Under review as a conference paper at ICLR 2026

NOT-A-BANDIT: PROVABLY NO-REGRET DRAFTER SE-
LECTION IN SPECULATIVE DECODING FOR LILMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding is widely used in accelerating large language model (LLM)
inference. In this work, we focus on the online draft model selection problem in
speculative decoding. We design an algorithm that provably competes with the
best draft model in hindsight for each query in terms of either the token acceptance
probability or expected acceptance length. In particular, we show that we can
accurately evaluate all draft models, instead of only the chosen model without
incurring additional queries to the target model, which allows us to improve
exponentially over the existing bandit-based approach as the number of draft
models increases. Our approach is generically applicable with any speculative
decoding methods (single draft, multi-drafts and draft-trees). Moreover, we design
system-efficient versions of online learners and demonstrate that the overhead
in computation and latency can be substantially reduced. We conduct extensive
experiments on open-source LL.Ms and diverse datasets, demonstrating that our
methods substantially outperform the state-of-the-art EAGLE3 and the BanditSpec
baseline in a variety of domains where specialized domain-expert drafters are
available, especially when long reasoning chains are required.

1 INTRODUCTION

Speculative decoding (Chen et al., 2023a; Sun et al., 2023; Li et al., 2025) is widely adopted for
accelerating large language models (LLMs). It uses a smaller surrogate model—referred to as a draft
model or simply a drafter—to predict the sequence that a larger target model would generate. These
predictions are then verified in parallel by the target model. When the drafters make correct guesses,
a single expensive target pass is leveraged to produce multiple tokens, reducing per-token latency.

However, a single drafter may perform well on certain tasks but fail badly on others, leading to
inconsistent quality of service and long-tail latency for certain queries. For example, a retrieval-based
drafter works well when outputs closely match the input but falters elsewhere (Hou et al., 2025).
Similarly, domain-specific drafters (e.g., for code, scientific writing, or summarization) excel in
their own fields yet perform poorly outside them (Liu et al., 2023a; Kim et al., 2024). This raises a
natural question: given access to multiple candidate drafters, how can we dynamically select the most
effective one for each incoming query? Formally, we study the problem of online drafter selection:
Given a pool of N drafters, can we design an algorithm whose performance nearly matches that of
adopting the best drafter in hindsight, for every user query?

This problem was originally posed by Hou et al. (2025), who framed it as a multi-armed bandit task.
Their approach, BANDITSPEC, balances exploration (trying different drafters) and exploitation (using
the empirically best drafter).

In this paper, we make the surprising observation that exploration is unnecessary. By carefully
leveraging the structure of speculative decoding, we show that it is possible to efficiently compute
feedback for all drafters—not just the one selected—without incurring additional calls to the target
model. This transforms the problem from a bandit setting into a full-information online learning
problem. Building on this insight, we introduce HEDGESPEC, which uses algorithms such as Hedge
(Littlestone & Warmuth, 1994; Vovk, 1995) or NormalHedge (Chaudhuri et al., 2009) to identify the
best drafter exponentially faster in N than bandit-based approaches.

Our key contributions are as follows:

Under review as a conference paper at ICLR 2026

* Full-information framework for multi-drafter decoding: We propose a novel adaptive frame-
work that leverages small-cost, full-information feedback to efficiently and dynamically select
among multiple drafters.

* Theoretical guarantees: We formulate and analyze the drafter selection problem under both ac-
ceptance probability and expected acceptance length objectives, establishing no-regret guarantees.

* Empirical validation: We conduct extensive experiments on LL.aMA-3.1-8B and Qwen-3-8B
reasoning model each with up to seven drafters, demonstrating that HEDGESPEC consistently
outperforms EAGLE (up to 83.7% token/s gain in single domain and up to 46.1% on average) and
bandit baselines (up to 49% MAT gain) in both acceptance rate and reduced per-token latency.

Related work and novelty. To the best of our knowledge, we are the first to show that full-
information online learning is possible for drafter selection. Prior art (Hou et al., 2025) modeled
the problem as a bandit problem. HedgeSpec could work with any given set of drafters on any
speculative decoding method, thus making our contribution orthogonal to methodological innovation
in speculative sampling and drafter curation (Sun et al., 2023; Cai et al., 2024; Li et al., 2024a; 2025).

While we do not invent any new online learning algorithm, it is highly nontrivial to apply existing
algorithms correctly to this problem. The core of our innovation is an off-policy estimator that returns
the correct acceptance length in expectation, as well as to address a subtle censoring issue using
learning from delayed feedback (Joulani et al., 2013).

On the system front, we designed a practical version of HedgeSpec that carefully balances the
computational/latency cost of the evaluation and the statistical efficiency. As for the evaluation, we
curated fourteen drafters: seven dedicated to each target model, with every drafter specialized in a
particular domain. We demonstrated that HedgeSpec with these drafters (a collection of specialists)
outperforms the state-of-the-art EAGLE3 (a strong generalist) by a sizable margin.

2 PRELIMINARIES ON SPECULATIVE DECODING

2.1 SYMBOLS AND NOTATION

We denote the vocabulary set by V, and a generated sequence by x1.7, where each token x; € V. The
target language model defines a probability distribution p(-), while the draft (or surrogate) model
defines ¢(-). A speculative decoding method M, uses ¢ to generate K speculative tokens & 1.¢+ i
at chunk onset index ¢, which are then verified in parallel using p. We use ¢ to index multiple draft
models g;, t for the global token position, & for chunk indices, and k € [K] for token positions within
a chunk. The token acceptance probability given that all previous tokens are correct is denoted by
~¢[é]. We adopt standard probability notation p(-), conditional probability p(- | -), and conditional
expectation E[- | -], with all probabilities assumed to be discrete.

2.2 BASIC SPECULATIVE DECODING METHOD

The basic speculative decoding algorithm proceeds as follows:

1. Generate a sequence of K draft tokens Z;41..4+x using a draft model ¢, i.e., Tyy1.4+x5 ~
q(Te104 1 |T<t)
2. For the target model, compute p(x;y1]|z<t), p(Trpo|T<i+1)s o, P(Te4 i 41|T<i+ k) in parallel.

3. Fork =1,2,..., K, if Z, ~ Uniform([0, 1]), if Z < ZE-2S21 assion 3,y 4 14, and

continue; else draw 415 ~ Pres(z) x max{0, p(x|r<i1x—1) — ¢(x|x<¢1x—1)} and break.

4. If all K tokens pass, assign T+ x+1 ~ P(Ti+k+1|T<i+K)-

Theorem 1 (Leviathan et al., 2023a, Theorem 3.5). The samples generated from the speculative
decoding algorithm with any draft model q are drawn from the same distribution as p. The acceptance
probability of the above algorithm is ., min{p(x),q(x)} = 1 — TV(p,q) where TV (p,q) =

2> sev [P(x) — q(2)| denotes the total variation distance of two probability distributions.

2.3 EAGLE AND DRAFT TREE

The EAGLE family is the most widely deployed speculative decoding models (Li et al., 2024a;b;
2025). EAGLE-3 introduced multi-layer feature fusion with a training-time test mechanism. EAGLE-

Under review as a conference paper at ICLR 2026

2 expands the draft tree with high-confidence tokens and prunes low-probability branches, improving
efficiency by increasing the likelihood that more tokens are accepted per cycle. Specifically, instead of
sampling from ¢"*¥ recursively like a language model, it generates a deterministic (') draft-tree with
Depth K and branching factor L. From the root node (x<;), EAGLE model ¢ generates L children as
possible choice of ;1. These are chosen to be the the tokens with L largest probabilities according
to ¢* (-|z<¢). Then from each child, another L descendants (subsequent tokens) are generated by
sorting ¢2(+|z <4+ 1). Different from speculative decoding, EAGLE drafters are not sensitive to the
actual numerical values in q. Instead, only the relative ranking of the tokens matter. 2

Theorem 2. EAGLE with any draft model q returns samples from the correct target distribu-
tion p. Moreover, the probability of accepting a token at step k given all previously accepted
tokens is ZveTopL(q(~|x<t+k,1)) p(v|T<tyr—1). If dynamic pruning is used, then the candidate set

Top (q(-|x<t+k—1)) should be replaced with the pruned set of descendants of ¥ <1 j—1.

We defer the proof of Theorem 2 to Appendix A.l. All references to EAGLE in our paper refer to
EAGLE-3 unless specified. We defer more related work discussion regarding speculative decoding,
adaptive drafting and online algorithms in Appendix C.

2.4 PERFORMANCE METRICS FOR SPECULATIVE DRAFTER EVALUATION

We use two key metrics to evaluate a speculative decoding method M, ,,: the Expected Token Accep-
tance Probability (ETAP) and the Expected Acceptance Length (EAL). These capture complementary
notions of per-token accuracy and end-to-end efficiency.

Token Acceptance Probability (TAP). At decoding step ¢, given a prefix x, the drafter ¢(-)
generates a speculative token 2. The token is accepted if it matches the target model p(-):
= Pr [z = .
Tt MF [T1 = x4 | <4

a,p

The ETAP is the expectation of this probability over a distribution of prefixes D:
ETAP(M(LP7 D) = IIE‘”7f/’<tND h’t]

ETAP measures the average per-token reliability of the drafter.

Expected Acceptance Length (EAL). Speculative decoding drafts K tokens per chunk starting at
index t5,, which are then verified by the target model. The acceptance length AcceptLength(z<y,)
is the number of consecutive tokens accepted before the first mismatch. Even given a fixed prefix
Z<y,, AcceptLength remains a random variable because M, ,, often involves sampling. The EAL
is:

EAL(Mg,p, D) = Eor, ~p [Eq, ,[AcceptLength(z<y,) | <4,]]-

EAL reflects how many tokens are accepted per chunk and thus directly determines decoding
efficiency: higher EAL means fewer calls to the target model, reducing time per token. We will later
show how these two metrics are used to evaluate drafters.

The Role of the Prefix Distribution. Here prefix x<,, refers not only to the initial prompt but also
to the generated tokens that extend it up to step ¢;,. It is inherently random, determined jointly by
the prompt, the stochastic rollout of the target model p(-), and the “tempo” of speculative decoding
(i.e., where mismatches occur and chunks restart). The distribution D over prefixes provides a useful
abstraction: it encapsulates all these factors into a single probabilistic view, allowing us to evaluate
methods without conditioning on specific prompts or model trajectories.

3 HEDGESPEC: METHOD AND THEORY

We present HedgeSpec, a full-information online learning framework for speculative drafter selection.
Our key insight is to evaluate lightweight drafters with small overhead after target verification. This

'Tt could also be randomized, but EAGLE-2 implementation focused on growing a deterministic greedy tree.
’The dependence on the values of g becomes relevant when the dynamic pruning approach from EAGLE-2 is
used, but it does not change the temperature-invariance of the original draft tree.

Under review as a conference paper at ICLR 2026

provides panoramic feedback that enables rapid adaptation to the best-performing drafters. Such
adaptation improves acceptance rates, reduces costly target forward passes, and ultimately translates
into a significant end-to-end efficiency boost.

3.1 A NO-REGRET ONLINE LEARNING APPROACH TO DRAFT MODEL SELECTION

We are given N draft models g1, ..., qn. At every time ¢, we decide which draft model to use to
generate the next draft token. Our goal is to compete favorably with the best draft model that gives us
either (a) the highest acceptance probability overall or (b) the highest expected accepted length
per chunk. In this section, we will formulate this problem as a no-regret online learning problem,
design appropriate loss functions that align with the two optimization objectives above, and develop
algorithms that come with provable guarantees.

The performance guarantee is stated as a regret:

T T
Regret, = th [iy] — min Z feli™]
t=1

i*€[N] e}

where f; is the loss function at time ¢ determined by how well a draft model ¢ can perform at time ¢.
For example, f; can measure the probability of not accepting tokens at time ¢ or how far the expected
accepted length is from K + 1 where K is the depth of the drafts.

3.2 FULL-INFORMATION-EVALUATION: HEDGESPEC IS NOT A BANDIT

Our main algorithmic idea is to add an evaluation phase between token verification and drafting. This
evaluation phase was introduced in the BanditSpec paper. Differently, our work is motivated by that
we can get feedback for all draft models, i.e., the full-information feedback, rather than only the
draft model that we choose to play, i.e., the Bandit-feedback model. Adapting to different drafters
changes generation speed, but thanks to Theorem 1, such adaptation doesn’t affect the distribution of
the output tokens. Moreover, as it will become clear, the additional evaluation does not require extra
queries to the expensive target model, and can be carried out in parallel.

How does this evaluation phase work? A naive way is to roll out each drafter explicitly against the
target, which is costly and infeasible. Instead, our key idea is that a single verified trajectory from the
target can serve as counterfactual evidence for evaluating all drafters. Concretely, after the chunk of
new tokens x4 1.4+ are verified for g;,, we prefill them into ¢; for each of the other i € [N]/{i;}.
This yields feedback from the trajectory, summarized by a sequence of feedback vectors:

Yelt] == P;[ay is accepted|z<¢—1] fori € [N],t € [T]

For each method of speculative decoding, the acceptance probability is calculated differently. For
example, for the standard speculative decoding with a single draft, v; ; = 1 —=TV[p(:|r<¢+;-1), ¢:(=
‘|#<¢4j—1)] by Theorem 1. For EAGLE’s Greedy-Draft Tree approach +; ; is the total probability of
children nodes of parent <, ;_; on the draft tree (constructed and pruned using g; in Theorem 2).

Once these feedbacks are collected, they form the basis for computing losses for each drafter, which
will then be used to update the drafter-selection strategy. Crucially, our first result (Theorem 3) shows
that the acceptance probabilities derived from the above verified trajectory are sufficient to construct
an unbiased estimator of the acceptance length for any drafter.

Theorem 3. Let M be a speculative decoding method and K be the depth of its drafts.
We write xi41144kx ~ p(|t<i) where p refers to the target model. We denote v, :=
Pai[zi4r is accepted|x 1441 are accepted, v< i 1—1]. Also, define yx 11 = 0 for notational con-
venience. The “one-step counterfactual” estimator:

. K+1 k—1
AcceptLength, i [M] = Z k(1 —) H Vi
k=1 j=1

satisfies that E Acc@ngtht’f((M] ’xgt} = Er [# of accepted tokens|z<,] .

Under review as a conference paper at ICLR 2026

The proof of Theorem 3 is included in Appendix A.2. This

result is non-trivial because the probability 7 is not the
probability of accepting the specific realized token z; 71 |@’ \O |
given ;4 1..4,—1 but rather the probability of accepting VAN

any token Zyqp ~ p(+|Tei1:44k—1) even if Tppp # Tpyp. Va 6 @

We cannot compute the E [# of accepted tokens|z <] di-

rectly because that would require access to all possible 6 b VAN

(combinatorial many) ways the target language model p @ O

rolls out (see the illustration in Figure 1). The theorem ¥a

proves that as long as we have a single trajectory rolled

out by the target model (which we do since speculative Figure 1: Illustration of the conditional
decoding is lossless), we can counterfactually compute acceptance probability -, for the EA-

an unbiased estimator of the acceptance length for any GLE model. Observe that -y is not
alternative drafters. the probability of accepting x, only, but

.) . . rather the total probability of accepting
Connection to Experience Replay in Reinforcement , (i at level 2. Also note that for

Learmpg. Our e\/.aluatlon phase is similar to Experience evaluating the estimator, we never need
Replay in the RL literature at a glance. However, we donot ¢ compute the probabilities of the target
have the additional challenges in solving the distribution- |0 4e] for the possible alternative trajec-
shift induced by the policy used to collect the experience. (qries that the draft models generate.
For this reason, our “experience replay” for other draft

models can be substantially more effective than that in RL.

3.3 HEDGESPEC: LOSS FUNCTIONS AND DELAYED FEEDBACK

We have seen that a single verified trajectory suffices to estimate drafter’s EAL. The remaining step
is to formulate the online learning game: at each round ¢ = 1, 2, 3, ..., nature generates a loss vector
f: € [0,1]", and the algorithm selects a drafter i; and incurs a loss of f;[is].

We just need to figure out how to instantiate it in our problem. There are several options. Each round
of the game can be one token or one chunk of tokens. Also, we can choose the loss functions to
optimize acceptance-length or acceptance probability. Pros and cons of these decisions are described
in the Appendix B.3, but we find that the most natural setting is to directly optimize the acceptance
length in a token-level game. The loss function is then chosen to be:

1 K+1 k-1
feli] =1 K+l ; k(L = yerr—1[i]) 31:[1 Vetj—1li].

By Theorem 3, the expected loss E[f;[{]] measures how much room the i, drafter has to improve in
its acceptance length from the maximal chunk length K + 1 if it starts at predicting token ¢. If we are
to optimize acceptance probability instead, then we would choose fi[i] = 1 — ~[i].

Chunks of accepted tokens from the chosen drafters Chunks of accepted tokens from the chosen drafters
X1 | X2 | X3 | X4 | X5 §Xe | X7 | Xg | Xg §Xj0 f| - X1 | X2 | X3 | X4 | X5 | X6 | X7 | Xg | Xo X190
PlAccepty |x<p] |Y1i |Y2i |V3i |Vai |Vsi |Vei |V7i |Vei |Voi [Y10i| - PlAccepty |x<¢] |Y1i |V2i |V3i |Vai |Vsi |Vei |V7i |V8i |Voi [V10i| -
Accept Len=2.63 Accept Len =2.63
Feedback Feedback
for Drafter i Accept Len=3.15 for Drafter i Aeceepthen=3-15
in Token- in Chunk-
level online Accept Len=4.21 level online Accept-Len=421
learning T learning T
(as ifitwas Accept Len=3.34 (as ifit was Accept Len=3.34
chosen at chosen at —
t=1,..,6) Accept Len=2.98 t=1,4,6) Acceptlen=2.98
Accept Len =3.42 Accept Len =3.42
Not enough data, wait Waittuntitt="14

Figure 2: Illustration of the counterfactual feedback for Drafter j (per-token or per-chunk) while
the model keeps collecting new data. In this example, the generated token length K = 5 For the
token-level learner, the feedback is delayed for K steps, while for the chunk-level learner, the delay
depends on the average number of chunks to collect K-tokens.

Readers with sharp eyes may notice a problem — the standard online learning game is not applicable!
The accepted tokens are not observed immediately after token ¢, they are revealed in chunks after

Under review as a conference paper at ICLR 2026

each speculative decoding chunk is completed. Moreover, unless the chosen drafter maxes out the

acceptance length, there is not sufficient information to compute our estimator Acceﬁ,L\engtht’ K-
This is because alternative drafters may end up accepting more tokens than the drafter we chose. We
refer to this problem a censoring issue. If we simply ignore the issue and compute the truncated
version of the losses, we may end up getting stuck at a suboptimal solution (see the Appendix B.4 for
an example). In other words, the learner may need to wait until multiple chunks of data to become
available before getting the loss vectors for each time ¢ (see Figure 2 for an illustration).

fort =1,..., Tioken :
1. Nature chooses loss vector f; € [0, 1]
2. Player chooses Drafter i; for token ¢ and incurs a loss f¢[é:].

3. If ¢ is the end of a chunk, Player observes f<; (if optimizing acceptance
prob) or observes f<;_ g (if optimizing acceptance length).

Figure 3: Token-Level Game with Delay.

These issues can be modeled as “delayed feedback” (Weinberger & Ordentlich, 2002; Joulani et al.,
2013; Van Der Hoeven & Cesa-Bianchi, 2022), which can be handled through a blackbox reduction to
the standard online learning without delayed feedback with a mild increase in the regret as a function
of the expected or maximum delay.

Theorem 4. Assume Trye, > 2K + 1. Let A be (Joulani et al., 2013, Algorithm 1) instantiated with
Hedge or NormalHedge as BASE. Then i, chosen by A in the game defined in Figure 3 satisfies that:

1. When we optimize acceptance probability:

ﬁ ngf" P Al is accepted] > max;«¢cn {ﬁ Zﬁk{" Py [xy is accepted}} —O(4/ %)

2. When we optimize accepted length:

1 Tioker

. . Tooken . K+1)3log N
T 2oy EalAcceptLengthy i [i+]] > max;- [N ﬁ S E[AcceptLengtht_’K[z*]]} —O(4/ %)

The proof (rigorously written in Appendix A.3) applies the reduction to the regret bounds without
delay in Theorem 1 of (Joulani et al., 2013) by noting that the max delay is 2K . Then the result
follows by taking expectation (over the distribution induced by the target model) on both sides and
applying the definition of ~;[i] (or the unbiasedness of the length estimator in Theorem 3).

The result says that the choices made by the online learner is nearly as good as the optimal choice in
terms of either the average acceptance probability, or the expected accepted length when we start at
each token x4, ..., x7.

3.4 PRACTICAL ALGORITHMS AND EXTENSIONS

In this section, we briefly describe the online learning algorithms that we chose to implement for
the experiments. More detailed algorithms blocks can be found in the cited references therein. In
our paper, we adopt NormalHedge (Chaudhuri et al., 2009) as our base algorithm. For discussion
regarding more hedging variants, please refer to D.5 for detailed discussion.

Handling delays. We use the algorithms in (Joulani et al., 2013) for handling delay. In particular,
the theoretical results above can be obtained by using (Joulani et al., 2013, Algorithm 1), which
handles bounded but non-constant delay ((Weinberger & Ordentlich, 2002) requires constant delay).
Moreover, since our problem is not really adversarial, but rather a Markov process induced by the
target LLM, we found that (Joulani et al., 2013, Algorithm 2) that operates in the “stochastic setting”
works the best for us in practice. The algorithm is stated for the more general “partial monitoring”
setting, but we are instantiating it in the full-information setting. Basically, the idea is to maintain a
queue of the feedback and keep applying the next available actions generated by the base algorithm.
In the iid setting, the regret is Regret, + O(MaxDelay) with Regret;. being the regret achieved by
the base algorithm. We apply this algorithm as a heuristic (despite that the settings are iid) for the
efficiency of learning in practice. More practical implementations heuristics can be found in B.5.

Under review as a conference paper at ICLR 2026

Datasets Python Math Biology Chemistry MedQA CNN_DM SQL ‘

Drafter domains MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s‘Avg MAT Avg Token/s

EAGLE 6.48 8737 5.88 7635 595 7120 528 7128 496 6648 531 6726 599 8041 5.69 74.34
Python 7.89 10699 5.05 6750 2.86 36.63 3.64 4987 265 3377 294 31.12 4.87 6545 4.27 55.90
Math 452 6277 8.03 10643 3.07 3946 4.15 5574 3.02 4222 332 4479 436 60.16 4.35 58.79
Biology 329 3534 391 4746 727 9610 435 5642 442 5644 3.17 3619 272 28.78 4.16 50.96
Chemistry 380 51.84 646 8628 445 5993 739 9628 3.82 5042 3.09 3256 3.76 46.90 4.68 60.60
MedicalQA 398 4265 449 5233 495 6353 447 56.19 6.75 8832 338 3646 393 45.00 4.56 54.93
CNN_DM 2.07 2685 289 3879 3.02 4055 299 3921 311 4222 6.20 7719 214 28.12 3.20 41.85
SQL 371 4416 3.66 4647 264 3634 296 31.84 2.62 3415 290 3794 849 114.52 3.85 49.35

Table 1: Statistics of the 7 curated drafters with Llama-3.1-8B-IT as the target (Bold = best). Each
drafter performs strongly in-domain (diagonally) but suffers noticeable inefficiency when applied
outside, and on average performs worse than the vanilla EAGLE model. Similar trends are observed in
Qwen’s drafters in Table 6. These drafters form a realistic evaluation pool for evaluating HedgeSpec,
and we will see in Table 3, HedgeSpec orchestrates them to jointly accelerate the LLM inference.

4 EMPIRICAL EVALUATION

In this section, we provide comprehensive evaluations of HedgeSpec by conducting the following
analysis: 1. does HedgeSpec yield better end-to-end performance; 2. an in-depth analysis of hedge
based selection process. 3. How does HedgeSpec perform relative to offline based method?

4.1 EXPERIMENT SETUP AND BASELINES

We use Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen-3-8B (Yang et al., 2025) reasoning
model as target models. All drafters in this paper are implemented with EAGLE-3, a widely
used framework for speculative decoding. We adopt EAGLE’s default generation configuration
(see Section D.1). For hedge algorithm update, we use expected length to compute the loss and
more detailed setup can be found in B.5. We compare against the state-of-the-art drafter selection
framework, BanditSpec (Hou et al., 2025), including both Exp3Spec and UCBSpec variants.

We report the Mean Number of Accepted Tokens (MAT) along with the wall-clock time required
to complete each request which we use to compute token per second. All models are served using
FP16 precision with a batch size of 1, following standard practices in latency-focused studies (Fu
et al., 2024; He et al., 2023; Cai et al., 2024). Specifically, Token/s reflects the end-to-end latency
during inference. These metrics are widely used (Hou et al., 2025; Li et al., 2025) in speculative
decoding and are positively correlated: longer accepted lengths typically lead to better throughput.
All experiments are conducted on nodes with 8 NVIDIA A100 GPUs connected via NVLink. We
defer jointly trained drafter discussion D.4 and hedging algorithm variants D.5 due to space limit.

4.2 CURATING DIVERSE DRAFTERS FOR LARGE-SCALE EVALUATION

To thoroughly evaluate the effectiveness of our framework at scale, we build 14 drafters upon the
official EAGLE-3 models (Li et al., 2025; Tengyunw, 2025) and finetune them on seven open-
sourced datasets spanning multiple domains: Python (jtatman, 2025), Math (Toshniwal et al., 2024),
Biology (Wesney, 2025), Chemistry (mlfoundations dev, 2025), MedicalQA (Chen et al., 2024),
CNN_DM (Nallapati et al., 2016) and SQL (Meyer et al., 2024). The statistics of the resulting
Llama and Qwen drafters are summarized in Table 1 and 6. We observe that finetuning the generic
EAGLE on a specific domain can greatly enhance its in-domain ability. In the meantime, no single
model performs well across all domains, often exhibiting noticeable efficiency drops outside its
specialization, and on average performs worse than the vanilla EAGLE. These drafters constitute a
realistic experimental pool for evaluating our framework, and we will see that HedgeSpec orchestrates
multiple drafters without prior knowledge to jointly accelerate the LLM inference process.

4.3 END-TO-END EFFICIENCY ANALYSIS

We report the efficiency evaluation of HedgeSpec. We first conduct an overhead break down in
HedgeSpec, followed by the end-to-end evaluation comparing with EAGLE and BanditSpec based
drafting. Overall, HedgeSpec outperforms all other baselines with a significant margin consistently
across every single domain, demonstrating its effectiveness.

4.3.1 EVALUATION OVERHEAD BREAKDOWN

Under review as a conference paper at ICLR 2026

Datasets Python Math Biology Chemistry MedQA CNN_DM SQL ‘

Methods MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s‘Avg MAT Avg Token/s
LLaMA-3.1-8B-IT 1.00 17.03 1.00 18.87 1.00 1844 1.00 1825 100 1857 1.00 1786 1.00 17.86 1.00 18.13
Eagle 6.48 8737 588 7635 595 7120 528 71.28 496 6648 531 6726 599 8041 5.69 74.34
UCBSpec 544 7439 575 7757 522 7027 511 7179 446 61.14 394 5047 571 7658 5.09 68.89
EXP3Spec 516 6929 559 7421 493 6770 493 6425 425 5813 381 49.70 537 73.29 4.86 65.22
HedgeSpec 7.69 99.58 7.69 98.63 7.18 93.78 7.10 89.65 6.47 77.26 5.88 70.68 8.06 103.31 7.15 90.41
Qwen-3-8B 1.00 1455 1.00 14.58 1.00 1464 1.00 1452 1.00 1459 1.00 1449 100 14.65 1.00 14.57
Eagle 496 5584 452 50.88 406 4622 398 4485 384 4413 4.07 4620 420 44.60 4.23 47.53
UCBSpec 475 5480 530 6128 416 4729 473 5437 425 4896 358 41.07 528 6128 4.58 52.72
EXP3Spec 4.54 5277 510 59.06 4.03 4650 446 50.66 4.07 4502 339 3753 497 56.74 4.37 49.75
HedgeSpec 6.32 68.52 727 7955 5.66 6208 6.61 73.18 6.08 6582 510 5497 7.52 8194 6.37 69.44

Table 3: MAT (Mean Accepted Tokens) and Token/s (token generation rate) across datasets for each
method. Bold indicates the best. Results of GSM8K and HumanEval, which is out of the training
distribution, is in Table 10 showing the same trend. HedgeSpec consistently outperforms all baselines
across domains. Its adaptive orchestration of expert drafters improves MAT and throughput, while
full-information feedback delivers substantial gains over bandits, translating into real efficiency and
highlighting HedgeSpec’s effectiveness.

We analyze the evaluation overhead induced by ~Table 2: Overhead comparison for drafter evalua-
incorporating global feedback for faster adapta- tion. Compared to an expensive target call, even
tion. This overhead comes from two major com- 3 small boost in acceptance from HedgeSpec is
ponents: (i) prefilling drafters and (ii) comput- enough to offset the cost of evaluating all drafters.
ing losses and updating hedge weights. Table 2
reports the breakdown. Here, ‘Llama’ and ‘EA-
GLE forward’ denote forward passes through
the target and drafter, respectively, while ‘hedge update’ includes both loss computation and Normal-
Hedge weight updates. Evaluating a drafter costs roughly 1/25 of a target forward, since EAGLE’s
drafter is a lightweight one-layer transformer compared to the 32-layer 8B Llama target. Under
ideal assumptions, it implicates that if HedgeSpec secures one additional MAT, the gain offsets the
cost of evaluating up to 25 drafters in sequence. In practice, the overhead is even smaller since
drafter evaluations are independent and can be run in parallel. Thus, HedgeSpec is highly worthwhile:
improved acceptance rates reduce costly target calls, outweighing the added cost of drafter evaluation.

Major Components Llama-8B Forward EAGLE Forward Hedge Update
Time/ms 75.709 2.497 0.413

4.3.2 HEDGESPEC ACHIEVES CONSISTENT END-TO-END GAINS ACROSS DOMAINS

We further present the end-to-end results of HedgeSpec against EAGLE and BanditSpec across seven
testsets in Table 3. For GSM8K (Cobbe et al., 2021) and HumanEval (Chen et al., 2021) which are
outside the training domains, similar trends hold and we defer details to Section D.7.

Overall, HedgeSpec consistently outperforms both EAGLE and bandit-based methods across all
domains. Compared to EAGLE, its adaptive selection of speculative drafters enables effective orches-
tration, yielding faster responses. Notably, on SQL requests with Qwen, HedgeSpec improved MAT
from 4.2 to 7.52 (an impressive 79% gain) and token/s from 44.6 to 81.94 (a 83.7% gain). Across all
mixed queries, HedgeSpec achieved a strong 46.1% average improvement. While individual domain-
specialized drafters perform worse on average than EAGLE, our results show that orchestrating them
with HedgeSpec effectively leverages their strengths, leading to substantial efficiency gains.

HedgeSpec also surpasses bandit methods by a wide margin (up to 49% MAT gain and 41% token/s
gain). Its advantage comes from the panoramic feedback: all drafters are evaluated, enabling faster
convergence, higher acceptance, which finally leads to fewer target calls and better overall efficiency.
In contrast, bandit learners adapt slowly because they only observe feedback from the chosen drafter,
often converging to suboptimal choices and resulting in lower acceptance and throughput.

Interestingly, we also observe that bandit methods generally underperform EAGLE on LLaMA-3.1-
8B-IT, whereas they outperform it on Qwen-3-8B. This is because the Qwen-3 reasoning model
tends to produce longer outputs than LLaMA-3.1-IT (i.e. 1.64x length in Math workload), providing
more time for bandits to converge. The same phenomenon applies to HedgeSpec, where the longer
reasoning chains in Qwen amplify its efficiency advantage, highlighting HedgeSpec’s superiority in
long-generation scenarios.

Under review as a conference paper at ICLR 2026

4.4 A DEEPDIVE INTO FULL-INFORMATION BENEFITS

We have seen HedgeSpec delivers better efficiency than EAGLE and bandit-based methods. In this
section, we dive deeper into the benefit of full information on two aspects: (i) how their regret
develops over time, and (ii) how each method scales with increasing number of drafters.

HedgeSpec settles faster to near- —— w

zero regret Figure 4 (a) shows cu- | oo JT Esl I\ | T T —
mulative regret on Llama-3.1 with gs = Jf g0

python workload, measured by nor- : ¢ fﬁ A s

malized EAL. Bandit methods accu- § | - g et \\

mulate regret quickly due to slow JJ i i T
adaptation with only partial feedback, %0 e tomatied nfoence stom Y% Sumberotomten
WaStiIlg eXplOratiOn on Weak drafters. a. Cumulative Regret b. MAT with increasing number of drafters

In contrast, HedgeSpec rapidly con-
verges to near-zero regret (detailed
discussion in B.2) within a handful
of steps, demonstrating the benefit of
full information.

Figure 4: Cumulative regret and MAT vs. number of drafters.
HedgeSpec quickly settles with near-zero regret, and can
scale up with larger drafter pool. Qwen-3 results show similar
trend in Appendix D.6, highlighting HedgeSpec’s robustness.

HedgeSpec scales effectively with larger drafter pools We further plot MAT w/ number of
candidate drafter increasing in Figure 4 (b). Scalability matters because larger pools raise the chance
of including strong specialists, of course only works if drafter collaboration is effective. The upper
and lower lines mark the best drafter and EAGLE’s performance. Bandit methods deteriorate sharply
with more drafters, as their regret grows quickly and exploration becomes much more costly. In
contrast, HedgeSpec scales gracefully, being nearly unaffected because the global information helps
to rapidly adapt on the best drafter, remaining effective even with large pool.

4.5 OFFLINE ROUTER COMPARISON: HEDGESPEC’S ROBUSTNESS IN DISTRIBUTION SHIFT

In this section, we compare HedgeSpec with a static offline
router. An offline router is a classifier trained on the request
distribution and applied at serving time to dispatch queries to
the best drafter. For fairness, we finetune a BERT (Devlin et al., ~ Eagle 583 7805 | 463 5449
2019) classifier on the aggregated seven-domain dataset used :Zg;:;‘;‘::f 2'53 ;g‘;‘g ‘7“?2 33 ‘lé
to construct the drafters (hyperparameter in D.2). The classifier - . : -

achieved 100% test accuracy across all domains, indicating that ~_MedQA MAT Token/s [MAT Token/s
under closed-world assumptions, a lightweight classifier can ~ Eagle 523 6767 | 391 43.54

. . T - Static Router 3.03 40.83 | 2.49 28.18
reliably route requests to domain-specialized drafters. HedgeSpec 556 7038 | 604 6599

LLaMA-3.1 | Qwen-3

Math MAT Token/s | MAT Token/s

However, this approach critically assumes that all runtime

queries remain in training distribution. In practice, cloud serv- Table 4: HedgeSpec vs. offline
ing frequently encounters O.0.D prompts (Liu et al., 2023b; router under O.0.D (Bold=best).
Chao et al., 2025; Cao et al., 2024). We came across a simple The router suffers and mis-routes
yet revealing case when attempting to elicit longer reasoning requests to suboptimal drafters.
with the instruction: ‘Please carefully read the question. After HedgeSpec adapts through runtime
that, please generate two answers to validate it. Output the feedback, and remains robust.

one you think works well.” This minor prompt variation caused catastrophic failures: the classifier
misrouted 98% of MedQA queries and 90% of Math queries. This was not even an adversarial attack
but a natural prompt variation, underscoring the fragility of static routing. Such misrouting is costly
as query dispatched to unsuitable drafter incurs long-tail overhead. As shown in Table 4, HedgeSpec
remains robust under distribution shift, achieving up to 2.34x gains over the offline router. Its adaptive
online learning leverages runtime feedback to identify the best drafter on-the-fly, offering three key
advantages for real deployment: (i) no reliance on prior knowledge, (ii) resilience to O.0.D queries
as long as experts remain useful, and (iii) adaptability when the prompt does not explicitly reveal the
best drafter. Finally, we note that offline routing could complement HedgeSpec by providing a ‘warm
start’ in the initial steps, which we leave for future work.

5 CONCLUSION

We present HedgeSpec, an online drafter selection framework for speculative decoding. We establish
theoretical guarantees under full-information feedback, and we show substantial gains empirically,
outperforming previous baselines, demonstrating HedgeSpec’s robustness in real-world LLM serving.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This paper presents work with the goal of advancing the field of machine learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

7 REPRODUCIBILITY STATEMENT

The models and datasets used in this paper are fully open-sourced, with specifications provided in Sec-
tions 4.1 and 4.2. Additional configuration details and implementation specifics are referenced in the
main text and included in Appendix B.5, D.1, and D.2. For theoretical contributions, complete proofs
of the theorems are provided in Appendix A. Together, these materials ensure the reproducibility of
our results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235-256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48-77, 2002b.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, and Bo Han. Envisioning
outlier exposure by large language models for out-of-distribution detection. arXiv preprint
arXiv:2406.00806, 2024.

Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for predic-
tion with expert advice. Machine Learning, 66(2):321-352, 2007.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. In 2025 IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML), pp. 23-42. IEEE, 2025.

Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A parameter-free hedging algorithm. Advances
in neural information processing systems, 22, 2009.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023b. URL
https://arxiv.org/abs/2302.01318.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-ol, towards medical complex reasoning with llms, 2024. URL
https://arxiv.org/abs/2412.18925.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

10

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2412.18925

Under review as a conference paper at ICLR 2026

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding, 2025. URL
https://arxiv.org/abs/2402.12374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Ligiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

Yoav Freund. Open problem: Second order regret bounds parametrized by variance across actions
and top e percentile. In Conference on Learning Theory, pp. 1651-1654. PMLR, 2016.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of 1lm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and
beyond. In Proceedings of the 24th annual conference on learning theory, pp. 359-376. IMLR
Workshop and Conference Proceedings, 2011.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Yunlong Hou, Fengzhuo Zhang, Cunxiao Du, Xuan Zhang, Jiachun Pan, Tianyu Pang, Chao Du,
Vincent YF Tan, and Zhuoran Yang. Banditspec: Adaptive speculative decoding via bandit
algorithms. In International Conference on Machine Learning, 2025.

Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A. Rossi, Yihan Wu, Dinesh
Manocha, and Heng Huang. Towards optimal multi-draft speculative decoding, 2025. URL
https://arxiv.org/abs/2502.18779.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding via
adaptive candidate lengths, 2025a. URL https://arxiv.org/abs/2405.19715.

Kaiyu Huang, Hao Wu, Zhubo Shi, Han Zou, Minchen Yu, and Qingjiang Shi. Specserve: Efficient
and slo-aware large language model serving with adaptive speculative decoding. arXiv preprint
arXiv:2503.05096, 2025b.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. Online learning under delayed feedback. In
International conference on machine learning, pp. 1453-1461. PMLR, 2013.

jtatman. jtatman/python-code-dataset-500k dataset. https://huggingface.co/datasets/
jtatman/python-code-dataset-500k, 2025.

Ashish Khisti, M. Reza Ebrahimi, Hassan Dbouk, Arash Behboodi, Roland Memisevic, and Christos
Louizos. Multi-draft speculative sampling: Canonical decomposition and theoretical limits, 2025.
URL https://arxiv.org/abs/2410.18234.

Taehyeon Kim, Hojung Jung, and Se-Young Yun. A unified framework for speculative decoding with
multiple drafters as a bandit. 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023a.

11

https://arxiv.org/abs/2402.12374
https://arxiv.org/abs/2502.18779
https://arxiv.org/abs/2405.19715
https://huggingface.co/datasets/jtatman/python-code-dataset-500k
https://huggingface.co/datasets/jtatman/python-code-dataset-500k
https://arxiv.org/abs/2410.18234

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023b. URL https://arxiv.org/abs/2211.17192.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of language
models with dynamic draft trees. In Empirical Methods in Natural Language Processing, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-3: Scaling up inference
acceleration of large language models via training-time test. In Annual Conference on Neural
Information Processing Systems, 2025.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212-261, 1994.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
and Yang Liu. Rethinking machine unlearning for large language models, 2024. URL https:
//arxiv.org/abs/2402.08787.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023a.

Yi Liu, Gelei Deng, Zhengzi Xu, Yuekang Li, Yaowen Zheng, Ying Zhang, Lida Zhao, Tianwei
Zhang, Kailong Wang, and Yang Liu. Jailbreaking chatgpt via prompt engineering: An empirical
study. arXiv preprint arXiv:2305.13860, 2023b.

Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adaptive normalhedge.
arXiv preprint arXiv:1502.05934, 2015.

Yev Meyer, Marjan Emadi, Dhruv Nathawani, Lipika Ramaswamy, Kendrick Boyd, Maarten
Van Segbroeck, Matthew Grossman, Piotr Mlocek, and Drew Newberry. Synthetic-Text-To-
SQL: A synthetic dataset for training language models to generate sql queries from natural lan-
guage prompts, April 2024. URL https://huggingface.co/datasets/gretelai/
synthetic-text-to-sqgl.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932-949, 2024.

mlfoundations dev. Organic chemistry qa dataset. https://huggingface.co/datasets/
mlfoundations—-dev/PDF_and_SCP_unfiltered_organic_chemistry_
questions, 2025.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Ramchalam Kinattinkara Ramakrishnan, Zhaocong Yuan, Shaojie Zhuo, Chen Feng, Yicheng Lin,
Chenzheng Su, and Xiaopeng Zhang. Omnidraft: A cross-vocabulary, online adaptive drafter for
on-device speculative decoding, 2025. URL https://arxiv.org/abs/2507.02659.

Herbert Robbins. Some aspects of the sequential design of experiments. 1952.

Ziteng Sun, Ananda Theertha Suresh, Jac Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222-30242, 2023.

Tengyunw. Official eagle model for qwen-3-8b from tengyunw. https://huggingface.co/
Tengyunw/qwen3_8b_eagle3, 2025.

12

https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2402.08787
https://arxiv.org/abs/2402.08787
https://huggingface.co/datasets/gretelai/synthetic-text-to-sql
https://huggingface.co/datasets/gretelai/synthetic-text-to-sql
https://huggingface.co/datasets/mlfoundations-dev/PDF_and_SCP_unfiltered_organic_chemistry_questions
https://huggingface.co/datasets/mlfoundations-dev/PDF_and_SCP_unfiltered_organic_chemistry_questions
https://huggingface.co/datasets/mlfoundations-dev/PDF_and_SCP_unfiltered_organic_chemistry_questions
https://arxiv.org/abs/2507.02659
https://huggingface.co/Tengyunw/qwen3_8b_eagle3
https://huggingface.co/Tengyunw/qwen3_8b_eagle3

Under review as a conference paper at ICLR 2026

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data.
arXiv preprint arXiv:2410.01560, 2024.

Dirk Van Der Hoeven and Nicolo Cesa-Bianchi. Nonstochastic bandits and experts with arm-
dependent delays. In International Conference on Artificial Intelligence and Statistics. PMLR,
2022.

Vladimir G Vovk. A game of prediction with expert advice. In Proceedings of the eighth annual
conference on Computational learning theory, pp. 51-60, 1995.

Marcelo J Weinberger and Erik Ordentlich. On delayed prediction of individual sequences. I[EEE
Transactions on Information Theory, 48(7):1959-1976, 2002.

Matthew Wesney. Tot-biology. https://huggingface.co/datasets/moremilk/ToT-Biology, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

13

Under review as a conference paper at ICLR 2026

A PROOFS OF TECHNICAL RESULTS

A.1 THEOREM 2 PROOF

Proof. EAGLE generates the draft tree greedily, thus the L children at Node w<yip—1 is
Topy (q(-|z<t+k—1)). The next token is accepted when one of the children is sampled by the
target model p. O

A.2 THEOREM 3 PROOF

Proof of Theorem 3. First note that the expectation is over the distribution of x41.4+x from the
target distribution as well as the randomness of the speculative decoding method. In particular,
(even if the drafts are determinstic, e.g., in EAGLE3) is random because ;4 1.;4x—1 iS random.

[E [# of accepted tokens|z <]
K+1
= Z kP [¢41:44k—1 is accepted, z44, is not accepted|z <]
k=1
K41
= Z kE [IP’ [+ is not accepted|zy41..4,—1 is accepted, z<;] ‘xgt]
k=1
K+1
= Z kE [IP’ (@14 is not accepted|zyq1.44,—1 is accepted, <y yk—1) P [Te 414451 is accepted|z<iyr—1] ’wgt}
k=1
K41
= Z kE[(l — V)P [T 1:04 k-1 is accepted|z <4 p—1] ‘Ist] (1
k=1
Now by the Law of Iterated Expectation again

]E[(l — ’“/k)P Tt41:t+k—1 is accepted\x<t+k 1} ‘$<t]
E|(1 —)P [zt 4r—1 is accepted|zsi 1.4 k—2 is accepted, <ty k—2] P [141:041—2 is accepted| T <4 k2] ‘:c<t}

E| (1 —) Vk—1P [Tet1:044—2 is accepted|T <ty —2] ’$<t]

*]E[(l — Vi) Vk—1Vk—2P [T 1.4 k—3 18 accepted|z<i 4 p—3] ’$<t]

=E [(1 — ’\/k)’yk_l’yk_Q...’)/Q]p [-Tf,+1 is accepted|x§t+1})I‘St]

=E [(1 = V) Vh—1Vk—2-- Y2 V1 ’mgt]
In Line 4 onwards, we are repeatedly applying the same arguments from Line 1 - 3 which “peels off”
one random token j at a time and applying the definition of ;.

The proof is complete by substituting into (1). [

A.3 THEOREM 4 PROOF

Proof of Theorem 4. First, by the Hedge algorithm, the hypothetical online learning without delay
enjoys a regret bound of 24/7"log N for any choice of 7" and N.

By Theorem 1 of (Joulani et al., 2013), the blackbox reduction shows that when the delay is smaller
than 2K, there is an algorithm that gives a regret of

22K +1) log N

2
2K +1
as long as T > (2K + 1). This yields the following regret bounds

,T(oken ’kaen
1 1 [K1og N
E 1¢] > max E]y — O ———=——).
Tioken =1 ’Yt[t} T ire[N] {:rtoken —1 ’Yt[]} (Tioken)

14

Under review as a conference paper at ICLR 2026

and
71loksn . - ’Tloken . -k
1 AcceptLength, |7 1 AcceptLength, .- |i Klog N
Z p g t,K[t} > max Z Y g t,K[] _ O(0g)
Ttoken he1 K+1 i*€[N] Ttoken h=1 K+1 Ttoken

for the two different loss functions respectively. It remains to take expectation over all random
variables on both sides for each i* € [IN] separately. For the acceptance probability, notice that

E[v.[i¢]] = E[P;, [« is accepted |z<;—1]]

=E[Y Palis = ilw<;—1]Pi[x; is accepted |z<;1]]
1€[N]

= Z E[P[iy = i|z<i—1]|E[P;[z; is accepted |z<¢—1]]
Z P 4[ir = i]P;[z; is accepted | = P 4[z; is accepted]

where the third line uses the conditional independence of i; and x; given x<;_1, which follows
because the algorithm A decides on 4, before x; and that x; is determined by the target model p no
matter which 7; is chosen.

For the accepted length,

[E AcceptLength, g [i¢]|i¢, <] |

Acce/ptL\engtht K [Zt”

E |E[AcceptLengtht wlidlie, x<t]}

=E Z P4[i = it|r<(|E[AcceptLength, g [i][i, <]
i€[N]

=IE [AcceptLength, f[i]],

where the second identity follows from Theorem 3 and the third-identity uses the conditional
independence of 7; and x; given x<;_ as before. The claim is proven by multiplying both sides by
K+1. O

B FURTHER ALGORITHM AND IMPLEMENTATION DETAILS

B.1 ONLINE LEARNING WITH DELAYED FEEDBACK IN STOCHASTIC SETTING

In this section, we clarify how Algorithm 2 of (Joulani et al., 2013), stated in the more general partial
monitoring setting, can be instantiated for the full information setting.

This is the algorithm that we used in the experiment.
Setting. There are N experts (actions) A = él ,N}. On each round t = ..., T the
[0,1]

environment associates a loss vector /; € to the experts, but /; may be revealed after an
arbitrary delay. At time t the learner receives a (p0581b1y empty) set

H; = {(s,¢s) : the full vector /5 becomes available at time ¢}.

When making the round-¢ decision, the learner can use all {4 that have already been revealed, but not
those still pending.

Base learner. BASE is any standard full-information online algorithm (e.g., Hedge) designed for an
immediate, delay-free stream of loss vectors. We assume BASE supports:

PREDICT() and UPDATE(Y),

15

[I SN

N n B

10
11

Under review as a conference paper at ICLR 2026

where PREDICT returns either a distribution over experts or a single expert index, and UPDATE feeds
BASE one full loss vector £ € [0, 1]V,

Specializing QPM-D to full information collapses the per-action queues into a single FIFO queue of
unprocessed loss vectors, because any revealed ¢ is usable regardless of which expert was played.

Algorithm 1: Queued Full-Information with Delays (QFI-D)

Data: A FIFO queue Q of unprocessed loss vectors

Input: (Optional) horizon T' (not needed if the BASE is an anytime algorithm).
Initialize Q + 0.

Initialize BASE; let p <+~ BASE.PREDICT().

fort=1,2,...,Tdo

// Predict phase: catch Base up with all arrived feedback
while Q # () do
¢ < POPFRONT(Q)
BASE.UPDATE(/)
p < BASE.PREDICT()
// Make the real-world choice for round t
Play action a; according to p
// e.g., sample from p or take argmax/argmin as appropriate
for BASE
// Update phase: record any feedback that arrives now
Observe the (possibly empty) set Hy = {(s, £s)} of loss vectors revealed at time ¢.
foreach (s, (s) € H; do
| PUSHBACK(Q, {s)
Remarks.

» This makes BASE experience a delay-free stream in its own clock: whenever a vector arrives, it is
immediately fed to BASE before the next real prediction is made.

* To instantiate with Hedge, UPDATE applies the usual weight update w; < w; exp(—n¥¢;) and
PREDICT returns the normalized weights.

o If multiple loss vectors arrive at the same time, they are queued in arrival order and processed
FIFO.

Corollary 5 (Regret of QFI-D). Assume the delay is bounded by Ty ax and the loss is bounded by 1.
Let Base be any full-information online learner analyzed in the same stochastic environment without
delays, with expected regret Regret]%ase. Then the expected regret of QFI-D satisfies

E[Regrety] < E [Regret?ase} + Tmax-
Proof. This is an instantiation of Theorem 6 of (Joulani et al., 2013). O

The implementation for HEDGESPEC with delayed feedback in the stochastic setting is particularly
simple.

1. Keep two pointers typdaed and ¢ where typgaed < ¢ and all necessary statistics v

updated *

2. After every chunk, process every batch of available loss vectors by updating the weights of
the BASE learner, before taking the next action, then update #,pgaeq to the last frontier.

Note that in the hypothetical token-level game without delay, there are several updates within each
chunk, but due to the delay, none of those updates will actually occur. This means that the weights
on the drafters in the delayed case will not be updated within each speculative decoding chunk is
complete.

We could either sample independent sample from the drafter weights for each new token as the drafter
roll out or stick to the same drafter. Both approaches enjoy the same regret guarantees in Corollary 5.

16

Under review as a conference paper at ICLR 2026

B.2 FIRST ORDER AND SECOND ORDER REGRET BOUNDS

We observe that in the experiments (Figure 4 and Figure 6), HEDGESPEC appears to have a regret that

stops growing after learning for a few iterations, instead of the O(+/T') predicted by the worst-case
bound in Theorem 4 and Corollary 5.

We believe this is due to the adaptivity of NormalHedge (Chaudhuri et al., 2009).

Cesa-Bianchi et al. (2007) established that when the learning rate is optimally tuned for Hedge, the
method enjoys both first order (small loss) and second order (small variance) regret bounds:

Regret = O

T
, and Regret =0 Z Var;p, [fi[i]] log N
t=1

In particular, if the best drafter ¢* has very small losses or after a while the learner’s weights p;
concentrates on a fixed drafter, then the regret bound will not grow with 7. This is the case when
there is a clear winner among all drafters.

NormalHedge was not proven to enjoy these strong adaptive regret bounds, though there was a
conjecture that it does (Freund, 2016), and a modified version of normal hedge algorithm known as
AdaNormalHedge (Luo & Schapire, 2015) which does enjoy first order regret bounds.

Our experiments seem to support the conjecture.

In practice, we find that NormalHedge often quickly converges to the optimal drafter, while still enjoy
the worst-case v/T-type regret when no clear winner exists.

B.3 CHUNK-LEVEL VS TOKEN-LEVEL ONLINE LEARNING AND REGRET GUARANTEES

There is more than one way to set up the regret minimization game. In the main paper, we discuss the
token-level online learning game. Here, we further discuss the token-level online game.

Chunk-Level Games and Loss functions We can set it up as an online learning problem where
each chunk is one round of the game. This choice is natural because the action to choose drafters is
made for each chunk.

forh =1, ..., Tohunk :
1. Nature chooses loss vector f;, € [0, 1]V.

2. Player chooses Drafter ;, and incurs loss f5[ir]-

3. Player observes f,.

Figure 5: Chunk-Level Game

It remains to design the loss functions. Let the token index right before the ~t" chunk be t;, and the
length of chunk returned by the chosen drafter be of length k. Let

Vh,jl8) = Ps[x4, +; is accepted | x¢, 1 1:¢,4;—1 are accepted, T, 1],

namely the probability that j*" token of chunk h from drafter 7 is successfully validated given that
the first (j — 1) tokens are validated.

If we optimize the average acceptance probability within each chunk, we can use
1 kn
Flil = = > (1 = 4i]).

i =

If we optimize the expected chunk length, then we can apply the expression in Theorem 3 with
K = kj to estimate the expected accept length of Drafter :. The resulting loss function is the

17

Under review as a conference paper at ICLR 2026

normalized distance from the max length.

falil =1 -

kn+1
1 — 1
AcceptLength, , [i] =1 — /(1= yn, i)
1 cceptLengthy, ;. [i] 1]; 31 = vn,5(i]) H Vn,eli]

ki telj—1]

where 7y, ,+1[7] is assigned to be 0 for notation convenience.
Theorem 6. There is an algorithm A that chooses iy, in the game in Figure 5, such that

1. When we optimize acceptance probability

1 Tonnk 1 N~kn i1 >) 1 Tomnk 1 N~kn el log N
Tonm 2<h=1 Ty, 2aj=1Th.j [Zh] 2 MaX;+¢[N] | T Zh:l Fon 2j=1Th.j [Z] 2 Tenunk *

2. When we optimize Accept Length

1 Touank AcceptLengthh_’kh [in] > max 1 Toank AcceptLengthh’kh [i*] _ log N
Temunk —~h=1 kn+1 = *€[N] | T £h=1 kn+1 Teunk *

The algorithm that achieves this includes Hedge and many of its variants. In the experiments, we test
out both the original Hedge and more adaptive, and parameter-free variants of Hedge. Compared to
BanditSpec, the regret improves exponentially in the number of drafters N.

Note that the actual accepted length for the chosen drafter model 4, is kj, but the expected value
can be bigger or smaller than kj. Other draft models will have an expected accepted length between
1 and kp, + 1. It is capped at k;, + 1 due to a censoring effect. The censoring effect may lead
to an underestimation of the performance of alternative draft models. We will elaborate on these
consequences of the censoring issue in the appendix.

Another issue of censoring is that it makes the regret guarantees in Theorem 6 somewhat difficult to
interpret. In particular, it might be suprising to some readers that for any fixed ¢

E[Acce/ptangthm k,, [1]] # E[AcceptLengthy, ;. [i]].

in general. This is because kj, is random, and when we condition on k,, it changes the distribution of
the tokens ¢, 41:t, +k, in this chunk, thus rendering Theorem 3 inapplicable. Similar issues arise for
the expected value of 7y, ;.

B.4 TIME-INHOMOGENEITY IN EAGLE MODELS AND CONSEQUENCE OF CENSORING.

EAGLE draft models are special in that they belong to a broader family of time-inhomogenous draft
models. Let’s denote EAGLE models by g; ;, — the ith choice and the corresponding model used for
kth relative position.

As an example, if Draft model ¢ = 1 is chosen at time ¢ it rolls out with 2 tokens verified. Then the
models being called are ¢ ; for the first token, and ¢ » for the second. Support Draft model i = 2
was chosen instead, then it could’ve verified 4 tokens.

Naively, this can give us feedback for g; 1, ¢; 2 for ¢ = 2 too, but will have to wait until the next chunk
before we can get feedback for g2 3 and g2 4. What if the onset ¢ is now ¢ + 1 instead?

The execution of the target model actually has provided us all the information needed to provide
feedback for every ¢ € [N] and k € [k]

Why do we need to handle these complications? Let us inspect the following two examples that
highlight the surprising failure mode if we do not handle these issues appropriately.

Evaluating EAGLE models off-policy is somewhat tricky because the best model is not fully captured
by the acceptance probability.

Example 7 (“censoring” causes worse draft model win). Draft model q, 1 has acceptance probability
100% but ¢ 2 is terrible, it has acceptance probability of only 0%. The expected verified length is
always 2 for draft model q1 .. If q11 is played first, the chunk length will converge to 2 throughout.

18

Under review as a conference paper at ICLR 2026

Now let g2), = 0.4 for k = 1,2 but 0.9 for k > 2.

Average acceptance probability for draft model 1 is 0.5 and 0.4 for draft model 2 under the distribution
of draft model 1. However, if we roll-out draft model 2 long enough, we get higher acceptance
probability on average.

The expected acceptance length for the second draft model is 1 +0.6/(1 — 0.6) = 2.2, i.e. it is better
than the first.

However, since draft model 1 is only generating two-token chunks, and we can only evaluate the first
two steps of the draft model 2.

The expected length is now 0.4 4+ 0.6.4 x 2+ 0.6 x 0.6 x 3 =1.96 < 2.

This example illustrates that for drafters that are not invariant to relative index (e.g., EAGLE models),
it is perhaps better to use token-level online learning (with delay) to avoid getting stuck at a suboptimal
drafter.

In practice, we found that the censoring effect is not detrimental for EAGLE models. Chunk-level
online learning works as well as token-level online learning with delay, and it incurs smaller system
overhead.

B.5 PRACTICAL HEURISTICS: “HYBRID LOSSES” “SKIPPING UPDATE”

As we now evaluate all drafters, even though this does not increase the total number of calls to the
target model, it does slightly affect the amount of compute needed for evaluation and increase the
latency in practice in the inference system.

We propose a technique called “skipping updates” which reduces the number of times the evaluation
phase need to be called. The idea is that we simply grouping a couple of updates together and apply
them once in a batch once in a while.

In practice, we observed that our hedging algorithm quickly reaches a stable performance plateau with
near-zero regret, consistent with the first- and second-order regret bounds (see discussion in B.2). To
further reduce update latency, we experimented with skipping updates by a fixed number of tokens and
combining this with batched feedback, treating both as tunable hyperparameters. Empirically, after a
short warm-up period (e.g., 6 rounds of full-information updates), using delayed batched feedback
(e.g., 12 rounds per batch) together with skipped updates (e.g., 6 tokens per update) continued to
yield strong performance for all the tested experiments. Overall, these results indicate that moderate
delays in feedback and updates can maintain good mean accepted token length while providing a
practical tradeoff between accuracy and efficiency.

The other trick that we proposed is “hybrid losses”. This involves starting the learner by choosing the
first few loss vectors, e.g., f1, f2, f3, ... to be based on acceptance probabilities, then switching to the
acceptance-length loss, later. The reason is that the delay is generally higher for acceptance length.

For example, if K = 8 and after the first chunk, 4 tokens are accepted. The acceptance rate loss
would be computable after the first chunk. By the end of the second chunk, we can already update
the learner by 4 times before the decision for the second chunk is due.

The loss based on acceptance probability — even though not what we ultimately wanted to optimize
— can be used as a surrogate loss and help mitigating the “cold-start” problem.

Both tricks were used in our experiments.

C RELATED WORK

C.1 THE ADVANCE OF SPECULATIVE DECODING

Speculative decoding is a pivotal way for optimizing LL.M inference latency. This technique was
first introduced with chain-structured drafts, where the draft model generates a single sequence
of tokens verified sequentially by the target model Leviathan et al. (2023b); Chen et al. (2023b).
Subsequent work generalized this into tree-structured drafts, organizing draft tokens as a connected

19

Under review as a conference paper at ICLR 2026

tree to increase acceptance opportunities Chen et al. (2025); Miao et al. (2024); Cai et al. (2024);
Du et al. (2024); Li et al. (2024b). Recent works extend speculative decoding to the multi-draft
setting, where multiple candidate tokens are proposed in parallel at each step. Sun et al. (2023) casts
draft selection into an optimal transport framework with efficient approximation schemes. Khisti
et al. (2025)show that the optimal solution admits a canonical two-step decomposition and provide
exact acceptance characterizations in the two-draft case. Hu et al. (2025) derive tractable methods to
compute theoretical upper bounds on acceptance rates, demonstrating practical benefits of sampling
strategies such as without-replacement. While prior work advances speculative decoding by
improving how a single drafter generates candidates—ranging from chain- to tree-based structures
and multi-draft extensions—our work addresses the orthogonal level of challenge in multi-drafter
selection, where diverse speculative decoding methods can all potentially serve as drafters in the
pool, and we dynamically evaluate and select among them with provable no-regret guarantees.

C.2 ADAPTIVE SPECULATIVE DECODING

Another line of work focuses on adapting speculative decoding during inference to incoming requests.
OSD and OmniDraft Liu et al. (2023a); Ramakrishnan et al. (2025) adapt the drafter on-the-fly to the
target distribution via online knowledge distillation, improving token acceptance rate. Our method is
training-free and operates at a different level: candidates in the drafter pool can themselves adopt
such adaptive mechanisms, while our contribution lies in selecting among them in the multi-drafter
setting. SpecDec++ Huang et al. (2025a) instead adapts the speculation length, stopping drafting once
the predicted rejection probability exceeds a threshold, which differs from our goal of multi-drafter
selection. SpecServe Huang et al. (2025b) takes a system-level perspective, adapting speculative
decoding configurations (e.g. resource allocation) at runtime to meet latency and throughput SLOs,
rather than focusing on acceptance probability. Among these works, BanditSpec Hou et al. (2025)
represents the state-of-the-art for adaptive multi-drafter speculative decoding. In contrast, we advocate
a different paradigm that cheaply exploits global information, achieving higher token acceptance
rates and lower per-token latency.

C.3 ONLINE LEARNING ALGORITHMS

Hedge and multi-armed bandits capture the full-information and partial-information settings, respec-
tively, and have inspired numerous variants. The Hedge algorithm Cesa-Bianchi & Lugosi (2006)
provides a classic framework for expert weighting; NormalHedge Chaudhuri et al. (2009) removes
the need for tuning learning rates; and AdaNormalHedge Luo & Schapire (2015) further improves
adaptivity. In parallel, the stochastic K -armed bandit problem was introduced by Robbins Robbins
(1952), leading to a wide family of exploration—exploitation algorithms. Canonical examples include
UCB Auer et al. (2002a) and KL-UCB Garivier & Cappé (2011), which provide confidence-based
exploration guarantees, and EXP3 Auer et al. (2002b), which provides regret guarantees in the adver-
sarial setting. As compared in Section D.5, adopting Hedge and its variants consistently achieves
strong performance in our experiments, surpassing bandit-style algorithms. This highlights the
effectiveness of leveraging global loss information across experts.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 EAGLE’S DEFAULT GENERATION CONFIGURATION

In our experiments, we directly adopt EAGLE’s generation configuration as our framework focuses
on the drafter selection problem. By default, EAGLE uses an exploration depth of 7, resulting in
a speculative decoding length of 9 tokens per chunk, with the top-k value equals to 10 during its
expanding and reranking phase.

D.2 BERT CLASSIFIER TRAINING DETAIL
Table 5 records the training hyperparameters of the offline BERT classifier for statically routing the

requests to the corresponding drafter. The datasets used for training the classifier is the aggregation
of data across all 7 domains.

20

Under review as a conference paper at ICLR 2026

Hyperparameter Value

learning_rate 2e-5
per_device_train_batch_size 128
per_device_eval_batch_size 128

num_train_epochs 3
Ir_scheduler_type linear
warmup_ratio 0.1
optimizer adamw

Table 5: Training hyperparameters for BERT classifier.

D.3 STATISTICS FOR THE CURATED QWEN DRAFTERS

Table 6 shows statistics of the 7 curated drafters with Qwen-3-8B as the target (bold indicates the
best). Each drafter performs well in-domain (diagonal) but degrades when applied out-of-domain,
and on average is weaker than the vanilla EAGLE model. Similar patterns are shown in Table 1.
Together, these drafters provide a realistic evaluation pool for HedgeSpec, which orchestrates them to
jointly accelerate serving.

Datasets Python Math Biology Chemistry MedQA CNN_DM SQL ‘

Drafter domains MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s MAT Token/s‘Avg MAT Avg Token/s

Vanilla Eagle 496 5584 452 5088 4.06 4622 398 4485 384 4413 4.07 4620 420 4460 4.23 47.53
Python 6.43 7373 450 51.82 246 2685 297 3441 236 2681 245 2826 3.85 4442 3.57 40.90
Math 423 5050 7.39 8633 266 31.67 346 3938 267 2996 287 3293 3.68 4020 3.85 44.42
Biology 320 3725 361 4301 570 6739 374 4390 3.80 4511 270 3150 280 33.99 3.65 43.16
Chemistry 379 4336 540 61.07 379 43.10 6.69 76.68 3.54 40.03 2.74 29.14 336 3838 4.19 47.39
MedicalQA 3.66 4285 4.05 4623 407 46.86 401 46.66 6.7 73.51 294 3338 342 39.65 4.05 47.02
CNN_DM 256 29.80 2.56 3040 245 2849 245 2861 255 3021 515 60.70 252 2947 2.89 33.95
SQL 371 4363 337 3630 236 27.10 268 31.74 237 2826 260 3027 7.60 86.17 3.53 40.49

Table 6: Statistics of the 7 curated drafters with Qwen-3-8B as the target. Bold indicates the best. Each
drafter shows strong in-domain performance (diagonally strong) but suffers noticeable inefficiency
when applied outside, and on average performs worse than the vanilla Eagle model. Similar trends
are observed in Table 1. These drafters form a realistic evaluation pool for evaluating HedgeSpec,
which orchestrates them to jointly accelerate the serving process.

D.4 DISCUSSION ON HEDGESPEC VS. JOINTLY TRAIEND DRAFTER

In this section, we study the effect of aggregating data from all domains and jointly finetuning a
EAGLE model. This effectively turns the original EAGLE into another “generic” drafter. Results are
presented in Table 7, where HedgeSpec outperforms most domains in terms of MAT. In the meantime,
several additional observations emerge:

First, joint training empirically improves EAGLE’s performance across multiple domains, which
is expected. Second, the jointly trained drafter performs comparably to expert drafters trained in
single domain such as math, biology, chemistry, and MedQA, while we do observe performance
drop in domains like python, CNN_DM, SQL in this experiment. The reasons require further
investigation, but it is also reasonable to expect this since datasets from different domains may not be
fully aligned, with some pushing learning in the same direction while others pull in the opposite Liu
et al. (2024); meanwhile, performance is also constrained by scaling laws and the model’s capacity to
digest knowledge—particularly given that EAGLE is only a one-layer transformer. As more data is
introduced, it is uncertain whether the performance in those domains will continue to boost or decline.
Third, even when proper joint training can yield synergistic benefits, it is often infeasible because
parties may not release their training data due to confidentiality concerns Achiam et al. (2023). In such
cases, only the trained drafters might be available, making joint training impossible. This underscores
HedgeSpec’s advantage: it requires no access to training data and can operate directly on a pool
of expert drafters. Moreover, a generically trained model can itself serve as one candidate within
this pool alongside specialized drafters. In short, HedgeSpec addresses the higher-level challenge

21

Under review as a conference paper at ICLR 2026

Datasets Python Math Biology Chemistry MedQA CNN_DM SQL
Joint trained model 7.03 7.76 6.63 7.16 6.22 5.35 7.39
Eagle 6.48 5.88 5.95 5.28 4.96 5.31 5.99
HedgeSpec 7.69 7.69 7.18 7.10 6.47 5.88 8.06

Table 7: Comparison of MAT across domains for a jointly trained model, the vanilla EAGLE, and
HedgeSpec. Bold indicates the best performance in each domain.

Datasets Python Math Biology Chemistry MedQA CNN.DM SQL
HedgeSpec 7.69 7.69 7.18 7.10 6.47 5.88 8.06
HedgeSpec w/ Acc. rate loss 7.62 7.47 7.02 6.94 6.44 5.88 8.08
HedgeSpec w/ Standard Hedge 6.90 6.67 6.53 6.19 5.38 4.68 7.05
HedgeSpec w/ AdaNormalHedge 7.36 7.30 7.05 6.66 5.85 5.40 7.71

Table 8: Llama Mean Accepted Tokens (MAT) across datasets using HedgeSpec variants. Bold
indicates highest performance per column.

of orchestrating expert drafters. With only a collection of such models, it can significantly improve
serving efficiency.

D.5 VARIANTS OF HEDGING ALGORITHMIC CHOICE

In this section, we study how different hedging algorithmic choices affect the final outcome. The
ablation considers two factors: (i) using token acceptance-rate loss instead of expected-length—based
loss, and (ii) replacing the NormalHedge update rule with alternative algorithms, including Standard
Hedge and AdaNormalHedge. HedgeSpec by default adopts the parameter-free NormalHedge with
expected-length—based loss. The MAT results across datasets are reported in Table 8 and 9, showing
consistent trends.

From the table, we see that the acceptance—rate—based loss achieves comparable but slightly lower
MAT, suggesting it can be a viable alternative for online learning in speculative decoding, though
expected-length—based loss remains stronger overall. Switching to Standard Hedge leads to a larger
drop in performance. We attribute this to Standard Hedge’s more conservative updating: it tends to
spread weight more broadly during the exploration phase, whereas NormalHedge shrinks weights
more aggressively toward strong drafters. This conservatism could be mitigated with careful parameter
tuning, although such tuning would vary across scenarios and adds practical complexity. Finally,
AdaNormalHedge also shows reduced MAT. This is somewhat surprising, as AdaNormalHedge
enjoys first-order regret bounds and is theoretically stronger. In our experiments, however, this
advantage did not materialize.

D.6 ADDITIONAL RESULTS ON CUMULATIVE REGRET AND MAT VS. DRAFTER POOL TRENDS

In this section, we present additional results on cumulative regret for the Qwen-3-8B model, as well
as results on MAT with an increasing number of drafters. The trends in Figure 6 and Figure 7 are
consistent with those in Figure 4, demonstrating that HedgeSpec converges more quickly to near-zero
regret and scales effectively as the drafter pool grows.

D.7 THE GSM8K AND HUMANEVAL RESULTS

In this section, we present MAT and tokens-per-second results on the GSM8K and HumanEval
datasets as shown in Table 10. These datasets are not included in the training data used to construct
the drafters. We find that even without prior knowledge, HedgeSpec consistently outperforms all
baselines across both domains. This demonstrates that HedgeSpec’s orchestration of drafters can
improve MAT and throughput without requiring prior knowledge, as long as some drafters excel in
specific domains—highlighting HedgeSpec’s effectiveness in drafter selection.

22

Under review as a conference paper at ICLR 2026

Datasets Python Math Biology Chemistry MedQA CNN.DM SQL
HedgeSpec 6.32 7.27 5.66 6.61 6.08 5.10 7.52
HedgeSpec w/ Acc. rate loss 6.23 7.00 5.58 6.58 6.05 5.00 7.30
HedgeSpec w/ Standard Hedge 5.85 6.64 5.13 5.88 5.47 4.46 7.01
HedgeSpec w/ AdaNormalHedge 6.26 7.12 5.57 6.39 5.94 4.99 7.40

Table 9: Qwen-3-8B: MAT across datasets using HedgeSpec variants. Bold indicates highest per
column.

6.5 e
8 E N e S T
=
E Z6.0 —— HedgeSpec
o6 g UCBSpec
ﬁ —— HedgeSpec e —+— Exp3Spec
24 UCBSpec g 5.5 -- EAGLE
2 —— Exp3Spec s Best Drafter
£ S
32 <50
&
o
j \
0 4.5
0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7
Time (Normalized Inference Step) Number of Drafters
a. Cumulative Regret b. MAT with increasing number of drafters

Figure 6: Cumulative regret and MAT vs. number of drafters. HedgeSpec quickly settles with
near-zero regret, and can scale up with larger drafter pool. Llama results show similar trend in 4,
highlighting our robustness.

_80 _ s e o
"E_(< 7.0
215 —+— HedgeSpec %
g UCBSpec 65
70 —— Exp3Spec °
2 --- EAGLE 6.0
3
2 Best Drafter 2 — HedgeSpec
g6.5 955 UCBSpec
< & —— Exp3Spec
56.0 £5.0{ ---- EAGLE
= < Best Drafter
55 45
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of Drafters Number of Drafters
a. MAT with increasing number of drafters on Llama a. MAT with increasing number of drafters on Qwen

Figure 7: MAT vs. number of drafters on math workload on Llama and Qwen models. HedgeSpec
scales effectively with larger drafter pools

Datasets GSMS8K HumanEval
Method MAT Token/s MAT Token/s
Liama-3.1-8B

EAGLE 6.38 78.32 6.77 91.98

EXP3Spec 5.03 63.28 524 68.96
UCBSpec 5.05 66.11 5.46 72.05
HedgeSpec 6.77 84.32 7.54 97.21

Qwen-3-8B

EAGLE 5.05 60.59 4.84 58.81
EXP3Spec 4.90 53.57 4.15 48.62
UCBSpec 5.02 57.42 4.30 50.59
HedgeSpec 6.60 73.59 5.63 64.51

Table 10: MAT (Mean Accepted Tokens) and Token/s (token generation rate) across GSM8K and
HumanEval, which is not part of the training datasets for the drafters. Bold indicates the best.
Consistent with Table 3, HedgeSpec consistently outperforms all baselines across those two domains.
Its shows that its orchestration of drafters improves MAT and throughput without prior knowledge, as
long as there exists drafters excel in certain domain.

23

	Introduction
	Preliminaries on speculative decoding
	Symbols and Notation
	Basic speculative decoding method
	EAGLE and draft tree
	Performance metrics for speculative drafter evaluation

	HedgeSpec: Method and Theory
	A No-Regret online learning approach to Draft Model Selection
	Full-information-evaluation: HedgeSpec is not a bandit
	HedgeSpec: Loss functions and Delayed Feedback
	Practical algorithms and extensions

	Empirical evaluation
	Experiment setup and baselines
	Curating diverse drafters for large-scale evaluation
	End-to-end efficiency analysis
	Evaluation overhead breakdown
	HedgeSpec achieves consistent end-to-end gains across domains

	A deepdive into full-information benefits
	Offline router comparison: HedgeSpec's robustness in distribution shift

	Conclusion
	Ethics statement
	Reproducibility statement
	Proofs of Technical Results
	Theorem 2 proof
	Theorem 3 proof
	Theorem 4 proof

	Further Algorithm and Implementation details
	Online Learning with Delayed Feedback in Stochastic Setting
	First order and second order regret bounds
	Chunk-Level vs Token-Level Online Learning and Regret Guarantees
	Time-inhomogeneity in EAGLE models and consequence of censoring.
	Practical heuristics: ``hybrid losses'' ``skipping update''

	Related work
	The advance of speculative decoding
	Adaptive speculative decoding
	Online learning algorithms

	Additional experimental details and results
	EAGLE's default generation configuration
	BERT classifier training detail
	Statistics for the curated Qwen drafters
	Discussion on HedgeSpec vs. Jointly traiend drafter
	Variants of Hedging Algorithmic choice
	Additional results on cumulative regret and MAT vs. drafter pool trends
	The GSM8K and HumanEval results

