 ), (D1,Dw3

2 ), and
(D1,D2w3

2 ) increases the susceptibility of KROPE to divergence. Recall that at each training step,
KROPE samples pairs of transitions. Thus, in this setup, KROPE will sample one transition from D1

and the other transition from the other dataset.

In Figures 5(b) and 5(c), we show the training loss of KROPE only and FQE+KROPE with KROPE as
an auxiliary task. In both cases, the sampled state-actions are fed into a linear network encoder with
a bias component and no activation function which outputs a d = 3 representation. In case of FQE,
this representation is then fed into a linear function to output the scalar value. From Figure 5(b),
we find that even though D1 consists of mostly bad transitions, if KROPE also samples from Dw1

2

or Dw2
2 , its divergence is mitigated. However, as expected, if KROPE uses Dw3

2 or D2w3
2 , KROPE

diverges since the pairing of samples from (D1,Dw3
2 ), and (D1,D2w3

2 ) leads to KROPE chasing a
moving bootstrapped target, resulting in divergence. Building upon this insight, we can then better
understand when KROPE can mitigate FQE’s divergence. From Figure 5(c), we see the expected
result that when FQE uses D1 only, it diverges since D1 consists of many bad transitions. However,
if FQE uses KROPE as an auxiliary loss, KROPE may either reduce the divergence (Dw1

2 and Dw2
2 )

or worsen it (Dw3
2 and D2w3

2 ) depending on which dataset is paired with D1. While in practice, it is
unclear to determine which situation is more likely, this result sheds light on the fact that the KROPE
learning procedure can potentially mitigate the divergence of FQE’s learning procedure depending
on which pairs of transitions are sampled.

Takeaway #3: Understanding KROPE Divergence

Depending on which pairs of transitions are sampled, KROPE can potentially mitigate or
worsen the divergence of FQE.

C.3.2 OFFLINE POLICY EVALUATION ON D4RL DATASETS

In this section, we present the offline policy evaluation results on the D4RL datasets. The setup is
the same as the one used in Section 4. We present the results in Figure 6.

Qualitatively, we reach the similar conclusions: KROPE is effective in producing stable and accurate
OPE estimates. However, in 3/9 instances, KROPE does diverge. This divergence is likely related
to the discussion in Section 5 and Appendix C.3.1. Recall that KROPE is a semi-gradient method,
which does not optimize any objective function and is susceptible to divergence (Feng et al., 2019;
Sutton & Barto, 2018). So while KROPE representations stabilize value function learning, KROPE’s
learning algorithm may diverge and not converge to KROPE representations. However, regardless of
this result, KROPE does improve the stability and accuracy of FQE in all cases.

C.3.3 STABILITY-RELATED ANALYSIS ON CUSTOM DATASETS

In this section, We include the remaining stability-related metric analysis that was deferred from the
main paper.

Feature Co-adaptation, Condition Number, and Hyperparameter Sensitivity. In this subsec-
tion, we include all the remaining results related to the stability metrics for all environments.

Bellman completeness. Another metric that is associated with stability is Bellman completeness
(BC) (Chang et al., 2022; Wang et al., 2021a). We find that KROPE is approximately Bellman com-
plete even though it does not explicitly optimize for it; this finding aligns with our Theorem 2. While
BC is difficult to approximate, we can minimize the proxy metric introduced given in Equation (10)
(Chang et al., 2022):
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(a) Cheetah random (b) Cheetah medium (c) Cheetah medium-expert

(d) Hopper random (e) Hopper medium (f) Hopper medium-expert

(g) Walker random (h) Walker medium (i) Walker medium-expert

Figure 6: Normalized squared value error achieved by LSPE when using a particular representation vs. rep-
resentation training epochs on the D4RL datasets. LSPE estimates are computed every 10 epochs. Results are
averaged over 20 trials and the shaded region is the 95% confidence interval. Lower and less erratic is better.

(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 7: Feature co-adaptation on different environments as a function of training epochs. All results are
averaged over 20 trials and shaded region is the 95% confidence interval.
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(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 8: Condition number of the covariance matrix on different environments as a function of training
epochs. All results are averaged over 20 trials and shaded region is the 95% confidence interval.

(a) CheetahRun (b) FingerEasy (c) WalkerStand

Figure 9: Hyperparameter sensitivity on different environments as a function of training epochs; larger area
under the curve is better. All results are averaged over 20 trials for each hyperparameter configuration and
shaded region is the 95% confidence interval.
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L(M,ρ) := ED

∥∥∥∥[Mρ⊤
]
ϕ(s, a)−

[
γEs′∼P (·|s,a),a′∼πe(·|s′)[ϕ(s

′, a′)]
r(s, a)

]∥∥∥∥2
2

(10)

where (ρ,M) ∈ Rd×d, ϕ is fixed, andL(M,ρ) = 0 indicates Bellman completeness. Given the final
learned representation, we compute and report the BC error in Table 2. We find that KROPE is ap-
proximately Bellman complete even though it does not explicitly optimize for it; this finding aligns
with our Theorem 2. We note that BCRL-EXP is less Bellman complete since it also includes the
exploratory objective in its loss function, which if maximized can reduce the Bellman completeness.
While BCRL is more BC than BCRL-EXP, we found that it is less BC in general. We attribute this
finding due to the difficulty in explicitly optimizing the BCRL objective which involves multiple neu-
ral networks (M,ρ, ϕ) and multiple loss functions on different scales (reward, self-prediction, log
determinant regularization losses). KROPE can achieve approximate Bellman completeness without
these optimization-related difficulties.

Algorithm

Domain BCRL + EXP BCRL BEER DR3 FQE KROPE (ours)

CartPoleSwingUp 0.4± 0.1 0.2± 0.1 0.1± 0.0 0.0± 0.0 0.1± 0.0 0.0± 0.0
CheetahRun 3.3± 0.6 2.4± 0.5 0.7± 0.0 0.0± 0.0 0.7± 0.0 0.2± 0.0
FingerEasy 1.3± 0.6 0.7± 0.2 0.9± 0.0 137.0± 4.4 0.9± 0.0 0.2± 0.0
WalkerStand 10.4± 2.0 0.3± 0.1 0.5± 0.1 66.1± 0.6 0.6± 0.0 0.1± 0.0

Table 2: Bellman completeness measure for all algorithms across all domains. Results are averaged across 20
trials and the deviation shown is the 95% confidence interval. Values are rounded to the nearest single decimal.

C.3.4 USING FQE DIRECTLY FOR OPE

In our main empirical section (Section 4), we used FQE as a representation learning algorithm on
our custom datasets. We adopted the linear evaluation protocol, i.e., an approach of analyzing the
penultimate features of the action-value function network and applied LSPE on top of these features
for OPE. This protocol enabled us to better understand the nature of the learned features.

For the sake of completeness, we present results of FQE as an OPE algorithm where the action-value
network is directly used to estimate the performance of πe. We present the results in Figures 10 and
11. As done in Section 4, we evaluate the performance of FQE and KROPE based on how they shape
the penultimate features of the action-value network. However, when conducting OPE, we evaluate
two variants: 1) using LSPE (-L) and 2) using the same end-to-end FQE action-value network (-E2E).

From Figure 10, we find that there are hyperparameter configurations that can outperform the KROPE
variants. However, based on Figure 11, we find both KROPE variants are significantly more robust
to hyperparameter tuning. This latter result suggests that KROPE does improve stability with respect
to the hyperparameter sensitivity metric as well.

Regardless of FQE’s hyperparameter sensitivity, it is still interesting to observe that when FQE is
used as an OPE algorithm, it produces reasonably accurate OPE estimates. It even outperforms the
FQE+KROPE combination. However, as shown in Section 4, the penultimate features of this same
network actually have poor property values such as high feature co-adaptation, high condition num-
bers, and highly erratic OPE estimates with LSPE. Given that these features have weak properties,
it is unclear why FQE still can lead to accurate OPE. The primary difference between using FQE for
OPE vs. FQE features and LSPE for OPE is in how the last linear layer is trained. The former is trained
by gradient descent while the latter is trained with the iterative LSPE algorithm on the fixed features.
An interesting future direction will be to explore the learning dynamics of these two approaches.

On a related note, we point out that the training dynamics of FQE are still not well-understood. For
example, Fujimoto et al. (2022) show that the FQE loss function poorly correlates with value error.
That is, the FQE loss can be high but value error (and OPE error) can be low.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) CartPoleSwingUp (b) FingerEasy

(c) CheetahRun (d) WalkerStand

Figure 10: Normalized squared value error achieved by LSPE (-L) and FQE (-E2E) evaluated every 10 epochs
of training. Results are averaged over 20 trials and the shaded region is the 95% confidence interval. Lower
and less erratic is better.

(a) CartPoleSwingUp (b) FingerEasy

(c) CheetahRun (d) WalkerStand

Figure 11: Hyperparameter sensitivity on different environments as a function of training epochs; larger area
under the curve is better. All results are averaged over 10 trials for each hyperparameter configuration and
shaded region is the 95% confidence interval. We tuned the hyperparameters discussed in Appendix C.1.
KROPE-FE2E overlaps with KROPE-L.
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