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Abstract

Graph Neural Network (GNN) architectures are defined by their implementations
of update and aggregation modules. While many works focus on new ways to
parametrise the update modules, the aggregation modules receive comparatively
little attention. Because it is difficult to parametrise aggregation functions, cur-
rently most methods select a “standard aggregator” such as mean, sum, or max.
While this selection is often made without any reasoning, it has been shown that
the choice in aggregator has a significant impact on performance, and the best
choice in aggregator is problem-dependent. Since aggregation is a lossy opera-
tion, it is crucial to select the most appropriate aggregator in order to minimise
information loss. In this paper, we present GenAgg, a generalised aggregation
operator, which parametrises a function space that includes all standard aggrega-
tors. In our experiments, we show that GenAgg is able to represent the standard
aggregators with much higher accuracy than baseline methods. We also show that
using GenAgg as a drop-in replacement for an existing aggregator in a GNN often
leads to a significant boost in performance across various tasks.

1 Introduction

(a) θ = ⟨σ(x), 0,−1⟩ (b) θ = ⟨ex, 0, 0⟩

(c) θ = ⟨log(|x|), 0, 0⟩ (d) θ = ⟨tanh(x), 0, 0⟩

(e) θ = ⟨ex, 0, 1⟩ (f) θ = ⟨log(|x|), 0, 1⟩

Figure 1: A qualitative demonstration of the di-
versity of functions that can be represented by
GenAgg. In these visualisations, GenAgg is plot-
ted as a function of inputs x0 and x1 for different
parametrisations θ = ⟨f, α, β⟩ (see Equation (1)).

Graph Neural Networks (GNNs) provide a powerful
framework for operating over structured data. Tak-
ing advantage of relational inductive biases, they
use local filters to learn functions that generalise
over high-dimensional data. Given different graph
structures, GNNs can represent many special cases,
including CNNs (on grid graphs) [12], RNNs (on
line graphs) [4], and Transformers (on fully con-
nected graphs) [19]. All of these architectures
can be subsumed under the Graph Networks frame-
work, parametrised by update and aggregation mod-
ules [2]. Although the framework itself is general,
the representational capacity is often constrained in
practice through design choices, which create a hu-
man prior [21]. There are two primary reasons for
introducing this human prior. First, there are no stan-
dard methods to parametrise all of the modules—
MLPs can be used as universal approximators in the
update modules, but it is nontrivial to parametrise the
function space of aggregators. Consequently, most
GNNs simply make a design choice for the aggre-
gation functions, selecting mean, sum, or max [21].
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Second, constraints can boost performance in GNNs, either through invariances or a regularisation
effect.

In this paper, we focus on the problem of parametrising the space of aggregation functions. The ulti-
mate goal is to create an aggregation function which can represent the set of all desired aggregators
while remaining as constrained as possible. In prior work, one approach is to introduce learnable
parameters into functions that could parametrise min, mean, and max, such as the Powermean and
a variant of Softmax [8, 13, 20]. However, these approaches can only parametrise a small set of
aggregators, and they can introduce instability in the training process (see Section 4). On the oppo-
site end of the spectrum, methods like Deep Sets [22] and LSTMAgg [9] are capable of universal
approximation over set functions, but they are extremely complex, which leads to poor sample effi-
ciency. These methods scale in complexity (i.e. number of parameters) with the dimensionality of
the input, and lack some of the useful constraints that are shared among standard aggregators (see
Section 4). Consequently, the complexity of these methods counteracts the benefits of simple GNN
architectures.

Although existing approaches present some limitations, the theoretical advantages of a learnable
aggregation module are evident. It has been shown that the choice of aggregation function not
only has a significant impact on performance, but also is problem-specific [21]. Since there is no
aggregator that can discriminate between all inputs [5], it is important to select an aggregator that
preserves the relevant information. In this paper, we present a method that parametrises the function
space, allowing GNNs to learn the most appropriate aggregator for each application.

Contributions

• We introduce Generalised Aggregation (GenAgg), the first aggregation method based on
the generalised f-mean. GenAgg is a learnable permutation-invariant aggregator which
is provably capable (both theoretically and experimentally) of representing all “standard
aggregators” (see Appendix C for proofs). The representations learned by GenAgg are
explainable—each learnable parameter has an interpretable meaning (Section 6).

• Our experiments provide several insights about the role of aggregation functions in the
performance of GNNs. In our regression experiments, we demonstrate that GNNs struggle
to “make up for” the lack of representational complexity in their constituent aggregators,
even when using state-of-the-art parametrised aggregators. This finding is validated in our
GNN benchmark experiments, where we show that a GenAgg-based GNN outperforms
all of the baselines, including standard aggregators and other state-of-the-art parametrised
aggregators.

• Finally, we show that GenAgg satisfies a generalisation of the distributive property. We de-
rive the solution for a binary operator that satisfies this property for given parametrisations
of GenAgg. The generalised distributive property can be leveraged in algorithms using
GenAgg to improve space and memory-efficiency.

2 Problem Statement

Consider a multiset X = {x1, x2, . . . , xn} of cardinality |X | = n, where xi ∈ Rd. We de-
fine an aggregation function as a symmetric function

⊙
: Rn×d 7→ R1×d. The aggregator

must be independent over the feature dimension, so without loss of generality it can be rep-
resented over a single dimension

⊙
: Rn 7→ R1. A set of standard aggregators is defined

A = {mean, sum,product,min,max, . . .} (for the full list see Table 1). Our task is to create
an aggregator

⊕
θ : Rn 7→ R1 parametrised by θ which can represent all standard aggregators:

∀⊙i∈A ∃θ : ⊕
θ =

⊙
i.

3 Method

In this section we introduce GenAgg, a parametrised aggregation function which is based on the
generalised f -mean [11]. In our formulation, we introduce additional parameters to increase the
representational capacity of the f -mean, producing the augmented f -mean (AFM). Then, as the im-
plementation is non-trivial, we propose a method to implement it. The novel aspect of GenAgg is not



Aggregation Function α β f GenAgg SoftmaxAgg PowerAgg

mean:
1

n

∑
xi 0 0 f(x) = x ✓ ✓ ✓

sum:
∑

xi 1 0 f(x) = x ✓ ✗ ✗

product:
∏

|xi| 1 0 f(x) = log(|x|) ✓ ✗ ✗

min (magnitude): min |xi| 0 0 f(x) = limp→∞ |x|−p ✓ ✗ ✓

max (magnitude): max |xi| 0 0 f(x) = limp→∞ |x|p ✓ ✗ ✓

min: minxi 0 0 f(x) = limp→∞ e−px ✓ ✓ ✗

max: maxxi 0 0 f(x) = limp→∞ epx ✓ ✓ ✗

harmonic mean:
n∑

1
xi

0 0 f(x) = 1
x ✓ ✗ ✓

geometric mean: n

√∏
|xi| 0 0 f(x) = log(|x|) ✓ ✗ ✓

root mean square:

√
1

n

∑
x2i 0 0 f(x) = x2 ✓ ✗ ✓

euclidean norm:
√∑

x2i 1 0 f(x) = x2 ✓ ✗ ✗

standard deviation:

√
1

n

∑
(xi − µ)2 0 1 f(x) = x2 ✓ ✗ ✗

log-sum-exp: log
(∑

exi

)
1 0 f(x) = ex ✓ ✗ ✗

Table 1: A table of all of the most common aggregators. For each special case, we specify the values
of α, β, and f for which the augmented f -mean is equivalent (see Appendix C). We also report
whether or not SoftmaxAgg and PowermeanAgg can represent each aggregator.

only the augmented f -mean formula, but also the implementation, which allows the mathematical
concept of a generalised mean to be utilised in a machine learning context.

3.1 Generalised f -Mean

The generalised f-mean [11] is given by: f−1( 1n
∑

i f(xi)). While it is difficult to define aggre-
gation functions, the generalised f -mean provides a powerful intuition: most aggregators can be
represented by a single invertible scalar-valued function f : R1 7→ R1. This is a useful insight,
because it allows comparisons to be drawn between aggregators by analysing their underlying func-
tions f . Furthermore, it provides a framework for discovering new aggregation functions. While
classic functions like ex, log(x), xp all map to aggregators in A, new aggregators can be created by
defining new functions f .

3.2 Augmented f -Mean

The standard generalised f -mean imposes strict constraints, such as symmetry (permutation-
invariance), idempotency (

⊕
({x, . . . , x}) = x), and monotonicity (∀i ∈ [1..n], ∂

⊕
({x1,...,xn})

∂xi
≥

0). However, this definition is too restrictive to parametrise many special cases of aggregation func-
tions. For example, sum violates idempotency (

∑
i∈[1..n] xi = nx), and standard deviation violates

monotonicity (∂σ({x1,1})
∂x1

|x1=0 < 0). Consequently, we deem these constraints to be counterpro-
ductive. In our method, we introduce learnable parameters α and β to impose a relaxation on the
idetempotency and monotonicity constraints, while maintaining symmetry. We call this relaxed



formulation the augmented f -mean (AFM), given by:⊕
i∈[1..n]

xi = f−1

nα−1
∑

i∈[1..n]

f(xi − βµ)

 . (1)

The α parameter allows AFM to control its level of dependence on the cardinality of the input
X . For example, given f(x) = log(|x|), if α = 0, then AFM represents the geometric mean:⊕

⟨f,α,β⟩ =
⊕

⟨log(|x|),0,0⟩ = n
√∏ |xi|. However, if α = 1, then the n-th root disappears, and

AFM represents a product:
⊕

⟨log(|x|),1,0⟩ =
∏ |xi|.

The β parameter enables AFM to calculate centralised moments, which are quantitative measures
of the distribution of the input X [17]. The first raw moment of X is the mean µ = 1

n

∑
xi, and

the k-th central moment is given by µk =
∑

(xi − µ)k. With the addition of β, it becomes possible
for AFM to represent k

√
µk, the k-th root of the k-th central moment. For k = 2, this quantity is the

standard deviation, which is in our set of standard aggregators A. If the output is scaled to the k-th
power, then it can also represent metrics such as variance, unnormalised skewness, and unnormalised
kurtosis. It is clear that these metrics about the distribution of data are useful—they can have real-
world meaning (e.g., moments of inertia), and they have been used as aggregators in GNNs in prior
work [5]. Consequently, β provides AFM with an important extra dimension of representational
complexity. In addition to representing the centralised moments when β = 1 and f(x) = xp,
β allows any aggregator to be calculated in a centralised fashion. While the centralised moments
are the only well-known aggregators that arise from nonzero β, there are several aggregators with
qualitatively unique behaviour that can only be represented with nonzero β (see Fig. 1).

With this parametrisation, AFM can represent any standard aggregator in A (Table 1). Furthermore,
by selecting new parametrisations θ = ⟨f, α, β⟩, it is possible to compose new aggregators (Fig. 1).

3.3 Implementation

In Equation (1), the manner in which f−1 is implemented is an important design choice. One option
is to learn the coefficients for an analytical function (e.g. a truncated Taylor Series) and analytically
invert it. However, it can be difficult to compute the analytical inverse of a function, and without
carefully selected constraints, there is no guarantee that f will be invertible.

Another possible option is an invertible neural network (e.g. a parametrised invertible mapping from
normalising flows [10]). We have tested the invertible networks from normalising flows literature
as implementations for f . While they work well on smaller tasks, these methods present speed and
memory issues in larger datasets.

In practice, we find that the most effective approach is to use two separate MLPs for f and f−1. We
enforce the constraint x = f−1(f(x)) by minimizing the following optimisation objective:

Linv(θ1, θ2) = E
[(∣∣∣f−1

θ2
(fθ1(x))

∣∣∣− |x|
)2

]
. (2)

The absolute value operations apply a relaxation to the constraint, allowing f−1(f(x)) to reconstruct
either x or |x|. This is useful because several of the ground truth functions from Table 1 include an
absolute value, making them non-invertible. With this relaxation, it becomes possible to represent
those cases. This optimisation objective ensures that f is both monotonic and invertible over the
domains R+ and R−, independently. In our implementation, this extra optimisation objective is
hidden behind the GenAgg interface and gets applied automatically with a forward hook, so it is not
necessary for the user to apply an extra loss term.

While using a scalar-valued f : R1 7→ R1 is the most human-interpretable formulation, it is not
necessary. A valid implementation of GenAgg can also be achieved with f : R1 7→ Rd and f−1 :
Rd 7→ R1. In our experiments, we found that mapping to a higher intermediate dimension can
sometimes improve performance over a scalar-valued f (see training details in Appendix E).

3.4 Generalised Distributive Property

Given that GenAgg presents a method of parameterising the function space of aggregators, it
can also be used as a tool for mathematical analysis. To demonstrate this, we use the aug-



Aggregation Function Distributive Operations ψ(a, b)

mean:
1

n

∑
xi a+ b, a · b

sum:
∑

xi a · b

product:
∏

|xi| |a|log |b|

min (magnitude): min |xi| min(|a|, |b|)

max (magnitude): max |xi| max(|a|, |b|)

min: minxi min(a, b)

max: maxxi max(a, b)

harmonic mean:
n∑

1
xi

a·b
a+b , a · b

geometric mean: n

√∏
|xi| |a| · |b|, |a|log |b|

root mean square:

√
1

n

∑
x2i

√
a2 + b2, |a| · |b|

euclidean norm:
√∑

x2i |a| · |b|

standard deviation:

√
1

n

∑
(xi − µ)2 |a| · |b|

log-sum-exp: log
(∑

exi

)
a+ b

Table 2: A table of the distributive operations ψ that satisfy each aggregation function, computed
using Equation 3. All aggregation functions have at least one solution, and some special cases have
multiple solutions.

mented f -mean to analyse a generalised form of the distributive property, which is satisfied if
ψ
(
c,
⊙

xi∈X xi
)
=

⊙
xi∈X ψ(c, xi) for binary operator ψ and aggregator

⊙
. For a given ag-

gregation function parametrised by f (assuming β is 0), we derive a closed-form solution for a
corresponding binary operator which will satisfy the generalised distributive property (for further
explanation and proofs, see Appendix A).
Theorem 3.1. For GenAgg parametrised by θ = ⟨f, α, β⟩ = ⟨f, α, 0⟩, the binary operator ψ which
will satisfy the Generalised Distributive Property for

⊕
θ is given by:

ψ(a, b) = f−1(f(a) · f(b)) (3)

Furthermore, for the special case θ = ⟨f, α, β⟩ = ⟨f, 0, 0⟩, there ψ(a, b) = f−1(f(a)+ f(b)) is an
additional solution.

For example, for the euclidean norm where f(x) = x2 and α = 1, the binary operator is ψ(a, b) =
(a2 · b2) 1

2 = a · b, which implies that a constant multiplicative term can be moved outside of the
euclidean norm. This is a useful finding, as the distributive property can used to improve algorithmic
time and space complexity (e.g. the FFT) [1]. With our derivation of ψ as a function of f , it is
possible to implement similar efficient algorithms with GenAgg.

4 Related Work

Several existing works propose methods to parametrise the space of aggregation functions. These
methods can broadly be divided into two categories. Mathematical approaches derive an explicit
equation in terms of the inputs and one or more learnable parameters. Usually, these approaches
represent a smooth interpolation through function space from min, through mean, to max. Alter-
natively, Deep Learning approaches seek to use the universal approximation properties of neural
networks to maximise representational complexity.

4.1 Mathematical Approaches

SoftmaxAgg SoftmaxAgg computes the weighted sum of the set, where the weighting is derived
from the softmax over the elements with some learnable temperature term s [13, 20]. This formu-



lation allows SoftmaxAgg to represent mean, min, and max (see Table 1). Unfortunately, it fails to
generalise across the majority of the standard aggregators.

PowerAgg Based on the p-norm, PowerAgg is a special case of GenAgg where α = 0, β = 0,
and f(x) = xp. There are some methods which use the powermean directly [13, 20, 8], and others
which build on top of it [18]. Theoretically, PowerAgg can represent a significant subset of the stan-
dard aggregators: min magnitude, max magnitude, mean, root mean square, harmonic mean, and
geometric mean (although the geometric mean requires limp→0, so it is not practically realisable)
(see Table 1). Unfortunately, there is a caveat to this approach: for negative inputs xi < 0 and
non-integer values p, it is only defined in the complex domain. Furthermore, for negative inputs, the
gradient ∂xp

∂p with respect to trainable parameter p is complex and oscillatory (and therefore is prone
to getting stuck in local optima). In order to fix this problem, the inputs must be constrained to be
positive. In prior work, this has been achieved by clamping x′i = max(xi, 0) [13], subtracting the
minimum element x′i = xi−min(X ) [20], or taking the absolute value x′i = |xi| [8]. However, this
removes important information, making it impossible to reconstruct most standard aggregators.

4.2 Deep Learning Approaches

PNA While Principle Neighbourhood Aggregation [5] is introduced as a GNN architecture, its nov-
elty stems from its method of aggregation. In PNA, input signal is processed by a set of aggregation
functions, which is produced by the cartesian product of standard aggregators {mean,min,max, std}
and scaling factors { 1

n , 1, n}. The output of every aggregator is concatenated, and passed through
a dense network. While this increases the representational complexity of the aggregator, it also
scales the dimensionality of the input by the number of aggregators multiplied by the number of
scaling factors, which can decrease sample efficiency (Figure 3). Furthermore, the representational
complexity of the method is limited by the choice of standard aggregators—it cannot be used to
represent many of the special cases of parametrised general aggregators.

LSTMAgg In LSTMAgg, the input set is treated as a sequence (applying some random permuta-
tion), and is encoded with a recurrent neural network [9]. While this method is theoretically capable
of universal approximation, in practice its non-permutation-invariance can cause its performance
to suffer (as the factorial complexity of possible orderings leads to sample-inefficiency). SortAgg
addresses this issue by sorting the inputs with computed features, and passing the first k sorted
inputs through convolutional and dense networks [23]. While this method solves the issue of non-
permutation-invariance, it loses the capability of universal approximation by truncating to k inputs.
While universal approximation is not a requirement for an effective aggregation function, we note
that it cannot represent many of the standard aggregators.

Deep Sets Deep Sets is a universal set function approximator [22]. However, because it operates over
the feature dimension in addition to the “set” dimension, it is not regarded as an aggregation function.
Instead, it usually serves as a full GNN layer or graph pooling architecture [14, 15]. One may
note that the formulation for Deep Sets ϕ(

∑
i∈[1..n] f(xi)) bears some resemblance to our method.

However, there are two important differences. First, our method adds the constraint ϕ = f−1,
limiting possible parametrisations to the subspace where all of the standard aggregators lie. Second,
while the learnable functions ϕ and f in Deep Sets are fully connected over the feature dimension,
the f and f−1 modules in our architecture are scalar-valued functions which are applied element-
wise. To summarise, Deep Sets is useful as a set function approximator, but it lacks constraints that
would make it viable as an aggregation function.

5 Experiments

In this paper, we run three experiments. First, we show that GenAgg can perform regression to re-
cover any standard aggregation function. Then, we evaluate GenAgg and several baselines inside of
a GNN. The resulting GNN architectures are given the same task of regressing upon graph-structured
data generated with a standard aggregator. This tests if it is possible for a GNN with a given ag-
gregator to represent data which was generated by different underlying aggregators. Finally, we
provide practical results by running experiments on public GNN benchmark datasets: CLUSTER,
PATTERN, CIFAR10, and MNIST [6].



Aggregation GenAgg P-Agg S-Agg mean

mean 1.000 0.817 1.000 1.000

sum 1.000 0.761 0.887 0.888

product (mag) 0.985 0.407 0.172 0.022

min (mag) 0.962 0.450 0.024 0.027

max (mag) 0.990 0.586 0.423 0.024

min 0.995 0.734 1.000 0.805

max 0.990 0.920 1.000 0.805

harm. mean (abs) 0.986 0.453 0.088 0.027

geom. mean (abs) 0.994 0.481 0.152 0.031

root mean square 0.996 0.532 0.308 0.028

euclidean norm 0.964 0.585 0.464 0.019

standard dev. 0.999 0.442 0.558 0.013

log-sum-exp 0.999 0.823 0.947 0.747

(a) Aggregator Regression.

Aggregation GenAgg P-Agg S-Agg mean

mean 0.977 0.999 1.000 0.972

sum 0.971 0.906 0.887 0.903

product (mag) 0.966 0.644 0.726 0.434

min (mag) 0.952 0.876 0.810 0.731

max (mag) 0.986 0.734 0.784 0.747

min 0.995 0.986 0.999 0.806

max 0.989 0.976 0.999 0.845

harm. mean (abs) 0.931 0.797 0.842 0.697

geom. mean (abs) 0.963 0.629 0.836 0.626

root mean square 0.975 0.775 0.808 0.899

euclidean norm 0.985 0.742 0.680 0.756

standard dev. 0.966 0.739 0.805 0.624

log-sum-exp 0.983 0.919 0.952 0.841

(b) GNN Regression

Figure 2: Results for the Aggregator Regression and GNN Regression experiments, indicating the
ability of GenAgg, PowerAgg (P-Agg), SoftmaxAgg (S-Agg), and mean to parametrise each stan-
dard aggregator in A. We report the correlation coefficient between the ground truth and predicted
outputs. The highest-performing methods (and those within 0.01 correlation) are shown in bold.

For all baselines, we use the implementations provided in PyTorch Geometric [7]. The only ex-
ception is PNA, which is a GNN architecture by nature, not an aggregation method. For our ex-
periments, we adapt PNA into an aggregation method, staying as true to the original formulation
as possible: PNA(X ) = f([1, n, 1

n ] ⊗ [mean(X ), std(X ),min(X ),max(X )]), where f is a linear
layer mapping from R12d back to Rd.

For more training details, see Appendix E. Our code can be found at: https://github.com/
Acciorocketships/generalised-aggregation.

5.1 Aggregator Regression

In this experiment, we generate a random graph G = ⟨V, E⟩ with |V| = 8 nodes and an edge density
of |E|

|V|2 = 0.3. For each node i ∈ V , we draw an internal state xi ∈ Rd from a normal distribution
xi ∼ N (0d, Id) with d = 6. Then, we generate training data with a set of ground truth aggregators⊙

k ∈ A (where k is an index). For each aggregator
⊙

k, the dataset Xk, Yk is produced with a
Graph Network [2], using

⊙
k as the node aggregation module. The inputs are defined by the set

of neighbourhoods in the graph Xk = {Xi | i ∈ [1..|V|]} where the neighbourhood Xi is defined
as Xi = {xj | j ∈ Ni} with Ni = {j | (i, j) ∈ E}. The corresponding ground truth outputs are
defined as Yk = {yi | i ∈ [1..|V|]}, where yi =

⊙
k(Xi).

The model that we use for regression takes the same form as the model used to generate the
data, except that the standard aggregator used to generate the training data

⊙
k is replaced with

a parametrised aggregator
⊕

θ:
ŷi =

⊕
θ

xj∈Xi

xj (4)

In our experiments, each type of parametrised aggregator (GenAgg, SoftmaxAgg, PowerAgg, and
mean as a baseline) is trained separately on each dataset Xk, Yk.

Results. We report the MSE loss and correlation coefficient with respect to the ground truth in Table
2a. GenAgg is able to represent all of the standard aggregators with a correlation of at least 0.96,
and most aggregators with a correlation of greater than 0.99. The only cases where the performance
of GenAgg is surpassed by a baseline are min and max, where SoftmaxAgg exhibits marginally
higher accuracy.

One interesting observation is that even if the baselines can represent an aggregator in theory, they
cannot necessarily do so in practice. For example, PowerAgg can theoretically represent the geomet-

https://github.com/Acciorocketships/generalised-aggregation
https://github.com/Acciorocketships/generalised-aggregation
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Dataset GenAgg P-Agg S-Agg PNA mean sum max

CIFAR10 0.540
±0.09

0.451
±0.14

0.467
±0.13

0.473
±0.14

0.502
±0.13

0.435
±0.15

0.471
±0.13

MNIST 0.928
±0.07

0.877
±0.07

0.864
±0.06

0.717
±0.19

0.847
±0.08

0.844
±0.08

0.831
±0.08

CLUSTER 0.627
±0.02

0.610
±0.01

0.611
±0.01

0.168
±0.01

0.602
±0.01

0.170
±0.02

0.501
±0.01

PATTERN 0.925
±0.00

0.883
±0.01

0.896
±0.03

0.861
±0.01

0.871
±0.01

0.860
±0.01

0.860
±0.01

Figure 3: Test accuracy for GNNs with various aggregators on GNN benchmark datasets. In this
experiment, each trial uses the same base GNN architecture (4-layer GraphConv), and the default
aggregator is replaced with either GenAgg, PowermeanAgg (P-Agg), SoftmaxAgg (S-Agg), PNA,
mean, sum, or max. The plots depict the mean and standard deviation of the test accuracy over 10
trials (note that the y-axis is scaled to increase readability). The table reports the maximum of the
mean test accuracy over all timesteps, as well as the standard deviation (rounded to 0.01).
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0 . Similarly, while in theory PowerAgg can represent min magnitude, max magnitude,

harmonic mean, and root mean square, it falls short in practice (see Table 2a), likely because of
the reasons stated in Section 4. In other cases, the baselines can perform well even if they should
not be able to represent the target in theory. One such example is PowerAgg, which achieves a
correlation of 0.92 on max, but only 0.59 on max magnitude, which is the opposite of what theory
might suggest. This is likely due to the the clamp operation that Pytorch Geometric’s implemen-
tation uses to restricts inputs to the positive domain. The performance of max magnitude suffers,
as it misses cases where the highest magnitude element is negative. Similarly, the performance of
max increases, because it simply selects the maximum among the positive elements. Another base-
line which performs unexpectedly well is SoftmaxAgg, which achieves a high correlation with the
log-sum-exp aggregator. While it cannot compute a log, the SoftmaxAgg formulation does include
a sum of exponentials, so it is able to produce a close approximation.

5.2 GNN Regression

In GNN Regression, the experimental setup is the same as that of Aggregator Regression (Section
5.1), with the exception that the observation size is reduced to d = 1. However, instead of using
GenAgg

⊕
θ as a model, we use a multi-layer GNN. The GNN is implemented with 4 layers of

GraphConv [16] with Mish activation (after every layer except the last), where the default aggrega-
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ŷi =W
(3)
1 z

(3)
i +W

(3)
2

⊕
θ

j∈Ni

z
(3)
i (6)

While this experiment uses the same dataset as Aggregator Regression (Section 5.1), it provides
several new insights. First, while the aggregator regression experiment shows that GenAgg can
represent various aggregators, this experiment demonstrates that training remains stable even when
used within a larger architecture. Second, this experiment underlines the importance of using the
correct aggregation function. While it is clear that it is advantageous to match a model’s aggregation
function with that of the underlying mechanism which generated a particular dataset, we often opt to
simply use a default aggregator. The conventional wisdom of this choice is that the other learnable
parameters in a network layer can rectify an inaccurate choice in aggregator. However, the results
from this experiment demonstrate that even with additional parameters, it is not necessarily pos-
sible to represent a different aggregator, underlining the importance of aggregators with sufficient
representational capacity.

Results. The results show that GenAgg maintains its performance, even when used as a component
within a GNN (Table 2b). GenAgg achieves a mean correlation of 0.97 across all aggregators. While
the baselines perform significantly better with the help of a multi-layer GNN architecture, they still
cannot represent many of the standard aggregators. The highest-performing baseline is SoftmaxAgg,
which only achieves a mean correlation of 0.86.

5.3 GNN Benchmark

In this experiment, we examine the performance of GenAgg on GNN benchmark datasets [6]. In
order to perform a comparison with benchmarks, we train on an existing GNN architecture (a 4-layer
GraphConv [16] GNN with a hidden size of 64) where the default aggregator is replaced with a new
aggregator, selected from {GenAgg,PowerAgg,SoftmaxAgg,PNA,mean, sum,max}.

Results. As shown in Fig 3, GenAgg outperforms all baselines in all four GNN benchmark datasets.
It provides a significant boost in performance, particularly compared to the relatively small differ-
ences in performance between the baseline methods.

The training plots in Fig. 3 provide complementary information. One interesting observation is that
GenAgg converges at least as fast as the other methods, and sometimes converges significantly faster
(in PATTERN, for example). Furthermore, the training plots lend information about the stability of
training. For example, note that in MNIST, most of the baseline methods achieve a maximum and
then degrade in performance, while GenAgg maintains a stable performance throughout training.

6 Discussion

Results. In our experiments, we present two regression tasks and one GNN benchmark task. The
regression experiments demonstrate that GenAgg is the only method capable of representing all of
the standard aggregators, and a GNN cannot be used to compensate for the shortcomings of the
baseline aggregators. The GNN benchmark experiment complements these findings, demonstrating
that this representational complexity is actually useful in practice. The fact that GenAgg outperforms
the standard aggregators (mean, max, and sum) on the GNN benchmark experiment implies that it
is in fact creating a new aggregator. Furthermore, the fact that it outperforms baseline methods like
SoftmaxAgg and PowermeanAgg implies that the aggregator learned by GenAgg lies outside the set
of functions which can be represented by such methods.

Limitations. While GenAgg achieves positive results on these datasets, it is not possible to make
generalisations about its performance in all applications. In particular, we observe that some datasets
fundamentally require less complexity to solve, so simple aggregators are sufficient (i.e., GenAgg
fails to provide a significant performance boost). For a full list of datasets that we considered and
further discussion of limitations, see Appendix D.



Parameters. When comparing the performance of different models, it is important to also consider
the number of parameters. By introducing additional parameters, some models can improve overall
performance at the cost of sample efficiency. While methods like PowerAgg and SoftmaxAgg only
have one trainable parameter, GenAgg has two scalar parameters α and β, and a learnable function f ,
which has 30 parameters in our implementation (independent of the size of the state). However, we
observe that using GenAgg within a GNN is always at least as sample-efficient as the baselines, and
sometimes converges significantly faster (Fig. 3 and Appendix B). Furthermore, while GenAgg has
more parameters than PowerAgg and SoftmaxAgg, the increase is negligible compared to the total
number of parameters in the GNN. We also note that GenAgg has significantly fewer parameters than
the deep learning methods discussed in Section 4. While the deep learning methods scale linearly
or quadratically in the dimension of the state, the number of parameters in GenAgg is constant.

Stability. Another observation from our experiments is that GenAgg exhibits more stability during
the training process than the baselines (Appendix B). In the GNN Regression experiment, the Pow-
erAgg and SoftmaxAgg training curves tend to plateau at least once before reaching their maximum
value. It is possible that these methods lead to local optima because they are optimised in a lower
dimensional parameter space [3]. For example, it is straightforward to smoothly transform a learned
f in GenAgg from x2 to x4, but to do so in PowerAgg, it is necessary to pass through x3, which
has significantly different behaviour in the negative domain. While PowerAgg restricts inputs to the
positive domain to circumvent this particular issue, the problem of local optima can still arise when
methods like PowerAgg or SoftmaxAgg are used as components in a larger architecture.

Explainability. While in this paper we primarily focus on the performance of GenAgg, we note
that it also presents benefits in the realm of explainability. The three parameters in GenAgg are all
human-readable (scalars and scalar-valued functions can easily be visualised), and they all provide
a unique intuition. The α parameter controls the dependence on the cardinality of the input set. The
β parameter dictates if the aggregator is computed in a raw or centralised fashion (colloquially, it
answers if the aggregator operates over the inputs themselves, or the variation between the inputs).
Lastly, the function f can be analysed by considering the sign and magnitude of f(xi). The sign
denotes if a given xi increases (f(x) > 0) or decreases (f(xi) < 0) the output. On the other hand,
the magnitude |f(xi)| can be interpreted as the relative impact of that point on the output. For
example, the parametrisation of product is f(x) = log(|x|), which implies that a value of 1 has no
impact on the output since | log(|1|)| = 0, and extremely small values ϵ have a large impact, because
limϵ→0 | log(|ϵ|)| = ∞. Indeed, 1 is the identity element under multiplication, and multiplying by a
small value ϵ can change the output by many orders of magnitude. The interpretability of GenAgg
can also be leveraged as a method to select an aggregator—a model can be pre-trained with GenAgg,
and then each instance of GenAgg can be replaced with the most similar standard aggregator in A.

7 Conclusion

In this paper we introduced GenAgg, a generalised, explainable aggregation function which
parametrises the function space of aggregators, yet remains as constrained as possible to improve
sample efficiency and prevent overfitting. In our experiments, we showed that GenAgg can repre-
sent all 13 of our selected “standard aggregators” with a correlation coefficient of at least 0.96. We
also evaluated GenAgg alongside baseline methods within a GNN, illustrating how other approaches
have difficulties representing standard aggregators, even with the help of additional learnable param-
eters. Finally, we demonstrated the usefulness of GenAgg on GNN benchmark tasks, comparing the
performance of the same GNN with various different aggregators. The results showed that GenAgg
provided a significant boost in performance over the baselines in all four datasets. Furthermore,
GenAgg often exhibited more stability and faster convergence than the baselines in the training
process. These results show that GenAgg is an application-agnostic aggregation method that can
provide a boost in performance as a drop-in replacement for existing aggregators.
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