
Contrastive Learning with Data Misalignment:
Feature Purity, Training Dynamics and Theoretical

Generalization Guarantees

Jiawei Sun
Rensselaer Polytechnic Institute

sunj11@rpi.edu

Shuai Zhang
New Jersey Institute of Technology

sz457@njit.edu

Hongkang Li
University of Pennsylvania
lihk@seas.upenn.edu

Meng Wang
Rensselaer Polytechnic Institute

wangm7@rpi.edu

Abstract

Contrastive learning is a powerful framework for learning discriminative repre-
sentations from image-text pairs. Despite its success, its theoretical foundations,
especially when the image-text pair exhibits misalignment, remain underexplored.
This paper provides the first theoretical analysis of contrastive learning under data
misalignment, proving how the ground-truth modality-paired features are amplified
while spurious features are suppressed through the training dynamics analysis.
Specifically, we study two nonlinear encoders trained jointly with a contrastive loss
and demonstrate that noisy (or misaligned) data pairs result in mixed representa-
tions and degrade the model’s generalization ability. In contrast, recaptioning and
filtering improve the data alignment, which in turn purifies the features learned by
neurons and subsequently enhances generalization. Our analysis identifies feature
purity as a key factor in the success of contrastive learning and offers insights
into how data quality and training procedures impact representation learning and
downstream generalization. Theoretical insights are supported by experiments on
standard benchmarks.

1 Introduction

Vision-language models (VLMs) have achieved strong performance across diverse multimodal tasks
such as vision-language understanding and generation. State-of-the-art methods like CLIP [37] and
SimVLM [50] use contrastive learning to train dual encoders on large-scale image-text pairs scraped
from the web, aligning embeddings by pulling paired samples closer in a shared space. These models
excel in zero-shot scenarios, requiring no task-specific fine-tuning.

However, web-sourced captions are often noisy or misaligned, containing irrelevant or spurious details
that hinder cross-modal alignment and reduce representation quality. For example, [34] cites an
image of a blue Mercedes-Benz in a parking lot paired with the caption: "2003 Mercedes-Benz C240
sedan, Leather, MUST BE SEEN – $6199." The price information in this caption is only superficially
correlated with the image and does not contribute meaningfully to understanding the image context.
To mitigate this issue, many works [13, 34, 46, 3, 38, 16, 45] adopt text generation methods during
VLM training to produce high-quality synthetic captions more faithful to the corresponding images.
Models like LaCLIP [13] and BLIP [25] show that such recaptioning improves both the quality and
diversity of training data, leading to significantly better performance. Further, [34] demonstrates that
the cosine similarities between BLIP2 generated captions [24] and their paired images is higher than
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Table 1: Comparison with existing theoretical works on contrastive learning.

Work Train
Dyn. Nonlinear Zero-shot

Gen. Recaption Multi-
modal

Joint
Encoder

(Wen & Li, 2021) [51] ✓ ✓
(Nakada et al., 2023) [33] ✓ ✓ ✓
(Chen et al., 2024) [10] ✓ ✓ ✓
(Lee et al., 2021) [21] ✓ ✓
(Zhang et al., 2023a) [60] ✓
(Pareek et al., 2025) [35] ✓ ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

that of raw captions. [22] analyzes conformity on MSCOCO and finds that it correlates with how
common or rare an image–caption embedding is, reflecting its degree of alignment within the dataset.

Despite the impressive success of VLMs and the practical advancements driven by recaptioned texts,
their theoretical foundations remain relatively underdeveloped. Several critical questions remain
mostly open:
How do contrastively pre-trained VLMs align modalities, extract feature representations, and
achieve zero-shot capabilities? How does text recaptioning on noisy image-text pairs provably
enhance generalization performance?

Notably, even the theory of vanilla multimodal contrastive learning is still incomplete. For instance,
[15, 60] extend spectral contrastive loss to multimodal settings, showing that the objective can be
related to matrix factorization. [35] provides a theoretical characterization of when data filtering
improves multimodal contrastive learning, offering a complementary, data-centric perspective to
objective-level analyses. Also, [17, 21, 59] show that, under certain conditions, multimodal models
outperform unimodal ones with better representations. However, these works assume an optimal
solution to the non-convex problem without analyzing the training dynamics that lead to strong
generalization. The zero-shot ability of VLMs also lacks full theoretical study. To the best of our
knowledge, only [10] analyzes CLIP’s zero-shot performance, showing it learns shared features while
ignoring modality-specific ones. Yet, their setup does not consider real-world issues like misalignment
between image and text. Beyond standard contrastive learning, [33] proposes a modified loss using
unpaired data to detect ground-truth pairs and improve results, but only for linear models. So far, no
work has theoretically studied the effect of text recaptioning on VLMs.

Contributions: To the best of our knowledge, this is the first theoretical work explaining why text
recaptioning improves zero-shot generalization in VLMs, especially under image-text misalignment,
where text may include spurious or missing features. We analyze the training dynamics of stochastic
gradient descent (SGD) in multimodal contrastive learning and derive the generalization behavior
of the learned model. Our analysis uses a one-hidden-layer ReLU network, which remains the
state-of-the-art model in theoretical studies of contrastive [51] and supervised learning [2, 61]. All
findings are validated empirically on practical VLMs like CLIP. A comparison to prior theory works
is shown in Table 1. Key contributions include:

1. Theoretical training dynamics and generalization analysis of contrastive learning in nonlinear
VLMs. We provide a theoretical analysis of jointly training two nonlinear encoders with contrastive
loss. Prior works on training dynamics in contrastive learning [51, 10, 33] either analyze a single
encoder or are restricted to linear neural networks. In contrast, our analysis captures the joint learning
behavior of both nonlinear encoders with ReLU activation functions.

2. Theoretical characterization of the impact of misaligned image-text pairs on pre-training
performance. We analyze a data model with modality misalignment, where some texts may contain
features spuriously correlated with the image and others may omit relevant features. We show that
spurious and missing features cause neurons to entangle true and irrelevant representations, which
hinders the ability of the vision-language model to disentangle semantic components, ultimately
degrading generalization performance.
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3. Theoretical justification of enhanced out-of-domain generalization through pre-training
with text recaptioning. We first analyze the training dynamics of the text generation process and
formally prove that the resulting text after recaptioning has reduced spurious correlation and enhanced
semantic relevance with the corresponding images. When these filtered texts are used for contrastive
pre-training, the resulting model exhibits improved feature purity and succeeds in out-of-domain
zero-shot classification, whereas the model trained on raw data provably fails.

1.1 Related Works

Vision-Language Models: VLMs [58, 48, 37, 19, 28, 26] are trained via contrastive learning on
large web-sourced image-text pairs. Following CLIP, later models [30, 1, 56] aim to boost zero-shot
performance. Data quality has become a key bottleneck, leading to recent filtering efforts [13, 24,
49, 20, 27]. For example, LaCLIP [13] uses LLM-generated caption rewrites as augmentation, and
BLIP [25] leverages synthetic captions to drop noisy pairs, enhancing feature quality and robustness.

Theoretical Exploration on Contrastive Learning. Recent studies explore why contrastive learning
yields effective representations. [47] identifies alignment and uniformity as key properties of con-
trastive loss. [15] shows that solving auxiliary prediction tasks improves contrastive representations.
[44] highlights the role of inductive biases in shaping learning dynamics. [29] proves that multimodal
contrastive learning can recover shared latent factors under a generative model.

Generalization analyses of Neural Networks (NNs). Various approaches have been developed to
analyze the generalization of feedforward NNs. The neural tangent kennel (NTK) approach shows
that overparameterized networks can be approximated by kernel methods in the limiting case [18, 2].
The model estimation approach assumes the existence of a ground-truth one-hidden-layer model with
desirable generalization and estimates the model parameters using the training data [63]. The feature
learning approach analyzes how a shallow NN learns important features during training and thus
achieves desirable generalization [31, 23, 43].

2 Problem Formulation and Algorithm

VLMs leverage large-scale web-based datasets containing paired visual and textual data to pre-train
two separate encoders: an image encoder f and a text encoder h, parameterized by weights W and
V, respectively. Contrastive learning serves as the core framework, ensuring the learned embeddings
of matching pairs are closer while separating mismatched pairs.

Specifically, let S be the indices of the image-text pairs, e.g., (xp, yp) with p ∈ S. (xp, yp) is referred
to as a positive pair, while (xp, yn) with p ̸= n is referred to as a negative pair. We minimize the
following spectral loss function:

L(f, h) =
∑
p∈S

−⟨f(xp), h(yp)⟩+
∑

n∈S\{p}

(⟨f(xn), h(yp)⟩)2

2τ
+

∑
n∈S\{p}

(⟨f(xp), h(yn)⟩)2

2τ


(1)

where the hyper-parameter τ > 0 is referred as the temperature. The spectral contrastive loss L in
(1) has been extensively utilized in recent theoretical works [15, 42, 60]. Although it differs from
the commonly used SimCLR [9] in practice, the spectral contrastive loss closely resembles SimCLR
numerically, as shown in [15].

2.1 Training Framework

Let S = Sh ∪ Sw include human-annotated high-quality image-text pairs with indices in Sh and
noisy web low-quality dataset with indices in Sw. Due to the inherently noisy nature of web data,
the learned embeddings from (1) may be suboptimal. To mitigate this, many practical training
methods [25, 13] incorporate recaptioned text to improve the quality and diversity of image-text pairs.
While specific implementations vary, most frameworks follow a similar four-stage approach:

(S1) Image-text contrastive pre-training (ITCP) on raw data: The image encoder f and text
encoder h are trained using the image-text pairs {(xp, yp)}p∈S by minimizing the contrastive loss as
in (1). Let W and V denote the learned weights in f and h. We then estimate the image and text
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embeddings of (xp, yp) by z′xp
= fW(xp) and z′yp

= hV(yp). Due to the low-quality data in Sw

when training the encoders, these estimations might not be accurate.

(S2) Generating text captions: The high-quality data pairs in Sh are used to finetune an image-
grounded text decoder G, which maps an image xp to text through G(xp). Then, the learned G is
applied to every image xp in Sw to generate a synthetic caption ŷp = G(xp). Next, the estimated
text embedding of ŷp is computed as ẑyp = hV(ŷp) = hV(G(xp)), where V represents the weights
of h learned from Stage (S1).

(S3) Filtering: For every (xp, yp) in Sw, we compute the cosine similarity between the image
embedding z′xp

and the text embeddings of the original caption z′yp
and the synthetic caption ẑyp

,
respectively. If the pair (z′xp

, ẑyp
) has higher similarity to each other than the pair (z′xp

, z′yp
), (xp, yp)

is replaced with (xp, ŷp). Let S̃w denote the index set of the resulting data pairs. By filtering noisy
captions in Sw with synthetic captions that better align with image embeddings, S̃w becomes a
cleaner dataset.

(S4) ITCP on filtered data: The image encoder f and text encoder h are trained by minimizing the
contrastive loss in (1), repeating the procedure from Stage (S1) with the only difference being that the
original dataset S is replaced by S̃ = Sh ∪ S̃w. The resulting loss is denoted by L̃(f, h). Let W̃ and
Ṽ denote the resulting learned weights. f

W̃
and gṼ can produce improved embeddings compared

with fW and gV.

We employ stochastic gradient descent (SGD) with step size η and batch size B, following standard
practice. Despite the non-convexity of (1), we present a detailed analysis of the resulting training
dynamics and establish convergence guarantees in Section 4. This stands in contrast to existing works
[39, 53, 10] that assume the attainability of a global optimum.

2.2 Downstream Tasks

As a demonstration of the performance of the learned model (f
W̃
, gṼ), we consider a downstream

image classification task in a zero-shot setting. Unlike the regression and binary classification tasks
to evaluate the uni-modal contrastive learning in [51], we consider a K-classification problem for any
constant K ≥ 2. Each class label is associated with a given text prompt yk, where k ∈ [K]. For any
image x with its ground-truth label lx ∈ [K], the zero-shot predicted label by the pre-trained models
(f

W̃
, gṼ) is computed as argmaxk∈[K]⟨fW̃(x), gṼ(yk)⟩. This approach follows the typical setting

of zero-shot image classification using VLMs [10, 19, 25]. The prediction is considered accurate if
and only if argmaxk∈[K]⟨fW̃(x), gṼ(yk)⟩ = lx.

3 Technical Assumptions and Setups

We introduce a set of assumptions that are either derived conceptually from the real data distribution
or follow existing approaches in contrastive learning theory.

3.1 Backbone of the Encoders

We use a two-layer neural network with ReLU activation functions as the image and text encoders,
respectively. Formally, we have
Definition 3.1. The image encoder fW : Rd1 → Rm and text encoder hV : Rd1 → Rm is

f(x) = (f1(x), . . . , fm(x))
⊤ ∈ Rm, with fi(x) = σ (⟨wi, x⟩ − bi)− σ (−⟨wi, x⟩ − bi) , (2)

h(y) = (h1(y), . . . , hm(y))
⊤ ∈ Rm, with hi(y) = σ (⟨vi, y⟩ − bi)− σ (−⟨vi, y⟩ − bi) , (3)

where σ is ReLU function, and W = [w1, w2, . . . , wm]⊤, V = [v1, v2, . . . , vm]⊤ ∈ Rm×d1 .

Because deep neural networks are highly nonlinear, analyzing the training dynamics and resulting
generalization performance of learned models remains challenging. As a result, existing theoretical
studies are largely limited to one-hidden-layer neural networks [2, 61, 51, 33], where the learning
problem is already nonconvex. In this paper, we extend this line of research to a more complex
setting, where two such encoders are jointly trained for image and text modalities.
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3.2 Data Model for ITCP

Our data model in Assumption 3.1 builds on the sparse coding framework, which has been widely
used in both uni-modal contrastive learning for images [2, 51] and multi-modal image-text contrastive
learning [10]. This sparse coding model has been employed in theoretical analyses [4, 7, 14] because
it effectively models the practical NLP [5, 6, 36, 11] and image data [55, 52, 54].
Assumption 3.1 (Sparse coding model for image-text pairs). Each image-text pair (xp, yp), p ∈ S,
is generated i.i.d. from the following sparse coding form:

xp = Mzxp
+ ξxp

, yp = Hzyp
+ ξyp

, (4)

where xp, yp ∈ Rd1 , zxp , zyp ∈ Rd, and d1 = poly(d). We assume:

(a) Image dictionary: M = [M1, . . . ,Md] ∈ Rd1×d is column-orthonormal.

(b) Text dictionary: H = [H1, . . . ,Hd] ∈ Rd1×d is column-orthonormal.

(c) Additive noise: ξxp
, ξyp

∼ N (0, σ2
ξId1

) with ω(1/d1) ≤ σ2
ξ ≤ O

(√
log d/d1+c0

)
.

(d) Sparse latent vector: zxp = (z1xp
, . . . , zdxp

) with zjxp
∈ {0,±1}, where |zjxp

| ∼ Bernoulli(Cz/d).

Notably, we operate in a regime where the noise magnitude can dominate the signal: since ω(1/d1) <
σ2
ξ ≤ O

(√
log d/d1+c0

)
1, we have ∥ξ∥22 ≫ Θ(1)≫ ∥Mz∥2, indicating that the overall noise energy

significantly exceeds that of the signal. Nevertheless, we will show that contrastive learning remains
effective even under such high-noise conditions, due to the encoders’ ability to extract denoised and
purified features, as characterized in Theorem 4.4. An intuitive explanation for why feature recovery
is still possible lies in the different alignment properties of the signal and noise: for any active feature
zj ̸= 0, the signal aligns well with its corresponding basis: |⟨Mz,Mj⟩| = Θ(1), while the noise
contribution remains small, |⟨ξ,Mj⟩| ≤ O(1/

√
d).

We introduce Assumptions 3.2 and 3.3 to capture the characteristics of the dataset S = Sh ∪ Sw.
Notably, the number of high-quality pairs in Sh may be significantly fewer than that of low-quality
pairs in Sw, with |Sh| = Θ(d2) and |Sw| = poly(d)≫ ω(d2).
Assumption 3.2 (High-quality image-text pairs). Every high-quality image-text pair (xp, yp) with
p ∈ Sh satisfies zxp = zyp , i.e., the image and text have the same latent vector.

Compared to high-quality pairs in Sh, low-quality pairs in Sw show modality misalignment due to
spurious image-text correlations and missing descriptions of key visual features.
Assumption 3.3 (Low-quality misaligned image-text pairs). There exists a constant Cs ∈
(ω(1/ log d), 1/2) such that for every low-quality pair (xp, yp) in Sw and every image feature
Mj (j ∈ [d]) in xp, we have

Pr
(
zj

′

yp
= zjxp

| |zjxp
| = 1

)
= Cs, Pr

(
zjyp

= 0 | |zjxp
| = 1

)
= Cs, (5)

where the first term in (5) is the probability that a text feature Hj′ (j′ ̸= j) is spuriously correlated to
the image feature Mj , and the second term is the probability that Hj is missing in the text while the
image feature Mj exists.

Consider the blue Mercedes-Benz example from [34]. Here, Mj denotes the car’s visual feature,
while Hj′ refers to unrelated price information spuriously correlated with Mj , illustrating the first
term in (5). The correct text feature “Mercedes-Benz” is Hj ; its absence reflects the omission of a
relevant feature, as captured by the second term in (5). We focus on a single spurious pair (j, j′) for
simplicity. Since our analysis depends on the total spurious feature probability (bounded by Cs), the
results extend to multiple spurious features as long as their total probability stays within Cs.

3.3 Image-Grounded Text Decoder G in Stage (S2)

Recall that G is employed in Stage (S2) to generate synthetic text captions. In practice, the core
idea behind the widely adopted approaches [25, 58, 48] is to train the encoder-decoder model G and

1The columns Mj and Hj are column-orthonormal with each entry bounded by Õ(1/
√
d1), ensuring small

inner products with isotropic noise.
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leverage the high-quality image-text pairs Sh to improve its performance. In this paper, we consider
a simplified form of G, given by:

G(xp) = V⊤σ(Wxp), (6)

where σ denotes the ReLU function. The parameters W and V are learned by solving

min
W,V

LC =
∑
p∈Sh

1

2

∥∥V⊤σ(Wxp)− yp
∥∥2
2
, (7)

initialized at W and V, using SGD with step size η. Although G in (6) is a conceptual simplification,
where σ(Wxp) acts as the encoder and V⊤ as the decoder, it serves as a realistic abstraction to
illustrate the underlying advantages of synthetic text caption generation.

3.4 Zero-Shot Generalization on Image Classification

We consider an out-of-domain (OOD) setting for testing images and text prompts as follows.

Image: Each test image x can be approximated by a sparse coding model with dictionary M′,

x = M′z′x + ξx, ∥z′x∥0 = Θ(1), ∥z′x∥max = Θ(1), (8)

where M′ = MP1, and maxi,j |(P1)ij − δij | ≤ O(1/
√
d) . The noise ξx matches the training

distribution (Assumption 3.1(d)) and δij denotes the Kronecker delta function.

Text: Each class k ∈ [K] has a prompt that has a sparse decomposition

yk = Hz′yk
+ ξyk

, ∥z′yk
∥0 = Θ(1), ∥z′yk

∥max = Θ(1). (9)

If x belongs to class k, then among all K binary vectors z′yk′ , z
′
x is maximally aligned with z′yk

,

∥(z′x)⊤z′yk
∥2 > ∥(z′x)⊤z′yk′∥2, ∀k′ ̸= k (10)

This formulation reflects the intuition that x belongs to class k if its sparse representation is most
similar to the sparse representation of class k’s text prompt.

4 Main Results

4.1 Intuition and Informal Insights

Before presenting our main results, we first offer an intuitive explanation of the encoder-learner’s
success. To learn the latent representation z from input pair (x, y), a well-trained image encoder f
and text encoder g must ensure that each feature pair (Mj ,Hj) is captured by at least one neuron
pair (wi, vi), without interference from spurious signals. We call this a purified feature, meaning
the neuron pair encodes only one true feature with no contamination. In this case, ⟨wi, x⟩ ≈ zjx and
⟨vi, y⟩ ≈ zjy, so f and g recover the full latent space z. But in real data, where high-quality pairs
in Sh are rare and noisy pairs with misaligned image-text pairs in Sw dominate, achieving this is
difficult. See Appendix B.1 for proof sketches and we summarize main findings below:

(I) SGD provably solves the nonconvex training problems (1). The existing training dynamics and
convergence analyses are limited to either single-modal contrastive learning [51] or linear networks
[10, 33]. Theorem 4.1 provides a convergence analysis of SGD for solving the nonconvex ITCG
problem when the network contains nonlinear activations for both modalities.

(II) Failure of learning due to spurious correlations. Theorem 4.2 provides a negative result: if f
and g are directly trained on the raw data S, the model inevitably learns Mj and Mj′ together via
some wi, and Hj and Hj′ together via some vi. As a result, the model fails to distinguish between
these spuriously correlated features.

(III) Successful learning with recaptioning and filtering. Theorem 4.3 demonstrates that recap-
tioned texts significantly suppress spurious features and enhance relevant feature alignment. Building
on this, Theorem 4.4 states that training f and g on the recaptioned data S̃ enables the resulting en-
coder pair to learn purified representations of Mj and Hj accurately, as if trained solely on sufficient
high-quality data. This highlights the advantage of leveraging the recaptioned data S̃w.
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(IV) Enhanced zero-shot image classification accuracy due to text recaptioning. The advantage
of using synthetic text captions is further validated in downstream tasks. As shown in Theorem 4.5,
for a zero-shot out-of-domain multi-class image classification task, ITCP trained using S̃ achieves
high accuracy, whereas ITCP directly using S fails to generalize accurately.

4.2 Feature Purity Improvements in Converged Models via Recaptioned Data

We first characterize the training dynamics and convergence of solving (1) using SGD in Stage (S1)
and (S4) in Section 2.1. Let L∗ and L̃∗ denote the optimal values of the contrastive loss on the raw
dataset S and the filtered dataset S̃, respectively. Note that (W,V) and (W̃, Ṽ) are the converged
weights from contrastive training on S and S̃ in Stage (S1) and (S4), respectively.
Theorem 4.1 (Convergence of ITCP). Suppose Assumptions 3.1 to 3.3 hold. Let the model
complexity be m = d1.01, initialized at w(0)

i , v
(0)
i ∼ N (0, σ2

0Id1
), where σ2

0 = Θ
(

1
d1poly(d)

)
. After

T = Θ
(
d2 log d

)
iterations with batch size B = Ω(d) and η = O(1), the returned weights achieve

a loss that is sufficiently close to the optimal loss in Stage (S1) and (S4), respectively, i.e.,

(L(fW, hV)− L∗)/ |L∗| ≤ o(1), (L̃(f
W̃
, hṼ)− L̃∗)/

∣∣∣L̃∗
∣∣∣ ≤ o(1). (11)

Remark 4.1. Theorem 4.1 demonstrates that SGD iterations can converge to weights that achieve
a near optimal loss of (1), respectively. This result is of independent interest, as existing training
dynamics and convergence analyses for contrastive loss are limited to linear networks. Here, we
extend such analysis to nonconvex optimization settings where the network contains nonlinear ReLU
activations. Next, we characterize the feature purity of the learned models.
Theorem 4.2 (Unsuccessful learning of ITCP on raw data S with low feature purity). For each
neuron pair (w̄i, v̄i) in (W,V), there exists a spurious feature pair (j, j′) ∈ [d] such that

w̄i = αi,jMj + αi,j′Mj′ + ri, v̄i = αi,jHj + αi,j′Hj′ + si (12)

where α2
i,j , α

2
i,j′ = Θ

(
∥w̄i∥22 + ∥v̄i∥22

)
and ∥ri∥22, ∥si∥22 ≤ O((∥w̄i∥22 + ∥v̄i∥22)/d). Moreover, for

every spuriously correlated pair (j, j′), there exist at least Ω(1) neuron pairs (w̄i, v̄i) that primarily
learn the mixed feature pair (Mj ,Mj′ ,Hj ,Hj′).
Remark 4.2. Theorem 4.2 indicates that the model learned by ITCP on raw data achieves only
limited feature purity. Specifically, a neuron pair (w̄i, v̄i) learns a mixture of image and text features,
respectively. Mj and Mj′ are always mixed together, as are Hj and Hj′ . As a result, the learned
weights W and V fail to produce purified representations, making it difficult to distinguish between
features j and j′, which ultimately degrades downstream performance shown in (15).
Theorem 4.3 (Spurious feature suppression and relevant feature preservation by recaptioned
texts). After T = Θ(d log d) steps of SGD, the decoder G in (6), finetuned by solving (7), converges
to weights (Ŵ, V̂) with expected loss LC ≤ Θ(1/d). The recaptioned texts in S̃w are computed by
ŷp = G(xp). Then for any index j ∈ [d] such that |zjxp

| = 1, the decoder output satisfies:

Pr(zjŷp
= 1 | |zjxp

| = 1) ≥ 1−Θ(1/d) , Pr(zj
′

ŷp
= 1 | |zjxp

| = 1) ≤ Θ(1/d) , ∀j′ ̸= j. (13)

Remark 4.3. After captioning and filtering, the resulting text contains fewer spurious features
and more aligned feature pairs than raw data. Compared with Assumption 3.3, the probability of
spurious features can be reduced from a constant Cs in Sw to Θ(1/d) in S̃w, while the probability
of retaining all aligned feature pairs increases from Cs in Sw to 1−Θ(1/d) in S̃w. The resulting
dataset S̃ = Sh ∪ S̃w has better-aligned image-text pairs, enabling higher feature purity in contrastive
training. We next show how ITCP trained on S̃ improves feature purity.

Theorem 4.4 (Successful learning of ITCP on filtered data S̃ with high feature purity). For each
neuron pair (w̃i, ṽi) in (W̃, Ṽ), there exists j ∈ [d] such that (w̃i, ṽi) primarily learns (Mj ,Hj)

w̃i = α̃i,jMj + r̃i, ṽi = α̃i,jHj + s̃i (14)

where α̃2
i,j = Θ(∥w̃i∥22 + ∥ṽi∥22) and ∥r̃i∥22, ∥s̃i∥22 ≤ O

(
(∥w̃i∥22 + ∥ṽi∥22)/d

)
. Moreover, for every

feature j ∈ [d], there exist at least Ω(1) neuron pairs (w̃i, ṽi) that primarily learn purified feature
pair (Mj ,Hj).
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Remark 4.4. Theorem 4.4 indicates that the model learned by ITCP on filtered data achieves a
purified representation. Specifically, a neuron pair (w̃i, ṽi) learns one single feature pair (Mj ,Hj),
respectively. As a result, W̃ and Ṽ yield purified representations that effectively separate individual
features, enabling improved downstream performance shown in (16).

4.3 Performance Comparison on Downstream Tasks

We next compare the performance of the models (fW, gV) and (f
W̃

, gṼ) on the zero-shot image
classification problem with out-of-domain data described in Sections 2.2 and 3.4.

Theorem 4.5 (Zero-Shot Image Classification). For the OOD zero-shot K-class image classification
problem, the model (fW, gV) from ITCP using raw data has a constant failure probability:

Pr

(
arg max

k∈[K]
⟨fW(x), gV(yk)⟩ = lx

)
= 1−Θ(1); . (15)

In contrast, the model (f
W̃

, gṼ) from ITCP using filtered caption succeeds with high probability:

Pr

(
arg max

k∈[K]
⟨f

W̃
(x), gṼ(yk)⟩ = lx

)
= 1− o(1). (16)

Remark 4.5. Theorem 4.5 first demonstrates that the zero-shot performance of (fW, gV) is unsatis-
factory, resulting from the low feature purity in (fW, gV), as established in Theorem 4.2. Theorem
4.5 further shows that (f

W̃
, gṼ) achieves accurate classification. This success is attributed to high

feature purity in (f
W̃
, gṼ), as described in Theorem 4.4. Note that Theorem 4.5 holds for image data

with a distribution shift from the training data.

5 Experiment

5.1 Simulated Experiment

(a) (b) (c) (d)

Figure 1: Performance comparison of ITCP on raw data and filtered (recaptioned) data when
the probability of spurious correlation Cs changes. (a) Number of features that have purified
representation in the model (b) Average magnitude of purified presentations (c) Zero-shot out-of-
domain classification accuracy (d) Silhouette Score with cosine distance.

Experiment Setup. We first validate our results via simulated experiments, using the same framework
from Section 2.1. We adopt a more general spurious correlation model than Assumption 3.3, allowing
each Mj to be spuriously linked with multiple Hj′ (j′ ̸= j), while keeping the total spurious
correlation probability at Cs. We set d1 = 2500, d = 50, |Sw| = 5000, |Sh| = 1000, and use
m = 80 neurons. Matrices M,H are drawn from standard Gaussians and orthonormalized via
QR decomposition. Sparse codes zx follows Bernoulli(0.1) Noise variance σ2

ξ = 1/d. SGD runs
with batch size 500 and step size 0.001. Downstream evaluation uses 5-way classification with test
zx ∼ Bernoulli(0.2); class codes zyk

partition the d-dim space. Results are averaged over 20 trials.
Models (W,V) and (W̃, Ṽ) are trained on raw and filtered data, respectively.

Improved feature representation using filtered (recaptioned) data. We say a weight w̄i learn a
purified representation of Mj if its projection along Mj achieves the largest magnitude and satisfies
|⟨w̄i,Mj⟩|/∥w̄i∥ > 0.5. The same applies to (W̃, Ṽ). Figure 1(a) shows the number of features Mj

(out of d = 50 total features) for which at least one neuron in W (or W̃, respectively) learns a purified
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Table 2: of CLIP and LaCLIP on Accuracy (%) and Silhouette Score.
Food-101 CIFAR-10 Caltech-101 CIFAR-100 Pets STL-10

Model Acc SS Acc SS Acc SS Acc SS Acc SS Acc SS

CC12M CLIP 50.8 0.034 64.9 0.113 77.4 0.225 38.5 0.005 64.1 0.069 91.0 0.195
CC12M LaCLIP 60.7 0.038 75.1 0.157 83.3 0.276 43.9 0.029 72.4 0.070 95.1 0.273

RedCaps CLIP 81.5 0.125 70.4 0.100 72.8 0.210 39.9 −0.002 82.7 0.091 92.8 0.226
RedCaps LaCLIP 85.0 0.175 74.8 0.107 76.4 0.233 40.7 0.011 78.2 0.074 91.4 0.275

LAION CLIP 85.5 0.116 93.0 0.181 91.2 0.258 71.7 0.078 90.1 0.122 97.3 0.223
LAION LaCLIP 86.5 0.148 93.5 0.215 92.4 0.306 73.9 0.108 90.9 0.152 98.4 0.260

representation. The results show that ITCP trained on filtered data learns purified representations
for nearly all features, even at high spurious correlation levels (Cs = 0.3). In contrast, ITCP on
raw data degrades significantly, with purity dropping faster as Cs increases. Moreover, Figure 1(b)
shows the average of the largest projection magnitudes among neurons that learn purified features.
The magnitude from W̃ (ITCP on filtered data) is consistently higher than that from W, indicating
stronger purified representations. This aligns with Theorems 4.2, 4.4 and Remark 4.4.

Improved zero-shot out-of-domain performace using filtered (recaptioned) data. Figure 1(c)
compares the classification accuracy of both models on zero-shot out-of-domain data. The model
trained on filtered data consistently outperforms the one trained on raw data, with the performance
gap widening as spurious correlations in the raw data increase. We also adopt the widely used
Silhouette Score (SS) with cosine distance [57, 32, 62] to evaluate feature embedding quality in
different clusters, as shown in Figure 1(d). A higher SS indicates better intra-class alignment and
inter-class orthogonality, reflecting more purified representations. These results verify Theorem 4.5.

Impact of feature purity. When Cs reaches 0.35 in Figure 1, even the filtered data fails to maintain
full feature purification: the number of neurons learning disentangled representations of all d = 50
features drops significantly (Figure 1(a)), and the SS (Figure 1(d)) and classification accuracy
(Figure 1(c)) both decline sharply. This highlights that feature purity—the extent to which each
neuron aligns to a single semantic direction—is a key bottleneck in contrastive pretraining and
downstream generalization. We provide extra results in Appendix A.1.

5.2 Experiments on Practical Data and Models

LaCLIP improves generalization over CLIP via recaption. Tables 2 compare CLIP [37] and
LaCLIP [13], which share the same architecture and datasets, except LaCLIP replaces part of the
original captions with LLM-generated rewrites. “CC12M CLIP” denotes a CLIP model pretrained on
raw CC12M [8], while “CC12M LaCLIP” uses the same model and data but with LLM-rewritten
captions. Other models are obtained similarly using RedCaps [12] and LAION [40] datasets. We
evaluate their zero-shot classification accuracy and Silhouette Scores on various downstream datasets.
LaCLIP generally outperforms CLIP in both metrics, empirically validating that higher-quality
captions improve zero-shot generalization. Additional ImageNet results are reported in Table 3 of
Appendix A.2.

Next, we study the feature purity using a CLIP model pretrained on CC3M [41]. Both the image
and text encoders are 12-layer transformers that produce features in R768, which are subsequently
projected into a shared embedding space of R512 through final linear projection layers, as illustrated
in Figure 6 of Appendix A.2. The final linear projection layer has 512 neurons and is functionally
aligned with V in our theoretical model. We now present two key findings from this setting:

Purified neurons enhance generalization. To investigate the effect of feature purity on general-
ization, we prune the neurons in the final linear layer in different ways and evaluate the resulting
zero-shot classification performance. Specifically, we rank the 512 neurons by their average pairwise
absolute cosine similarity to all other neurons, from lowest to highest. The absolute cosine similarity
of neurons vj , vj′ is computed as |⟨vj , vj′⟩|/∥vj∥∥vj′∥ for all j, j′ ∈ {1, 2, . . . , 512}. A lower
average indicates higher feature purity (i.e., more orthogonal representations), while a higher value
suggests feature mixing. We evaluate three pruning strategies: (1) retaining high-purity neurons,
i.e., with lowest similarity, (2) retaining low-purity neurons, i.e., with highest similarity, and (3)
retaining a random subset of neurons. The number of retained neurons is varied from 200 to 500. As
shown in Figure 2 (a-c,e-g), downstream performance is the best when retaining high-purity neurons,
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followed by random selection, with low-purity neurons performing the worst. These results highlight
the critical role of purified features in downstream generalization.

Data misalignment reduces feature purity. To study how image-text misalignment affects feature
purity, we randomly shuffling texts across image-text pairs in CC3M with probability Cm, as
illustrated in Figure 7 of Appendix A.2, thereby introducing a controlled probability of modality
misalignment. We then use the shuffled dataset to fine-tune the last linear projection layer only
of the pretrained CLIP model, freezing other layers. We then compute the cosine similarities
of all 512 neuron weight vectors vj ∈ R768 of the fine-tuned model. Figure 2 (d) reports the
average absolute cosine similarity of all neuron pairs, while (h) presents a histogram of cosine
similarity ⟨vj , vj′⟩/(∥vj∥∥vj′∥). One can see that as Cm increases, the average absolute cosine
similarity increases, and the neurons become less orthogonal to each other and tend to encode mixed
representations, resulting in lower feature purity. This coincides with the decreases classification
accuracy in downstream tasks, as shown in Table 4 of Appendix A.2.

(a) Food-101 Acc. (b) CIFAR-10 Acc. (c) Caltech-101 Acc. (d) Avg. Cos. Sim.

(e) Food-101 SS (f) CIFAR-10 SS (g) Caltech-101 SS (h) Hist of Cos. Sim.

Figure 2: Left (a–c,e-g): Retaining high-purity neurons outperform random and low-purity neurons
in downstream tasks. More datasets shown in Figure 8. Right(d,h): When Cm increases, the neurons
have higher cosine similarity and reduced feature purity.

6 Conclusion

This paper provides a theoretical analysis of contrastive learning with nonlinear networks, linking
training dynamics to generalization. We identify feature purity as central to generalization and show
that text recaptioning enhances purity and zero-shot performance. The theory is empirically validated
on benchmarks. Future work includes extending to Transformer models and tasks like retrieval and
visual question answering.
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The overall structure of the appendix is as follows. Each appendix provides supplementary information
that supports the main content of this document but is not included in the main body to maintain
clarity and flow.

• Appendix A: Extra Experiments
Additional experiments including both synthetic simulations and CLIP/LaCLIP evaluations
on omitted datasets.

– A.1 Extra Simulated Experiment
Complements Section 5.1 with further analysis of neuron behavior trained on simulated
data.

– A.2 Extra CLIP/LaCLIP Experiment
Complements Section 5.2 by evaluating on datasets omitted due to space.

• Appendix B: Preliminaries
Mathematical preliminaries and notation used throughout the paper. A proof sketch is also
provided to outline the key ideas behind the main results.

• Appendix C: Technical Lemmas
Full statements and proofs of supporting lemmas used in the theoretical analysis.

• Appendix D–J: Proofs and Theoretical Analysis
– Appendix D–F: ITCP on Raw Data (Phase I–III)

Theoretical proof of ITCP across three training phases on raw data.
– Appendix G: Captioning

Theoretical proof of reception using high quality data.
– Appendix H: Filtering

Theoretical proof of filtering noisy caption-text pairs.
– Appendix I: ITCP on Synthetic (Recaptioned) Data

Theoretical proof of training dynamics when using synthetic recaptions.
– Appendix J: Downstream Task Evaluation

Theoretical implications for performance on downstream tasks.
• Checklist
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A Extra Experiment

All experiments were conducted on an internal compute cluster using 8 NVIDIA A5000 GPUs with
24 GB memory each, and each run completed within 50 GPU-hours. No large-scale pretraining or
resource-intensive tuning was performed beyond the reported experiments.

A.1 Extra Simulated Experiment

This section extends the analysis in Section 5.1 by providing additional simulated experiments on
neuron behavior under synthetic data training.

Neurons trained on filtered data exhibit a more concentrated distribution. Figure 3 visualizes
the histograms of |⟨v̄i,Hj⟩|/∥v̄i∥ and |⟨ṽi,Hj⟩|/∥ṽi∥ for all i ∈ [m] and j ∈ [d]. The values
of |⟨ṽi,Hj⟩|/∥ṽi∥ are more concentrated, typically around 0.05 and 0.7. In contrast, the values
for |⟨v̄i,Hj⟩|/∥v̄i∥ are less concentrated. This phenomenon is consistent with Theorem 4.4, which
indicates that for every Hj , certain neurons ṽi in Ṽ predominately learns Hj . In such cases, |⟨ṽi,Hj⟩|
approaches 1, while |⟨ṽi,Hj′⟩|/∥ṽi∥ approaches 0 for j′ ̸= j. The concentrated values of 0.05 and
0.7 observed in Figure 3 are due to noise in the data. In contrast, feature alignment is less significant
for V, leading to less concentration of the corresponding values. Similar results are obtained for
image encoder |⟨wi,Mj⟩|, deferred to Figure 4.

Figure 3: Histogram of |⟨v̄i,Hj⟩|/∥v̄i∥ for ITCP on raw data and |⟨ṽi,Hj⟩|/∥ṽi∥ for ITCP on filtered
data (split into two figures to highlight the significant differences in the value distributions).

Figure 4: Histogram of |⟨w̄i,Mj⟩|/|w̄i| for ITCP on raw data and |⟨w̃i,Mj⟩|/w̃i for ITCP on filtered
data (split into two figures to highlight the significant differences in the value distributions).

Enhanced class separation of downstream tasks by ITCP with recaptioned data. Figure 5
visualizes the t-distributed stochastic neighbor embedding (t-SNE) of the feature embeddings gen-
erated by the two models, computed as fW(xp) and f

W̃
(xp) for each xp, respectively. The t-SNE

method projects the high-dimensional embeddings onto a two-dimensional map. One can see that the
embeddings from different groups are more distinctly separated in the model trained using ITCP on
recaptioned data, indicating that this approach achieves better feature alignment.

A.2 Extra Experiment on CLIP and LaCLIP

To complement the results in Section 5.2, we report additional experiments on CLIP and LaCLIP
using datasets omitted from the main text due to space constraints.

ImageNet Results. The LaCLIP variants consistently surpass their CLIP counterparts on both
Top-1 and Top-5 accuracy. Higher silhouette scores further indicate cleaner feature separation after
recaptioning, in line with our theoretical predictions.

CLIP architecture. Figure 6 illustrates the CLIP architecture used in our experiments. Both image
and text inputs are independently encoded by 12-layer transformer backbones, each producing a
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(a) Raw (Cs = 0.3) (b) Recaption (Cs = 0.3) (c) Raw (Cs = 0.5) (d) Recaption (Cs = 0.5)

Figure 5: t-SNE visualization of text embedding with spurious correlation probability Cs.

Table 3: Comparison of CLIP and LaCLIP on ImageNet: Top-1 (%), Top-5 (%), and Silhouette Score.
Model Top-1 (%) Top-5 (%) Silhouette
CC12M CLIP 35.04 62.10 -0.014639
CC12M LaCLIP 42.62 70.17 −0.008141
LAION-400M CLIP 58.34 84.73 -0.029893
LAION-400M LaCLIP 62.27 86.34 −0.056593
RedCaps CLIP 37.66 63.31 -0.022045
RedCaps LaCLIP 39.66 66.06 −0.012269

768-dimensional feature vector. These features are then projected into a shared 512-dimensional
embedding space through learned linear projection matrices W ∈ R768×512 and V ∈ R768×512,
corresponding to the image and text encoders in our theorem, defined in Eq. (2). The resulting
embeddings are aligned via a contrastive loss that maximizes similarity for matched image-text pairs
while minimizing similarity for unmatched pairs. This architecture forms the foundation for our
analyses on neuron selection and feature purity in the shared embedding space.

Figure 6: Architecture of CLIP used in our experiments. Both image and text encoders are 12-layer
transformers that output features in R768, which are then projected into a shared R512 embedding
space via final linear projection layers W and V, corresponding to Eq. (2) and Eq. (3) in our
theoretical analysis. Contrastive loss is computed between the resulting image and text embeddings.

Simulating Modality Misalignment via Caption Shuffling. Figure 7 illustrates how modality mis-
alignment is introduced by randomly shuffling text captions across image-text pairs with probability
Cm, resulting in noisy supervision for contrastive learning.

Purified neuron selection enhances generalization. Figure 8 presents additional experimental
results on CIFAR-100, Pets, and STL-10, complementing the main results reported in Figure 2. Due
to space constraints, we include only Food-101, CIFAR-10, and Caltech-101 in the main text. All
experiments follow the same protocol, evaluating zero-shot classification accuracy and Silhouette
Score under different neuron selection strategies. These results consistently support our core finding:
selecting high-purity neurons leads to improved downstream performance across diverse datasets.

Higher shuffling probability leads to reduced generalization and feature purity. Table 4 presents
additional experimental results on CLIP models finetuned with different levels of randomly shuffling
probability Cm to simulate spurious correlation, showing that both accuracy and Silhouette Score
consistently decrease as Cm increases.
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Figure 7: Simulating Modality Misalignment via Caption Shuffling. Starting from original aligned
image-text pairs, a controlled probability Cm of misalignment is introduced by randomly shuffling
the text captions. This results in noisy pairs that reflect varying levels of spurious correlations.

(a) CIFAR-100 Acc. (b) Pets Acc. (c) STL-10 Acc.

(d) CIFAR-100 SS (e) Pets SS (f) STL-10 SS

Figure 8: Zero-shot classification accuracy (top) and Silhouette Score (bottom) under different
neuron selection strategies for CIFAR-100, Pets, and STL-10 datasets.

B Preliminaries

We first restate some important notations used in the Appendix, which are summarized in Table 5.

B.1 Proof Scratch

Theorem 4.1 is proven by integrating the convergence analyses in Appendix F and Appendix I.
Appendix F establishes convergence for ITCP on raw data, while Appendix I extends the convergence
result to ITCP on synthetic data. Together, they verify that SGD with ReLU networks achieves
near-optimal contrastive loss on both datasets.
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Table 4: Accuracy (%) and Silhouette Score of CLIP models finetuned with varying Cm on six
datasets.

Dataset Cm = 0 Cm = 0.1 Cm = 0.3 Cm = 0.5 Cm = 0.8

Acc SS Acc SS Acc SS Acc SS Acc SS

Caltech101 59.7 0.160 48.2 0.124 47.9 0.121 43.6 0.117 44.5 0.115
CIFAR-10 57.9 0.030 50.7 0.012 49.5 0.013 46.5 0.013 44.1 0.011
CIFAR-100 26.4 −0.038 19.5 −0.042 17.8 −0.043 17.4 −0.044 16.2 −0.048

Food-101 12.9 −0.073 10.9 −0.052 10.9 −0.056 11.1 −0.057 11.1 −0.059

Pets 13.9 −0.005 13.3 −0.006 13.2 −0.009 13.4 −0.011 12.6 −0.012

STL-10 86.3 0.164 79.8 0.103 79.2 0.102 78.8 0.100 78.3 0.097

Table 5: Summary of Notations

Notations Annotation

M ∈ Rd1×d, H ∈ Rd1×d M is the image dictionary matrix, H is the text dictionary matrix.

W ∈ Rm×d1 , V ∈ Rm×d1 W is the weight of image encoder, V is the weight of text encoder.

xp ∈ Rd1 , yp ∈ Rd1 xp and yp represent an image and a text data, respectively.

zxp , zyp ∈ Rd zxp
and zyp

are the sparse signals of image and text, respectively. zyk

is the sparse signal for the text prompt yk.

zjxp
, zjyp zjxp

is the j-th coordinate of zxp
; zjyp

is the j-th coordinate of zyp
.

L, LC L is the loss for ITCP; LC is the loss for Image-grounded Text De-
coding.

S = Sh ∪ Sw Sw is the noisy web low-quality dataset; Sh is the human-annotated
high-quality dataset.

S̃ = Sh ∪ S̃w S̃w replaces noisy captions in Sw with synthetic captions.

T1 Phase I of ITCP with b
(t)
i = 0.

T2 Phase II of ITCP with b
(t+1)
i = (1 + η

d )b
(t)
i .

T3 Phase III of ITCP with b
(t+1)
i = b

(T2)
i .

TC Stage of training caption generators.

Sj,sure The set of well-initialized neurons (wi, vi) on features (Mj ,Hj).

Theorem 4.2 is proven across Appendix D, Appendix E, and Appendix F. Specifically, Appendix D
models Phase I training (t ≤ T1) and proves that neurons simultaneously align with true features
and spuriously correlated features due to comparable gradient contributions, preventing pure feature
separation. Appendix E analyzes Phase II training (T1 < t ≤ T2) and shows that this spurious
alignment continues to strengthen, as neurons with initial mixed alignment further amplify their
entanglement during continued SGD updates. Appendix F establishes the convergence behavior
during Phase III (T2 < t ≤ T3), showing that the network stabilizes into mixed solutions where each
neuron represents a combination of multiple features. These detailed stages collectively prove the
failure of purified feature alignment as formalized in Theorem 4.2.

Theorem 4.3 is proven across Appendix G and Appendix H. Specifically, Appendix G analyzes the
captioning stage, where the decoder is fine-tuned on clean data to generate synthetic captions. It
proves that for neurons aligned with true features, the alignment towards the true features grows
exponentially while the alignment towards spurious features remains negligible. This ensures that
the synthetic captions preserve relevant features and suppress spurious ones. Appendix H then
formalizes the filtering process, demonstrating that after replacing noisy captions with synthetic ones,
the resulting dataset satisfies much stronger feature purity conditions, with spurious correlations
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suppressed to Θ(1/d) and true features preserved with probability 1−Θ(1/d). These results directly
support the purified feature learning described in Theorem 4.3.

Theorem 4.4 is proven in Appendix I, which integrates the proofs of Phase I, Phase II, and Phase III
for ITCP on synthetic data. Specifically, Appendix I first establishes in Phase I that purified training
pairs allow neurons aligned with true features to grow exponentially without spurious interference. It
then shows in Phase II that these alignments continue to strengthen while suppressing non-informative
neurons, leading to clear feature separation. Finally, it proves in Phase III that the model converges,
achieving a bounded final loss and dominant true feature alignment. Since the overall proof structure
closely mirrors that of Theorem 4.2 (which was proven separately across Appendix D, Appendix E,
and Appendix F), we consolidate all stages into a single appendix for brevity and clarity.

Theorem 4.5 is proven in Appendix J, which analyzes the downstream zero-shot classification.
Appendix J shows that for ITCP on raw data, spurious features cause a constant classification error,
while for ITCP on synthetic data, true and spurious features become separable with high probability,
leading to an o(1) error rate. This directly supports the main text conclusion on downstream
generalization.

B.2 Feature Coupling and Expected Values in Sw

The following Assumption B.1 corresponds to the more specific forms of Assumptions 3.2 and 3.3
discussed earlier.
Assumption B.1 (High and low quality pairs). The high-quality image-text pairs in Sh have size
|Sh| = Θ(d2). The low-quality image-text pairs in Sw have size |Sw| = poly(d)| ≫ ω(d2).

In Sh, for a positive pair (xp, yp), we assume perfect alignment, meaning zxp = zyp . Consequently,
the following holds:

E
[
zjxp

zjyp

]
=

Cz

d
, E

[
zjxp

zj
′

yp

]
= Θ

(
1

d2

)
, j′ ̸= j (17)

To model the misaligned features in low-quality pairs in Sw, where spurious misalignment occurs at
a non-negligible level, we assume [d] can be divided into d/2 disjoint sets, each containing exactly
two entries. Let (j, j′) ⊂ [d] denote one such set, referred to as a “spuriously correlated set.” The
following assumptions capture the nature of spurious and true alignments:

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) = Θ(1) <
1

2
,

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) + Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1.
(18)

These assumptions imply that true alignment dominates, with Pr(|zjyp
| = 1 | |zjxp

| = 1) > 1
2 , while

spurious alignment exists at a constant percentage level, making it non-negligible. The intuition
behind this assumption is that each feature j is paired with exactly one spuriously correlated feature
j′, ensuring that j is not associated with any other feature j′′ ̸= j′. This design simplifies the analysis
while effectively capturing the key challenges posed by low-quality data.

Then, for a positive pair (xp, yp) with p in Sw, we have:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
,

E
[
zjxp

zj
′

yp

]
= Θ

(
1

d

)
<

Cz

2d
.

(19)

where (j, j′) is a spuriously correlated set.

For negative pairs (xp, yq), where p ̸= q, and p, q ∈ S, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (20)

In Sw, mismatched text and image pairs are prevalent compared to Sh. For a postive pair (xp, yp), we
assume log(1/c0)

2 log d < Pr(|zj′yp
| = 1 | |zjxp

| = 1) < 1
2 . To model this, we assume that for each primary
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feature j ∈ [d], there exists exactly one spurious feature j′ such that j and j′ are uniquely coupled.
This implies that j cannot be associated with any other feature j′′ ̸= j′. Mathematically, the coupling
is defined as:

Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) + Pr(|zjyp
| = 1 | |zjxp

| = 1) = 1. (21)

For a positive pair (xp, yp) in Sw, the probabilities of spurious and aligned features are further
constrained:

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
, (22)

The lower bound is established in Lemma C.8.

and:
Pr(|zjyp

| = 1 | |zjxp
| = 1) = 1− Pr(|zj

′

yp
| = 1 | |zjxp

| = 1). (23)

Under these assumptions, the expected values for the aligned and spurious features are calculated as
follows:

For the aligned feature j, we have:

E
[
zjxp

zjyp

]
= Pr(|zjyp

| = 1, |zjxp
| = 1)

= Pr(|zjyp
| = 1 | |zjxp

| = 1) · Pr(|zjxp
| = 1)

= Pr(|zjyp
| = 1 | |zjxp

| = 1) · Cz

d
.

(24)

For the spurious feature j′, we have:

E
[
zjxp

zj
′

yp

]
= Pr(|zj

′

yp
| = 1, |zjxp

| = 1)

= Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) · Pr(|zjxp
| = 1)

= Pr(|zj
′

yp
| = 1 | |zjxp

| = 1) · Cz

d

(25)

The total expected value across both aligned and spurious features satisfies:

E
[
zjxp

zjyp

]
+ E

[
zjxp

zj
′

yp

]
=

Cz

d
(26)

Here, j′ denotes the spurious feature associated with j.

B.3 Gradient

The contrastive loss in vision-language models (VLM) is defined as follows:

L(f (t), h(t)) =
∑
p∈S

[
− ⟨f (t)(xp), h

(t)(yp)⟩+
∑

xn∈N′

(
⟨f (t)(xn), h

(t)(yp)⟩
)2

2τ

+
∑

yn∈N′

(
⟨f (t)(xp), h

(t)(yn)⟩
)2

2τ

]
,

(27)

where τ > 0 is a temperature parameter.

We perform stochastic gradient descent (SGD) on this contrastive loss. Let f (t) and h(t) be the image
encoder and text encoder networks at iteration t, respectively. The network parameters are updated as
follows:

w
(t+1)
i ← w

(t)
i − η∇wi

L(f (t), h(t)), (28)

v
(t+1)
i ← v

(t)
i − η∇viL(f

(t), h(t)), (29)

where b
(t)
i , the bias term, is manually tuned during training and thus excluded from gradient updates.
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The gradient of L(f (t), h(t)) with respect to w
(t)
i at iteration t is given by:

∇wi
L(f (t), h(t)) =− ⟨v(t)i , yp⟩xp · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑

xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨v(t)i , yp⟩xn

τ
· 1∣∣∣⟨w(t)

i ,xn⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨v(t)i , yn⟩xp

τ
· 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yn⟩

∣∣∣≥b
(t)
i

.

(30)

Similarly, the empirical gradient of L(f (t), h(t)) with respect to v
(t)
i is:

∇viL(f
(t), h(t)) =− ⟨w(t)

i , xp⟩yp · 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑

xn∈N

⟨f (t)(xn), h
(t)(yp)⟩⟨w(t)

i , xn⟩yp
τ

· 1∣∣∣⟨w(t)
i ,xn⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

+
∑
yn∈N

⟨f (t)(xp), h
(t)(yn)⟩⟨w(t)

i , xp⟩yn
τ

· 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yn⟩

∣∣∣≥b
(t)
i

.

(31)

B.4 Alignment Updates

We analyze how each neuron i ∈ [m] aligns with the feature Mj during each iteration of SGD. The
alignment can be described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wi
L(f (t), h(t)),Mj⟩

= ⟨w(t)
i ,Mj⟩+ ηzjxz

j
y⟨v

(t)
i ,Hj⟩+ ηzjxz

j′

y ⟨v
(t)
i ,Hj′⟩ ± Errt.

(32)

Similarly, for ⟨v(t+1)
i ,Hj⟩, the update rule becomes:

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viL(f

(t), h(t)),Hj⟩

= ⟨v(t)i ,Hj⟩+ ηzjxz
j
y⟨w

(t)
i ,Mj⟩+ ηzjxz

j′

y ⟨w
(t)
i ,Mj′⟩ ± Errt.

(33)

Using Lemma C.6, we know that with high probability,
∑

xn∈N
⟨f(t)(xn),h

(t)(yp)⟩
τ ≤ O( 1d ), so

in Eq (30) the sum of second term and third term is always less than the first term, until
⟨f (t)(xn), h

(t)(yp)⟩ = Θ(d).

The updates for the components ⟨w(t+1)
i ,Mj⟩, ⟨v(t+1)

i ,Hj⟩, ⟨w(t+1)
i ,Mj′⟩, and ⟨v(t+1)

i ,Hj′⟩
(where j′ represents the spurious aligned feature corresponding to j) can be expressed concisely in
matrix form as follows:

⟨w(t+1)
i ,Mj⟩
⟨v(t+1)

i ,Hj⟩
⟨w(t+1)

i ,Mj′⟩
⟨v(t+1)

i ,Hj′⟩

 =


a b 0 c

b a c 0

0 c a b

c 0 b a




⟨w(t)

i ,Mj⟩
⟨v(t)i ,Hj⟩
⟨w(t)

i ,Mj′⟩
⟨v(t)i ,Hj′⟩

± Errt, (34)

where the coefficients are defined as:

a = 1, b = zjxz
j
y · 1∣∣∣⟨w(t)

i ,xp⟩
∣∣∣≥b

(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

,

c = zjxz
j′

y · 1∣∣∣⟨w(t)
i ,xp⟩

∣∣∣≥b
(t)
i

· 1∣∣∣⟨v(t)
i ,yp⟩

∣∣∣≥b
(t)
i

.
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Therefore, we have

⟨w(t)
i ,Mj⟩ = ⟨v(t)i ,Hj⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)

+
(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩
) (35)

and

⟨w(t)
i ,Mj′⟩ = ⟨v(t)i ,Hj′⟩ =

(a+ b+ c)t + (a+ b− c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩
)

+
(a+ b+ c)t − (a+ b− c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
) (36)

This matrix representation highlights the interactions between the alignment of true and spurious
features during SGD updates. The diagonal elements a dominate the contribution from existing
alignments, while the off-diagonal terms b, c capture the mutual influence between paired features
and spurious alignments. Note that if c is very small, it indicates that the spurious alignment (j′) has
minimal influence, allowing wi to focus on learning purified features. Conversely, if c is large, the
spurious alignment could significantly interfere with the learning process, hindering the purification
of features. The error term Errt accounts for higher-order noise or unmodeled effects in the update
process.

Assuming a single spurious feature is a simplification for presentation that was made for ease
of presentation in the proof and can be extended to a more general setting without altering the
underlying insights. If each feature j has K−1 spurious correlates, (34) becomes a 2K × 2K matrix,
and Ni = j, j′ in the last sentence of Theorem 4.2 contains j and other K−1 features. Our analysis
relies on the total spurious feature probability (bounded by Cs), not the number of correlated features,
so as long as the sum of all spurious feature probabilities is upper bounded by Cs, the core
mechanism and insights of the theorem remain unchanged.

C Technical Lemmas

Definition C.1 (Neuron Characterization). Let us define a few notations to characterize each neuron
w

(t)
i ’s behavior. For every constant c0 ∈ (0, 1) and γ ∈ (0, 0.1), by choosing c1 = 2 + 2(1− γ)c0

and c2 = γc0, we define:

1. Let S(t)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(t)
i ∥22

• ( 1n
∑n

i=1⟨w
(t)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

2. Let S(t)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying

• ⟨w(t)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(t)
i ∥22

Lemma C.1 (Geometry at initialization). We initialize the parameters by w(0)
i ∼ N (0, σ2

0Id1), where

σ2
0 = Θ

(
1

d1poly(d)

)
. We have with probability ≥ 1− o(1/d3) over the random initialization, for all

j ∈ [d]: ∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4 c0
)
=: Ξ1∣∣∣S(0)j,pot

∣∣∣ ≤ O
(
d2γc0

)
=: Ξ2

Proof. If g is standard Gaussian, then for every t > 0,

1√
2π

(t)

t2 + 1
e−t2/2 < Pr

g∼N (0,1)
[g > t] <

1√
2π

1

(t)
e−t2/2. (37)
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We initialize the parameters by w
(0)
i ∼ N (0, σ2

0Id1
), where σ2

0 = Θ
(

1
d1poly(d)

)
. We have

1
n

∑n
i=1⟨w

(0)
i ,Mi⟩ ∼ N

(
0,

σ2
0

n

)
.

Therefore, for every i ∈ m and j ∈ d, we have

p1 = Pr

[(
1

n

n∑
i=1

⟨w(0)
i ,Mj⟩

)2

≥ (c1 + c2)
σ2
0

n
log d

]

= Θ

(
1

log d

)
· 1

d(c1+c2)/2

= Θ

(
1√
log d

)
· 1

d · d(1−γ/2)c0

(38)

p2 = Pr

[(
1

n

n∑
i=1

⟨w(0)
i ,Mj′⟩

)2

≥ (c1 − c2)
σ2
0

n
log d

]

= Θ

(
1

log d

)
· 1

d(c1−c2)/2

= Θ

(
1√
log d

)
· 1

d · d(1−3γ/2)c0

(39)

Let S(0)j,sure ⊆ [m] be those neurons i ∈ [m] satisfying

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj⟩)2 ≥ (c1+c2) log d

d ∥MM⊤w
(0)
i ∥22

• ( 1n
∑n

i=1⟨w
(0)
i ,Mj′⟩)2 < (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22

By concentration with respect to all m choices of i ∈ [m], we know with probability at least 1−o
(

1
d3

)
it satisfies

∣∣∣S(0)j,sure

∣∣∣ = Ω
(
d

γ
4 c0
)
.

Let S(0)j,pot ⊆ [m] be those neurons i ∈ [m] satisfying

• ⟨w(0)
i ,Mj⟩2 ≥ (c1−c2) log d

d ∥MM⊤w
(0)
i ∥22

By concentration with respect to all m choices of i ∈ [m], we know with probability at least 1−o
(

1
d3

)
it satisfies

∣∣∣S(0)j,pot

∣∣∣ = O
(
d2γc0

)
.

More details of the proof can be found in Lemma B.2 of [2].

Lemma C.2. With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

Pr

[
(
1

2n

n∑
i=1

⟨w(0)
i ,Mj⟩ − ⟨w(0)

i ,Mj′⟩)2 ≥
1

d

σ2
0

2n
log d

]
≥ 1−O(

1√
d
) (40)

Lemma C.3. With high probability 1− 1
poly(d) , for every i ∈ [m], the following holds:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (41)

Proof. Let X ∼ χ2
n. By standard properties of the chi-squared distribution, we know that with

probability at least 1− δ,
|X − n| ≤ 2

√
n log(1/δ). (42)
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In our case, we consider ∥MM⊤w
(0)
i ∥2

2+∥HH⊤v
(0)
i ∥2

2

σ2
0

∼ χ2
2d. Setting δ = 1

poly(d) , we have n = 2d, and

thus, with high probability 1− 1
poly(d) , the following holds:∣∣∣∣∣∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

σ2
0

− 2d

∣∣∣∣∣ ≤ 2
√

2d log(poly(d)). (43)

Rearranging and incorporating the scaling factor σ2
0 , we get:

∥MM⊤w
(0)
i ∥

2
2 + ∥HH⊤v

(0)
i ∥

2
2 ∈ 2dσ2

0

[
1− Õ

(
1√
d

)
, 1 + Õ

(
1√
d

)]
. (44)

Lemma C.4 (Noise Projection Bound). For the spurious dense noise ξxp
∼ N (0, σ2

ξId1
), where the

variance satisfies ω
(

1
d1

)
≤ σ2

ξ ≤ O
(
1
d

)
, the following holds with high probability 1− e−Ω(d1):

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
, ∀i ∈ [m]. (45)

Proof. For all j ∈ [d1], by the properties of the Gaussian distribution, we have:

Pr
ξ

[
⟨Mj , ξ⟩2 ≤ O

(
1

d1+c0

)]
≥ 1− e−Ω(d1). (46)

Now, consider the term |⟨wi, ξ⟩|2. We decompose it as:

|⟨wi, ξ⟩|2 =
∑
j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 +
∑

j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2. (47)

For the first term, since |⟨Mj , ξ⟩|2 ≤ O
(

1
d1+c0

)
with high probability, we have:∑

j∈[d]

|⟨wi,Mj⟩|2 · |⟨Mj , ξ⟩|2 ≤
∑
j∈[d]

O

(
|⟨wi,Mj⟩|2

d1+c0

)
. (48)

Similarly, for the second term:∑
j∈[d1]\[d]

|⟨wi,M
⊥
j ⟩|2 · |⟨M⊥

j , ξ⟩|2 ≤
∑

j∈[d1]\[d]

O

(
|⟨wi,M

⊥
j ⟩|2

d1+c0

)
. (49)

Combining these, we have:

|⟨wi, ξ⟩|2 ≤ O

(
∥MM⊤wi∥22

d1+c0
+
∥M⊥M⊥⊤

wi∥22
d1+c0

)
. (50)

Since ∥MM⊤wi∥22 + ∥M⊥M⊥⊤
wi∥22 = ∥wi∥22, we conclude:

|⟨wi, ξ⟩|2 ≤ O

(
∥wi∥22
d1+c0

)
. (51)

Thus, the lemma holds.

Lemma C.5 (Tail Bound for Matrix Product). Let Q ∈ Rn×n be a symmetric matrix, and let w, v be
independent zero-mean Gaussian random vectors with covariance matrix In. Define

Z :=

n∑
i,j=1

Qijwivj . (52)

Then, for any δ > 0, the following tail bound holds:

Pr[|Z| ≥ δ] ≤ 4 exp

(
− δ2

4∥Q∥2F + 4δ∥Q∥op

)
. (53)

25



Lemma C.6 (Bound Inner Product). Consider the inner product between the feature vectors at
initialization:

⟨f(x), h(y)⟩ = ⟨Wx,Vy⟩ =
m∑
l=1

w⊤
l xy

⊤vl =

m∑
l=1

d1∑
i,j=1

(x⊤
i yj)w

⊤
l vl. (54)

Here, using Lemma C.5, Q = xy⊤, with ∥Q∥op = Θ(1), ∥Q∥F = Θ(1) and σ2
0 = Θ

(
1

d1poly(d)

)
.

Then, at initialization (t = 0), the following holds:

Pr[|⟨f (t)(x), h(t)(y)⟩| ≥ Ω(1)] ≤ e−poly(d), (55)

Lemma C.7 (Concentration bound for empirical loss and gradients). There exist N ≥ poly(d) for
some sufficiently large polynomial and all ∥wi∥2 ≤ O(d), i ∈ [m] , it satisfies∣∣∣∣∣∣ 1N

∑
p∈[N ]

L(f (t), h(t); (xp, yp))− E(xp,yp)∈D[L(f (t), h(t); (xp, yp))]

∣∣∣∣∣∣ ≤ O(
1

d
) (56)

∥∥∥∥∥∥ 1

N

∑
p∈[N ]

∇wi
L(f (t), h(t); (xp, yp))− E(xp,yp)∈D[∇wi

L(f (t), h(t); (xp, yp))]

∥∥∥∥∥∥
2

≤ O(
1

d
) (57)

Proof. The proof can be done by trivial VC dimension or Rademacher complexity arguments similarly
to Lemma A.2. [2].

Lemma C.8 (Misalignment Probability Bound). The probability of spurious alignment satisfies:

log
(

1
2γc0

)
2 log d1

d

< Pr(|zjyp
| = 1 | |zj

′

xp
| = 1) <

1

2
. (58)

Proof. By concentration over all m choices of i ∈ [m], we find that with probability at least 1−o
(

1
d3

)
,

the number of neurons satisfying:(
1

n

n∑
i=1

⟨wi,Mj⟩

)2

< (c1 + 4c2)
σ2
0

n
log d (59)

is o(1).

In addition, for all neurons, we have:

max
(
⟨w(T1)

i ,Mj′⟩2
)
≤ c1 + 3c2

2

log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (60)

Define:

∆(T1) =
(a+ b− c)T1

4

∣∣∣⟨w(0)
i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)

i ,Mj′⟩ − ⟨v(0)i ,Hj′⟩
∣∣∣ . (61)

Thus:

⟨w(T1)
i ,Mj′⟩2 =

∣∣∣max
(
⟨w(T1)

i ,Mj′⟩
)
−∆(T1)

∣∣∣2 ≥ c1 − c2
2

log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (62)

We begin by expressing a+ b− c and a+ b+ c as functions of P1 = Pr(|zjyp
| = 1 | |zj′xp

| = 1) and
P2 = Pr(|zjyp

| = 1 | |zjxp
| = 1), where P1 + P2 = 1:

a+ b− c = 1− ηλ+ η
(P1 − P2)Cz log log d

d
, (63)
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a+ b+ c = 1− ηλ+ η
(P1 + P2)Cz log log d

d
. (64)

Using Eq (62), Eq (35) and Eq (36), we derive:

(a+ b− c)2T1

(a+ b+ c)2T1
≤

(√
c1 + 3c2

2
−
√

c1 − c2
2

)2

≤ 2c22. (65)

Substituting back, we find:
log
(

1
2γc0

)
2 log d1

d

< P1 <
1

2
. (66)

For example, setting c0 = 0.1, γ = 0.005, d = 100, and d1 = 10000, we calculate:
1

4
≤ Pr(|zjyp

| = 1 | |zj
′

xp
| = 1) <

1

2
. (67)

This concludes the proof by bounding Pr(|zjyp
| = 1 | |zj′xp

| = 1) under the given conditions.

D ITCP on Raw Data I

In this section we analyze Phase I of ITCP on Raw Data as the training iterations t ≤ T1, where

T1 = Θ
(

d log d
η

)
is the iteration when all ∥w(T1)

i ∥2
2+∥v(T1)

i ∥2
2

2 ≥ ∥w(0)
i ∥22 + ∥v

(0)
i ∥22. When t ≤ T1,

we set b(t)i = 0. For every neuron i ∈ [m], the weights wi and vi exhibit an increase in alignment
along the direction of informative features M and H, while showing negligible increase in alignment
along the direction of noise features M⊥ and H⊥.

Based on subsection B.2, we have Pr(|zjyp
| = 1 | |zj′xp

| = 1) = Θ(1), so E
[
zjxz

j
y

]
and E

[
zjxz

j′

y

]
both

in Θ
(
1
d

)
. In this case, w(t+1)

i is jointly influenced by Mj and Mj′ , with both features contributing
comparably to the updates.

To simplify our analysis, we consider the worse case where Pr(|zj′yp
| = 1 | |zjxp

| = 1) = Pr(|zjyp
| =

1 | |zjxp
| = 1) = 1

2 such that E
[
zjxz

j
y

]
= E

[
zjxz

j′

y

]
= Cz

2d , so using Eq (35), Eq (36) and b
(t)
i = 0,

we have

⟨w(t)
i ,Mj⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩

)
(68)

⟨w(t)
i ,Mj′⟩ =

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj′⟩

)
(69)

This represents the worst-case scenario as the contributions of the aligned feature E
[
zjxz

j
y

]
and the

spurious feature E
[
zjxz

j′

y

]
are identical. Under real circumstances, we expect E

[
zjxz

j
y

]
< E

[
zjxz

j′

y

]
,

which would result in ⟨w(t+1)
i ,Mj⟩ > ⟨w(t+1)

i ,Mj′⟩. However, in this worst-case scenario, the
equality of contributions prevents the network from prioritizing purified features, resulting in equal
magnitudes for ⟨w(t+1)

i ,Mj⟩ and ⟨w(t+1)
i ,Mj′⟩, thereby hindering effective feature separation.

We first provide a lower bound for ∥MM⊤w
(t)
i ∥22 for iterations t ≤ t1. From Eq (122) and Eq (69)

we have:

∥MM⊤w
(t)
i ∥22 =

d∑
i=1

[
(a+ b+ c)t

4

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
)
+

(a+ b+ c)t

4

(
⟨w(0)

i ,Mj′⟩+ ⟨v0i ,Hj′⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8
(70)
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∥M⊥(M⊥)⊤w
(t)
i ∥

2
2≤
(
1 +

1

poly(d)

)
∥M⊥(M⊥)⊤w

(0)
i ∥

2
2. (71)

The detailed proof of Eq (71) can be found in Hypothesis C.4 of [51].

A similar result holds for ∥HH⊤v
(t)
i ∥22 and ∥H⊥(H⊥)⊤v

(t)
i ∥22.

Eq (70) and Eq (71) shows that the image and text dictionary features M,H can grow exponentially,
while the noisy features M⊥,H⊥ remain almost unchanged when t ≤ T1.

For M⊥
j where j ∈ [d1] \ [d], using Eq (71), we obtain:

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O

(
1

d1

)
∥w(0)

i ∥
2
2 ≤ O

(
1

d1

)
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (72)

This result demonstrates that the noisy features M⊥
j experience nearly no increase during this phase,

remaining insignificant in their contribution to the alignment of wi.

D.1 Lower Bound of Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we
demonstrate that for every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment

⟨M′
j , w

(t)
i ⟩2 increase exponentially when t ≤ T1.

We now prove the lower bound of |⟨w(T1)
i ,Mj⟩|2 for i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj⟩

4

)2

♢
≥
(
1 + η

Cz

d

)2T1

· (c1 + c2) log d

d
· ∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

♡
=

(c1 + c2) log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

♣
≥ (c1 + c2) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

♠
>

(1 + c0 − γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
(73)

In♢we use Definition C.1. In♡we use Eq (70). In♣we use ∥w(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 ≥ ∥w(0)
i ∥22+∥v

(0)
i ∥22.

In ♠ we use c1 + c2 > 2(1 + c0 − γc0).

Similarly, |⟨w(T1)
i ,Mj′⟩|2 have the same lower bound.

D.2 Upper Bound of Alignment for i /∈ Sj,pot

In this subsection, we analyze the alignment of neuron i /∈ Sj,pot with the feature Mj and provide an
upper bound for |⟨w(T1)

i ,Mj⟩|2. While neurons i /∈ Sj,pot still exhibit exponential growth in their
alignment, their weaker initialization results in significantly smaller alignment compared to neurons
in Sj,sure, limiting their contribution to learning the feature Mj .
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To establish the bound, we begin with the following expression:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj′⟩+ ⟨w(0)
i ,Mj′⟩+ ⟨v(0)i ,Hj⟩

4

)2

♢
≤
(
1 + η

Cz

d

)2T1

· (c1 − c2) log d

d
· ∥MM⊤w

(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

8

=
(c1 − c2) log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2
.

(74)

Here, in ♢, we use Lemma C.1, which captures the reduced alignment for neurons outside Sj,pot.

Similar to the analysis for i ∈ Sj,sure, the alignment strength for i /∈ Sj,pot is weaker, as c1 − c2 is
less than 2(1 + c0 − γc0), leading to:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (75)

This inequality highlights the slower alignment for neurons outside Sj,pot, distinguishing their behavior
from neurons in Sj,sure. Consequently, i /∈ Sj,pot contributes less significantly to the alignment of
Mj , reinforcing the importance of initial affinity for effective alignment.

D.3 Summary

At this stage (t ≤ T1), we do not consider the worst-case scenario where the probability bounds for
feature coupling satisfy

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp

| = 1 | |zjxp
| = 1) < 1

(as assumed in SubSection B.2). Thus, we summarize the results when t ≤ T1 as follows:

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 > |⟨w(T1)

i ,Mj′⟩|2 >
(1 + c0 − γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
, (76)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 <

(1 + c0 − 3γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (77)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (78)

These results demonstrate that when t ≤ T1, all features in M increase, but the alignment for
i ∈ Sj,sure, including the corresponding spurious alignment, grows significantly larger due to favorable
initialization. In contrast, noisy features M⊥ remain unchanged.

E ITCP on Raw Data II

The Phase II of ITCP on Raw Data is defined as the training iterations T1 < t ≤ T2, where
T2 − T1 = Θ

(
d log d

η

)
.

At the beginning of this phase, we set the bias threshold as:

b
(T1)
i =

√
(1 + c0 − 2γc0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2
. (79)
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During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (80)

until all neurons satisfy:
∥w(T2)

i ∥22 ≥ Ω(d)∥w(T1)
i ∥22. (81)

In this phase, the dynamics of alignment vary depending on whether a neuron belongs to Sj,sure or
not:

• For i /∈ Sj,pot: The weights wi and vi show negligible alignment growth with both the
informative features Mj , Hj and the noise features M⊥, H⊥. This is due to their weaker
initialization, as shown in Phase I, and the effect of the indicator function when t ≥ T1

which prevents them from being activated. As a result, their capacity to learn meaningful
alignments during this phase is significantly limited.

• For i ∈ Sj,sure: The weights wi and vi exhibit continued alignment growth with the
informative features Mj , Hj . Additionally, their alignment with the corresponding spurious
features Mj′ , Hj′ also increases due to their strong initialization, as shown in Phase I, and
the effect of the indicator function when t ≥ T1, which ensures they are always activated.

By the end of this stage (t = T2), the weights wi, vi will predominantly focus on the features Mj , Hj

if i ∈ Sj,sure, while largely ignoring the features Mj , Hj if i /∈ Sj,pot, as well as the noise features
M⊥, H⊥. This separation lays the foundation for the Phase II of ITCP on Raw Data, where spurious
alignments are expected to further diminish due to the dominance of true feature alignments.

Similarly to the proof of t ≤ T1 To simplify our analysis, we still consider the worse case where
Pr(|zj′yp

| = 1 | |zjxp
| = 1) = Pr(|zjyp

| = 1 | |zjxp
| = 1) = 1

2 such that E
[
zjxz

j
y

]
= E

[
zjxz

j′

y

]
= Cz

2d .

E.1 Alignment for i ∈ Sj,sure

This section provides a analysis of the alignment growth for neurons i ∈ Sj,sure. Specifically, we
demonstrate that for every j ∈ [d], if i ∈ Sj,sure, the alignment ⟨Mj , w

(t)
i ⟩2 and its spurious alignment

⟨M′
j , w

(t)
i ⟩2 increase exponentially when T1 < t ≤ T2.

For i ∈ Sj,sure, using Lemma C.4, the following holds with high probability 1 − e−Ω(d1) when
T1 < t ≤ T2 : ∣∣∣⟨w(t)

i , ξ⟩
∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (82)

Therefore, with high probability 1−e−Ω(d1), using Eq (76) and Eq (79) the indicator function satisfies
the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (83)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
=

Cz

d
. (84)

Using Eq (116) we know that
(
1 + ηCz

2d

)
>
(
1 + η

d

)
and using Eq (34) we have

|⟨w(t+1)
i ,Mj⟩| > (1 +

η

d
)b

(t)
i = b

(t+1)
i . (85)

This implies that when t > T1, the alignment strength of informative features surpasses the updated
bias threshold b

(t)
i . Consequently, the indicator functions become consistently activated T1 < t ≤ T2

such that
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (86)
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Using Eq (34), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)( ⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj′⟩+ ⟨w(t)

i ,M⊥
j ⟩+ ⟨v

(t)
i ,Hj⟩

4

)
. (87)

Similarly, |⟨w(T1)
i ,Mj′⟩|2 have the same result.

E.2 Alignment for i /∈ Sj,pot

In this section, we analyze the alignment behavior for neurons i /∈ Sj,pot. Specifically, we demonstrate
that for every j ∈ [d], if i /∈ Sj,pot, the alignment ⟨Mj , w

(t)
i ⟩2 exhibits negligible growth during the

interval T1 < t ≤ T2.

For i /∈ Sj,pot, using Eq (156), Eq (79) and Eq (76), we have with high probability 1 − e−Ω(d1),
similarly to the proof of i ∈ Sj,sure, the indicator function satisfies the condition when t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0, (88)

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
≤ o

(
1

d2

)
. (89)

Using Eq (116) we know that
(
1 + o( η

d2 )
)
<
(
1 + η

d

)
and using Eq (34) we have

|⟨w(t+1)
i ,Mj⟩| < (1 +

η

d
)b

(t)
i = b

(t+1)
i . (90)

This implies that when t > T1, the alignment strength of informative features does not surpass the
updated bias threshold b

(t)
i . Consequently, the indicator functions become consistently not activated

T1 < t ≤ T2 such that
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0, (91)

Using Eq (34), the weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as when T1 < t ≤ T2:

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t( ⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj′⟩+ ⟨w(T1)
i ,Mj′⟩+ ⟨v(T1)

i ,Hj⟩
4

)
(92)

Because
(
1 + o

(
η
d2

))T2 ≤ 1 + o
(
1
d

)
, the growth in |⟨w(T2)

i ,Mj⟩| is negligible. Consequently, we
have:

|⟨w(T2)
i ,Mj⟩|2 ≤

(
1 + o

(
1

d

))
|⟨w(T1)

i ,Mj⟩|2. (93)

E.3 Summary

When T2 = Θ
(

d log d
η

)
, we know

(
1 + ηCz

d

)T2
= poly(d). Using Eq (76), we can ensure that when

all neurons satisfy the following condition:

∥w(T2)
i ∥2 ≥ Ω(d)∥w(T1)

i ∥2, (94)

we terminate the training process at T2 = Θ
(

d log d
η

)
. This ensures that the alignment has sufficiently

progressed for effective learning.

Thus, using Eq (93) and Eq (71) we have

|⟨w(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 = ∥w(T2)
i ∥22 −

∑
j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(

1

d
))(∥w(T1)

i ∥22 − |⟨w(T1)
i ,Mj⟩|2 − |⟨w(T1)

i ,Mj′⟩|2)

≥ ∥w(T2)
i ∥22 − ∥w(T1)

i ∥22 − o(
∥w(T1)

i ∥22
d

)

(95)
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Thus, at this stage (T1 < t ≤ T2), we do not consider the worst-case scenario where the probability
bounds for feature coupling satisfy

log(1/c0)

2 log d
< Pr(|zj

′

yp
| = 1 | |zjxp

| = 1) <
1

2
< Pr(|zjyp

| = 1 | |zjxp
| = 1) < 1

We summarize the results when T1 < t ≤ T2 as follows:

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > |⟨w(T2)

i ,Mj′⟩|2 ≥
1

4

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(96)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) · ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(97)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
. (98)

These results demonstrate that when T1 < t ≤ T2, the alignment for i ∈ Sj,sure, including the
corresponding spurious alignment, grows significantly larger. In contrast, the alignment strength for
i /∈ Sj,pot and noisy features M⊥ remains unchanged. Similar results also hold for vi.

F ITCP on Raw Data III Convergence

In the previous section, we demonstrated that for t ≤ T2, the neurons (wi, vi) are sparsely activated
and remain consistently activated for i ∈ Sj,sure. Building on this result, this section establishes the
convergence of these neurons to sparse solutions, providing a detailed analysis of their behavior
during Phase III of ITCP on Raw Data. The following theorem outlines the convergence guarantees
under these conditions.

The Phase III of ITCP on Raw Data is defined as the training iterations T2 < t ≤ T3, where
T3 − T2 = Θ(d). At the beginning of this phase, we fix the bias threshold as b

(t)
i = bT2

i for

T2 < t ≤ T3. Because b
(T2)
i =

(
1 + η

d

)Θ(d log d/η)
b
(T1)
i , it is easy to know that for t ≥ T2, only

when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious feature j′, the
indicator functions remain consistently activated for i ∈ Sj,sure.

Consequently, using Eq (27), Eq (30), and Eq (31), the loss function L becomes convex with respect to
wi and vi independently when (xp, yp) and (xn, yn) contain the true feature j and its corresponding
spurious feature j′ .

At the end of Phase II, using Eq (81), we know that ∥w(T2)
i ∥2 ≥ Ω(d). Consequently, we cannot

only consider −⟨f (t)(xp), h
(t)(yp)⟩, and the error term Errt becomes non-negligible.

Specifically, based on Eq (27), it can be observed that the term −⟨f (t)(xp), h
(t)(yp)⟩ is convex and

li,j,1 = ∥xp∥2∥yp∥2 = Θ(1)-smooth. This ensures that the true features contribute consistently to
the optimization process.

Additionally, Li,j,2 =
(⟨f(t)(xn),h

(t)(yp)⟩)
2

2τ is also convex, and we further establish its smoothness to
provide a rigorous understanding of its behavior.

To analyze the li,j,2-smoothness, we aim to find an upper bound that satisfies:

∥∇wi,viL2(wi,1, vi,1)−∇wi,vi
L2(wi,2, vi,2)∥2 ≤ li,j,2∥(wi,1 − wi,2, vi,1 − vi,2)∥2. (99)
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The gradient difference for wi is given by:

∥∇wiLi,j,2(wi,1, vi,1)−∇wiLi,j,2(wi,2, vi,2)∥2 =

∥∥∥ (x⊤W⊤
1 V1y

)
x(vi,1y)

⊤ −
(
x⊤W⊤

2 V2y
)
x(vi,2y)

⊤
∥∥∥
2

2τ

≤ lwi,1

2τ
∥wi,1 − wi,2∥2 +

lwi,2

2τ
∥vi,1 − vi,2∥2,

(100)
where lwi,1 = ∥xn∥22∥yp∥22∥vi,1∥2∥vi,2∥2 ≤ O(d) and lwi,2 = ∥xn∥22∥yp∥22

(
∥vi,1∥2∥wi,2∥2 +

∥wi,1∥2∥vi,1∥2
)
≤ O(d).

Similarly, the gradient difference for vi is:

∥∇vi
Li,j,2(wi,1, vi,1)−∇viLi,j,2(wi,2, vi,2)∥2 ≤

lvi,1
2τ
∥wi,1 − wi,2∥2 +

lvi,2
2τ
∥vi,1 − vi,2∥2,

(101)
where lvi,1 ≤ O(d) and lvi,2 ≤ O(d).

Combining the results, we find:

li,j,2 =

√
l2wi,1

+ l2wi,2
+ l2vi,1 + l2vi,2

2τ
≤ O(1). (102)

Thus, the total smoothness constant is:

li,j = li,j,1 + li,j,2 = Θ(1). (103)

These results demonstrate that the loss function L remains convex and li,j-smooth for neurons (wi, vi)
when (xp, yp) and (xn, yn) contain the true feature j and its corresponding spurious feature j′ during
Phase III of ITCP on Raw Data, ensuring their convergence to sparse solutions while maintaining
consistency in their activation patterns.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )

+
〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li,j
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(104)

Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (28) and

Eq (29) into Eq (178), we have

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (105)

Under our data assumptions for Sw and conclusion in Eq (96) , we define w∗
i = α∗

i,jMj +
α∗
i,j′Mj′ , v

∗
i = α∗

i,jHj + α∗
i,j′Hj′ . Thus, Lj(w

∗
i , v

∗
i ) captures both the alignment with the true

feature Mj ,Hj and the spurious feature Mj′ ,Hj′ , representing the minimal loss achievable under
the influence of both true and spurious features in the optimization process. Using Eq (81), we know
w

(T2)
i = Θ(d), so Lj(w

∗
i , v

∗
i ) = −Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(106)

Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(107)
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where ∆0 = Lj(w
(T1)
i , v

(T1)
i )− Lj(w

∗
i , v

∗
i ) = Θ(d). In ♢, we use T3 − T2 = Θ(d), and L = Θ(1)

.

Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and (xn, yn)
contain feature j, j′. For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T3 − T2

T3∑
t=T2

L(f (T3), h(T3)) ≤ L(f∗, h∗) + Θ(1). (108)

As a result, the relative difference is bounded by:

L(f (T3), h(T3))− L(f∗, h∗)

|L(f∗, h∗)|
≤ Θ

(
1

d

)
. (109)

F.1 Summary

ITCP trained on raw data S undergoes Stages D–F. After T = Θ(d2 log d) SGD iterations with batch
size B = Ω(d) and learning rate η = O(1), the resulting weights (W,V) minimize the contrastive
loss in Eq. (1) up to a vanishing relative error:

L(fW, hV)− L∗

|L∗|
≤ o(1). (110)

However, each neuron pair (w̄i, v̄i) in (W,V), for i ∈ [m], predominantly encodes a mixture of
features indexed by a subset Ni ⊆ [d], with |Ni| ≥ 2. Specifically, we have:

w̄i =
∑
j∈Ni

αi,jMj +
∑

j∈[d]\Ni

βi,jMj +
∑

j∈[d1]\[d]

γi,jM
⊥
j ,

v̄i =
∑
j∈Ni

αi,jHj +
∑

j∈[d]\Ni

βi,jHj +
∑

j∈[d1]\[d]

γi,jH
⊥
j ,

(111)

where α2
i,j = Θ(∥w̄i∥22 + ∥v̄i∥22), and the interference from other features is small: βi,j/αi,j ≤

O(1/
√
d), γi,j/αi,j ≤ O(1/

√
d1).

Moreover, for every spuriously correlated feature pair (j, j′) satisfying Assumption 3.3, there exists
at least an Ω(1) many of neurons i ∈ [m] with Ni = {j, j′}, indicating the prevalence of feature
mixing due to data misalignment.

G Captioning

In this stage, the model fine-tunes the pre-trained encoder parameters W and V to obtain the updated
parameters Ŵ and V̂ through Image-Text Contrastive Pre-training (ITCP) on raw data.

Given an image-text pair (xp, yp) in Sw, the decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp),
where σ(·) denotes the activation function. The Image-Grounded Text Decoder, initialized with W
and V from the pre-trained encoders, is fine-tuned on Sh by minimizing the following loss function:

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
, (112)

where ∥ · ∥2 denotes the Euclidean norm. This fine-tuning process refines the model to generate
captions that are more closely aligned with the target text data in Sh.

During the captioning, we sample a batch of image-text pairs S
(t)
h = {(xp, yp)}Bp=1 ⊆ Sh. We

perform stochastic gradient descent on LC . At each iteration, we update as

w
(t+1)
i ← w

(t)
i − η∇wi

L
(t)
C (113)

v
(t+1)
i ← v

(t)
i − η∇viL

(t)
C (114)
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At the beginning of this phase, we set the bias threshold as:

b
(0)
i =

√
∥w(T2)

i ∥22 − ∥w
(T1)
i ∥22

2
(115)

During training, the bias threshold is iteratively updated as:

b
(t+1)
i =

(
1 +

η

d

)
b
(t)
i , (116)

The gradient of LC with respect to w
(t)
i , v(t)i , W, and V at iteration t is given by:

∇
w

(t)
i
LC = v

(t)
i (yp −VTWxp)x

T
p · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

(117)

∇
v
(t)
i
LC = w

(t)
i xp(yp −VTWxp)

T · 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

(118)

The alignment can be described by the following update rule:

⟨w(t+1)
i ,Mj⟩ = ⟨w(t)

i ,Mj⟩ − ⟨∇wi
LC ,Mj⟩

= ⟨w(t)
i ,Mj⟩+ η · tr(v(t)⊤i (yp −VTWxp)x

T
p Mj · 1|⟨wi,xp⟩|≥b

(t)
i
)

(119)

⟨v(t+1)
i ,Hj⟩ = ⟨v(t)i ,Hj⟩ − ⟨∇viLC ,Hj⟩

= ⟨v(t)i ,Hj⟩+ η · tr(w(t)⊤
i xp(yp −VTWxp)

THj · 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

)
(120)

G.1 Alignment for i ∈ Sj,sure

This section analyzes the alignment growth for neurons i ∈ Sj,sure. Specifically, we show that when
t ≤ TC , the alignment with the true feature Mj grows exponentially if xp contains the true feature
Mj . In contrast, the alignment with the spurious feature Mj′ exhibits negligible growth, even for
neurons i ∈ Sj,sure. Specially,

1. For the true feature Mj , based on the result in Eq (96) and the bias threshold in Eq (115), the
indicator functions are always activated. This ensures that the neuron can consistently increase its
alignment in the direction of the true feature Mj .

2. For the spurious feature Mj′ , based on the result in Eq (96) and the bias threshold in Eq (115), the
indicator functions remain non-activated. This prevents the neuron from increasing its alignment in
the direction of the spurious feature Mj′ .

The details of proof as follow:

Using Eq (95), we know

∥w(T2)
i ∥22 −∥w

(T1)
i ∥22 ≥ |⟨w

(T2)
i ,Mj⟩|2 + |⟨w(T2)

i ,Mj′⟩|2 ≥ ∥w(T2)
i ∥22 −∥w

(T1)
i ∥22 − o(

∥w(T1)
i ∥22
d

)

(121)

Using Eq (35) and Eq (36), we have

⟨w(t)
i ,Mj⟩ − ⟨w(t)

i ,Mj′⟩ =
(a+ b− c)t

2

(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩ − ⟨w(0)
i ,Mj′⟩ − ⟨v(0)i ,Hj′⟩

)
+ Errt

(122)

Using Eq (40) and (a+ b− c)
T1+T2 ≥ Ω(d2), with high probability 1−O( 1√

d
) we have,

|⟨w(T2)
i ,Mj⟩|2 − |⟨w(T2)

i ,Mj′⟩|2 ≥ Ω(
∥w(T1)

i ∥22
d

) (123)

Therefore, with high probability 1−O( 1√
d
) we have

|⟨w(T2)
i ,Mj⟩|2 >

∥w(T2)
i ∥22 − ∥w

(T1)
i ∥22

2
> |⟨w(T2)

i ,Mj′⟩|2 (124)
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We set b(0)i =

√
∥w(T2)

i ∥2
2−∥w(T1)

i ∥2
2

2 , and using Eq (124), so similarly to the proof of Eq (86) we can
prove:

1. For i ∈ Sj,sure and xp contain the true feature Mj , with high probability 1−O( 1√
d
) the indicator

functions become consistently activated 0 ≤ t ≤ TC such that:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 1 (125)

2. For i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , with high probability
1−O( 1√

d
) the indicator functions become consistently activated 0 ≤ t ≤ TC such that:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (126)

3. For i /∈ Sj,pot and M⊥
j where j ∈ [d1] \ [d], we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 0 (127)

For the residual loss in Eq (119) and Eq (120), we bound the difference if 1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

= 1:

Hjz
j
xp
zjyp

♢
≥ (yp −VTWxp)x

T
p Mj · 1|⟨wi,xp⟩|≥b

(t)
i

= (Hjz
j
xp
zjyp
−

m∑
i=1

⟨vi,Hj⟩⟨wi,Mj⟩Hjz
j
xp
zjyp

) · 1⟨wi,xp⟩≥b

♡
≥ Hjz

j
xp
zjyp
−O(dγc0)⟨vi,Hj⟩⟨wi,Mj⟩Hjz

j
xp
zjyp

(128)

In ♢, we employ the approximation ypx
⊤
p Mj ≈ Hjz

j
xp
zjyp

, based on the observation that zjxp
zj

′

yp
≪

zjxp
zjyp

when j ̸= j′. In ♡, we utilize Eq (38). There are at most O(dγc0) neurons capable of learning
Mj , which satisfy the condition 1⟨wi,xp⟩≥b.

For i ∈ Sj,sure and for xp contain Mj , using Eq (128), Eq (119) and Eq (126) we have:

⟨w(t+1)
i ,Mj⟩ ≥ ⟨w(t)

i ,Mj⟩+ η · tr
(
v
(t)
i · (1− α2

t )HjE
[
zjxp

zjyp

])
≥ ⟨w(t)

i ,Mj⟩+ η
Cz(1− α2

t )

d
⟨v(t)i ,Hj⟩,

(129)

Similar to Eq (35), we have

|⟨w(t)
i ,Mj⟩| ≥

(
1 + η

Cz · (1− α2
t )

d

)t
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)
(130)

Similarly, for i ∈ Sj,sure and xp contain the corresponding spurious aligned feature Mj′ , because
Pr[1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

= 0] ≥ 1−O( 1√
d
), we have

⟨w(t+1)
i ,Mj′⟩ ≤ ⟨w(t)

i ,Mj′⟩+O(
η

d1.5
)⟨v(t)i ,Hj′⟩ (131)

and

|⟨w(t)
i ,Mj′⟩| ≤

(
1 +O(

η

d1.5
)
)t( ⟨w(T2)

i ,Mj′⟩+ ⟨v(T2)
i ,Hj′⟩

2

)
(132)

At TC = Θ
(

d log(d)
η

)
, we have:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

>

(
1 + η

Cz·(1−α2
t )

d

)TC

(
1 +O( η

d1.5 )
)TC

≥ Ω(d) (133)
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Therefore, we summarize that when t = TC , the alignment with the true feature Mj dominates,
satisfying:

|⟨w(TC)
i ,Mj⟩|

|⟨w(TC)
i ,Mj′⟩|

≥ Ω(d), (134)

highlighting the significant separation between the true feature Mj and the spurious feature Mj′

for neurons i ∈ Sj,sure. A similar result holds for vi, where the alignment with the true feature Hj

similarly dominates over the spurious feature Hj′ .

G.2 Convergence

For i ∈ Sj,sure, when xp, yp contains the true feature j, the indicator functions remain consistently
activated. Consequently, the loss function LC becomes convex with respect to wi and vi independently.
We verify that the following inequality holds

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )

+
〈
∇LC,j(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(135)

where li = O(Czd
2γc0)(

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22 +

∥∥∥v(t)i

∥∥∥2
2
∥xp∥22) = Θ(1). This means LC,j(w

(t)
i , v

(t)
i ) is

li-smooth for all i ∈ Sj,sure when xp, yp contains the true feature j. Let L = maxi∈m(li) = Θ(1)

Let η = 1
L to ensure a monotonic decrease, plug Eq (117) and Eq (118) into Eq (135), we have

LC,j(w
(t+1)
i , v

(t+1)
i ) ≤ LC,j(w

(t)
i , v

(t)
i )− η

2
∥∇LC,j(w

(t)
i , v

(t)
i )∥2. (136)

By the property of smoothness, we have

∥∇LC,j(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
LC,j(w

(t)
i , v

(t)
i )− LC,j(w

∗
i , v

∗
i )
)
. (137)

Take the telescope sum of from 0 to TC , we have

1

TC

TC∑
t=0

LC,j(w
(t)
i , v

(t)
i )≤LC,j(w

∗
i , v

∗
i ) +

L2∆0

TC

♢
≤ LC,j(w

∗
i , v

∗
i ) + Θ(

1

d
)

♡
= Θ(

1

d
)

(138)

where ∆0 = LC,j(w
(0)
i , v

(0)
i )− LC,j(w

∗
i , v

∗
i ). In ♢, we use TC = Θ(d), and ∥w(t)

i ∥22 = ∥v(t)i ∥22 =
Θ(1). In ♡, we use w∗

i = α∗
i,jMj , V

∗
i = α∗

i,jHj and LC,j(w
∗
i , v

∗
i ) = Θ( 1d ) if xp contains the true

feature Mj .

Therefore, for all j ∈ d and all (xp, yp) ∈ Sh, when TC = Θ(d2), we can ensure

LC = E(xp,yp)∈Sh

[
1

2

∥∥VTσ(Wxp)− yp
∥∥2
2

]
≤ Θ(

1

d
) (139)

G.3 Summary

After TC iterations, the parameters W and V are updated to WTC = Ŵ and VTC = V̂, respectively,
using the dataset Sh. The generated caption is given by:

ŷp = V̂Tσ(Ŵxp), (140)
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where the expected loss satisfies:

E
[
1

2
∥ŷp − yp∥22

]
= LC ≤ Θ

(
1

d

)
. (141)

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(TC)
i ,Mj⟩|2 = Θ(1)

∥∥∥w(TC)
i

∥∥∥2
2

(142)

and
|⟨w(TC)

i ,M′
j⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(143)

where j′ represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
)
∥∥∥w(TC)

i

∥∥∥2
2

(144)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O(
1

d1
)
∥∥∥w(TC)

i

∥∥∥2
2

(145)

H Filtering

During filtering, we sample the synthetic image-text pair (xp, ŷp) in Ŝw and the corresponding
image-text pair (xp, yp) in Sw. The image encoder f and text encoder h trained on raw data are
employed to obtain the corresponding embeddings.

z′xp
= f(xp), ẑyp

= h(ŷp), z′yp
= h(yp) (146)

Then, we calculate the cosine similarity of ⟨z′xp
, ẑyp⟩ and ⟨z′xp

, z′yp
⟩, and select the image-text pair

with higher cosine similarity denoted as (x, ỹ). In this way, we replace the noisy pairs in Sw with
synthetic pairs in Ŝw. The resulting dataset is denoted as S̃ = S̃w ∪ Sh.

The decoder generates synthetic captions ŷp = V̂Tσ(Ŵxp). Using Eq (141), for each data pair
(xp, yp) which contain feature (Mj ,Hj) in Sh we have

E(xp,yp)

[
Ej∈d

[
1

2

∥∥∥Hjz
j
ŷp

−Hjz
j
yp

∥∥∥2
2

]
||zjyp | = 1

]
≤ E(xp,yp)

[
1

2
∥ŷp − yp∥22 ||z

j
yp | = 1

]
= LC ≤ Θ(

1

d
)

(147)

Therefore, using ∥Hj∥2 = 1 and zxp
= zyp

in Sh, we have

Exp,j∈d

[
zjŷp

zjxp
||zjxp
| = 1

]
≥ 1−Θ(

1

d
) (148)

Base on Assumption B.1 zjxp
∼ Bernoulli

(
Cz

d

)
, we have

Pr(zjŷp
= 1 | |zjxp

| = 1) ≥ 1−Θ(
1

d
) (149)

Using Eq (134) and Eq (149), we have

Pr(zj
′

ŷp
= 1 | |zjxp

| = 1) ≤ Θ(
1

d
) (150)

Therefore, after replace all noisy text yp in Sw by synthetic caption ŷp in Ŝw

1. for a positive pair (xp, yp), we have

E
[
zjx̃p

zjỹp

]
= Θ(

1

d
), E

[
zjx̃p

zj
′

ỹp

]
= Θ

(
1

d2

)
, ∀j′ ̸= j. (151)

2. for negative pairs (xp, yq), where p ̸= q, we have:

E
[
zjxp

zj
′

yq

]
= Θ

(
1

d2

)
, ∀j, j′ ∈ [d]. (152)
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I ITCP on Synthetic (Recaptioned) Data

During ITCP on Raw Data, we use a noisy dataset S. Based on SubSection B.2, we have E
[
zjxz

j
y

]
and

E
[
zjxz

j′

y

]
both in Θ

(
1
d

)
. In this scenario, for i ∈ Sj,sure, w(t)

i is jointly influenced by Mj and Mj′ ,
with both features contributing comparably to the updates. However, during ITCP on recaptioned data,
we sample image-text pairs from the dataset S̃. Using Eq. (151), we find that E

[
zjx̃p

zj
′

ỹp

]
= Θ

(
1
d2

)
.

In this case, for i ∈ Sj,sure, w
(t)
i is influenced solely by Mj , without interference from spurious

features, ensuring purified representations.

The only difference between ITCP on Raw Data and Data lies in the E
[
zjx̃p

zj
′

ỹp

]
; all other training

processes remain largely the same. Therefore, we simplify our proof accordingly.

I.1 Phase I of ITCP on Synthetic Data

The Phase I of ITCP on Data is defined as the training iterations t ≤ T1, where T1 = Θ
(

d log d
η

)
is

the iteration when all ∥w(T2)
i ∥22 = 2∥w(0)

i ∥22. Before T1, we set b(t)i = 0. For every neuron i ∈ [m],
the weights wi, vi will mostly ignore the noise features M⊥, H⊥ and learn to emphasize the features
M, H.

If Pr(|zjyp
| = 1 | |zj′xp

| = 1) < 0.1, we have E
[
zjxz

j
y

]
≫ E

[
zjxz

j′

y

]
and (a+ b+ c)t ≈ (a+ b− c)t.

In this case, w(t+1)
i is predominantly influenced by Mj , with minimal contributions from Mj′ . The

updates are thus primarily driven by the single feature Mj , ensuring that spurious interactions from
Mj′ are negligible.

∥MM⊤w
(t)
i ∥

2
2 =

d∑
i=1

[
(a+ b+ c)t

2

(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
)]2

=

(
1 +

ηCz

d

)2t ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4
.

(153)

i ∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≥
(
1 + η

Cz

d

)2T1

· c1 log d
d

· ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c1 log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≥ c1 log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22 − ∥w

(0)
i ∥22 − ∥v

(0)
i ∥22

2

≥ (1 + c0) log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2

(154)

Because ∥w(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 = ∥w(0)
i ∥22 + ∥v

(0)
i ∥22 and c1 > 2(1 + c0)
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i /∈ Sj,sure:

|⟨w(T1)
i ,Mj⟩|2 =

(
1 + η

Cz

d

)2T1
(
⟨w(0)

i ,Mj⟩+ ⟨v(0)i ,Hj⟩
2

)2

≤
(
1 + η

Cz

d

)2T1

· c2 log d
d

· ∥MM⊤w
(0)
i ∥22 + ∥HH⊤v

(0)
i ∥22

4

=
c2 log d

d
· ∥MM⊤w

(T1)
i ∥22 + ∥HH⊤v

(T1)
i ∥22

2

≤ log d

d
· ∥w

(T1)
i ∥22 + ∥v

(T1)
i ∥22

2

(155)

|⟨w(t+1)
i ,M⊥

j ⟩|2 ≤ O( 1
d1
)
∥w(T1)

i ∥2
2+∥v(T1)

i ∥2
2

2

I.2 Phase II:

The Phase II of ITCP on Synthetic Data is defined as the training iterations T1 ≤ t ≤ T2, where
T2 − T1 = Θ

(
d log d

η

)
is the iteration.

We set b
(t)
i =

√
log d
d · ∥w

(T1)
i ∥2

2+∥v(T1)
i ∥2

2

2 and b
(t+1)
i = (1 + η

d )b
(t)
i until all ∥∥w(T2)

i ∥2 ≥
Ω(d)∥w(T1)

i ∥2,. In this phase, the weights (wi, vi) will mostly ignore the features Mj , Hj if
i /∈ Sj,sure and the noise features M⊥, H⊥, and learn to emphasize the features Mj , Hj if i ∈ Sj,sure.

For i ∈ Sj,sure, using Lemma C.4, the following holds with high probability 1 − e−Ω(d1) when
T1 < t ≤ T2 : ∣∣∣⟨w(t)

i , ξ⟩
∣∣∣2 ≤ O


∥∥∥w(t)

i

∥∥∥2
2

d1+c0

 < b
(t)
i (156)

Under the assumption that, with high probability, the indicator function satisfies the condition when
t = T1:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1, (157)

we can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
=

Cz

d
. (158)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)(
⟨w(t)

i ,Mj⟩+ ⟨v(t)i ,Hj⟩
2

)
. (159)

Given that
(
1 + ηCz

d

)
>
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)
i ,Hj⟩

2 > b
(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| > b

(t+1)
i . (160)

Thus, with high probability, for t ≤ T2, we have:

1∣∣∣〈w(t)
i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1. (161)

so for T1 < t ≤ T2 we have

|⟨w(t+1)
i ,Mj⟩| =

(
1 + η

Cz

d

)t
(
⟨w(T1)

i ,Mj⟩+ ⟨v(T1)
i ,Hj⟩

2

)
(162)
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For i /∈ Sj,sure, the projection of weights onto a generic feature ξ at iteration T1 satisfies:

Pr

(
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 1

)
≤ o

(
1

d

)
. (163)

We can ensure that:

E
[
zjxz

j
y · 1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

]
= o

(
1

d2

)
. (164)

The weight dynamics for |⟨w(t+1)
i ,Mj⟩| can now be expressed as:

|⟨w(t+1)
i ,Mj⟩| =

(
1 + o

( η

d2

))( ⟨w(t)
i ,Mj⟩+ ⟨v(t)i ,Hj⟩

2

)
. (165)

Given that
(
1 + o

(
η
d2

))
<
(
1 + η

d

)
, and ⟨w(t)

i ,Mj⟩+⟨v(t)
i ,Hj⟩

2 < b
(t)
i , it follows that:

|⟨w(t+1)
i ,Mj⟩| < b

(t+1)
i . (166)

If |⟨w(T1)
i ,Mj⟩| < b

(T1)
i , then |⟨w(t)

i ,Mj⟩| < b
(t)
i for t ≤ T2. Thus, with high probability, for

t ≤ T2, we have:
1∣∣∣〈w(t)

i ,xp

〉∣∣∣≥b
(t)
i

· 1∣∣∣〈v(t)
i ,yp

〉∣∣∣≥b
(t)
i

= 0. (167)

|⟨w(t+1)
i ,Mj⟩| ≤

(
1 + o

( η

d2

))t( ⟨w(T1)
i ,Mj⟩+ ⟨v(T1)

i ,Hj⟩
2

)
(168)

There exists T2 = Θ
(

d log d
η

)
such that the following conditions hold:(

1 + η
Cz

d

)T2

= Θ(d), (169)

indicating that |⟨w(t+1)
i ,Mj⟩| for i ∈ Sj,sure increase iteratively until:

∥w(T2)
i ∥2 ≥ Ω(d)∥w(T1)

i ∥2 (170)

while, for i /∈ Sj,sure, the updates diminish, such that:(
1 + o

( η

d2

))T2

≤ 1 + o

(
1

d

)
, (171)

indicating negligible growth in |⟨w(t+1)
i ,Mj⟩|.

Thus we have

|⟨w(T2)
i ,Mj⟩|2 = ∥w(T2)

i ∥22 −
∑

j∈[d],j /∈Ni

⟨w(T2)
i ,Mj⟩2 −

∑
j∈[d1]\[d]

⟨w(T2)
i ,M⊥

j ⟩2

≥ ∥w(T2)
i ∥22 − (1 + o(1))∥w(T1)

i ∥22 − (1 + o(1))∥w(0)
i ∥

2
2

≥ (1− o(1))∥w(T2)
i ∥22.

(172)

Finally, for i /∈ Sj,sure, we have:

∥w(T2)
i ,Mj∥2 ≤ (1 + o(

1

d
)) ·O

(
∥w(T1)

i ∥2√
d

)
≤ O

(
∥w(T2)

i ∥2√
d

)
, (173)

and for noise components:

|⟨w(T2)
i ,M⊥

j ⟩|2 ≤ O

(
∥w(T2)

i ∥2√
d1

)
. (174)
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We summarize the results when T1 < t ≤ T2 as follows:

1. For i ∈ Sj,sure, the alignment strength satisfies:

|⟨w(T2)
i ,Mj⟩|2 > (1− o(1))

∥w(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(175)

without j′ that represents the corresponding spurious alignment feature.

2. For i /∈ Sj,pot, the alignment strength satisfies:

|⟨w(T1)
i ,Mj⟩|2 ≤ O(

1

d
) · ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
(176)

3. For M⊥
j where j ∈ [d1] \ [d], we have:

|⟨w(t+1)
i ,M⊥

j ⟩|2 < O

(
1

d1

)
· ∥w

(T2)
i ∥22 + ∥v

(T2)
i ∥22

2
. (177)

Similar results also hold for vi.

I.3 Phase III Convergence of ITCP on Synthetic Data

Similarly to convergence Phase III in ITCP on Raw Data when T2 ≤ t ≤ T3, using Eq (27), Eq (30),
and Eq (31), the loss function L becomes convex with respect to wi and vi independently when
(xp, yp) and (xn, yn) contain the true feature j.

We verify that the following inequality holds

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )

+
〈
∇Lj(w

(t)
i , v

(t)
i ),

(
w

(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)〉
+

li,j
2

∥∥∥(w(t+1)
i − w

(t)
i , v

(t+1)
i − v

(t)
i

)∥∥∥2
(178)

Let L = maxi∈m(li,j/(2τ)) = Θ(1) and η = 1
L to ensure a monotonic decrease, plug Eq (28) and

Eq (29) into Eq (178), we have

Lj(w
(t+1)
i , v

(t+1)
i ) ≤ Lj(w

(t)
i , v

(t)
i )− η

2
∥∇Lj(w

(t)
i , v

(t)
i )∥2. (179)

Under our data assumptions for Sw and conclusion in Eq (96) , we define w∗
i = α∗

i,jMj , v
∗
i = α∗

i,jHj .
Thus, Lj(w

∗
i , v

∗
i ) captures both the alignment with the true feature Mj ,Hj and the spurious feature

Mj′ ,Hj′ , representing the minimal loss achievable under the influence of both true and spurious
features in the optimization process. Using Eq (81), we know w

(T2)
i = Θ(d), so Lj(w

∗
i , v

∗
i ) =

−Θ(d).

By the property of smoothness, we have

∥∇Lj(w
(t)
i , v

(t)
i )∥22 ≥

2

L

(
Lj(w

(t)
i , v

(t)
i )− Lj(w

∗
i , v

∗
i )
)

(180)

Take the telescope sum of from T2 to T3, we have

1

T3 − T2

T3∑
t=T2

Lj(w
(t)
i , v

(t)
i )≤Lj(w

∗
i , v

∗
i ) +

L2∆0

T3 − T2

♢
≤ Lj(w

∗
i , v

∗
i ) + Θ(1)

(181)

where ∆0 = Lj(w
(T1)
i , v

(T1)
i )− Lj(w

∗
i , v

∗
i ) = Θ(1). In ♢, we use T2 = Θ(d), and L = Θ( 1d ) .

Generalized to every j ∈ d, the same convergence holds for all i ∈ Sj,sure when (xp, yp) and (xn, yn)
contain feature j, j′. For all (xp, yp) and (xn, yn) in Sw, the following inequality holds:

1

T3 − T2

T3∑
t=T2

L(f (T3), h(T3)) ≤ L(f∗, h∗) + Θ(1). (182)
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I.4 Summary

ITCP trained on recaptioned data S̃ proceeds according to Eq. (1). After T = Θ(d2 log d) SGD
iterations with batch size B = Ω(d) and learning rate η = O(1), the returned weights (W̃, Ṽ)
achieve a contrastive loss that is asymptotically optimal:

L̃(f
W̃
, hṼ)− L̃∗∣∣∣L̃∗
∣∣∣ ≤ o(1). (183)

Each neuron pair (w̃i, ṽi) in (W̃, Ṽ), for i ∈ [m], primarily encodes a single aligned feature indexed
by a set Ñi ⊆ [d], with |Ñi| = 1. Specifically, we have:

w̃i =
∑
j∈Ñi

α̃i,jMj +
∑

j∈[d]\Ñi

β̃i,jMj +
∑

j∈[d1]\[d]

γ̃i,jM
⊥
j ,

ṽi =
∑
j∈Ñi

α̃i,jHj +
∑

j∈[d]\Ñi

β̃i,jHj +
∑

j∈[d1]\[d]

γ̃i,jH
⊥
j ,

(184)

where α̃2
i,j = Θ(∥w̃i∥22 + ∥ṽi∥22), and the residual terms satisfy β̃i,j/α̃i,j ≤ O(1/

√
d), γ̃i,j/α̃i,j ≤

O(1/
√
d1).

Moreover, for every feature index j ∈ [d], there exists an Ω(1) many of neurons i ∈ [m] such that
Ñi = {j}, indicating that each semantic concept is distinctly captured by dedicated neuron pairs.

J Downstream Task

We consider the same zero-shot classification task as in Section 3.4, where the image x and the
class-wise text prompts {yk}Kk=1 are given. Each prompt yk corresponds to one of K class labels,
and the goal is to classify x into the class with the best matching prompt.

Each text prompt yk is generated as:

yk = Hz′yk
+ ξyk

, ∥z′yk
∥0 = Θ(1), ∥z′yk

∥max = Θ(1). (185)

Each test image x is generated as:

x = M′z′x + ξx, ∥z′x∥0 = Θ(1), ∥z′x∥max = Θ(1), (186)

where M′ = MP1, and
max
i,j
|(P1)ij − δij | ≤ O(1/

√
d). (187)

If x belongs to class k, then:∥∥(z′x)⊤z′yk

∥∥
2
>
∥∥∥(z′x)⊤z′yk′

∥∥∥
2
, ∀k′ ̸= k. (188)

Using Eq. (96) and Eq. (144), let f(x) and h(y) represent the image encoder and text encoder of
ITCP on raw data, respectively. Given a data sample x containing Mj and y containing Hj′ , where
j′ is the spurious feature corresponding to j, it holds with high probability that:〈

f(x)

∥f(x)∥2
,

h(y)

∥h(y)∥2

〉
= Θ(1). (189)

This result implies that the image and text encoders of ITCP on raw data struggle to distinguish
between features j and j′, leading to misclassification caused by spurious correlations.

However, using Eq. (175) and Eq. (176), let f̃(x) and g̃(yk) denote the image and text encoders of
ITCP on recaptioned data. Given x containing Mj and y containing spurious Hj′ , it holds with high
probability 1−Θ

(
1
d

)
that: 〈

f̃(x)

∥f̃(x)∥2
,

g̃(y)

∥g̃(y)∥2

〉
≤ Θ

(
1

d

)
. (190)
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This result implies that the image and text encoders of ITCP on synthetic data are capable of effectively
distinguishing the true feature from the spurious feature.

Because K = Θ(1) and ∥zyk
∥0 = Θ(1), we only have constant class classification and constant

features in images. Thus, we have:

1. For the image encoder f(x) and text encoder h(yk) of ITCP on raw data:

Pr

(
argmax

k
⟨f(x), h(yk)⟩ = kx

)
= 1−Θ(1), (191)

2. For the image encoder f̃(x) and text encoder g̃(yk) of ITCP on synthetic data:

Pr

(
argmax

k
⟨f̃(x), g̃(yk)⟩ = kx

)
= 1− o(1). (192)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims regarding the improvement of feature purity and zero-shot perfor-
mance through recaption are stated clearly in the abstract and introduction, and validated by
theoretical and empirical analysis.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Conclusion.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are stated with full assumptions, and complete proofs are
provided in the Appendix. Intuitive proof sketches are also included to aid understanding.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We outline all datasets, models, and training procedures in Section 5.1.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will provide public GitHub access post-review.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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Justification: We provide the details of data generation, dimensionality, noise setup, model
size, and SGD training parameters including batch size and learning rate in Section 5.1.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each reported metric (accuracy, Silhouette Score, feature purity, random
selection of neurons) is averaged over 20 random seeds with 1-sigma standard deviation in
Section 5.1.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental resources are introduced in Appendix A.2.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with all ethical guidelines. All data used is publicly available
under appropriate licenses; no human subjects or sensitive data are involved.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve generative models or web-scraped datasets with
safety concerns.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and respect the licenses of models and datasets.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject research is conducted.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [NA]
Justification: No LLMs were used in this work.
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