

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOT-A-BANDIT: PROVABLY NO-REGRET DRAFTER SELECTION IN SPECULATIVE DECODING FOR LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Speculative decoding is widely used in accelerating large language model (LLM) inference. In this work, we focus on the online draft model selection problem in speculative decoding. We design an algorithm that provably competes with the best draft model in hindsight for each query in terms of either the token acceptance probability or expected acceptance length. In particular, we show that we can accurately evaluate all draft models, instead of only the chosen model without incurring additional queries to the target model, which allows us to improve exponentially over the existing bandit-based approach as the number of draft models increases. Our approach is generically applicable with any speculative decoding methods (single draft, multi-drafts and draft-trees). Moreover, we design system-efficient versions of online learners and demonstrate that the overhead in computation and latency can be substantially reduced. We conduct extensive experiments on open-source LLMs and diverse datasets, demonstrating that our methods substantially outperform the state-of-the-art EAGLE3 and the BanditSpec baseline in a variety of domains where specialized domain-expert drafters are available, especially when long reasoning chains are required.

1 INTRODUCTION

Speculative decoding (Chen et al., 2023a; Sun et al., 2023; Li et al., 2025) is widely adopted for accelerating large language models (LLMs). It uses a smaller *surrogate model*—referred to as a *draft model* or simply a *drafter*—to *predict* the sequence that a larger target model would generate. These predictions are then *verified* in parallel by the target model. When the drafters make correct guesses, a single expensive target pass is leveraged to produce multiple tokens, reducing per-token latency.

However, a single drafter may perform well on certain tasks but fail badly on others, leading to inconsistent quality of service and long-tail latency for certain queries. For example, a retrieval-based drafter works well when outputs closely match the input but falters elsewhere (Hou et al., 2025). Similarly, domain-specific drafters (e.g., for code, scientific writing, or summarization) excel in their own fields yet perform poorly outside them (Liu et al., 2023a; Kim et al., 2024; Yi et al., 2024). This raises a natural question: given access to multiple candidate drafters, how can we dynamically select the most effective one for each incoming query? Formally, we study the problem of **online drafter selection**: *Given a pool of N drafters, can we design an algorithm whose performance nearly matches that of adopting the best drafter in hindsight, for every user query?*

This problem was originally posed in MetaSD Kim et al. (2024), who framed it as a *multi-armed bandit* task. Their method, together with the more recent BANDITSPEC Hou et al. (2025), balances *exploration* (trying different drafters) and *exploitation* (using the empirically best drafter).

In this paper, we make the surprising observation that *exploration is unnecessary*. By carefully leveraging the structure of speculative decoding, we show that it is possible to efficiently compute feedback for *all* drafters—not just the one selected—without incurring additional calls to the target model. This transforms the problem from a bandit setting into a *full-information online learning* problem. Building on this insight, we introduce HEDGESPEC, which uses algorithms such as Hedge (Littlestone & Warmuth, 1994; Vovk, 1995) or NormalHedge (Chaudhuri et al., 2009) to identify the best drafter *exponentially faster* in N than bandit-based approaches. Our key contributions are as follows:

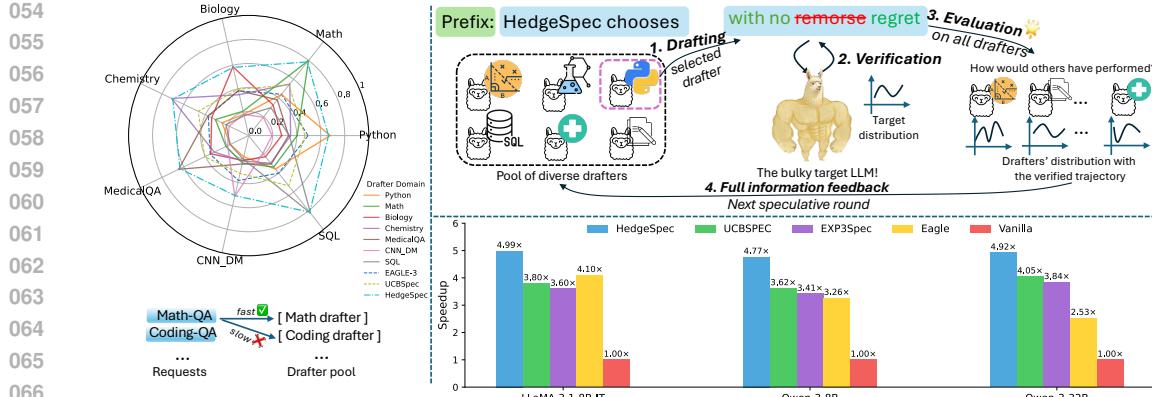


Figure 1: **Overall workflow of HedgeSpec.** **Left:** Acceptance rates across domains for Qwen-3-8B highlight each drafter’s strong in-domain performance but steep decline outside its expertise, posing challenges for effective drafter selection. HedgeSpec achieves performance close to that of the best-performing expert. **Right-top:** Workflow of HedgeSpec. During the verification phase, a lightweight evaluation collects panoramic feedback from drafters by estimating the distribution gap between each drafter and the target. **Right-bottom:** Speedup ratio across baselines. HedgeSpec benefits from full-information feedback, achieving the highest speedup ratios.

- **Full-information framework for multi-drafter decoding:** We propose a novel adaptive framework that leverages small-cost, full-information feedback to efficiently and dynamically select among multiple drafters.
- **Theoretical guarantees:** We formulate and analyze the drafter selection problem under both acceptance probability and expected acceptance length objectives, establishing *no-regret guarantees*.
- **Empirical validation:** We conduct extensive experiments on LLaMA-3.1-8B and Qwen-3-8B reasoning model each with up to seven drafters, demonstrating that HEDGESPEC consistently outperforms EAGLE (up to 83.7% token/s gain in single domain and up to 46.1% on average) and bandit baselines (up to 49% MAT gain) in both acceptance rate and reduced per-token latency.

Related work and novelty. To the best of our knowledge, we are the first to show that full-information online learning is possible for drafter selection. Prior art (Hou et al., 2025) modeled the problem as a bandit problem. HedgeSpec could work with any given set of drafters on any speculative decoding method, thus making our contribution orthogonal to methodological innovation in speculative sampling and drafter curation (Sun et al., 2023; Cai et al., 2024; Li et al., 2024a; 2025).

While we do not invent any new online learning algorithm, it is highly nontrivial to apply existing algorithms correctly to this problem. The core of our innovation is an off-policy estimator that returns the correct acceptance length *in expectation*, as well as to address a subtle *censoring issue* using learning from delayed feedback (Joulini et al., 2013).

On the system front, we designed a practical version of HedgeSpec that carefully balances the computational/latency cost of the evaluation and the statistical efficiency. As for the evaluation, we curated fourteen drafters: seven dedicated to each target model, with every drafter specialized in a particular domain. We demonstrated that HedgeSpec with these drafters (a collection of specialists) outperforms the state-of-the-art EAGLE3 (a strong generalist) by a sizable margin.

2 PRELIMINARIES ON SPECULATIVE DECODING

2.1 SYMBOLS AND NOTATION

We denote the vocabulary set by \mathcal{V} , and a generated sequence by $x_{1:T}$, where each token $x_t \in \mathcal{V}$. The target language model defines a probability distribution $p(\cdot)$, while the draft (or surrogate) model defines $q(\cdot)$. A speculative decoding method \mathcal{M}_q uses q to generate K speculative tokens $\hat{x}_{t+1:t+K}$ at chunk onset index t_h , which are then verified in parallel using p . We use i to index multiple draft models q_i , t for the global token position, h for chunk indices, and $k \in [K]$ for token positions within a chunk. The token acceptance probability given that all previous tokens are correct is denoted by

108 $\gamma_t[i]$. We adopt standard probability notation $p(\cdot)$, conditional probability $p(\cdot | \cdot)$, and conditional
 109 expectation $\mathbb{E}[\cdot | \cdot]$, with all probabilities assumed to be discrete.

110 2.2 BASIC SPECULATIVE DECODING METHOD

112 The basic speculative decoding algorithm proceeds as follows:

- 114 1. Generate a sequence of K draft tokens $\hat{x}_{t+1:t+K}$ using a draft model q , i.e., $\hat{x}_{t+1:t+K} \sim$
 115 $q(x_{t+1:t+K} | x_{\leq t})$
- 116 2. For the target model, compute $p(x_{t+1} | x_{\leq t})$, $p(x_{t+2} | x_{\leq t+1})$, ..., $p(x_{t+K+1} | x_{\leq t+K})$ in parallel.
- 117 3. For $k = 1, 2, \dots, K$, if $Z_k \sim \text{Uniform}([0, 1])$, if $Z_k < \frac{p(\hat{x}_{t+k} | x_{\leq t+k-1})}{q(\hat{x}_{t+k} | x_{\leq t+k-1})}$, assign $x_{t+k} \leftarrow \hat{x}_{t+k}$ and
 118 continue; else draw $x_{t+k} \sim p_{\text{res}}(x) \propto \max\{0, p(x | x_{\leq t+k-1}) - q(x | x_{\leq t+k-1})\}$ and break.
- 119 4. If all K tokens pass, assign $x_{t+K+1} \sim p(x_{t+K+1} | x_{\leq t+K})$.

120 **Theorem 1** (Leviathan et al., 2023a, Theorem 3.5). *The samples generated from the speculative
 121 decoding algorithm with any draft model q are drawn from the same distribution as p . The acceptance
 122 probability of the above algorithm is $\sum_{x \in \mathcal{V}} \min\{p(x), q(x)\} = 1 - \text{TV}(p, q)$ where $\text{TV}(p, q) =$
 123 $\frac{1}{2} \sum_{x \in \mathcal{V}} |p(x) - q(x)|$ denotes the total variation distance of two probability distributions.*

124 2.3 EAGLE AND DRAFT TREE

125 The EAGLE family is the most widely deployed speculative decoding models (Li et al., 2024a;b;
 126 2025). EAGLE-3 introduced multi-layer feature fusion with a training-time test mechanism. EAGLE-
 127 2 expands the draft tree with high-confidence tokens and prunes low-probability branches, improving
 128 efficiency by increasing the likelihood that more tokens are accepted per cycle. Specifically, instead of
 129 sampling from $q^{1:K}$ recursively like a language model, it generates a deterministic ¹ draft-tree with
 130 Depth K and branching factor L . From the root node $(x_{\leq t})$, EAGLE model q generates L children as
 131 possible choice of x_{t+1} . These are chosen to be the the tokens with L largest probabilities according
 132 to $q^1(\cdot | x_{\leq t})$. Then from each child, another L descendants (subsequent tokens) are generated by
 133 sorting $q^2(\cdot | x_{\leq t+1})$. Different from speculative decoding, EAGLE drafters are not sensitive to the
 134 actual numerical values in q . Instead, only the relative ranking of the tokens matter. ²

135 **Theorem 2.** *EAGLE with any draft model q returns samples from the correct target distribution p . Moreover, the probability of accepting a token at step k given all previously accepted
 136 tokens is $\sum_{v \in \text{Top}_L(q(\cdot | x_{\leq t+k-1}))} p(v | x_{\leq t+k-1})$. If dynamic pruning is used, then the candidate set
 137 $\text{Top}_L(q(\cdot | x_{\leq t+k-1}))$ should be replaced with the pruned set of descendants of $x_{\leq t+k-1}$.*

138 We defer the proof of Theorem 2 to Appendix A.1. All references to EAGLE in our paper refer to
 139 EAGLE-3 unless specified. We defer more related work discussion regarding speculative decoding,
 140 adaptive drafting and online algorithms in Appendix C.

141 2.4 PERFORMANCE METRICS FOR SPECULATIVE DRAFTER EVALUATION

142 We use two key metrics to evaluate a speculative decoding method $\mathcal{M}_{q,p}$: the *Expected Token Accep-*
 143 *tance Probability (ETAP)* and the *Expected Acceptance Length (EAL)*. These capture complementary
 144 notions of per-token accuracy and end-to-end efficiency.

145 **Token Acceptance Probability (TAP).** At decoding step t , given a prefix $x_{\leq t}$, the drafter $q(\cdot)$:
 146 generates a speculative token \hat{x}_t . The token is *accepted* if it matches the target model $p(\cdot)$:

$$\gamma_t = \Pr_{\mathcal{M}_{q,p}} [\hat{x}_t = x_t | x_{\leq t}].$$

147 The **ETAP** is the expectation of this probability over a distribution of prefixes \mathcal{D} :

$$\text{ETAP}(\mathcal{M}_{q,p}, \mathcal{D}) = \mathbb{E}_{x_{\leq t} \sim \mathcal{D}} [\gamma_t].$$

148 ETAP measures the average per-token reliability of the drafter.

149 ¹It could also be randomized, but EAGLE-2 implementation focused on growing a deterministic greedy tree.

150 ²The dependence on the values of q becomes relevant when the *dynamic pruning* approach from EAGLE-2 is
 151 used, but it does not change the temperature-invariance of the original draft tree.

162 **Expected Acceptance Length (EAL).** Speculative decoding drafts K tokens per chunk starting at
 163 index t_h , which are then verified by the target model. The *acceptance length* $\text{AcceptLength}(x_{\leq t_h})$
 164 is the number of consecutive tokens accepted before the first mismatch. Even given a fixed prefix
 165 $x_{\leq t_h}$, AcceptLength remains a random variable because $\mathcal{M}_{q,p}$ often involves sampling. The **EAL**
 166 is:

$$167 \quad \text{EAL}(\mathcal{M}_{q,p}, \mathcal{D}) = \mathbb{E}_{x_{\leq t_h} \sim \mathcal{D}} [\mathbb{E}_{\mathcal{M}_{q,p}} [\text{AcceptLength}(x_{\leq t_h}) \mid x_{\leq t_h}]].$$

168 EAL reflects how many tokens are accepted per chunk and thus directly determines decoding
 169 efficiency: higher EAL means fewer calls to the target model, reducing time per token. We will later
 170 show how these two metrics are used to evaluate drafters.
 171

172 **The Role of the Prefix Distribution.** Here prefix $x_{\leq t_h}$ refers not only to the initial prompt but also
 173 to the generated tokens that extend it up to step t_h . It is inherently random, determined jointly by
 174 the prompt, the stochastic rollout of the target model $p(\cdot)$, and the “tempo” of speculative decoding
 175 (i.e., where mismatches occur and chunks restart). The distribution \mathcal{D} over prefixes provides a useful
 176 abstraction: it encapsulates all these factors into a single probabilistic view, allowing us to evaluate
 177 methods without conditioning on specific prompts or model trajectories.
 178

3 HEDGE SPEC: METHOD AND THEORY

181 We present HedgeSpec, a full-information online learning framework for speculative draftr selection.
 182 Our key insight is to evaluate lightweight drafters with small overhead after target verification. This
 183 provides panoramic feedback that enables rapid adaptation to the best-performing drafters. Such
 184 adaptation improves acceptance rates, reduces costly target forward passes, and ultimately translates
 185 into a significant end-to-end efficiency boost.
 186

3.1 A NO-REGRET ONLINE LEARNING APPROACH TO DRAFT MODEL SELECTION

188 We are given N draft models q_1, \dots, q_N . At every time t , we decide which draft model to use to
 189 generate the next draft token. Our goal is to compete favorably with the best draft model that gives us
 190 either **(a)** the highest **acceptance probability** overall or **(b)** the highest **expected accepted length**
 191 per chunk. In this section, we will formulate this problem as a no-regret online learning problem,
 192 design appropriate loss functions that align with the two optimization objectives above, and develop
 193 algorithms that come with provable guarantees.
 194

The performance guarantee is stated as a regret:

$$196 \quad \text{Regret}_T = \sum_{t=1}^T f_t[i_t] - \min_{i^* \in [N]} \sum_{t=1}^T f_t[i^*]$$

198 where f_t is the loss function at time t determined by how well a draft model q can perform at time t .
 199 For example, f_t can measure the probability of not accepting tokens at time t or how far the expected
 200 accepted length is from $K + 1$ where K is the depth of the drafts.
 201

3.2 FULL-INFORMATION-EVALUATION: HEDGE SPEC IS NOT A BANDIT

204 Our main algorithmic idea is to add an evaluation phase between token verification and drafting. This
 205 evaluation phase was introduced in the BanditSpec paper. Differently, our work is motivated by that
 206 we can get feedback for all draft models, i.e., the full-information feedback, rather than only the
 207 draft model that we choose to play, i.e., the Bandit-feedback model. Adapting to different drafters
 208 changes generation speed, but thanks to Theorem 1, such adaptation doesn’t affect the distribution of
 209 the output tokens. Moreover, as it will become clear, the additional evaluation does not require extra
 210 queries to the expensive target model, and can be carried out in parallel.
 211

212 How does this evaluation phase work? A naive way is to roll out each draftr explicitly against the
 213 target, which is costly and infeasible. Instead, our key idea is that a single verified trajectory from the
 214 target can serve as counterfactual evidence for evaluating all drafters. Concretely, after the chunk of
 215 new tokens $x_{t+1:t+k}$ are verified for q_{i_t} , we prefill them into q_i for each of the other $i \in [N] \setminus \{i_t\}$.
 This yields feedback from the trajectory, summarized by a sequence of feedback vectors:

$$\gamma_t[i] := \mathbb{P}_i[x_t \text{ is accepted} \mid x_{\leq t-1}] \text{ for } i \in [N], t \in [T]$$

216 For each method of speculative decoding, the acceptance probability is calculated differently. For
 217 example, for the standard speculative decoding with a single draft, $\gamma_{j,i} = 1 - \text{TV}[p(\cdot|x_{\leq t+j-1}), q_i(\cdot|x_{\leq t+j-1})]$ by Theorem 1. For EAGLE’s Greedy-Draft Tree approach $\gamma_{j,i}$ is the total probability of
 218 children nodes of parent $x_{\leq t+j-1}$ on the draft tree (constructed and pruned using q_i in Theorem 2).
 219

220 Once these feedbacks are collected, they form the basis for computing losses for each drafter, which
 221 will then be used to update the drafter-selection strategy. Crucially, our first result (Theorem 3) shows
 222 that the acceptance probabilities derived from the above verified trajectory are sufficient to construct
 223 an unbiased estimator of the acceptance length for any drafter.
 224

225 **Theorem 3.** *Let \mathcal{M} be a speculative decoding method and K be the depth of its drafts.
 226 We write $x_{t+1:t+K} \sim p(\cdot|x_{\leq t})$ where p refers to the target model. We denote $\gamma_k :=$
 227 $\mathbb{P}_{\mathcal{M}}[x_{t+k} \text{ is accepted} | x_{t+1:t+k} \text{ are accepted}, x_{\leq t+k-1}]$. Also, define $\gamma_{K+1} = 0$ for notational
 228 convenience. The “one-step counterfactual” estimator:*

$$\widehat{\text{AcceptLength}}_{t,K}[\mathcal{M}] = \sum_{k=1}^{K+1} k(1 - \gamma_k) \prod_{j=1}^{k-1} \gamma_j$$

234 satisfies that $\mathbb{E}_{\mathcal{M}} [\widehat{\text{AcceptLength}}_{t,K}[\mathcal{M}] | x_{\leq t}] = \mathbb{E}_{\mathcal{M}} [\# \text{ of accepted tokens} | x_{\leq t}]$.
 235

236 The proof of Theorem 3 is included in Appendix A.2. This
 237 result is non-trivial because the probability γ_k is not the
 238 probability of accepting the specific realized token x_{t+k}
 239 given $x_{t+1:t+k-1}$ but rather the probability of accepting
 240 any token $\tilde{x}_{t+k} \sim p(\cdot|x_{t+1:t+k-1})$ even if $\tilde{x}_{t+k} \neq x_{t+k}$.
 241 We cannot compute the $\mathbb{E} [\# \text{ of accepted tokens} | x_{\leq t}]$ di-
 242 rectly because that would require access to all possible
 243 (combinatorial many) ways the target language model p
 244 rolls out (see the illustration in Figure 2). The theorem
 245 proves that **as long as we have a single trajectory rolled**
 246 **out by the target model** (which we do since speculative
 247 decoding is lossless), we can counterfactually compute
 248 an unbiased estimator of the acceptance length for any
 249 alternative drafters.
 250

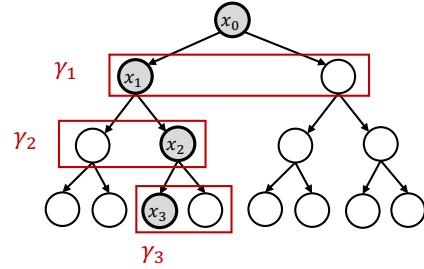
251 **Variance of our estimator.** Observe that our length esti-
 252 mator has a bounded range $[1, K+1]$, thus by Popoviciu’s
 253 inequality $\text{Var} [\widehat{\text{AcceptLength}}_{t,K}[\mathcal{M}] | x_{\leq t}] \leq K^2/4$.
 254 In comparison, the estimator from BanditSpec (EXP3-
 255 Spec) is $O(NK^2)$, which grows with N .
 256

257 **Connection to Experience Replay in Reinforcement**
 258 **Learning.** Our evaluation phase is similar to Experience
 259 Replay in the RL literature at a glance. However, we do
 260 not have the additional challenges in solving the distribution-shift induced by the policy used to collect
 261 the experience. For this reason, our “experience replay” for other draft models can be substantially
 262 more effective than that in RL.
 263

3.3 HEDGESPEC: LOSS FUNCTIONS AND DELAYED FEEDBACK

264 We have seen that a single verified trajectory suffices to estimate drafter’s EAL. The remaining step
 265 is to formulate the online learning game: at each round $t = 1, 2, 3, \dots$, nature generates a loss vector
 266 $f_t \in [0, 1]^N$, and the algorithm selects a drafter i_t and incurs a loss of $f_t[i_t]$.
 267

268 We just need to figure out how to instantiate it in our problem. There are several options. Each round
 269 of the game can be one token or one chunk of tokens. Also, we can choose the loss functions to
 270 optimize acceptance-length or acceptance probability. Pros and cons of these decisions are described
 271 in the Appendix B.3, but we find that the most natural setting is to directly optimize the acceptance
 272



273 Figure 2: Illustration of the conditional
 274 acceptance probability γ_k for the EA-
 275 GLE model. Observe that γ_k is not
 276 the probability of accepting x_k only, but
 277 rather the total probability of accepting
 278 a token at level x_k . Also note that for
 279 evaluating the estimator, we never need
 280 to compute the probabilities of the target
 281 model for the possible alternative trajec-
 282 tories that the draft models generate.
 283

length in a token-level game. The loss function is then chosen to be:

$$f_t[i] = 1 - \frac{1}{K+1} \sum_{k=1}^{K+1} k(1 - \gamma_{t+k-1}[i]) \prod_{j=1}^{k-1} \gamma_{t+j-1}[i].$$

By Theorem 3, the expected loss $\mathbb{E}[f_t[i]]$ measures how much room the i_{th} drafter has to improve in its acceptance length from the maximal chunk length $K+1$ if it starts at predicting token t . If we are to optimize acceptance probability instead, then we would choose $f_t[i] = 1 - \gamma_t[i]$.



Figure 3: Illustration of the counterfactual feedback for Drafter j (per-token or per-chunk) while the model keeps collecting new data. In this example, the generated token length $K = 5$. For the token-level learner, the feedback is delayed for K steps, while for the chunk-level learner, the delay depends on the average number of chunks to collect K -tokens.

Readers with sharp eyes may notice a problem — the standard online learning game is not applicable! The accepted tokens are not observed immediately after token t , they are revealed in chunks after each speculative decoding chunk is completed. Moreover, unless the chosen drafter maxes out the acceptance length, there is not sufficient information to compute our estimator $\widehat{\text{Accept_Length}}_{t,K}$. This is because alternative drafters may end up accepting more tokens than the drafter we chose. We refer to this problem a *censoring* issue. If we simply ignore the issue and compute the truncated version of the losses, we may end up getting stuck at a suboptimal solution (see the Appendix B.4 for an example). In other words, the learner may need to wait until multiple chunks of data to become available before getting the loss vectors for each time t (see Figure 3 for an illustration).

for $t = 1, \dots, T_{\text{token}}$:

1. Nature chooses loss vector $f_t \in [0, 1]^N$
2. Player chooses Drafter i_t for token t and incurs a loss $f_t[i_t]$.
3. If t is the end of a chunk, Player observes $f_{\leq t}$ (if optimizing acceptance prob) or observes $f_{\leq t-K}$ (if optimizing acceptance length).

Figure 4: Token-Level Game with Delay.

These issues can be modeled as “delayed feedback” (Weinberger & Ordentlich, 2002; Joulani et al., 2013; Van Der Hoeven & Cesa-Bianchi, 2022), which can be handled through a blackbox reduction to the standard online learning without delayed feedback with a mild increase in the regret as a function of the expected or maximum delay.

Theorem 4. Assume $T_{\text{Token}} > 2K + 1$. Let \mathcal{A} be (Joulani et al., 2013, Algorithm 1) instantiated with Hedge or NormalHedge as BASE. Then i_t chosen by \mathcal{A} in the game defined in Figure 4 satisfies that:

1. When we optimize acceptance probability:

$$\frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \mathbb{P}_{\mathcal{A}}[x_t \text{ is accepted}] \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \mathbb{P}_{i^*}[x_t \text{ is accepted}] \right\} - O\left(\sqrt{\frac{K \log N}{T_{\text{token}}}}\right).$$

2. When we optimize accepted length:

324

$$\frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \mathbb{E}_{\mathcal{A}}[\text{AcceptLength}_{t,K}[i_t]] \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \mathbb{E}[\text{AcceptLength}_{t,K}[i^*]] \right\} - O(\sqrt{\frac{(K+1)^3 \log N}{T_{\text{token}}}}).$$

326

327 The proof (rigorously written in Appendix A.3) applies the reduction to the regret bounds without
 328 delay in Theorem 1 of (Joulani et al., 2013) by noting that the max delay is $2K$. Then the result
 329 follows by taking expectation (over the distribution induced by the target model) on both sides and
 330 applying the definition of $\gamma_t[i]$ (or the unbiasedness of the length estimator in Theorem 3).

331

332 The result says that the choices made by the online learner is nearly as good as the optimal choice in
 333 terms of either the average acceptance probability, or the expected accepted length when we start at
 334 each token x_1, \dots, x_T .

335

336 3.4 PRACTICAL ALGORITHMS AND EXTENSIONS

337

338 In this section, we briefly describe the online learning algorithms that we chose to implement for the
 339 experiments. More detailed algorithms blocks can be found in the cited references therein. In our
 340 paper, we adopt NormalHedge (Chaudhuri et al., 2009) as our base algorithm (details in Figure 7).
 For discussion regarding more hedging variants, please refer to D.5 for detailed discussion.

341

342 **Handling delays.** We use the algorithms in (Joulani et al., 2013) for handling delay. In particular,
 343 the theoretical results above can be obtained by using (Joulani et al., 2013, Algorithm 1), which
 344 handles bounded but non-constant delay (Weinberger & Ordentlich, 2002) requires constant delay).
 345 Moreover, since our problem is not really adversarial, but rather a Markov process induced by the
 346 target LLM, we found that (Joulani et al., 2013, Algorithm 2) that operates in the “stochastic setting”
 347 works the best for us in practice. The algorithm is stated for the more general “partial monitoring”
 348 setting, but we are instantiating it in the full-information setting. Basically, the idea is to maintain a
 349 queue of the feedback and keep applying the next available actions generated by the base algorithm.
 350 In the iid setting, the regret is $\text{Regret}_T + O(\text{MaxDelay})$ with Regret_T being the regret achieved by
 351 the base algorithm. We apply this algorithm as a heuristic (despite that the settings are iid) for the
 352 efficiency of learning in practice. More practical implementations heuristics can be found in B.5.
 353

354

4 EMPIRICAL EVALUATION

355

356 In this section, we provide comprehensive evaluations of HedgeSpec by conducting the following
 357 analysis: 1. does HedgeSpec yield better **end-to-end performance**; 2. an **in-depth analysis** of hedge
 358 based selection process. 3. How does HedgeSpec perform **relative to offline based method**?

359

4.1 EXPERIMENT SETUP AND BASELINES

360

361 We use Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen-3-8B (Yang et al., 2025) reasoning
 362 model as target models. In our main paper, all drafters in this paper are implemented with EAGLE-3,
 363 a widely used framework for speculative decoding. More experiments and discussion regarding the
 364 integration of HedgeSpec to broader speculative decoding framework can be found in Appendix D.8.
 365 We adopt EAGLE’s default generation configuration (see Section D.1). For hedge algorithm update,
 366 we use expected length to compute the loss and more detailed setup can be found in B.5. We compare
 367 against the state-of-the-art drafter selection framework, BanditSpec (Hou et al., 2025), including both
 368 Exp3Spec and UCBSpec variants.

369

370 We report the Mean Number of Accepted Tokens (MAT) along with the wall-clock time required
 371 to complete each request which we use to compute token per second. All models are served using
 372 FP16 precision with a batch size of 1, following standard practices in latency-focused studies (Fu
 373 et al., 2024; He et al., 2023; Cai et al., 2024). Specifically, Token/s reflects the end-to-end latency
 374 during inference. These metrics are widely used (Hou et al., 2025; Li et al., 2025) in speculative
 375 decoding and are positively correlated: longer accepted lengths typically lead to better throughput.
 376 All experiments are conducted on nodes with 8 NVIDIA A100 GPUs connected via NVLink. We
 377 defer jointly trained drafter discussion D.4 and hedging algorithm variants D.5 due to space limit.

378

4.2 CURATING DIVERSE DRAFTERS FOR LARGE-SCALE EVALUATION

379

380 To thoroughly evaluate the effectiveness of our framework at scale, we build 14 drafters upon the
 381 official EAGLE-3 models (Li et al., 2025; Tengyunw, 2025) and finetune them on seven open-

Datasets	Python		Math		Biology		Chemistry		MedQA		CNN_DM		SQL		Avg MAT	Avg Token/s
Drafter domains	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s		
EAGLE	6.48	87.37	5.88	76.35	5.95	71.20	5.28	71.28	4.96	66.48	5.31	67.26	5.99	80.41	5.69	74.34
Python	7.89	106.99	5.05	67.50	2.86	36.63	3.64	49.87	2.65	33.77	2.94	31.12	4.87	65.45	4.27	55.90
Math	4.52	62.77	8.03	106.43	3.07	39.46	4.15	55.74	3.02	42.22	3.32	44.79	4.36	60.16	4.35	58.79
Biology	3.29	35.34	3.91	47.46	7.27	96.10	4.35	56.42	4.42	56.44	3.17	36.19	2.72	28.78	4.16	50.96
Chemistry	3.80	51.84	6.46	86.28	4.45	59.93	7.39	96.28	3.82	50.42	3.09	32.56	3.76	46.90	4.68	60.60
MedicalQA	3.98	42.65	4.49	52.33	4.95	63.53	4.47	56.19	6.75	88.32	3.38	36.46	3.93	45.00	4.56	54.93
CNN_DM	2.07	26.85	2.89	38.79	3.02	40.55	2.99	39.21	3.11	42.22	6.20	77.19	2.14	28.12	3.20	41.85
SQL	3.71	44.16	3.66	46.47	2.64	36.34	2.96	31.84	2.62	34.15	2.90	37.94	8.49	114.52	3.85	49.35

Table 1: Statistics of the 7 curated drafters with Llama-3.1-8B-IT as the target (**Bold** = best). Each drafter performs strongly in-domain (diagonally) but suffers noticeable inefficiency when applied outside, and on average performs worse than the vanilla EAGLE model. Similar trends are observed in Qwen’s drafters in Table 6. These drafters form a realistic evaluation pool for evaluating HedgeSpec, and we will see in Table 3, HedgeSpec orchestrates them to jointly accelerate the LLM inference.

sourced datasets spanning multiple domains: Python ([jtatman, 2025](#)), Math ([Toshniwal et al., 2024](#)), Biology ([Wesney, 2025](#)), Chemistry ([mlfoundations dev, 2025](#)), MedicalQA ([Chen et al., 2024](#)), CNN_DM ([Nallapati et al., 2016](#)) and SQL ([Meyer et al., 2024](#)). The statistics of the resulting Llama and Qwen drafters are summarized in Table 1 and 6. We observe that finetuning the generic EAGLE on a specific domain can greatly enhance its in-domain ability. In the meantime, no single model performs well across all domains, often exhibiting noticeable efficiency drops outside its specialization, and on average performs worse than the vanilla EAGLE. These drafters constitute a realistic experimental pool for evaluating our framework, and we will see that HedgeSpec orchestrates multiple drafters without prior knowledge to jointly accelerate the LLM inference process.

4.3 END-TO-END EFFICIENCY ANALYSIS

We report the efficiency evaluation of HedgeSpec. We first conduct an overhead break down in HedgeSpec, followed by the end-to-end evaluation comparing with EAGLE and BanditSpec based drafting. Overall, HedgeSpec outperforms all other baselines with a significant margin consistently across every single domain, demonstrating its effectiveness.

4.3.1 EVALUATION OVERHEAD BREAKDOWN

We analyze the evaluation overhead induced by incorporating global feedback for faster adaptation. This overhead comes from two major components: (i) prefilling drafters and (ii) computing losses and updating hedge weights. Table 2 reports the breakdown. Here, ‘Llama’ and ‘EAGLE forward’ denote forward passes through the target and drafter, respectively, while ‘hedge update’ includes both loss computation and NormalHedge weight updates. Evaluating a drafter costs roughly 1/25 of a target forward, since EAGLE’s drafter is a lightweight one-layer transformer compared to the 32-layer 8B Llama target. Under ideal assumptions, it implicates that if HedgeSpec secures one additional MAT, the gain offsets the cost of evaluating up to 25 drafters in sequence. In practice, the overhead is even smaller since drafter evaluations are independent and can be run in parallel. Thus, HedgeSpec is highly worthwhile: improved acceptance rates reduce costly target calls, outweighing the added cost of drafter evaluation.

4.3.2 HEDGE SPEC ACHIEVES CONSISTENT END-TO-END GAINS ACROSS DOMAINS

We further present the end-to-end results of HedgeSpec against EAGLE and BanditSpec across seven testsets in Table 3. For GSM8K ([Cobbe et al., 2021](#)) and HumanEval ([Chen et al., 2021](#)) which are outside the training domains, similar trends hold and we defer details to Section D.7.

Overall, HedgeSpec consistently outperforms both EAGLE and bandit-based methods across all domains. Compared to EAGLE, its adaptive selection of speculative drafters enables effective orchestration, yielding faster responses. Notably, on SQL requests with Qwen, HedgeSpec improved MAT from 4.2 to 7.52 (an impressive 79% gain) and token/s from 44.6 to 81.94 (a 83.7% gain). Across all

Datasets	Python		Math		Biology		Chemistry		MedQA		CNN_DM		SQL		Avg MAT	Avg Token/s
Methods	MAT	Token/s														
<i>LLaMA-3.1-8B-IT</i>	1.00	17.03	1.00	18.87	1.00	18.44	1.00	18.25	1.00	18.57	1.00	17.86	1.00	17.86	1.00	18.13
Eagle	6.48	87.37	5.88	76.35	5.95	71.20	5.28	71.28	4.96	66.48	5.31	67.26	5.99	80.41	5.69	74.34
UCBSpec	5.44	74.39	5.75	77.57	5.22	70.27	5.11	71.79	4.46	61.14	3.94	50.47	5.71	76.58	5.09	68.89
EXP3Spec	5.16	69.29	5.59	74.21	4.93	67.70	4.93	64.25	4.25	58.13	3.81	49.70	5.37	73.29	4.86	65.22
HedgeSpec	7.69	99.58	7.69	98.63	7.18	93.78	7.10	89.65	6.47	77.26	5.88	70.68	8.06	103.31	7.15	90.41
<i>Qwen-3-8B</i>	1.00	14.55	1.00	14.58	1.00	14.64	1.00	14.52	1.00	14.59	1.00	14.49	1.00	14.65	1.00	14.57
Eagle	4.96	55.84	4.52	50.88	4.06	46.22	3.98	44.85	3.84	44.13	4.07	46.20	4.20	44.60	4.23	47.53
UCBSpec	4.75	54.80	5.30	61.28	4.16	47.29	4.73	54.37	4.25	48.96	3.58	41.07	5.28	61.28	4.58	52.72
EXP3Spec	4.54	52.77	5.10	59.06	4.03	46.50	4.46	50.66	4.07	45.02	3.39	37.53	4.97	56.74	4.37	49.75
HedgeSpec	6.32	68.52	7.27	79.55	5.66	62.08	7.18	73.18	6.08	65.82	5.10	54.97	7.52	81.94	6.37	69.44
<i>Qwen-3-32B</i>	1.00	8.13	1.00	7.96	1.00	8.43	1.00	8.33	1.00	8.20	1.00	8.06	1.00	8.55	1.00	8.21
Eagle	3.02	21.98	3.36	24.16	2.62	19.30	3.01	21.53	2.57	18.33	2.59	18.67	3.00	21.34	2.88	20.76
UCBSpec	4.34	31.42	5.24	38.69	4.25	31.73	4.76	35.58	4.19	30.99	3.64	26.93	5.07	37.36	4.50	33.24
EXP3Spec	4.22	30.33	5.13	37.42	4.10	30.31	4.54	33.46	3.96	28.76	3.52	25.32	4.88	35.29	4.33	31.55
HedgeSpec	5.82	38.44	6.96	45.14	5.93	39.13	6.50	42.86	5.92	38.60	5.19	33.38	7.16	45.30	6.21	40.41

Table 3: MAT (Mean Accepted Tokens) and Token/s (token generation rate) across datasets for each method. **Bold** indicates the best. Results of GSM8K and HumanEval and more other datasets, which is out of the training distribution, is in Table 11 showing the same trend. HedgeSpec consistently outperforms all baselines across domains. Its adaptive orchestration of expert drafters improves MAT and throughput, while full-information feedback delivers substantial gains over bandits, translating into real efficiency and highlighting HedgeSpec’s effectiveness.

mixed queries, HedgeSpec achieved a strong 46.1% average improvement. While individual domain-specialized drafters perform worse on average than EAGLE, our results show that orchestrating them with HedgeSpec effectively leverages their strengths, leading to substantial efficiency gains.

HedgeSpec also surpasses bandit methods by a wide margin (up to 49% MAT gain and 41% token/s gain). Its advantage comes from the panoramic feedback: all drafters are evaluated, enabling faster convergence, higher acceptance, which finally leads to fewer target calls and better overall efficiency. In contrast, bandit learners adapt slowly because they only observe feedback from the chosen drafter, often converging to suboptimal choices and resulting in lower acceptance and throughput.

Interestingly, we also observe that bandit methods generally underperform EAGLE on LLaMA-3.1-8B-IT, whereas they outperform it on Qwen-3-8B. This is because the Qwen-3 reasoning model tends to produce longer outputs than LLaMA-3.1-IT (i.e. 1.64x length in Math workload), providing more time for bandits to converge. The same phenomenon applies to HedgeSpec, where the longer reasoning chains in Qwen amplify its efficiency advantage, highlighting HedgeSpec’s superiority in long-generation scenarios.

4.4 A DEEPDIVE INTO FULL-INFORMATION BENEFITS

We have seen HedgeSpec delivers better efficiency than EAGLE and bandit-based methods. In this section, we dive deeper into the benefit of full information on two aspects: (i) how their regret develops over time, and (ii) how each method scales with increasing number of drafters.

HedgeSpec settles faster to near-zero regret Figure 5 (a) shows cumulative regret on Llama-3.1 with python workload, measured by normalized EAL. Bandit methods accumulate regret quickly due to slow adaptation with only partial feedback, wasting exploration on weak drafters. In contrast, HedgeSpec rapidly converges to near-zero regret (detailed discussion in B.2) within a handful of steps, demonstrating the benefit of full information.

HedgeSpec scales effectively with larger drafter pools We further plot MAT w/ number of candidate drafter increasing in Figure 5 (b). Scalability matters because larger pools raise the chance

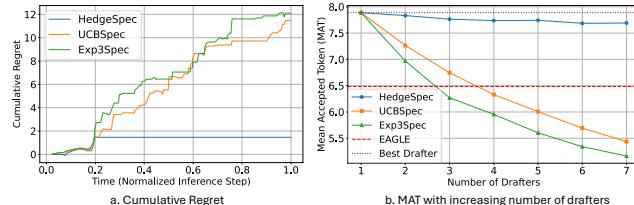


Figure 5: Cumulative regret and MAT vs. number of drafters. HedgeSpec quickly settles with near-zero regret, and can scale up with larger drafter pool. Qwen-3 results show similar trend in Appendix D.6, highlighting HedgeSpec’s robustness.

486 of including strong specialists, of course only works if drafter collaboration is effective. The upper
 487 and lower lines mark the best drafter and EAGLE’s performance. Bandit methods deteriorate sharply
 488 with more drafters, as their regret grows quickly and exploration becomes much more costly. In
 489 contrast, HedgeSpec scales gracefully, being nearly unaffected because the global information helps
 490 to rapidly adapt on the best drafter, remaining effective even with large pool.

491 4.5 OFFLINE ROUTER COMPARISON: HEDGESPEC’S ROBUSTNESS IN DISTRIBUTION SHIFT

492 In this section, we compare HedgeSpec with a static offline
 493 router. An offline router is a classifier trained on the request
 494 distribution and applied at serving time to dispatch queries to
 495 the best drafter. For fairness, we finetune a BERT (Devlin et al.,
 496 2019) classifier on the aggregated seven-domain dataset used
 497 to construct the drafters (hyperparameter in D.2). The classifier
 498 achieved 100% test accuracy across all domains, indicating that
 499 under closed-world assumptions, a lightweight classifier can
 500 reliably route requests to domain-specialized drafters.

501 However, this approach critically assumes that all runtime
 502 queries remain in training distribution. In practice, cloud serving
 503 frequently encounters O.O.D prompts (Liu et al., 2023b;
 504 Chao et al., 2025; Cao et al., 2024). We came across a simple
 505 yet revealing case when attempting to elicit longer reasoning
 506 with the instruction: ‘*Please carefully read the question. After
 507 that, please generate two answers to validate it. Output the
 508 one you think works well.*’ This minor prompt variation caused catastrophic failures: the classifier
 509 misrouted 98% of MedQA queries and 90% of Math queries. This was not even an adversarial attack
 510 but a natural prompt variation, underscoring the fragility of static routing. Such misrouting is costly
 511 as query dispatched to unsuitable drafter incurs long-tail overhead. As shown in Table 4, HedgeSpec
 512 remains robust under distribution shift, achieving up to 2.34x gains over the offline router. Its adaptive
 513 online learning leverages runtime feedback to identify the best drafter on-the-fly, offering three key
 514 advantages for real deployment: (i) no reliance on prior knowledge, (ii) resilience to O.O.D queries
 515 as long as experts remain useful, and (iii) adaptability when the prompt does not explicitly reveal the
 516 best drafter. Finally, we note that offline routing could complement HedgeSpec by providing a ‘warm
 517 start’ in the initial steps, which we leave for future work.

518 5 CONCLUSION

519 We present HedgeSpec, an online drafter selection framework for speculative decoding. We establish
 520 theoretical guarantees under full-information feedback, and we show substantial gains empirically,
 521 outperforming previous baselines, demonstrating HedgeSpec’s robustness in real-world LLM serving.

523 6 ETHICS STATEMENT

525 This paper presents work with the goal of advancing the field of machine learning. There are many
 526 potential societal consequences of our work, none which we feel must be specifically highlighted
 527 here.

529 7 REPRODUCIBILITY STATEMENT

531 The models and datasets used in this paper are fully open-sourced, with specifications provided in Sec-
 532 tions 4.1 and 4.2. Additional configuration details and implementation specifics are referenced in the
 533 main text and included in Appendix B.5, D.1, and D.2. For theoretical contributions, complete proofs
 534 of the theorems are provided in Appendix A. Together, these materials ensure the reproducibility of
 535 our results.

537 REFERENCES

539 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.

Math	LLaMA-3.1		Qwen-3	
	MAT	Token/s	MAT	Token/s
Eagle	5.83	78.05	4.63	54.49
Static Router	5.28	70.40	4.95	55.18
HedgeSpec	6.94	90.15	7.12	77.45

MedQA	LLaMA-3.1		Qwen-3	
	MAT	Token/s	MAT	Token/s
Eagle	5.23	67.67	3.91	43.54
Static Router	3.03	40.83	2.49	28.18
HedgeSpec	5.56	70.38	6.04	65.99

Table 4: HedgeSpec vs. offline router under O.O.D (**Bold**=best). The router suffers and mis-routes requests to suboptimal drafters. HedgeSpec adapts through runtime feedback, and remains robust.

arXiv preprint arXiv:2303.08774, 2023.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002b.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv preprint arXiv:2401.10774*, 2024.

Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, and Bo Han. Envisioning outlier exposure by large language models for out-of-distribution detection. *arXiv preprint arXiv:2406.00806*, 2024.

Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university press, 2006.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for prediction with expert advice. *Machine Learning*, 66(2):321–352, 2007.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong. Jailbreaking black box large language models in twenty queries. In *2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)*, pp. 23–42. IEEE, 2025.

Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A parameter-free hedging algorithm. *Advances in neural information processing systems*, 22, 2009.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint arXiv:2302.01318*, 2023a.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper. Accelerating large language model decoding with speculative sampling, 2023b. URL <https://arxiv.org/abs/2302.01318>.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou, and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms, 2024. URL <https://arxiv.org/abs/2412.18925>.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

Zhuoming Chen, Avner May, Ruslan Svirchevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding, 2025. URL <https://arxiv.org/abs/2402.12374>.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reichihiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative decoding. *arXiv preprint arXiv:2402.02082*, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.

594 Yoav Freund. Open problem: Second order regret bounds parametrized by variance across actions
 595 and top ϵ percentile. In *Conference on Learning Theory*, pp. 1651–1654. PMLR, 2016.
 596

597 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
 598 using lookahead decoding. *arXiv preprint arXiv:2402.02057*, 2024.

599 Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and
 600 beyond. In *Proceedings of the 24th annual conference on learning theory*, pp. 359–376. JMLR
 601 Workshop and Conference Proceedings, 2011.

602 Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
 603 decoding. *arXiv preprint arXiv:2311.08252*, 2023.

604 Yunlong Hou, Fengzhuo Zhang, Cunxiao Du, Xuan Zhang, Jiachun Pan, Tianyu Pang, Chao Du,
 605 Vincent YF Tan, and Zhuoran Yang. Banditspec: Adaptive speculative decoding via bandit
 606 algorithms. In *International Conference on Machine Learning*, 2025.

607 Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A. Rossi, Yihan Wu, Dinesh
 608 Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding, 2025. URL
 609 <https://arxiv.org/abs/2502.18779>.

610 Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
 611 adaptive candidate lengths, 2025a. URL <https://arxiv.org/abs/2405.19715>.

612 Kaiyu Huang, Hao Wu, Zhubo Shi, Han Zou, Minchen Yu, and Qingjiang Shi. Specserve: Efficient
 613 and slo-aware large language model serving with adaptive speculative decoding. *arXiv preprint*
 614 *arXiv:2503.05096*, 2025b.

615 Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In
 616 *International conference on machine learning*, pp. 1453–1461. PMLR, 2013.

617 jtatman. jtatman/python-code-dataset-500k dataset. <https://huggingface.co/datasets/jtatman/python-code-dataset-500k>, 2025.

618 Ashish Khisti, M. Reza Ebrahimi, Hassan Dbouk, Arash Behboodi, Roland Memisevic, and Christos
 619 Louizos. Multi-draft speculative sampling: Canonical decomposition and theoretical limits, 2025.
 620 URL <https://arxiv.org/abs/2410.18234>.

621 Taehyeon Kim, Hojung Jung, and Se-Young Yun. A unified framework for speculative decoding with
 622 multiple drafters as a bandit. 2024.

623 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 624 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023a.

625 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 626 decoding, 2023b. URL <https://arxiv.org/abs/2211.17192>.

627 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
 628 rethinking feature uncertainty. In *International Conference on Machine Learning*, 2024a.

629 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of language
 630 models with dynamic draft trees. In *Empirical Methods in Natural Language Processing*, 2024b.

631 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
 632 acceleration of large language models via training-time test. In *Annual Conference on Neural
 633 Information Processing Systems*, 2025.

634 Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. *Information and
 635 computation*, 108(2):212–261, 1994.

636 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 637 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
 638 and Yang Liu. Rethinking machine unlearning for large language models, 2024. URL <https://arxiv.org/abs/2402.08787>.

648 Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
 649 Online speculative decoding. *arXiv preprint arXiv:2310.07177*, 2023a.
 650

651 Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
 652 Zhang, Kailong Wang, and Yang Liu. Jailbreaking chatgpt via prompt engineering: An empirical
 653 study. *arXiv preprint arXiv:2305.13860*, 2023b.

654 Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adaptive normalhedge.
 655 *arXiv preprint arXiv:1502.05934*, 2015.
 656

657 Alexandre Marques, Dipika Sikka, Eldar Kurtić, Fynn Schmitt-Ulms, Megan Zhao, Helen Flynn,
 658 Rahul Tuli, and Mark Kurtz. Speculators: Standardized, production-ready speculative decoding.
 659 https://huggingface.co/Tengyunw/qwen3_8b_eagle3, 2025.

660 Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick Boyd, Maarten
 661 Van Segbroeck, Matthew Grossman, Piotr Mlocek, and Drew Newberry. Synthetic-Text-To-
 662 SQL: A synthetic dataset for training language models to generate sql queries from natural lan-
 663 guage prompts, April 2024. URL [https://huggingface.co/datasets/gretelai/
 664 synthetic-text-to-sql](https://huggingface.co/datasets/gretelai/synthetic-text-to-sql).

665 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
 666 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
 667 language model serving with tree-based speculative inference and verification. In *Proceedings of
 668 the 29th ACM International Conference on Architectural Support for Programming Languages
 669 and Operating Systems, Volume 3*, pp. 932–949, 2024.
 670

671 mlfoundations dev. Organic chemistry qa dataset. [https://huggingface.co/datasets/
 672 mlfoundations-dev/PDF_and SCP_unfiltered_organic_chemistry_
 673 questions](https://huggingface.co/datasets/mlfoundations-dev/PDF_and SCP_unfiltered_organic_chemistry_questions), 2025.

674 Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
 675 using sequence-to-sequence rnns and beyond. *arXiv preprint arXiv:1602.06023*, 2016.
 676

677 Ramchalam Kinattinkara Ramakrishnan, Zhaocong Yuan, Shaojie Zhuo, Chen Feng, Yicheng Lin,
 678 Chenzheng Su, and Xiaopeng Zhang. Omnidraft: A cross-vocabulary, online adaptive drafter for
 679 on-device speculative decoding, 2025. URL <https://arxiv.org/abs/2507.02659>.

680 Herbert Robbins. Some aspects of the sequential design of experiments. 1952.
 681

682 Apoorv Saxena. Prompt lookup decoding, November 2023. URL [https://github.com/
 683 apoorvumang/prompt-lookup-decoding/](https://github.com/apoorvumang/prompt-lookup-decoding/).

684 Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
 685 Yu. Spectr: Fast speculative decoding via optimal transport. *Advances in Neural Information
 686 Processing Systems*, 36:30222–30242, 2023.
 687

688 Bangsheng Tang, Carl Chengyan Fu, Fei Kou, Grigory Sizov, Haoci Zhang, Jason Park, Jiawen
 689 Liu, Jie You, Qirui Yang, Sachin Mehta, et al. Efficient speculative decoding for llama at scale:
 690 Challenges and solutions. *arXiv preprint arXiv:2508.08192*, 2025.

691 Tengyunw. Official eagle model for qwen-3-8b from tengyunw. [https://huggingface.co/
 692 Tengyunw/qwen3_8b_eagle3](https://huggingface.co/Tengyunw/qwen3_8b_eagle3), 2025.
 693

694 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 695 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
 696 *arXiv preprint arXiv:2410.01560*, 2024.

697 Dirk Van Der Hoeven and Nicolo Cesa-Bianchi. Nonstochastic bandits and experts with arm-
 698 dependent delays. In *International Conference on Artificial Intelligence and Statistics*. PMLR,
 699 2022.

700 701 Vladimir G Vovk. A game of prediction with expert advice. In *Proceedings of the eighth annual
 conference on Computational learning theory*, pp. 51–60, 1995.

702 Marcelo J Weinberger and Erik Ordentlich. On delayed prediction of individual sequences. *IEEE*
703 *Transactions on Information Theory*, 48(7):1959–1976, 2002.
704

705 Matthew Wesney. Tot-biology. <https://huggingface.co/datasets/moremilk/ToT-Biology>, 2025.

706 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
707 Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
708 2025.

709

710 Euiin Yi, Taehyeon Kim, Hongseok Jeung, Du-Seong Chang, and Se-Young Yun. Towards
711 fast multilingual llm inference: Speculative decoding and specialized drafters. *arXiv preprint*
712 *arXiv:2406.16758*, 2024.

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PROOFS OF TECHNICAL RESULTS
757758 A.1 THEOREM 2 PROOF
759760 *Proof.* EAGLE generates the draft tree greedily, thus the L children at Node $x_{\leq t+k-1}$ is
761 $\text{Top}_L(q(\cdot|x_{\leq t+k-1}))$. The next token is accepted when one of the children is sampled by the
762 target model p . \square 763 A.2 THEOREM 3 PROOF
764765 *Proof of Theorem 3.* First note that the expectation is over the distribution of $x_{t+1:t+K}$ from the
766 target distribution as well as the randomness of the speculative decoding method. In particular, γ_k
767 (even if the drafts are deterministic, e.g., in EAGLE3) is random because $x_{t+1:t+k-1}$ is random.
768

769
$$\begin{aligned} & \mathbb{E} [\# \text{ of accepted tokens} | x_{\leq t}] \\ 770 &= \sum_{k=1}^{K+1} k \mathbb{P}[x_{t+1:t+k-1} \text{ is accepted}, x_{t+k} \text{ is not accepted} | x_{\leq t}] \\ 772 &= \sum_{k=1}^{K+1} k \mathbb{E} \left[\mathbb{P}[x_{t+k} \text{ is not accepted} | x_{t+1:t+k-1} \text{ is accepted}, x_{\leq t}] \middle| x_{\leq t} \right] \\ 774 &= \sum_{k=1}^{K+1} k \mathbb{E} \left[\mathbb{P}[x_{t+k} \text{ is not accepted} | x_{t+1:t+k-1} \text{ is accepted}, x_{\leq t+k-1}] \mathbb{P}[x_{t+1:t+k-1} \text{ is accepted} | x_{\leq t+k-1}] \middle| x_{\leq t} \right] \\ 776 &= \sum_{k=1}^{K+1} k \mathbb{E} \left[(1 - \gamma_k) \mathbb{P}[x_{t+1:t+k-1} \text{ is accepted} | x_{\leq t+k-1}] \middle| x_{\leq t} \right] \end{aligned} \tag{1}$$

778

779 Now by the Law of Iterated Expectation again
780

781
$$\begin{aligned} & \mathbb{E} \left[(1 - \gamma_k) \mathbb{P}[x_{t+1:t+k-1} \text{ is accepted} | x_{\leq t+k-1}] \middle| x_{\leq t} \right] \\ 782 &= \mathbb{E} \left[(1 - \gamma_k) \mathbb{P}[x_{t+k-1} \text{ is accepted} | x_{t+1:t+k-2} \text{ is accepted}, x_{\leq t+k-2}] \mathbb{P}[x_{t+1:t+k-2} \text{ is accepted} | x_{\leq t+k-2}] \middle| x_{\leq t} \right] \\ 784 &= \mathbb{E} \left[(1 - \gamma_k) \gamma_{k-1} \mathbb{P}[x_{t+1:t+k-2} \text{ is accepted} | x_{\leq t+k-2}] \middle| x_{\leq t} \right] \\ 786 &= \mathbb{E} \left[(1 - \gamma_k) \gamma_{k-1} \gamma_{k-2} \mathbb{P}[x_{t+1:t+k-3} \text{ is accepted} | x_{\leq t+k-3}] \middle| x_{\leq t} \right] \\ 788 &= \dots \\ 790 &= \mathbb{E} \left[(1 - \gamma_k) \gamma_{k-1} \gamma_{k-2} \dots \gamma_2 \mathbb{P}[x_{t+1} \text{ is accepted} | x_{\leq t+1}] \middle| x_{\leq t} \right] \\ 792 &= \mathbb{E} \left[(1 - \gamma_k) \gamma_{k-1} \gamma_{k-2} \dots \gamma_2 \gamma_1 \middle| x_{\leq t} \right] \end{aligned}$$

793 In Line 4 onwards, we are repeatedly applying the same arguments from Line 1 - 3 which “peels off”
794 one random token j at a time and applying the definition of γ_j . \square 795 The proof is complete by substituting into (1). \square
796797 A.3 THEOREM 4 PROOF
798799 *Proof of Theorem 4.* First, by the Hedge algorithm, the hypothetical online learning without delay
800 enjoys a regret bound of $2\sqrt{T \log N}$ for any choice of T and N .801 By Theorem 1 of (Joulini et al., 2013), the blackbox reduction shows that when the delay is smaller
802 than $2K$, there is an algorithm that gives a regret of
803

804
$$2(2K+1) \sqrt{\frac{2T}{2K+1} \log N}$$

805

806 as long as $T > (2K+1)$. This yields the following regret bounds
807

808
$$\frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \gamma_t[i_t] \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{token}}} \sum_{t=1}^{T_{\text{token}}} \gamma_t[i^*] \right\} - O\left(\sqrt{\frac{K \log N}{T_{\text{token}}}}\right).$$

809

810 and

$$812 \quad \frac{1}{T_{\text{token}}} \sum_{h=1}^{T_{\text{token}}} \frac{\widehat{\text{AcceptLength}}_{t,K}[i_t]}{K+1} \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{token}}} \sum_{h=1}^{T_{\text{token}}} \frac{\widehat{\text{AcceptLength}}_{t,K}[i^*]}{K+1} \right\} - O\left(\sqrt{\frac{K \log N}{T_{\text{token}}}}\right).$$

815 for the two different loss functions respectively. It remains to take expectation over all random
816 variables on both sides for each $i^* \in [N]$ separately. For the acceptance probability, notice that

$$\begin{aligned} 817 \quad \mathbb{E}[\gamma_t[i_t]] &= \mathbb{E}[\mathbb{P}_{i_t}[x_t \text{ is accepted} | x_{\leq t-1}]] \\ 818 \\ 819 \quad &= \mathbb{E}\left[\sum_{i \in [N]} \mathbb{P}_{\mathcal{A}}[i_t = i | x_{\leq t-1}] \mathbb{P}_i[x_t \text{ is accepted} | x_{\leq t-1}]\right] \\ 820 \\ 821 \quad &= \sum_{i \in [N]} \mathbb{E}[\mathbb{P}[i_t = i | x_{\leq t-1}]] \mathbb{E}[\mathbb{P}_i[x_t \text{ is accepted} | x_{\leq t-1}]] \\ 822 \\ 823 \quad &= \sum_{i \in [N]} \mathbb{P}_{\mathcal{A}}[i_t = i] \mathbb{P}_i[x_t \text{ is accepted}] = \mathbb{P}_{\mathcal{A}}[x_t \text{ is accepted}] \\ 824 \\ 825 \end{aligned}$$

826 where the third line uses the conditional independence of i_t and x_t given $x_{\leq t-1}$, which follows
827 because the algorithm \mathcal{A} decides on i_t before x_t and that x_t is determined by the target model p no
828 matter which i_t is chosen.

829 For the accepted length,

$$\begin{aligned} 831 \quad &\mathbb{E}[\widehat{\text{AcceptLength}}_{t,K}[i_t]] \\ 832 \\ 833 \quad &= \mathbb{E}[\mathbb{E}[\widehat{\text{AcceptLength}}_{t,K}[i_t] | i_t, x_{<t}]] \\ 834 \\ 835 \quad &= \mathbb{E}[\mathbb{E}[\widehat{\text{AcceptLength}}_{t,K}[i_t] | i_t, x_{<t}]] \\ 836 \\ 837 \quad &= \mathbb{E}\left[\sum_{i \in [N]} \mathbb{P}_{\mathcal{A}}[i = i_t | x_{<t}] \mathbb{E}[\widehat{\text{AcceptLength}}_{t,K}[i] | i, x_{<t}]\right] \\ 838 \\ 839 \quad &= \mathbb{E}[\widehat{\text{AcceptLength}}_{t,K}[i_t]], \\ 840 \end{aligned}$$

841 where the second identity follows from Theorem 3 and the third-identity uses the conditional
842 independence of i_t and x_t given $x_{\leq t-1}$ as before. The claim is proven by multiplying both sides by
843 $K+1$. \square

844

845 B FURTHER ALGORITHM AND IMPLEMENTATION DETAILS

846 B.1 ONLINE LEARNING WITH DELAYED FEEDBACK IN STOCHASTIC SETTING

849 In this section, we clarify how Algorithm 2 of (Joulani et al., 2013), stated in the more general partial
850 monitoring setting, can be instantiated for the full information setting.

851 This is the algorithm that we used in the experiment.

853 **Setting.** There are N experts (actions) $A = \{1, \dots, N\}$. On each round $t = 1, 2, \dots, T$ the
854 environment associates a loss vector $\ell_t \in [0, 1]^N$ to the experts, but ℓ_t may be *revealed after an*
855 *arbitrary delay*. At time t the learner receives a (possibly empty) set

$$856 \quad H_t = \{(s, \ell_s) : \text{the full vector } \ell_s \text{ becomes available at time } t\}.$$

858 When making the round- t decision, the learner can use all ℓ_s that have already been revealed, but not
859 those still pending.

860

861 **Base learner.** BASE is any standard *full-information* online algorithm (e.g., Hedge) designed for an
862 immediate, delay-free stream of loss vectors. We assume BASE supports:

$$863 \quad \text{PREDICT}() \quad \text{and} \quad \text{UPDATE}(\ell),$$

864 where PREDICT returns either a distribution over experts or a single expert index, and UPDATE feeds
 865 BASE one full loss vector $\ell \in [0, 1]^N$.
 866

867 Specializing QPM-D to full information collapses the per-action queues into a *single FIFO queue* of
 868 unprocessed loss vectors, because any revealed ℓ_s is usable regardless of which expert was played.
 869

Algorithm 1: Queued Full-Information with Delays (QFI-D)

870 **Data:** A FIFO queue \mathcal{Q} of unprocessed loss vectors
 871 **Input:** (Optional) horizon T (not needed if the BASE is an *anytime* algorithm).
 872 1 Initialize $\mathcal{Q} \leftarrow \emptyset$.
 873 2 Initialize BASE; let $p \leftarrow \text{BASE.PREDICT}()$.
 874 3 **for** $t = 1, 2, \dots, T$ **do**
 875 // Predict phase: catch BASE up with all arrived feedback
 876 4 **while** $\mathcal{Q} \neq \emptyset$ **do**
 877 $\ell \leftarrow \text{POPFRONT}(\mathcal{Q})$
 878 BASE.UPDATE(ℓ)
 879 $p \leftarrow \text{BASE.PREDICT}()$
 880 // Make the real-world choice for round t
 881 8 Play action a_t according to p
 882 // e.g., sample from p or take arg max/arg min as appropriate
 883 // for BASE
 884 // Update phase: record any feedback that arrives now
 885 9 Observe the (possibly empty) set $H_t = \{(s, \ell_s)\}$ of loss vectors revealed at time t .
 886 10 **foreach** $(s, \ell_s) \in H_t$ **do**
 887 11 $\text{PUSHBACK}(\mathcal{Q}, \ell_s)$

888
 889 **Remarks.**
 890

891 • This makes BASE experience a delay-free stream *in its own clock*: whenever a vector arrives, it is
 892 immediately fed to BASE before the next real prediction is made.
 893
 894 • To instantiate with **Hedge**, UPDATE applies the usual weight update $w_i \leftarrow w_i \exp(-\eta \ell_i)$ and
 895 PREDICT returns the normalized weights.
 896
 897 • If multiple loss vectors arrive at the same time, they are queued in arrival order and processed
 898 FIFO.

898 **Corollary 5** (Regret of QFI-D). *Assume the delay is bounded by τ_{\max} and the loss is bounded by 1.
 899 Let Base be any full-information online learner analyzed in the same stochastic environment without
 900 delays, with expected regret $\text{Regret}_T^{\text{Base}}$. Then the expected regret of QFI-D satisfies*

$$901 \quad \mathbb{E}[\text{Regret}_T] \leq \mathbb{E}[\text{Regret}_T^{\text{Base}}] + \tau_{\max}. \\ 902$$

903 *Proof.* This is an instantiation of Theorem 6 of (Joulani et al., 2013). \square
 904

905 The implementation for HEDGESPEC with delayed feedback in the stochastic setting is particularly
 906 simple.
 907

908 1. Keep two pointers t_{updated} and t where $t_{\text{updated}} \leq t$ and all necessary statistics $\gamma_{t > t_{\text{updated}}}$.
 909 2. After every chunk, process every batch of available loss vectors by updating the weights of
 910 the BASE learner, before taking the next action, then update t_{updated} to the last frontier.
 911

912 Note that in the hypothetical token-level game without delay, there are several updates within each
 913 chunk, but due to the delay, none of those updates will actually occur. This means that the weights
 914 on the drafters in the delayed case will not be updated within each speculative decoding chunk is
 915 complete.
 916

917 We could either sample independent sample from the drafter weights for each new token as the drafter
 918 roll out or stick to the same drafter. Both approaches enjoy the same regret guarantees in Corollary 5.
 919

918 B.2 FIRST ORDER AND SECOND ORDER REGRET BOUNDS
919

920 We observe that in the experiments (Figure 5 and Figure 8), HEDGESPEC appears to have a regret that
921 stops growing after learning for a few iterations, instead of the $O(\sqrt{T})$ predicted by the worst-case
922 bound in Theorem 4 and Corollary 5.

923 We believe this is due to the adaptivity of NormalHedge (Chaudhuri et al., 2009).
924

925 Cesa-Bianchi et al. (2007) established that when the learning rate is optimally tuned for Hedge, the
926 method enjoys both first order (small loss) and second order (small variance) regret bounds:
927

$$\text{Regret} = O\left(\sqrt{\sum_{t=1}^T f_t[i^*] \log N}\right), \quad \text{and} \quad \text{Regret} = O\left(\sqrt{\sum_{t=1}^T \text{Var}_{i \sim p_t}[f_t[i]] \log N}\right).$$

931 In particular, if the best drafter i^* has very small losses or after a while the learner's weights p_t
932 concentrates on a fixed drafter, then the regret bound will not grow with T . This is the case when
933 there is a clear winner among all drafters.
934

935 NormalHedge was not proven to enjoy these strong adaptive regret bounds, though there was a
936 conjecture that it does (Freund, 2016), and a modified version of normal hedge algorithm known as
937 AdaNormalHedge (Luo & Schapire, 2015) which does enjoy first order regret bounds.
938

Our experiments seem to support the conjecture.
939

In practice, we find that NormalHedge often quickly converges to the optimal drafter, while still enjoy
940 the worst-case \sqrt{T} -type regret when no clear winner exists.
941

942 B.3 CHUNK-LEVEL VS TOKEN-LEVEL ONLINE LEARNING AND REGRET GUARANTEES
943

944 There is more than one way to set up the regret minimization game. In the main paper, we discuss the
945 token-level online learning game. Here, we further discuss the token-level online game.
946

947 **Chunk-Level Games and Loss functions** We can set it up as an online learning problem where
948 each chunk is one round of the game. This choice is natural because the action to choose drafters is
949 made for each chunk.
950

951 for $h = 1, \dots, T_{\text{chunk}}$:

952 1. Nature chooses loss vector $f_h \in [0, 1]^N$.
953 2. Player chooses Drafter i_h and incurs loss $f_h[i_h]$.
954 3. Player observes f_h .

956 Figure 6: Chunk-Level Game
957

959 It remains to design the loss functions. Let the token index right before the h^{th} chunk be t_h and the
960 length of chunk returned by the chosen drafter be of length k_h . Let
961

$$962 \gamma_{h,j}[i] := \mathbb{P}_i[x_{t_h+j} \text{ is accepted} \mid x_{t_h+1:t_h+j-1} \text{ are accepted}, x_{<t_h+j}],$$

963 namely the probability that j^{th} token of chunk h from drafter i is successfully validated given that
964 the first $(j-1)$ tokens are validated.
965

If we optimize the *average acceptance probability* within each chunk, we can use
966

$$967 f_h[i] = \frac{1}{k_h} \sum_{j=1}^{k_h} (1 - \gamma_{h,j}[i]).
968$$

969 If we optimize the expected chunk length, then we can apply the expression in Theorem 3 with
970 $K = k_h$ to estimate the expected accept length of Drafter i . The resulting loss function is the
971

972 normalized distance from the max length.
 973

974
$$f_h[i] = 1 - \frac{1}{k_h + 1} \widehat{\text{AcceptLength}}_{h,k_h}[i] = 1 - \frac{1}{k_h + 1} \left(\sum_{j=1}^{k_h+1} j(1 - \gamma_{h,j}[i]) \prod_{\ell \in [j-1]} \gamma_{h,\ell}[i] \right)$$

 975
 976

977 where $\gamma_{h,k+1}[i]$ is assigned to be 0 for notation convenience.
 978

979 **Theorem 6.** *There is an algorithm \mathcal{A} that chooses i_h in the game in Figure 6, such that*

980 1. *When we optimize acceptance probability*
 981

982
$$\frac{1}{T_{\text{chunk}}} \sum_{h=1}^{T_{\text{chunk}}} \frac{1}{k_h} \sum_{j=1}^{k_h} \gamma_{h,j}[i_h] \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{chunk}}} \sum_{h=1}^{T_{\text{chunk}}} \frac{1}{k_h} \sum_{j=1}^{k_h} \gamma_{h,j}[i^*] \right\} - 2\sqrt{\frac{\log N}{T_{\text{chunk}}}}.$$

 983
 984

985 2. *When we optimize Accept Length*
 986

987
$$\frac{1}{T_{\text{chunk}}} \sum_{h=1}^{T_{\text{chunk}}} \frac{\widehat{\text{AcceptLength}}_{h,k_h}[i_h]}{k_h + 1} \geq \max_{i^* \in [N]} \left\{ \frac{1}{T_{\text{chunk}}} \sum_{h=1}^{T_{\text{chunk}}} \frac{\widehat{\text{AcceptLength}}_{h,k_h}[i^*]}{k_h + 1} \right\} - 2\sqrt{\frac{\log N}{T_{\text{chunk}}}}.$$

 988
 989

990 The algorithm that achieves this includes Hedge and many of its variants. In the experiments, we test
 991 out both the original Hedge and more adaptive, and parameter-free variants of Hedge. Compared to
 992 BanditSpec, the regret improves exponentially in the number of drafters N .
 993

994 Note that the actual accepted length for the chosen drafter model i_h is k_h , but the expected value
 995 can be bigger or smaller than k_h . Other draft models will have an expected accepted length between
 996 1 and $k_h + 1$. It is capped at $k_h + 1$ due to a *censoring effect*. The censoring effect may lead
 997 to an underestimation of the performance of alternative draft models. We will elaborate on these
 998 consequences of the censoring issue in the appendix.
 999

1000 Another issue of censoring is that it makes the regret guarantees in Theorem 6 somewhat difficult to
 1001 interpret. In particular, it might be surprising to some readers that for any fixed i

1001
$$\mathbb{E}[\widehat{\text{AcceptLength}}_{h,k_h}[i]] \neq \mathbb{E}[\text{AcceptLength}_{h,k_h}[i]].$$

 1002

1003 in general. This is because k_h is random, and when we condition on k_h , it changes the distribution of
 1004 the tokens $x_{t_h+1:t_h+k_h}$ in this chunk, thus rendering Theorem 3 inapplicable. Similar issues arise for
 1005 the expected value of $\gamma_{h,j}$.
 1006

1007 B.4 TIME-INHOMOGENEITY IN EAGLE MODELS AND CONSEQUENCE OF CENSORING.

1008 EAGLE draft models are special in that they belong to a broader family of *time-inhomogenous* draft
 1009 models. Let's denote EAGLE models by $q_{i,k}$ — the i th choice and the corresponding model used for
 1010 k th relative position.
 1011

1012 As an example, if Draft model $i = 1$ is chosen at time t it rolls out with 2 tokens verified. Then the
 1013 models being called are $q_{1,1}$ for the first token, and $q_{1,2}$ for the second. Suppose Draft model $i = 2$
 1014 was chosen instead, then it could've verified 4 tokens.
 1015

1016 Naively, this can give us feedback for $q_{i,1}, q_{i,2}$ for $i = 2$ too, but will have to wait until the next chunk
 1017 before we can get feedback for $q_{2,3}$ and $q_{2,4}$. What if the onset t is now $t + 1$ instead?
 1018

1019 The execution of the target model actually has provided us all the information needed to provide
 1020 feedback for every $i \in [N]$ and $k \in [k]$
 1021

1022 Why do we need to handle these complications? Let us inspect the following two examples that
 1023 highlight the surprising failure mode if we do not handle these issues appropriately.
 1024

1025 Evaluating EAGLE models off-policy is somewhat tricky because the best model is not fully captured
 1026 by the acceptance probability.
 1027

1028 **Example 7** (“censoring” causes worse draft model win). *Draft model $q_{1,1}$ has acceptance probability
 1029 100% but $q_{1,2}$ is terrible, it has acceptance probability of only 0%. The expected verified length is
 1030 always 2 for draft model $q_{1,:}$. If $q_{1,1}$ is played first, the chunk length will converge to 2 throughout.*

1026 Now let $q_{2,k} = 0.4$ for $k = 1, 2$ but 0.9 for $k > 2$.
 1027
 1028 Average acceptance probability for draft model 1 is 0.5 and 0.4 for draft model 2 under the distribution
 1029 of draft model 1. However, if we roll-out draft model 2 long enough, we get higher acceptance
 1030 probability on average.
 1031 The expected acceptance length for the second draft model is $1 + 0.6/(1 - 0.6) = 2.2$, i.e. it is better
 1032 than the first.
 1033 However, since draft model 1 is only generating two-token chunks, and we can only evaluate the first
 1034 two steps of the draft model 2.
 1035 The expected length is now $0.4 + 0.6 \times 2 + 0.6 \times 0.6 \times 3 = 1.96 < 2$.
 1036
 1037 This example illustrates that for drafters that are not invariant to relative index (e.g., EAGLE models),
 1038 it is perhaps better to use token-level online learning (with delay) to avoid getting stuck at a suboptimal
 1039 drafter.
 1040
 1041 In practice, we found that the censoring effect is not detrimental for EAGLE models. Chunk-level
 1042 online learning works as well as token-level online learning with delay, and it incurs smaller system
 1043 overhead.

1044 1045 B.5 PRACTICAL HEURISTICS: “HYBRID LOSSES” “SKIPPING UPDATE”

1046 As we now evaluate all drafters, even though this does not increase the total number of calls to the
 1047 target model, it does *slightly* affect the amount of compute needed for evaluation and increase the
 1048 latency in practice in the inference system.

1049 We propose a technique called “skipping updates” which reduces the number of times the evaluation
 1050 phase need to be called. The idea is that we simply group a couple of updates together and apply
 1051 them once in a batch once in a while.

1052 In practice, we observed that our hedging algorithm quickly reaches a stable performance plateau with
 1053 near-zero regret, consistent with the first- and second-order regret bounds (see discussion in B.2). To
 1054 further reduce update latency, we experimented with skipping updates by a fixed number of tokens and
 1055 combining this with batched feedback, treating both as tunable hyperparameters. Empirically, after a
 1056 short warm-up period (e.g., 6 rounds of full-information updates), using delayed batched feedback
 1057 (e.g., 12 rounds per batch) together with skipped updates (e.g., 6 tokens per update) continued to
 1058 yield strong performance for all the tested experiments. Overall, these results indicate that moderate
 1059 delays in feedback and updates can maintain good mean accepted token length while providing a
 1060 practical tradeoff between accuracy and efficiency.

1061 The other trick that we proposed is “hybrid losses”. This involves starting the learner by choosing the
 1062 first few loss vectors, e.g., f_1, f_2, f_3, \dots to be based on acceptance probabilities, then switching to the
 1063 acceptance-length loss, later. The reason is that the delay is generally higher for acceptance length.

1064 For example, if $K = 8$ and after the first chunk, 4 tokens are accepted. The acceptance rate loss
 1065 would be computable after the first chunk. By the end of the second chunk, we can already update
 1066 the learner by 4 times before the decision for the second chunk is due.

1067 The loss based on acceptance probability — even though not what we ultimately wanted to optimize
 1068 — can be used as a surrogate loss and help mitigating the “cold-start” problem.

1069 1070 Both tricks were used in our experiments.

1071 1072 C RELATED WORK

1073 1074 C.1 THE ADVANCE OF SPECULATIVE DECODING

1075 Speculative decoding is a pivotal way for optimizing LLM inference latency. This technique was
 1076 first introduced with chain-structured drafts, where the draft model generates a single sequence
 1077 of tokens verified sequentially by the target model Leviathan et al. (2023b); Chen et al. (2023b).
 1078 Subsequent work generalized this into tree-structured drafts, organizing draft tokens as a connected

tree to increase acceptance opportunities [Chen et al. \(2025\)](#); [Miao et al. \(2024\)](#); [Cai et al. \(2024\)](#); [Du et al. \(2024\)](#); [Li et al. \(2024b\)](#). Recent works extend speculative decoding to the multi-draft setting, where multiple candidate tokens are proposed in parallel at each step. [Sun et al. \(2023\)](#) casts draft selection into an optimal transport framework with efficient approximation schemes. [Khisti et al. \(2025\)](#) show that the optimal solution admits a canonical two-step decomposition and provide exact acceptance characterizations in the two-draft case. [Hu et al. \(2025\)](#) derive tractable methods to compute theoretical upper bounds on acceptance rates, demonstrating practical benefits of sampling strategies such as without-replacement. **While prior work advances speculative decoding by improving how a single drafter generates candidates**—ranging from chain- to tree-based structures and multi-draft extensions—**our work addresses the orthogonal level of challenge in multi-drafter selection**, where diverse speculative decoding methods can all potentially serve as drafters in the pool, and we dynamically evaluate and select among them with provable no-regret guarantees.

1092 C.2 ADAPTIVE SPECULATIVE DECODING

1094 Another line of work focuses on adapting speculative decoding during inference to incoming requests.
 1095 OSD and OmniDraft [Liu et al. \(2023a\)](#); [Ramakrishnan et al. \(2025\)](#) adapt the drafter on-the-fly to the
 1096 target distribution via online knowledge distillation, improving token acceptance rate. Our method is
 1097 training-free and operates at a different level: candidates in the drafter pool can themselves adopt
 1098 such adaptive mechanisms, while our contribution lies in selecting among them in the multi-drafter
 1099 setting. SpecDec++ [Huang et al. \(2025a\)](#) instead adapts the speculation length, stopping drafting once
 1100 the predicted rejection probability exceeds a threshold, which differs from our goal of multi-drafter
 1101 selection. SpecServe [Huang et al. \(2025b\)](#) takes a system-level perspective, adapting speculative
 1102 decoding configurations (e.g. resource allocation) at runtime to meet latency and throughput SLOs,
 1103 rather than focusing on acceptance probability. Among these works, [MetaSD Kim et al. \(2024\)](#)
 1104 [first poses the problem](#) and [BanditSpec Hou et al. \(2025\)](#) represents the state-of-the-art for adaptive
 1105 multi-drafter speculative decoding. In contrast, we advocate a different paradigm that cheaply exploits
 1106 global information, achieving higher token acceptance rates and lower per-token latency.

1107 C.3 ONLINE LEARNING ALGORITHMS

1109 Hedge and multi-armed bandits capture the full-information and partial-information settings, respec-
 1110 tively, and have inspired numerous variants. The Hedge algorithm [Cesa-Bianchi & Lugosi \(2006\)](#)
 1111 provides a classic framework for expert weighting; NormalHedge [Chaudhuri et al. \(2009\)](#) removes
 1112 the need for tuning learning rates; and AdaNormalHedge [Luo & Schapire \(2015\)](#) further improves
 1113 adaptivity. In parallel, the stochastic K -armed bandit problem was introduced by Robbins [Robbins \(1952\)](#),
 1114 leading to a wide family of exploration-exploitation algorithms. Canonical examples include
 1115 UCB [Auer et al. \(2002a\)](#) and KL-UCB [Garivier & Cappé \(2011\)](#), which provide confidence-based
 1116 exploration guarantees, and EXP3 [Auer et al. \(2002b\)](#), which provides regret guarantees in the adver-
 1117 sarial setting. As compared in Section D.5, adopting Hedge and its variants consistently achieves
 1118 strong performance in our experiments, surpassing bandit-style algorithms. This highlights the
 1119 effectiveness of leveraging global loss information across experts.

1120 D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

1123 D.1 EAGLE’S DEFAULT GENERATION CONFIGURATION

1125 In our experiments, we directly adopt EAGLE’s generation configuration as our framework focuses
 1126 on the drafter selection problem. By default, EAGLE uses an exploration depth of 7, resulting in
 1127 a speculative decoding length of 9 tokens per chunk, with the top-k value equals to 10 during its
 1128 expanding and reranking phase.

1130 D.2 BERT CLASSIFIER TRAINING DETAIL

1132 Table 5 records the training hyperparameters of the offline BERT classifier for statically routing the
 1133 requests to the corresponding drafter. The datasets used for training the classifier is the aggregation
 of data across all 7 domains.

Hyperparameter	Value
learning_rate	2e-5
per_device_train_batch_size	128
per_device_eval_batch_size	128
num_train_epochs	3
lr_scheduler_type	linear
warmup_ratio	0.1
optimizer	adamw

Table 5: Training hyperparameters for BERT classifier.

D.3 STATISTICS FOR THE CURATED QWEN DRAFTERS

Table 6 and 7 shows statistics of the 7 curated drafters with Qwen-3-8B and **Qwen-3-32B** as the target (**bold** indicates the best). Each drafter performs well in-domain (diagonal) but degrades when applied out-of-domain for Qwen-3-8B model, and on average is weaker than the vanilla EAGLE model. Similar patterns are shown in Table 1. Together, these drafters provide a realistic evaluation pool for HedgeSpec, which orchestrates them to jointly accelerate serving.

Datasets	Python		Math		Biology		Chemistry		MedQA		CNN_DM		SQL		Avg MAT	Avg Token/s
Drafter domains	MAT	Token/s														
Vanilla Eagle	4.96	55.84	4.52	50.88	4.06	46.22	3.98	44.85	3.84	44.13	4.07	46.20	4.20	44.60	4.23	47.53
Python	6.43	73.73	4.50	51.82	2.46	26.85	2.97	34.41	2.36	26.81	2.45	28.26	3.85	44.42	3.57	40.90
Math	4.23	50.50	7.39	86.33	2.66	31.67	3.46	39.38	2.67	29.96	2.87	32.93	3.68	40.20	3.85	44.42
Biology	3.20	37.25	3.61	43.01	5.70	67.39	3.74	43.90	3.80	45.11	2.70	31.50	2.80	33.99	3.65	43.16
Chemistry	3.79	43.36	5.40	61.07	3.79	43.10	6.69	76.68	3.54	40.03	2.74	29.14	3.36	38.38	4.19	47.39
MedicalQA	3.66	42.85	4.05	46.23	4.07	46.86	4.01	46.66	6.17	73.51	2.94	33.38	3.42	39.65	4.05	47.02
CNN_DM	2.56	29.80	2.56	30.40	2.45	28.49	2.45	28.61	2.55	30.21	5.15	60.70	2.52	29.47	2.89	33.95
SQL	3.71	43.63	3.37	36.30	2.36	27.10	2.68	31.74	2.37	28.26	2.60	30.27	7.60	86.17	3.53	40.49

Table 6: Statistics of the 7 curated drafters with Qwen-3-8B as the target. **Bold** indicates the best. Each drafter shows strong in-domain performance (diagonally strong) but suffers noticeable inefficiency when applied outside, and on average performs worse than the vanilla Eagle model. Similar trends are observed in Table 1. These drafters form a realistic evaluation pool for evaluating HedgeSpec, which orchestrates them to jointly accelerate the serving process.

Datasets	Python		Math		Biology		Chemistry		MedQA		CNN_DM		SQL		Avg MAT	Avg Token/s
Drafter domains	MAT	Token/s														
Vanilla Eagle	3.02	21.98	3.36	24.16	2.62	19.30	3.01	21.53	2.57	18.33	2.59	18.67	3.00	21.34	2.88	20.76
Python	6.00	43.67	4.66	33.63	2.52	18.20	3.16	23.30	2.42	17.78	2.58	18.94	3.86	28.22	3.60	26.25
Math	4.04	29.75	7.12	48.67	2.75	20.10	3.64	26.54	2.74	20.33	3.00	21.98	3.79	27.61	3.87	27.85
Biology	3.18	22.04	3.88	28.73	5.98	43.10	4.04	29.62	3.90	28.87	2.81	20.11	2.89	22.20	3.81	27.81
Chemistry	3.29	23.71	5.32	37.27	3.91	28.72	6.61	47.26	3.56	25.66	2.66	18.63	2.96	21.06	4.04	28.90
MedicalQA	3.56	25.97	4.18	32.85	4.24	30.36	4.21	31.26	5.95	43.34	3.10	22.42	3.52	26.83	4.11	30.43
CNN_DM	2.54	18.78	2.56	18.13	2.54	18.39	2.56	18.66	2.61	18.50	5.22	36.18	2.57	19.16	2.94	21.11
SQL	3.58	20.69	3.54	25.95	2.42	17.73	2.80	20.26	2.43	17.84	2.75	20.09	7.25	52.73	3.54	25.04

Table 7: Statistics of the 7 curated drafters with Qwen-3-32B as the target. **Bold** indicates the best.

D.4 DISCUSSION ON HEDGESPEC VS. JOINTLY TRAIEND DRAFTER

In this section, we study the effect of aggregating data from all domains and jointly finetuning a EAGLE model. This effectively turns the original EAGLE into another “generic” drafter. Results are presented in Table 8, where HedgeSpec outperforms most domains in terms of MAT. In the meantime, several additional observations emerge:

First, joint training empirically improves EAGLE’s performance across multiple domains, which is expected. Second, the jointly trained drafter performs comparably to expert drafters trained in single domain such as math, biology, chemistry, and MedQA, while we do observe performance drop in domains like python, CNN_DM, SQL in this experiment. The reasons require further

Datasets	Python	Math	Biology	Chemistry	MedQA	CNN_DM	SQL
Joint trained model	7.03	7.76	6.63	7.16	6.22	5.35	7.39
Eagle	6.48	5.88	5.95	5.28	4.96	5.31	5.99
HedgeSpec	7.69	7.69	7.18	7.10	6.47	5.88	8.06

Table 8: Comparison of MAT across domains for a jointly trained model, the vanilla EAGLE, and HedgeSpec. Bold indicates the best performance in each domain.

Initially: Set $R_{i,0} = 0$, $p_{i,1} = 1/N$ for each i .

For $t = 1, 2, \dots$

1. Each action i incurs loss $\ell_{i,t}$.
2. Learner incurs loss $\ell_{A,t} = \sum_{i=1}^N p_{i,t} \ell_{i,t}$.
3. Update the cumulative regrets: $R_{i,t} = R_{i,t-1} + (\ell_{A,t} - \ell_{i,t})$ for each i .
4. Find $c_t > 0$ that satisfying

$$\frac{1}{N} \sum_{i=1}^N \exp\left(\frac{([R_{i,t}]_+)^2}{2c_t}\right) = e.$$

5. Update distribution for round $t + 1$:

$$p_{i,t+1} \propto \frac{[R_{i,t}]_+}{c_t} \exp\left(\frac{([R_{i,t}]_+)^2}{2c_t}\right) \quad \text{for each } i.$$

Figure 7: The workflow of NormalHedge algorithm.

investigation, but it is also reasonable to expect this since datasets from different domains may not be fully aligned, with some pushing learning in the same direction while others pull in the opposite [Liu et al. \(2024\)](#); meanwhile, performance is also constrained by scaling laws and the model’s capacity to digest knowledge—particularly given that EAGLE is only a one-layer transformer. As more data is introduced, it is uncertain whether the performance in those domains will continue to boost or decline. Third, even when proper joint training can yield synergistic benefits, it is often infeasible because parties may not release their training data due to confidentiality concerns [Achiam et al. \(2023\)](#). In such cases, only the trained drafters might be available, making joint training impossible. This underscores HedgeSpec’s advantage: it requires no access to training data and can operate directly on a pool of expert drafters. Moreover, a generically trained model can itself serve as one candidate within this pool alongside specialized drafters. In short, HedgeSpec addresses the higher-level challenge of orchestrating expert drafters. With only a collection of such models, it can significantly improve serving efficiency.

D.5 VARIANTS OF HEDGING ALGORITHMIC CHOICE

In this section, we study how different hedging algorithmic choices affect the final outcome. The ablation considers two factors: (i) using token acceptance–rate loss instead of expected-length–based loss, and (ii) replacing the NormalHedge update rule with alternative algorithms, including Standard Hedge and AdaNormalHedge. HedgeSpec by default adopts the parameter-free NormalHedge with expected-length–based loss. The MAT results across datasets are reported in Table 9 and 10, showing consistent trends. [We below show the workflow of NormalHedge in Figure 7](#).

From the table, we see that the acceptance–rate–based loss achieves comparable but slightly lower MAT, suggesting it can be a viable alternative for online learning in speculative decoding, though expected-length–based loss remains stronger overall. Switching to Standard Hedge leads to a larger drop in performance. We attribute this to Standard Hedge’s more conservative updating: it tends to spread weight more broadly during the exploration phase, whereas NormalHedge shrinks weights more aggressively toward strong drafters. This conservatism could be mitigated with careful parameter

Datasets	Python	Math	Biology	Chemistry	MedQA	CNN_DM	SQL
HedgeSpec	7.69	7.69	7.18	7.10	6.47	5.88	8.06
HedgeSpec w/ Acc. rate loss	7.62	7.47	7.02	6.94	6.44	5.88	8.08
HedgeSpec w/ Standard Hedge	6.90	6.67	6.53	6.19	5.38	4.68	7.05
HedgeSpec w/ AdaNormalHedge	7.36	7.30	7.05	6.66	5.85	5.40	7.71

Table 9: Llama Mean Accepted Tokens (MAT) across datasets using HedgeSpec variants. Bold indicates highest performance per column.

Datasets	Python	Math	Biology	Chemistry	MedQA	CNN_DM	SQL
HedgeSpec	6.32	7.27	5.66	6.61	6.08	5.10	7.52
HedgeSpec w/ Acc. rate loss	6.23	7.00	5.58	6.58	6.05	5.00	7.30
HedgeSpec w/ Standard Hedge	5.85	6.64	5.13	5.88	5.47	4.46	7.01
HedgeSpec w/ AdaNormalHedge	6.26	7.12	5.57	6.39	5.94	4.99	7.40

Table 10: Qwen-3-8B: MAT across datasets using HedgeSpec variants. Bold indicates highest per column.

tuning, although such tuning would vary across scenarios and adds practical complexity. Finally, AdaNormalHedge also shows reduced MAT. This is somewhat surprising, as AdaNormalHedge enjoys first-order regret bounds and is theoretically stronger. In our experiments, however, this advantage did not materialize.

D.6 ADDITIONAL RESULTS ON CUMULATIVE REGRET AND MAT VS. DRAFTER POOL TRENDS

In this section, we present additional results on cumulative regret for the Qwen-3-8B model, as well as results on MAT with an increasing number of drafters. The trends in Figure 8 and Figure 9 are consistent with those in Figure 5, demonstrating that HedgeSpec converges more quickly to near-zero regret and scales effectively as the drafter pool grows.

D.7 THE GSM8K, HUMAN EVAL, BIRD, MULTINEWS AND SPECBENCH RESULTS

In this section, we present MAT and tokens-per-second results on the GSM8K, HumanEval, **Bird**, **MultiNews** datasets as shown in Table 11. These datasets are not included in the training data used to construct the drafters. We find that even without prior knowledge, HedgeSpec consistently outperforms all baselines across both domains. This demonstrates that HedgeSpec’s orchestration of drafters can improve MAT and throughput without requiring prior knowledge, as long as some drafters excel in specific domains—highlighting HedgeSpec’s effectiveness in drafter selection.

In Table 12, we provide additional results from running the SpecBench experiments. We note, however, that the experimental setup differs slightly from our main evaluation. SpecBench contains a substantial portion of tasks such as Natural Questions QA, translation, and RAG-style generation. Our drafter pool does not include experts specialized for these tasks—although the online learner can still select the “best available” drafter for each query.

However, this actually reflects the real scenario, that you could have a bunch of expert drafters, but you cannot cover all situation. In this sense, you usually have some additional “generalist” model other than the experts, like the EAGLE model, to handle the requests that outside the experts’ expertise. With that being said, we added official EAGLE model in pool, and form up a 7 experts + 1 generalists pool for speculative decoding in this benchmark.

The results are shown below, we see that HedgeSpec still yeilds the best performance across different model. This experiments confirms HedgeSpec’s effectiveness in selecting best drafters, regardless of OOD, for competing the best drafter in hindsight, leading to performance gain.

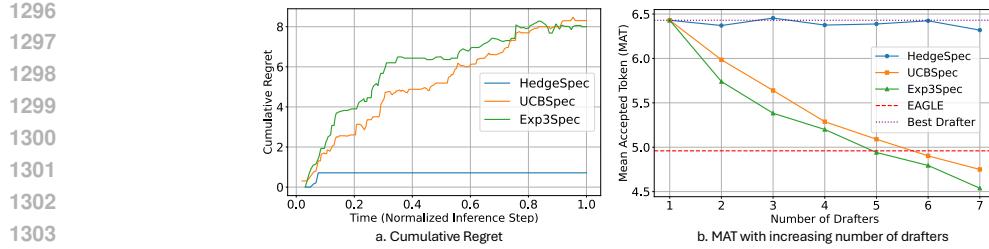


Figure 8: Cumulative regret and MAT vs. number of drafters. HedgeSpec quickly settles with near-zero regret, and can scale up with larger drafter pool. Llama results show similar trend in 5, highlighting our robustness.

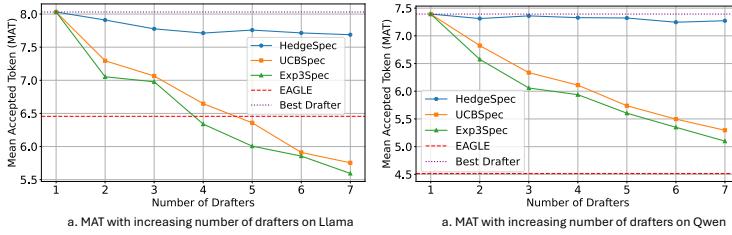


Figure 9: MAT vs. number of drafters on math workload on Llama and Qwen models. HedgeSpec scales effectively with larger drafter pools

D.8 DISCUSSION OF HEDGE SPEC ON BROADER SPECULATIVE DECODING SCHEMES

In this section, we extend our discussion on the integration of HedgeSpec into broader speculative decoding schemes. We do believe HedgeSpec is integrable for different speculative decoding frameworks. At its core, HedgeSpec operates at an orthogonal layer: any speculative decoding algorithm could serve as a potential drafters in the pool. Theoretically, as long as we have a verified trace (Theorem 3), and can use it to get the token acceptance probability for EAL evalaution on other drafters, HedgeSpec can select among them with provable no-regret guarantees.

In our main experiments, we build upon EAGLE framework, which is widely regarded as the most broadly deployed framework Marques et al. (2025); Tang et al. (2025). Across benchmarks, EAGLE showS its SOTA performance over well-established speculative framework (i.e. Medusa, Rest, PLD). We believe that integrating HedgeSpec with EAGLE provides a strong and representative demonstration of our method’s effectiveness. Below, we further discuss how HedgeSpec can be integrated into these other frameworks as well.

Regarding PLD (Prompt-Lookup-Decoding) (Saxena, 2023): PLD utilizes the input prompt to guess the generation. In some tasks with input grounded generation, there are high chances of overlap between input and output. As a result, PLD uses only a single surrogated drafter. Therefore, PLD is not the best candidates for the multi-drafter framework.

Regarding Medusa (Cai et al., 2024): Medusa is a well-known speculative decoding method. It utilizes multiple Medusa heads to predict the future tokens. These heads require training in order to align with the target task distribution. A potential integration with Medusa would follow a procedure similar to our EAGLE setup, that it obtains logits from the different set of expert Medusa heads and use them for full-information evaluation. This allows HedgeSpec to orchestrate the Medusa experts during speculative drafting.

Regarding REST (Retrieval-Based Speculative Decoding) (He et al., 2023): REST is another well-known speculative decoding framework. It treats different datastore as the surrogate drafters, generating future tokens by retrieving and composing relevant content from a reservoir of existing knowledge. To fit into a practical multi-drafter selection framework, we can construct multiple such expert reservoirs, each specializing in a particular domain for token drafting. To integrate with

Datasets	GSM8K		HumanEval		Bird		MultiNews	
Method	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s
Llama-3.1-8B	1.00	18.26	1.00	18.67	1.00	17.95	1.00	18.26
EAGLE	6.38	78.32	6.77	91.98	5.50	73.24	5.21	66.10
EXP3Spec	5.03	63.28	5.24	68.96	4.38	58.03	3.65	47.57
UCBSpec	5.05	66.11	5.46	72.05	4.67	62.60	3.58	46.04
HedgeSpec	6.77	84.32	7.54	97.21	6.67	83.87	5.53	65.20
Qwen-3-8B	1.00	14.82	1.00	14.71	1.00	14.91	1.00	14.89
EAGLE	5.05	60.59	4.84	58.81	4.08	47.91	4.00	46.81
EXP3Spec	4.90	53.57	4.15	48.62	3.73	43.67	3.21	36.26
UCBSpec	5.02	57.42	4.30	50.59	3.94	45.48	3.28	36.97
HedgeSpec	6.60	73.59	5.63	64.51	5.18	56.12	4.76	51.33
Qwen-3-32B	1.00	8.24	1.00	8.32	1.00	8.43	1.00	8.34
EAGLE	3.44	24.86	2.97	20.35	2.95	21.50	2.63	19.06
UCBSpec	5.00	37.50	3.97	29.66	3.85	27.56	3.48	25.09
EXP3Spec	4.86	36.38	3.88	28.62	3.78	27.36	3.34	23.46
HedgeSpec	6.57	42.37	5.17	33.82	4.92	34.72	4.84	33.25

Table 11: MAT (Mean Accepted Tokens) and Token/s (token generation rate) across GSM8K, HumanEval, Bird and MultiNews, which is not part of the training datasets for the drafters. **Bold** indicates the best. Additional results regarding SpecBench is shown in Table 12. Consistent with Table 3, HedgeSpec consistently outperforms all baselines across those two domains. Its shows that its orchestration of drafters improves MAT and throughput without prior knowledge, as long as there exists drafters excel in certain domain.

	Llama-3.1				Qwen-3-8B				Qwen-3-32B			
	Vanilla	EXP3	UCB	Hedge	Vanilla	EXP3	UCB	Hedge	Vanilla	EXP3	UCB	Hedge
MAT	1.00	4.04	4.05	5.31	1.00	3.58	3.65	4.70	1.00	3.43	3.38	3.97
Token/s	18.24	52.19	52.68	60.80	14.32	41.02	41.23	50.70	8.12	24.86	24.24	27.73

Table 12: MAT and Token/s on SpecBench across different models (Llama-3.1, Qwen-3-8B, Qwen-3-32B) under various speculative decoding strategies. Best results are **bolded**.

HedgeSpec, we can calculate the token acceptance probability (EAL) from each drafter with the verified trace, and use it to select the best drafter fitting the requests.

We integrate HedgeSpec into the REST framework. Following the original REST setup, we use Vicuna-7B-v1.5 as the target model. The expert drafters in this experiment include Python, Math, CNN-DM, MedQA, Alpaca, SQL, and Biology. Our goal remains the same: given a pool of diverse drafters, determine how to select the best drafter for each incoming task. We benchmark performance on HumanEval, GSM8K, MT-Bench, and Alpaca, with results shown in Table 13. Similar to our findings under the EAGLE framework, HedgeSpec again achieves the best performance. This demonstrates the advantage of leveraging full-information feedback in drafter selection, allowing HedgeSpec to adapt to the best drafter in hindsight and ultimately improving overall efficiency.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426

Model	HumanEval		GSM8K		MT-Bench		Alpaca	
	MAT	Token/s	MAT	Token/s	MAT	Token/s	MAT	Token/s
Vicuna-7B-v1.5	1.00	33.59	1.00	33.49	1.00	33.48	1.00	33.31
UCBSSpec	1.45	44.60	1.38	42.33	1.10	37.86	1.38	43.85
Exp3Spec	1.43	43.55	1.36	41.99	1.11	38.40	1.44	46.63
HedgeSpec	1.88	55.27	1.62	46.58	1.28	41.42	1.69	52.87

1434
 1435 Table 13: MAT and Token/s across HumanEval, GSM8K, MT-Bench, and Alpaca for HedgeSpec
 1436 comparing with other Bandit-based method on [REST framework](#). **Bold** indicates the best.
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457