
Position: Lifetime tuning is incompatible with continual reinforcement learning

Golnaz Mesbahi 1 2 Parham Mohammad Panahi 1 2 Olya Mastikhina 1 2 Steven Tang 1 2 Martha White 1 2 3

Adam White 1 2 3

Abstract
In continual reinforcement learning (RL) we want
agents capable of never-ending learning, and yet
our evaluation methodologies do not reflect this.
The standard practice in RL is to assume unfet-
tered access to the deployment environment for
the full lifetime of the agent. For example, agent
designers select the best performing hyperparame-
ters in Atari by testing each for 200 million frames
and then reporting results on 200 million frames.
In this position paper, we argue and demonstrate
the pitfalls of this inappropriate empirical method-
ology: lifetime tuning. We provide empirical evi-
dence to support our position by testing DQN and
SAC across several continuing and non-stationary
environments with two main findings: (1) lifetime
tuning does not allow us to identify algorithms
that work well for continual learning—all algo-
rithms equally succeed; (2) recently developed
continual RL algorithms outperform standard non-
continual algorithms when tuning is limited to a
fraction of the agent’s lifetime. The goal of this
paper is to provide an explanation for why recent
progress in continual RL has been mixed and mo-
tivate the development of empirical practices that
better match the goals of continual RL.

1. Do not peek at the test set!
Continual reinforcement learning (RL) arises in many appli-
cations. In HVAC control, agents learn to adapt process set-
points daily, with deployment lasting for weeks or months,
but the agent does not exploit knowledge of the length of the
deployment (Luo et al., 2022) and the agent designer might
not know how long the agent will run. Similar situations
arise in data-center cooling (Lazic et al., 2018), water treat-

1Department of Computing Science, University of Alberta, Ed-
monton, Canada 2Alberta Machine Intelligence Institute (Amii)
3Canada CIFAR AI Chair. Correspondence to: Adam White
<amw8@ualberta.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ment (Janjua et al., 2024), and many other industrial control
settings. Even our popular deep RL benchmarks could nat-
urally be treated as continual RL tasks: Atari agents could
play games forever, switching to a new game when they
die or complete each game (similar to the Switching ALE
benchmark (Abbas et al., 2023)). Mujoco tasks are naturally
continuing, but common practice is to truncate experiments
after a fixed number of interactions, resetting to some initial
configuration. In continual RL tasks, we should design and
evaluate our agents with limited access to the environment
and then deploy the learning system as-is without further
tuning of its hyperparameters during the rest of its lifetime.

The vast majority of algorithmic progress in deep RL has
focused on the non-continual setting. Agent designers test
algorithmic variations and hyperparameter combinations
in the deployment environment for the full lifetime of the
agent and then report the best performance across these
deployments. For example, if one were to develop a new ex-
ploration algorithm for Atari, then this new algorithm would
be extensively tested over 200 million frames, tuning any
new hyperparameters introduced by evaluating each over
200 million frames. In this sense, the standard methodol-
ogy is to design and evaluate our agents given access to the
full, finite, lifetime of the agent. This is critical because it
means that designers can tweak hyperparameters such that
performance is optimized for a particular lifetime length.
For example, one could tune the epsilon decay schedule of
DQN to maximize area under the learning curve, generating
the best result possible over 200 million frames. But if that
agent was run for 800 million frames, or 10 million frames,
the resultant performance would be suboptimal.

There has been increased focus on extending or modifying
existing deep RL agents for continual RL, with limited suc-
cess. These approaches can be roughly categorized into
three groups: 1) resetting, 2) regularization, and 3) normal-
ization. In the first approach, parts of the agent’s network
are reset to random initial values, causing large drops in
performance but eventually leading to improved final per-
formance (Nikishin et al., 2022; 2023; D’Oro et al., 2022).
Regularization balances error reduction with keeping the
agent’s network parameters close to initialization (Kumar
et al., 2024); this helps because the random initial param-
eters help the network learn quickly. Finally, recent work

1



Lifetime tuning is incompatible with continual reinforcement learning

has found that layer normalization can help maintain the
ability to learn (Lyle et al., 2023). All these approaches are
mitigations: algorithmic fixes applied to a base agent that
is not designed for continual RL. In all these works, the
empirical demonstrations were conducted in non-continual
testbeds like Atari and Mujoco, where the proposed new
continual learning agents were tuned for the agent’s entire
lifetime—not a continual learning setting.

Unfortunately, lifetime tuning is particularly misleading for
continual learning research. Many recent papers follow the
same basic template: (1) introduce a continual variant of an
existing benchmark (typically by introducing a source of
non-stationarity); (2) demonstrate that existing algorithms
fail on the new benchmark; (3) introduce a new algorithmic
mitigation and demonstrate that it solves the new continual
benchmark. There are multiple ways this can be misleading.
It is possible that in step two, simply retuning an existing
algorithm’s hyperparameters could eliminate the failure (fair
and statistically sound treatment of hyperparameters is rare,
see Patterson et al. (2024b;a); Jordan et al. (2024)). There is
no reason to expect default hyperparameters to work well
in a new, non-stationary task. A more subtle issue, is that
in step 3, the new continual learning algorithm was likely
tuned over the lifetime of the experiment. That means we do
not know if the algorithm will work if the lifetime is longer;
we do not know if the agent can learn continually!

This paper argues the position that progress in continual
RL research has been held back by inappropriate em-
pirical methodologies, specifically lifetime tuning. We
discuss an alternative methodology for tuning and evalu-
ating continual RL agents inspired by the constraints of
real-world applications of RL. One approach is based on a
simple idea: continual RL agents may be deployed for an
unknown amount of time and thus agent designers should
not be allowed to tune their agents for their entire lifetime.
Instead, we suggest a limited tuning phase: a small percent
of the total lifetime. Only k-percent of the experiment data
can be used for hyperparameter tuning; after that, the hyper-
parameters must be fixed and deployed for the remainder of
the agent’s lifetime. This proposal is not meant to replicate
a real-deployment scenario. Instead, the idea is to constrain
agent evaluation in a way that would better highlight the
benefits of algorithms (1) with fewer task-specific hyper-
parameters, (2) that use meta-learning to adapt their own
hyperparameters automatically, and (3) that can learn con-
tinually. The goal of arguing this position and our simple
proposed evaluation methodology is to encourage the devel-
opment of agents that are more suitable for continual RL
and perhaps deployment in the real world, not introduce a
way to tune hyperparameters.

We provide a collection of experiments to support our po-
sition. We show that a widely-used deep RL agent, DQN,

performs poorly across a suite of continual RL tasks despite
testing different metrics to select the best hyperparameters
under k-percent tuning. We additionally test Soft Actor-
Critic, to show the impact of k-percent and lifetime tuning
on a different algorithm in a continuous action setting, find-
ing similar outcomes. We also show that the value of k,
the interaction budget for tuning, that achieves good life-
time performance can be agent-environment dependent. We
also investigate several mitigation strategies, which do not
appear beneficial under lifetime tuning, and show they actu-
ally improve performance compared to the base algorithms
under k-percent tuning.

2. Background and Problem Formulation
We consider continual RL problems formulated as Markov
Decision Processes (MDPs) with partial observability. On
each discrete time step, t = 1, 2, 3, ..., from the current
state St ∈ S, the agent selects an action At ∈ A and the
environment transitions to a new state St+1 ∈ S and emits
a scalar reward Rt+1 ∈ R. The agent may only observe
a partial view of this state, xt

.
= x(st). A continual RL

problem is one with a long agent-environment interaction—
either one long episode as in a continuing problem or many
episodes as in an episodic problem1—that is eventually
truncated at an unknown time T . Neither the agent nor the
agent designer can exploit this information because it is
unknown. The agent essentially needs to treat this T as
infinite, even though we evaluate it for a finite time.

There are several possible formal definitions of continual RL
(Abel et al., 2023; Khetarpal et al., 2022; Sutton et al., 2007),
but for the purposes of this paper, the continual RL problem
is one where there is no fixed optimal policy and thus the
agent must explore, learn, and adapt its behavior forever.
Such continual or neverending learning is needed in (vast)
environments with long lifetimes and partial observability
or nonstationarity. These environment properties are also
inherent in continual RL applications, such as robotics or
industrial control, with long agent-environment interaction
and inherent partial observability from limited sensors.

In our experiments, partial observability is typically artifi-
cially introduced, usually by adding some source of non-
stationarity to an existing non-continual, stationary environ-
ment. For example, in Non-stationary Mountain Car the
force of gravity changes slowly over time according to some
unobservable schedule. The main idea is that because the

1Episodic problems are ones where the agent-environment in-
teraction naturally breaks up into sub-sequences where the agent
reaches a terminal and then is teleported to a start state. A continu-
ing problem formulation has no such termination. In our experi-
ments, we use transition-based discounting to unify the treatment
of episodic and continuing problems; see White (2017) for further
details.

2



Lifetime tuning is incompatible with continual reinforcement learning

environment is changing forever, the agent must continually
adapt forever. This kind of setup is a stand-in or emula-
tion of the idea that there are always new things to learn
about, just like in our own lives. We will consider such non-
stationary environments in this work, and run demonstrative
experiments with DQN (Mnih et al., 2015) for discrete ac-
tions and Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
for continuous actions.

3. Lifetime tuning in continual RL
Hyperparameters have a dramatic impact on both the per-
formance and learning dynamics of deep RL agents. DQN
is one of the simplest such agents and it contains 16 hyper-
parameters (see Mnih et al. (2015) for details) controlling
size of the replay buffer, target network updated rate, aver-
aging constants in the Adam optimizer and exploration over
time, to name a few (Adkins et al., 2024). These hyperpa-
rameters allow us to instantiate variants of DQN that learn
incredibly slowly to mitigate noise and off-policy instability,
to fast online learners that can track non-stationary targets
(for example, see Huang et al. (2022)).The proliferation
of hyperparameters in modern Deep RL agents effectively
allows the agent designer to select which algorithm they
want to use ahead of time for a given problem. This is even
more important in continual RL, as recent work has shown
that the default hyperparameter settings of popular agents
must be significantly adjusted to deal with long-running
non-stationary learning tasks (Lyle et al., 2023).

Let us define lifetime tuning in the context of conventional
non-continual, stationary RL. Imagine an environment, such
as ALE (Bellemare et al., 2013; Machado et al., 2018),
where the length of the agent-environment interaction (the
lifetime) is fixed and known to you the agent designer. If
you were to develop a new algorithm for ALE, let’s call it
DQN++, you would periodically test your latest, greatest
version on several Atari games, each with a 200 million
frame lifetime. You would run the experiment multiple
times, likely testing DQN++ with different hyperparameter
settings, all for 200 million frames. Over the entire devel-
opment cycle of DQN++ you have designed, tuned, and
fit your new method to this particular 200 million frame
lifetime. You may have overfit to both the environment (see
Whiteson et al. (2011)) and the lifetime you have chosen.

Tuning agents for a particular lifetime becomes problematic
in the context of continual RL. Recall it is typical to create
new continual RL benchmarks by adding a source of non-
stationarity. One view of non-stationarity is that there are
aspects of the MDP that are not fully observable to the
agent, thus the dynamics appear non-stationary. This is
easy to see because the vast majority of benchmarks in RL
are computer programs with well-defined internal state and
state-transition mechanisms. Our non-stationary, continual

learning problems simply do not make parts of the internal
state or transition mechanism visible to the agent.

If we allow lifetime tuning in a non-stationary environ-
ment, then we compromise the utility of these non-stationary
benchmarks for testing continual learning algorithms. We
inadvertently overcome the partially observability by itera-
tively designing, tuning, and testing our agents for the entire
lifetime. Every run of the experiment reveals more about
the hidden dynamics to the researcher and the learning al-
gorithm. The more we run, the more we reveal. In the end,
the benchmark is not nearly as partially observable (non-
stationary) and no continual learning is actually needed. We
compromise the original goal of these continual (partially
observable) testbeds, which was to force us to build agents
that could adapt to the unexpected.

4. A hypothetical continual RL experiment
We illustrate this point with a sequence of toy experiments:
a hypothetical progression that a researcher might follow.
Perhaps she starts with a simple, conventional benchmark,
like the Catch environment famously used to develop the
DQN algorithm. In Catch, the observation and input to the
agent is a bitmap image. Every episode a ball drops from
the top of the screen and the agent’s goal is to catch the
ball with a paddle at the bottom, that the agent can move
left, right, or stay. The agent either catches (+1 reward) or
misses the ball (-1 reward) and then the episode ends and a
new ball is randomly spawned at the top of the screen. As
we can see in Figure 1 (lhs), a DQN agent can perform well
on this environment, learning quickly and achieving stable
performance at the end of the lifetime. We will be more
rigorous about presenting experimental details in the next
section, here the intention is to focus on the big picture.

Our researcher next develops a continual variant of Catch, to
further demonstrate DQN is not well suited for continual RL.
This variant of Catch does not have an episodic structure.
Instead, on every step, a new ball will spawn randomly at the
top of the screen with some small probability (0.1), meaning
now there can be multiple balls at once. The respawn proba-
bility is set such a that an agent, on expectation, can catch
the ball. To make the environment non-stationary, we select
two pixels in the observation and swap them every 10,000
steps. The network must continually relearn the meaning of
pixels in the observation. As we see in Figure 1(rhs) DQN
indeed fails on this new environment.

In the next step, the researcher develops a new continual
learning algorithm to tackle this non-stationary benchmark.
Perhaps she explores using regularization to keep the net-
work parameters close to their initial values (Kumar et al.,
2024), called W0-DQN. Our researcher is very likely to im-
plicitly over-fit W0-DQN to Non-stationary Catch through

3



Lifetime tuning is incompatible with continual reinforcement learning

50k
Time Steps

0.0

0.6

1.0

Ca
tc

h 
Ra

te
Stationary Catch

Figure 1. DQN performs well (lhs) in the simple stationary catch
environment, but never reaches the same performance when ap-
plied to non-stationary Catch (rhs), even if we run the experiment
10 times longer. In fact, DQN gets worse with time, the signature
of loss of plasticity (Dohare et al., 2021; Lyle et al., 2022).

repeated testing and hyperparameter tuning, a process some-
times called designer bias (Patterson et al., 2024b).

Consider how this would unfold in Non-stationary Catch.
Over a fixed lifetime, the agent will see a fixed number of
pixel swaps. Our researcher can make the buffer size of
W0-DQN smaller to quickly purge the inaccurate transitions
after each switch. It does not matter whether our researcher
discovers this by exploiting knowledge of the problem or
directly tuning the hyperparameters (including buffersize)
for performance. Even if the switch rate changed with time
also, performance tuning over a finite lifetime would give a
large advantage. As we see in Figure 1 (rhs), if we are al-
lowed to systematically sweep W0-DQN’s hyperparameters
over the full lifetime and report the best performance, then
we see no loss of plasticity.

500k
Time Steps

0.0

0.6

0.9

Ca
tc

h 
Ra

te

DQN (Lifetime Tuned)
W0-DQN (Lifetime Tuned)

Non-Stationary Catch

Figure 2. Both DQN and W0-DQN perform nearly identically in a
non-stationary Catch if we allow lifetime tuning.

However, if we also apply lifetime tuning to DQN, even in
this non-stationary environment, we see good performance
as highlighted in Figure 2. We simply used a grid search
and lifetime tuning. This makes sense because there is no
reason to expect that the hyperparameters that work well in
Catch should work well in Non-stationary Catch—DQN was
significantly disadvantaged because it was untuned. This is
an important step that is often missed! Our researcher might

10M
Time Steps

0.0

0.6

0.9

Ca
tc

h 
Ra

te

DQN (Tuned on 500k)

W0-DQN (Tuned on 500k)
Non-Stationary Catch (20x Longer)

Figure 3. W0-DQN can significantly outperform DQN in non-
stationary Catch if we run the experiment 20 times longer. Here
we use the same hyperparameters previously found to be best in
non-stationary Catch, tuned over a 500k lifetime.

have convinced herself that DQN was hopeless and that
W0-DQN is significantly better in continuing environments
based on the results in Figure 1 (rhs). And the conclusion
would make sense to her and be less likely to be doubted,
as DQN was designed for stationary environments, whereas
regularizing the weights in this way has been previously
shown to be effective in continual RL.

In summary, there are two potential pitfalls here. (1) We
may falsely believe an algorithm cannot perform well in
continual RL if its hyperparameters are not appropriately
adjusted for a new environment. Continual learning papers
often introduce new environments, making this pitfall likely.
(2) If we do lifetime tune algorithms, then we might not
conclude an algorithm designed for continual learning is ac-
tually better, because all algorithms perform similarly under
lifetime tuning. To see why, let’s run one more experiment.

A reasonable continual learning agent should be able to
continue to learn, even if you run your experiment longer
and longer. Let’s take our two agents from the previous ex-
periment, now reasonably tuned for our new Non-stationary
Catch environment—that is, not using some community es-
tablished default hyperparameters—and run our experiment
20 times longer. Figure 3 clearly shows a significant dif-
ference in performance between the two methods: vanilla
DQN’s performance collapses whereas W0-DQN performs
well for the entire duration of the experiment. W0-DQN
performs well without tuning its hyperparameters for the
entire lifetime—it is better at continual learning, in this
environment at least. If we were to retune both agent’s hy-
perparameters for this much longer lifetime, we might end
up back in the situation summarized in Figure 2 and fail to
show the obvious benefit of W0-DQN in this non-stationary,
continual learning environment.

4



Lifetime tuning is incompatible with continual reinforcement learning

5. One alternative: k-percent tuning
Although, there are many possible alternatives to lifetime
tuning, we propose a very simple one here as a starting place,
called k-percent tuning. The name describes the relatively
simple idea: we propose to tune the agent only for k-percent
of its lifetime. We as experimenters will usually know how
long we will run our experiment for, but at least we can
constrain ourselves to tune only over a small window. If
the agent will run for n steps, then we tune the agent for
j = ⌊kn⌋ steps, where k is a percentage in [0, 100]. In
other words, for every hyperparameter setting suggested
via grid search or Bayesian optimization (Parker-Holder
et al., 2022; Eimer et al., 2023), we run the agent for j steps
and record the agent’s performance. We then chose the best
hyperparameter configuration, according to the performance
metric of interest (e.g., total return over the tuning phase).
The agent is then deployed with these hyperparameters for
the full n steps, for multiple runs, to get the performance
over the full lifetime of the agent.

6. The impact of k-percent tuning in
small-scale experiments

In this section, we explore how k-percent tuning impacts per-
formance in a simple continual stationary RL environment.
Continuing Cartpole (Barto et al., 1983) is a simple classic
control environment with completely stationary dynamics.
The agent’s observations are the position and velocity of
the cart and the angle and angular velocity of the pole. The
actions are discrete, move left or right, the discount is 0.999,
and the goal is to keep the pole balanced, without hitting the
ends of the track. The reward is +1 for every step that the
pole is balanced. Once the pole falls more than 24 degrees
from its upright position, the agent receives a reward of 0,
and the pole is reset to the upright position, but the agent
is not reset. We plot an exponential moving average (0.99
averaging constant) of the reward.

We consider a large set of hyperparameters for DQN, sweep-
ing exploration (epsilon), batch size, buffer size, minimum
buffer size, and the values of learning rate and β2 of the
Adam optimizer. The ranges and chosen hyperparameters
listed in Tables 1 and 2 respectively. 2

We tested three different criteria for selecting the best hyper-
parameter configuration during the tuning phase. In particu-
lar we tried: (1) performance over the last 10% of the tuning

2Although it is usually the case that larger learning rates are
chosen over shorter tuning windows in k%-tuning, we found it does
not always happen and is problem dependent. Over a short period
of time Cartpole is easy and many hyperparameter settings nearly
tie in performance: AUC of 0.9904788 for α = 0.01 vs 0.9887988
for α = 0.1. This is so close that the best hyperparameters chosen
by the sweep are subject to stochasticity. Note, k%-tuning did
select one of the larger learning rates, but not the largest.

Learning rate 10i : i ∈ [−1, · · · ,−5], 0.08
Batch size 32, 256
Buffer size 1, 000, 10, 000, 100, 000

Min buffer size 0, 1000
Exploration ϵ 0.01, 0.1

Adam optimizer β2 0.9, 0.999

Table 1. DQN hyperparameter ranges tested.

phase, (2) total cumulative performance over tuning (i.e.,
area under the curve or AUC), and (3) the hyperparameters
that resulted in the best performance when looking at the
worst performing seed. In our experiments all three criteria
produced similar results, so we report AUC for simplicity.

k%-tuned lifetime tuned
Learning rate 0.01 0.08

Batch size 256 256
Buffer size 1, 000 1, 000

Min buffer size 0 0
ϵ 0.01 0.1

Adam β2 0.999 0.9

Table 2. Best performing hyperparameters for DQN on Cartpole.

0 5M 10M
Time Steps

0.88

0.95

1.0

Po
le

 B
al

an
ce

d 
Ra

tio

DQN life-time tuned

DQN 1% tuned

Figure 4. Tuning on one-percent of a lifetime leads to poor per-
formance in Continuing Cartpole, whereas lifetime tuning allows
DQN to achieve nearly optimal performance. Results are averaged
over ten independent trials and the shaded regions are 95% boot-
strap confidence intervals.

In Figure 4 we again see the impact of lifetime tuning. If
we are only allowed to tune DQN’s hyperparameters for
a fraction of the lifetime, the performance is high early in
learning and then catastrophically collapses. Our results
on Non-stationary Catch and Cartpole, two simple toy en-
vironments, suggests DQN is not well suited for continual
learning. DQN’s performance under lifetime tuning poten-
tially suggests that some prior success of recent continual
RL algorithms might be explained by lifetime tuning.

5



Lifetime tuning is incompatible with continual reinforcement learning

7. Recent continual learning algorithms are
less reliant on lifetime tuning

There have been numerous mitigation strategies introduced
in the continual RL literature, designed to make algorithms
like DQN more robust. In this section, we show that some of
these mitigations actually work well under k-percent tuning.

We investigated several recent mitigation strategies.

W0Regularization(W0) (Kumar et al., 2024): The distance
between the current and initial weights is added to the loss
to encourage the weights to stay near the initialization.

L2Regularization(L2) (Dohare et al., 2024; van Laarhoven,
2017): A term proportional to the ℓ2 norm of the weights
of the network is added to the loss function to ensure the
weight magnitudes are kept small.

CReLU (Abbas et al., 2023): The concatenated ReLU acti-
vation function limits the number of inactive units by con-
catenating the output of ReLU(x) with ReLU(−x). This
should reduce the percentage of dead neurons since CReLU
maintains 50% of the neurons in an active state.

PT-DQN (Anand & Precup, 2023): The value function is
decomposed into two separate networks: permanent and
transient. The transient is updated toward the residual error
from combining both networks’ predictions and is reset
periodically. The permanent network is only updated by
distilling the transient network’s predictions.

Weight normalization (Salimans & Kingma, 2016):
Weight matrices are split into the weight magnitudes and
weight directions, with separate gradients for each.

Layer Normalization (Ba et al., 2016): This method applies
normalization to activations of the neural network by using
the statistics from all of the summed inputs to the neurons
within one layer.

k-percent tuning of DQN mitigations: Figure 5 sum-
marizes the performance of DQN with mitigations under
one-percent tuning in Non-stationary Catch and Continuing
Cartpole. All mitigations except Layer Normalization per-
form well in Non-stationary Catch. In Continuing Cartpole,
performance is more mixed. DQN with Layer Normaliza-
tion outperforms lifetime-tuned DQN, whereas PT-DQN
more or less matches lifetime-tuned DQN. The other mitiga-
tions, perform worse, but none are as bad as DQN (in black).
This is significant because in Figure 5 all the algorithms
have their hyperparameters set using one-percent tuning.

This result suggests that lifetime tuning can make new al-
gorithms appear less useful because their performance does
not surpass an unreasonable standard set by lifetime tuning.

k-percent tuning of SAC mitigations: We ran a similar
experiment with SAC in a modified environment from the

Figure 5. The performance of several mitigation strategies de-
signed to improve the performance of DQN in continual learning
environments. All results plotted correspond to the best performing
hyperparameters under one-percent tuning. Results are averaged
over ten independent trials and shaded regions show the 95% boot-
strap confidence intervals.

DeepMind Control Suite (Tassa et al., 2018). We inves-
tigated how SAC performs with one-percent tuning in a
lifelong learning setting where the environment switches
from quadruped-walk to quadruped-run halfway through the
experiment. We again considered a large set of hyperparam-
eters for SAC, including the learning rate, batch size, buffer
size, and the values of β2 and ϵ in the Adam optimizer sum-
marized in Table 3. The ranges and chosen hyperparameters
are outlined in Table 4. We compare the one-percent-tuned
values with the default hyperparameters previously reported
for the DeepMind Control Suite (Haarnoja et al., 2018).

Learning rate 2 · 10−2, 10i : i ∈ [−2, · · · ,−7]
Batch size 16, 32, 128, 256, 512
Buffer size 512, 1000, 10000

Adam optimizer β2 0.9, 0.999
Adam optimizer ϵ 1 · 10−8, 0.1

Table 3. Hyperparameter ranges for one-percent tuning on SAC on
DeepMind Control Suite environments

Figure 6 shows the performance of SAC with different
mitigations under one-percent tuning in the switching
Quadruped-walk-run environment. Most mitigation strate-

6



Lifetime tuning is incompatible with continual reinforcement learning

Figure 6. Multiple mitigation strategies do improve the perfor-
mance of quadruped-walk-to-run with hyperparameters obtained
from tuning on one-percent of quadruped-walk. l2 is weight decay
= 1 · 10−5, w0 is with penalization of weights moving away from
their initialization values, and wn is weight normalization. The
results are based on 10 runs, and the shading is the standard error.

gies improve performance over SAC with one-percent tun-
ing, except for W0Regularization which further decreases
performance. CReLU improves performance the most on its
own, and combining CReLU with weight normalization has
the strongest effect. Interestingly, weight normalization on
its own is the least effective when moving from walk to run.
Note, in Table 4 the learning rate chosen by one-percent
tuning in quadruped-walk-run is larger than the default. The
learning rate is particularity sensitive to lifetime. In shorter
lifespans, tuning selects for larger learning rates that are
beneficial in the short run, but k-percent tuning highlights
how this can result in poor performance in the long run.

Normalization has been shown to allow for larger learning
rates (Bjorck et al., 2018; Salimans & Kingma, 2016; Ba
et al., 2016) and that may be why weight normalization
works well in Quadruped-walk-run. Although ℓ2 regulariza-
tion has been shown to increase the effective learning rate
(van Laarhoven, 2017), it is not sufficient here.

default k%-tuned
Learning rate 3 · 10−4 1 · 10−3

Batch size 256 512
Buffer size 1, 000, 000 10, 000

Adam optimizer β2 0.999 0.9
Adam optimizer ϵ 1 · 10−8 1 · 10−8

Table 4. Default hyperparameter values and those selected using
one-percent tuning for SAC on the DeepMind Control Suite. Tun-
ing was done with three independent runs.

8. k-percent tuning in a never-ending task
In this section, we contrast using k-percent tuning and life-
time tuning to compare continual learning mitigation strate-
gies for DQN in Jelly Bean World, a testbed for never-
ending, continual learning (Platanios et al., 2020). We use
the environment configuration detailed in (Anand & Precup,
2023), where the agent navigates through up, down, left,
right actions, and has to adapt to a non-stationary reward
function that flips between +2 and -1 for collecting jelly-
beans and onions respectively, every 0.15 M steps. The
discount factor is 0.9. We compare lifetime tuning where
hyperparameters are tuned on the full 1.5 M steps, with 10%
and 20% tuning, where hyperparameters are tuned using
only 0.15 M and 0.3 M steps respectively. With 10% tun-
ing, the agent is tuned for the time steps before the first
reward function flip, so the environment appears stationary.
Under 20% tuning, both reward functions are observed by
the agent, providing information regarding the nature of the
non-stationarity in the environment.

We evaluate two mitigation strategies applied to the DQN
algorithm: W0Regularization (W0-DQN) and permanent
transient networks (PT-DQN). We follow a two-stage tun-
ing approach selecting hyperparameters using 5 indepen-
dent trials and then evaluating them using 30 new inde-
pendent trials (Patterson et al., 2024b). We tuned DQN
with a fine-grained sweep over 25 learning rates, α ∈
{10−12/6, 10−13/6, . . . , 10−36/6} so a similar amount of
computational resources is used for hyperparameter tun-
ing between methods. For W0-DQN, we tune the learn-
ing rate α ∈ {10−2, 10−3, . . . , 10−6} and the regulariza-
tion coefficient λ ∈ {10−2, 10−3, . . . , 10−6}. For PT-
DQN, we tune the permanent value function learning rate
αP ∈ {10−4, 10−5, . . . , 10−8} and the transient value func-
tion learning rate αT ∈ {10−2, 10−3, . . . , 10−6}. All other
hyperparameters are set to the values used in prior work
(Anand & Precup, 2023).

Figure 7 shows a comparison between lifetime tuning and
k-percent tuning for DQN, W0-DQN, and PT-DQN in Jelly
Bean World. There were no significant differences between
all three algorithms with lifetime tuning, except in the last
few reward function swaps (near the end) DQN takes longer
to recover than the variants with mitigations. However, with
20% tuning, W0-DQN and PT-DQN performed well in this
non-stationary environment, while DQN performance de-
clined over time with 20% tuning. With 10% tuning, DQN
and PT-DQN’s performance collapses over time, while W0-
DQN performance was maintained. The best performing
algorithms (e.g., W0-DQN) do not exhibit loss of plasticity,
but do exhibit a saw-tooth pattern of interference and re-
learning because the networks are not recurrent and cannot
remember previous tasks.

The choice of lifetime or k-percent tuning has a significant

7



Lifetime tuning is incompatible with continual reinforcement learning

(a) 100% tuning

0 0.15M 0.3M 1.5M
Time Steps

0.0

0.2

0.4

Re
wa

rd
 P

er
 S

te
p

DQN

W0-DQN

PT-DQN

(b) 20% tuning

0 0.15M 0.3M 1.5M
Time Steps

0.0

0.2

0.4

Re
wa

rd
 P

er
 S

te
p

DQN

W0-DQN

PT-DQN

(c) 10% tuning

0 0.15M 0.3M 1.5M
Time Steps

0.0

0.2

0.4

Re
wa

rd
 P

er
 S

te
p

DQN

W0-DQN

PT-DQN

Figure 7. W0-DQN and PT-DQN perform well in Jelly Bean World, even when restricted to 10% and 20% tuning respectively. All
algorithms, including DQN, perform well when using lifetime tuning. Results are averaged over 30 independent trials and the shaded
regions are 95% bootstrap confidence intervals.

impact on the conclusions one can draw in Jelly Bean World.
DQN with k-percent tuning exhibits loss of plasticity and
no longer learns. The mitigations in W0-DQN and PT-DQN
with 20% tuning adapt to this non-stationary environment.
However, for PT-DQN there is a large performance drop
when using only 10% tuning, likely because the agent only
observes one reward function during tuning and is unable
to adapt to a challenging lifetime of switching between the
two reward functions. In contrast, W0-DQN is more robust
under 10% tuning, as it is able to maintain performance with-
out observing the reward function non-stationarity during
the tuning phase. However, if we only look at the lifetime
tuning results, we cannot draw any conclusions on the effec-
tiveness of the mitigations.

The results in Figure 7 clearly demonstrate how lifetime-
tuning can both obfuscate good performance and inflate
performance. Looking at the top row (100%) of this figure,
one might conclude that all three agents perform similarly

in JBW. However, as the amount of tuning decreases, we
see DQN’s performance is clearly decreasing with time. At
the most extreme, 10% tuning, it becomes very clear that
W0-DQN significantly outperforms the other methods and
that PT-DQN performs no better than DQN.

9. Alternative Views
An obvious alternative position is the null position: we do
not need new methodologies, we just need better algorithms.
It is true that algorithm development is not always ham-
pered by current empirical practices nor lack of problem
formulations. In RL, however, there is historical precedent
of the significant positive impact of standardization that is
well-aligned with exploiting current algorithm’s limitations.
Take, for example, the Arcade Learning Environment (ALE)
(Bellemare et al., 2013; Machado et al., 2018). Before ALE
was introduced, little empirical work in RL was applica-
ble to multiple environments and image-based observations.

8



Lifetime tuning is incompatible with continual reinforcement learning

These limitations were known, but the benchmarks and eval-
uation methodologies of the day were not suitable for such
ambitious experiments. In particular, the original ALE paper
was very particular in its methodological suggestions (e.g.,
tuning on five games and reporting online performance). We
cannot know how long progress would have been delayed
without these concrete proposals. The position of this pa-
per is that we, are again, in need of new methodology and
benchmarks, this time for continual RL.

It is commonly held that, in deep RL, the community has
settled on a common set of default hyperparameters that
work well across environments for popular agents and thus
tuning is no longer a confounding factor. There is signifi-
cant evidence supporting this position. The well-loved 37
implementation details of PPO outlines choices that have
allowed many researchers to get PPO working on a variety
of environments. The leaderboard results on Spinning Up
Baselines show that SAC is still near SOTA, with one set
of hyperparameters, across several Mujoco tasks—these re-
sults were compiled in 2018! More recently, the DreamerV3
architecture achieved high performance, with one set of hy-
perparameters, across dozens of environments, including
Minecraft (Hafner et al., 2025).

On the other hand, there is also evidence to the contrary. Re-
cent work has shown that PPO and innovations introduced
in DreamerV3 actually induce high sensitivity (Adkins et al.,
2024), the amount of data required for statistically sound
rankings of algorithms is much larger than standard practice
(Jordan et al., 2024; Patterson et al., 2024a), and the em-
pirical practices used to identify community defaults (i.e.,
common practice) may be suspect (Patterson et al., 2024b).
Unfortunately, our algorithms are still very sensitive to the
choice of hyperparameters. We do not know how much
additional performance we forgo with defaults and a new
environment could cause existing methods (with default
choices) to utterly fail. We do not yet have general agents,
thus (lifetime) tuning matters.

AutoRL (Parker-Holder et al., 2022; Eimer et al., 2023)
and, more generally, meta-learning approaches for setting
agent hyperparameters may appear to side-step the issue
of how tuning is conducted. Generally speaking, these
methods use an outer meta-learning process to adapt the
hyperparameters of the underlying RL algorithms—to learn
how to learn. Methods have been developed to adapt the
step-size parameter (Dabney & Barto, 2012; Jacobsen et al.,
2019), the eligibility trace parameter (White & White, 2016;
Mann et al., 2016; Kobayashi, 2022), and even the update
itself (Xu et al., 2018; Flennerhag et al., 2022). These meta
approaches, like the underlying algorithms, have hyperpa-
rameters as well, such as how long each hyperparameter
combination is evaluated, how initial hyperparameter’s are
sampled, exploration strategy in the hyperparameter-space,

etc. In fact, meta approaches have been largely overlooked
in RL in favor of default hyperparameter settings discovered
via lifetime tuning. An online meta-learning approach that
continually adapts agent hyperparameters could tune during
the whole lifetime of the agent and thus more clearly high-
light the benefits of meta learning. We believe meta-learning
approaches appear less useful because they are compared
with life-time tuning.

One might easily conclude from our exploration of k-
percent tuning that this approach does not help find good
hyperparameters for continual learning and thus is not useful.
It is certainly true that several of our results show subopti-
mal performance, failure, and even loss of plasticity. On the
other hand, we also saw that some algorithms designed for
continual RL outperform baselines and even do well. Life-
time tuning makes algorithms perform similarly, whereas
k-percent tuning highlights the promise of these methods in
a more challenging empirical setup.

Related, k-percent tuning is not really similar to a real de-
ployment scenario and thus using it will not directly tell us
which algorithms will perform well in applications. This is
certainly true. Although our position against lifetime tuning
was based on, in part, the argument that lifetime tuning is
not possible in reality, k-percent tuning is limited in this
respect. Yes it is hard to imagine a deployment scenario
where we have limited access to a system, but we can run
multiple independent trials (seeds). One could certainly
propose an evaluation methodology more useful for deploy-
ment: something like k-percent with a single trial. However,
our purpose was to provide a simple alternative to generate
results that highlight the problems with lifetime tuning. This
is a position paper with a call to action: stop lifetime tuning
your continual RL agents. We hope and expect future work
to improve upon and replace k-percent tuning.

We cannot prevent people from cheating in their evaluations.
This is a valid criticism. Furthermore, we cannot prevent
people from cheating accidentally, just due to lack of knowl-
edge. This lack of knowledge is exactly the motivation for
arguing this position and inviting the community to establish
better evaluation methodologies for continual RL. If there
is a well-specified alternative to lifetime tuning, then people
can adopt it into their workflows. If we want to prevent
misleading evaluations, then that may require establishing
environment servers that researchers connect with to run
their experiments, as used on the RL competitions (White-
son et al., 2010). For now, we think that is a step too far,
and k-percent tuning is a small step in the right direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

9



Lifetime tuning is incompatible with continual reinforcement learning

consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado,

M. C. Loss of plasticity in continual deep reinforcement
learning. In Conference on Lifelong Learning Agents.
2023.

Abel, D., Barreto, A., Van Roy, B., Precup, D., van Has-
selt, H. P., and Singh, S. A definition of continual rein-
forcement learning. In Advances in Neural Information
Processing Systems, 2023.

Adkins, J., Bowling, M., and White, A. A method for
evaluating hyperparameter sensitivity in reinforcement
learning. In Advances in Neural Information Processing
Systems, 2024.

Anand, N. and Precup, D. Prediction and control in con-
tinual reinforcement learning. In Advances in Neural
Information Processing Systems, 2023.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer Normaliza-
tion. In Deep Learning Symposium NeurIPS, 2016.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q.
Understanding Batch Normalization. In Advances in
Neural Information Processing Systems. 2018.

Dabney, W. and Barto, A. Adaptive step-size for online
temporal difference learning. In AAAI Conference on
Artificial Intelligence, 2012.

Dohare, S., Sutton, R. S., and Mahmood, A. R. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325v3, 2021.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P.,
Mahmood, A. R., and Sutton, R. S. Loss of plasticity in
deep continual learning. Nature, 632:768–774, 2024.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop Neural Infor-
mation Processing Systems, 2022.

Eimer, T., Lindauer, M., and Raileanu, R. Hyperparame-
ters in reinforcement learning and how to tune them. In
International Conference on Machine Learning. 2023.

Flennerhag, S., Schroecker, Y., Zahavy, T., van Hasselt, H.,
Silver, D., and Singh, S. Bootstrapped meta-learning. In
International Conference on Learning Representations,
2022.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse control tasks through world models. Nature, 640
(8059):647–653, 2025.

Huang, S., Dossa, R. F. J., Raffin, A., Kanervisto, A., and
Wang, W. The 37 implementation details of proximal pol-
icy optimization. In International Conference on Learn-
ing Representations Blog Track, 2022.

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White,
A., and White, M. Meta-descent for online, continual
prediction. In AAAI Conference on Artificial Intelligence,
2019.

Janjua, M. K., Shah, H., White, M., Miahi, E., Machado,
M. C., and White, A. GVFs in the real world: Making
predictions online for water treatment. Machine Learning,
113(8):5151–5181, 2024.

Jordan, S. M., White, A., Da Silva, B. C., White, M., and
Thomas, P. S. Position: benchmarking is limited in rein-
forcement learning research. In International Conference
on Machine Learning. 2024.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. To-
wards continual reinforcement learning: A review and
perspectives. Journal of Artificial Intelligence Research,
75:1401–1476, 2022.

Kobayashi, T. Adaptive eligibility traces for online deep re-
inforcement learning. In Intelligent Autonomous Systems,
2022.

Kumar, S., Marklund, H., and Roy, B. V. Maintaining plas-
ticity in continual learning via regenerative regularization.
In Conference on Lifelong Learning Agents, 2024.

Langley, P. Crafting papers on machine learning. In Inter-
national Conference on Machine Learning, 2000.

Lazic, N., Lu, T., Boutilier, C., Research, R. G., Wong,
E., Roy, B., Imwalle, G., and Cloud, G. Data center
cooling using model-predictive control. Advances in
Neural Information Processing Systems, 31, 2018.

10



Lifetime tuning is incompatible with continual reinforcement learning

Luo, J., Paduraru, C., Voicu, O., Chervonyi, Y., Munns, S.,
Li, J., Qian, C., Dutta, P., Davis, J. Q., Wu, N., et al. Con-
trolling commercial cooling systems using reinforcement
learning. arXiv preprint arXiv:2211.07357, 2022.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2022.

Lyle, C., Zheng, Z., Nikishin, E., Pires, B. A., Pascanu, R.,
and Dabney, W. Understanding plasticity in neural net-
works. In International Conference on Machine Learning.
2023.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Mann, T. A., Penedones, H., Mannor, S., and Hester, T.
Adaptive lambda least-squares temporal difference learn-
ing. arXiv preprint arXiv:1612.09465, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International Conference on Machine Learn-
ing. 2022.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R.,
Dabney, W., and Barreto, A. Deep reinforcement learning
with plasticity injection. In Advances in Neural Informa-
tion Processing Systems, 2023.

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A.,
Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R.,
Faust, A., et al. Automated reinforcement learning (au-
torl): A survey and open problems. Journal of Artificial
Intelligence Research, 74:517–568, 2022.

Patterson, A., Neumann, S., Kumaraswamy, R., White, M.,
and White, A. Cross-environment hyperparameter tun-
ing for reinforcement learning. Reinforcement Learning
Journal, 5:2298–2319, 2024a.

Patterson, A., Neumann, S., White, M., and White, A. Em-
pirical design in reinforcement learning. Journal of Ma-
chine Learning Research, 25(318):1–63, 2024b.

Platanios, E. A., Saparov, A., and Mitchell, T. Jelly bean
world: A testbed for never-ending learning. In Interna-
tional Conference on Learning Representations, 2020.

Salimans, T. and Kingma, D. P. Weight Normalization:
A Simple Reparameterization to Accelerate Training of
Deep Neural Networks. In Advances in Neural Informa-
tion Processing Systems. 2016.

Sutton, R. S., Koop, A., and Silver, D. On the role of
tracking in stationary environments. In International
Conference on Machine Learning. 2007.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., Lillicrap, T., and Riedmiller, M. DeepMind Control
Suite, 2018.

van Laarhoven, T. L2 Regularization versus Batch and
Weight Normalization. arXiv preprint arXiv:1706.05350,
2017.

White, M. Unifying task specification in reinforcement
learning. In International Conference on Machine Learn-
ing. 2017.

White, M. and White, A. A greedy approach to adapting
the trace parameter for temporal difference learning. In
International Conference on Autonomous Agents & Mul-
tiagent Systems, 2016.

Whiteson, S., Tanner, B., and White, A. Report on the 2008
reinforcement learning competition. AI Magazine, 31(2):
81–81, 2010.

Whiteson, S., Tanner, B., Taylor, M. E., and Stone, P. Pro-
tecting against evaluation overfitting in empirical rein-
forcement learning. In IEEE symposium on adaptive
dynamic programming and reinforcement learning. 2011.

Xu, Z., van Hasselt, H. P., and Silver, D. Meta-gradient re-
inforcement learning. In Advances in Neural Information
Processing Systems. 2018.

11


