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Abstract

When exposed to human-generated data, lan-001
guage models are known to learn and amplify002
societal biases. While previous works intro-003
duced benchmarks that can be used to assess004
the bias in these models, they rely on assump-005
tions that may not be universally true. For006
instance, a gender bias dimension commonly007
used by these metrics is that of family–career,008
but this may not be the only common bias in cer-009
tain regions of the world. In this paper, we iden-010
tify topical differences in gender bias across011
different regions and propose a region-aware012
bottom-up approach for bias assessment. Our013
proposed approach uses gender-aligned topics014
for a given region and identifies gender bias015
dimensions in the form of topic pairs that are016
likely to capture gender societal biases. Several017
of our proposed bias topic pairs are on par with018
human perception of gender biases in these re-019
gions in comparison to the existing ones, and020
we also identify new pairs that are more aligned021
than the existing ones. In addition, we use our022
region-aware bias topic pairs in a Word Em-023
bedding Association Test (WEAT)-based eval-024
uation metric to test for gender biases across025
different regions in different data domains. We026
also find that LLMs have a higher alignment to027
bias pairs for highly-represented regions show-028
ing the importance of region-aware bias evalua-029
tion metric.030

1 Introduction031

Human bias refers to the tendency of prejudice or032

preference towards a certain group or an individual033

and can reflect social stereotypes with respect to034

gender, age, race, religion, and so on.035

Bias in machine learning refers to prior infor-036

mation which is a necessary prerequisite for in-037

telligence (Bishop, 2006). However, biases can038

be problematic when prior information is derived039

from harmful precedents like prejudices and so-040

cial stereotypes. Early work in detecting biases041

includes the Word Embedding Association Test042

(WEAT) (Caliskan et al., 2017) and the Sentence043

Encoder Association Test (SEAT) (May et al., 044

2019). WEAT is inspired by the Implicit Associa- 045

tion Test (IAT) (Greenwald et al., 1998) in psychol- 046

ogy, which gauges people’s propensity to uncon- 047

sciously link particular characteristics—like family 048

versus career—with specific target groups—like 049

female (F) versus male (M). WEAT measures the 050

distances between target and attribute word sets 051

in word embeddings using dimensions1 similar to 052

those used in IAT. 053

Biases toward or against a group can vary across 054

different regions due to the influence of an indi- 055

vidual’s culture and demographics (Grimm and 056

Church, 1999; Kiritchenko and Mohammad, 2018a; 057

Garimella et al., 2022). Psychological studies and 058

experiments that demonstrate human stereotypes 059

vary by continental regions (Damann et al., 2023; 060

Blog, 2017) and even larger concepts like western 061

and eastern worlds (Markus and Kitayama, 2003; 062

Jiang et al., 2019) serve as an inspiration for the 063

use of regions to determine differences across cul- 064

tures. However, existing bias evaluation metrics 065

like WEAT and SEAT follow a “one-size-fits-all” 066

approach to detect biases across different regions. 067

As biases can be very diverse depending on the de- 068

mographic lens, a fixed or a small set of dimensions 069

(such as family–career, math–arts) may not be able 070

to cover all the possible biases in the society. In 071

this paper, we address two main research questions 072

about gender bias: (1) Is it possible to use current 073

NLP techniques to automatically identify gender 074

bias characteristics (such as family, career) specific 075

to various regions? (2) How do these gender dimen- 076

sions compare to the current generic dimensions 077

included in WEAT/SEAT? 078

Our paper makes four main contributions: 079

1. An automatic method to uncover gender bias 080

dimensions in various regions that uses (a) 081

topic modeling to identify dominant topics 082

aligning with the F/M groups for different re- 083

1We use ‘topic pairs’ and ‘topic dimensions’ interchange-
ably.
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gions, and (b) an embedding-based approach084

to identify F-M topic pairs for different re-085

gions that can be viewed as gender bias di-086

mensions in those regions.087

2. An IAT-style test to assess our predicted gen-088

der bias dimensions with human subjects. To089

the best of our knowledge, this is the first090

study to use a data-driven, bottom-up method091

to evaluate bias dimensions across regional092

boundaries.093

3. A WEAT-based evaluation setup using our094

region-aware topic pairs to evaluate gender095

biases in different data domains (Reddit and096

UN General Debates) across regions.097

4. An analysis of how well our predicted bias098

dimensions align with those of custom LLMs.099

We consider several LLMs that include100

open-source models like Llama-3-8b and101

Mistral-7b-Instruct; as well as closed-102

source models such as GPT-4, Gemini-Pro103

and Claude-3-Sonnet.104

2 Data105

We use GeoWAC (Dunn and Adams, 2020a), a ge-106

ographically balanced corpus that consists of web107

pages from Common Crawl. Language samples are108

geo-located using country-specific domains, such109

as an .in domain suggesting Indian origin (Dunn110

and Adams, 2020b). The GeoWAC’s English cor-111

pus spans 150 countries. We select the top three112

countries with the most examples per region: Asia,113

Africa, Europe, North America, and Oceania as114

in (Garimella et al., 2022). We randomly choose115

282,000 examples (after pre-processing) for each116

region, with 94,000 examples belonging to each117

country within the regions. Dataset details are in-118

cluded in Appendix A.119

3 Variations in Gender Bias Tests Across120

Regions121

We start by investigating the differences in exist-122

ing gender bias tests across different regions using123

WEAT. WEAT takes in target words such as male124

names and female names, to indicate a specific125

group, and attribute words that can be associated126

with the target words, such as math and art. It com-127

putes bias by finding the cosine distance between128

the embeddings of the target and attribute words.129

We compute WEAT scores using word2vec em-130

beddings (Mikolov et al., 2013) trained on the five131

regions separately. Table 1 shows the region-wise132

scores for the three gender tests in WEAT.133

TARGET WORDS - ATTRIBUTE
WORDS

REGION WEAT

Africa 1.798
Asia 1.508

career vs family - Male names vs
Female names

North
America

1.885

Europe 1.610
Oceania 1.727

Africa 1.429
Asia 1.187

Math vs Arts - Male terms vs Fe-
male terms

North
America

0.703

Europe 0.334
Oceania 1.158

Africa 1.247
Asia 0.330

Science vs Arts - Male terms vs
Female terms

North
America

0.036

Europe -0.655
Oceania 0.725

Table 1: Region-wise WEAT scores using word2vec.

Although we see a positive bias for most gen- 134

der bias dimensions, the scores vary across regions. 135

For example, the highest scoring regions vary for 136

the target words-attribute words groups. For family– 137

career dimension, North America shows the high- 138

est bias, however for math–arts and math–science 139

dimensions, Africa shows the highest bias. Europe 140

has a negative bias on science–arts (indicating a 141

stronger F-science and M-arts association). 142

These results provide preliminary support to our 143

hypothesis that gender bias dimensions vary across 144

regions, thus propelling a need to come up with 145

further bias measurement dimensions to better cap- 146

ture gender biases in these regions in addition to 147

the existing generic ones in WEAT. 148

4 A Method to Automatically Detect Bias 149

Dimensions Across Regions 150

Building upon our WEAT findings, we propose a 151

two-stage approach to automatically detect region- 152

aware bias dimensions that likely capture the biases 153

in specific regions in a bottom-up manner. In the 154

first stage, we utilize topic modeling to identify 155

prominent topics in each region. In the second 156

stage, we use an embedding-based approach to find 157

pairs of topics among those identified in the first 158

stage that are likely to represent prominent gender 159

bias dimensions in each region. Fig 1 shows the 160

pipeline of our methodology. 161

4.1 Identifying Region-wise Bias Topics 162

We use topic modeling to identify dominant topics 163

in the male and female examples in each region. 164

We first build F(emale)- and M(ale)-aligned 165

datasets using the examples from GeoWAC for 166
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Female and Male 
(F/M)-Aligned 

Datasets
Topic Modeling on 

all data and labeling
Alignment of topics 

to F/M data
Region-aware F/M 

topics

Region-wise F/M 
topic embeddings

Topic Similarity 
computation to 

she/he embeddings
Region-aware F/M 

topic pairs

Bertopic 
and 

Llama2
BERT-Large embeddings

Cosine 
similarity

Stage 1

Stage 2

Figure 1: Methodology Pipeline: Stage 1 refers to the extraction of region-aware gender topics using topic modeling,
Stage 2 refers to extraction of region-aware gender topic pairs using an embedding based approach

each region. We use the 52 pairs of gender-defined167

words that are non-stereotypically F/M (e.g., wife,168

brother, see Appendix G) from (Bolukbasi et al.,169

2016), and find examples that contain these words.170

These datasets are used to find gender-aligned top-171

ics from GeoWAC. The dataset statistics are speci-172

fied in Table 6 in Appendix B.173

We then use topic modeling to identify dominant174

topics in the male and female examples in each175

region. We use Bertopic (Grootendorst, 2022),176

which identifies an optimal number of topics n for177

a given dataset (see Appendix L.1 for implementa-178

tion details). We further refine the resulting topics179

using Llama2 (Touvron et al., 2023) to label and180

better understand the topic clusters identified by181

Bertopic. The prompting mechanism for Llama2182

is provided in Appendix H.183

We next compute the alignment of the topics to184

either of the F/M groups. We first compute the185

topic distribution of a data point, which gives the186

probability pit of an example i belonging to each187

topic t. For a topic t, we take n examples that domi-188

nantly belong to topic t: i1, i2, ...., in. If m out of n189

data points belong to the F group in the F-M dataset,190

and the other (n - m) belongs to the M group, we191

compute the average of topic probabilities for both192

groups separately: pFt =
(pi1t+pi2t+......+pimt)

m and193

pMt =
(pim+1t

+pim+2t
+......+pint)

(n−m) , where pFt and194

pMt refer to the average probability by which a195

topic dominantly belongs to the F and M groups re-196

spectively. If pFt > pMt, we say the topic is a bias197

topic that aligns with the F group and vice-versa.198

4.2 Finding Topic Pairs as Region-wise Bias199

Dimension Indicators200

We use an embedding-based approach to identify201

F-M topic pairs from the pool of topics identified in202

the previous stage, to generate topic pairs (bias di-203

mensions) that are comparable to IAT/WEAT pairs.204

We use BERT-large (stsb-bert-large)205

from SpaCy’s (Honnibal and Montani, 2017)206

sentencebert library to extract contextual207

embeddings for topic words extracted from the208

GeoWAC dataset for each region. For a topic 209

t consisting of topic words w1, ..wn, the topic 210

embedding is given by the average of embeddings 211

of the top ten topic words in that topic. 212

We identify topic pairs from the embeddings tak- 213

ing inspiration from (Bolukbasi et al., 2016): let the 214

embeddings of the words she and he be Eshe and 215

Ehe respectively. The embedding of a topic ti be 216

Eti . A female topic Fti and a male topic Mtj are a 217

topic pair if: cos(EFti
, Eshe) ∼ cos(EMtj

, Ehe) 218

and/or cos(EFti
, Ehe) ∼ cos(EMtj

, Eshe), where 219

cos(i, j) refers to the cosine similarity between 220

embeddings i and j, given by cos(i, j) = i,j
||i||||j|| . 221

The threshold for the difference between the cosine 222

similarities we consider for two topics to be a pair 223

is 0.01, i.e., two topics (t1, t2) are considered a 224

pair if the difference of cosine similarities cos(t1, 225

she)/cos(t1, he) and cos(t2, he)/cos(t2, she) re- 226

spectively is < 0.01. We manually choose 0.01 227

since differences close to 0.01 are almost = 0. 228

4.3 Human Validation Setup 229

We design an IAT-style test to validate our topic 230

pairs with annotators from different regions. We re- 231

cruit six annotators from each region controlled by 232

gender (three female and three male). In addition 233

to our topics, we also test for existing WEAT di- 234

mensions relating to gender, namely family–career, 235

math–arts, and science–arts. For each region, we 236

validate all the region-aware topic pairs using the 237

assistance of our annotators. 238

As done in IAT, to verify a topic pair, we show 239

the topic names and male/female faces to our anno- 240

tators along with a set of guidelines. As shown in 241

Fig 2, each topic pair test form contains two tasks. 242

First, the annotators have to press one key for a 243

female face f and a female topic Tf and another 244

key for a male face m with a male topic Tm, timing 245

responses as r1 and r2. In the reverse task, they 246

pair Tm with f and Tf with m, timing these as r3 247

and r4. We average r1 and r2 for the ‘un-reversed’ 248

case and r3 and r4 for the ‘reversed’ case. The 249

annotators’ implicit association of a gender to a 250
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Choose     if the face is ‘female’ and     if the face is ‘male’. 
Choose     if ‘topic’ is ‘Parenting’ and     if topic is ‘Movies’   

Choose     if the face is ‘female’ and     if the face is ‘male’. 
Choose     if ‘topic’ is ‘Movies’ and     if topic is ‘Parenting’   

Movies Parenting Parenting Movies

1s 1s 1s 1s 1s 1s 2s 3s

Figure 2: IAT-style test with region-aware topic pairs for human validation. The above example shows the user
implicitly associates female to parenting and male to movies: When guidelines are reversed, they take longer time.
Note that we randomize the order of tests for participants to ensure initial pairing bias is accounted for. Also, we
have several pages showing faces and topics for each guideline.

topic may influence their response time. A lower251

response time suggests easier recollection of the252

guidelines and potential implicit gender-topic asso-253

ciations, and thus lower bias with respect to these254

topics. We also varied the test order for different255

annotators to avoid initial pairing bias. We conduct256

the survey with six annotators each from Africa,257

Asia, Europe, and North America, also including a258

family-career topic pair, a standard WEAT bias di-259

mension. We provide screenshots of our annotation260

framework in Appendix M.261

4.4 Results: Bias Dimensions across Regions262

4.4.1 Region-wise Bias Topics263

Table 2 displays the top topics based on umass264

(Mimno et al., 2011) coherence for each region.265

Several topics are exclusive to certain regions.266

Some topics like family and parenting; cooking;267

pets and animal care are common across some re-268

gions for F. Similarly we have movies; politics and269

government; sports; and music for M. Finally, there270

are differences between regions in terms of edu-271

cation, reading, and research (F-Europe, NA, and272

M-Africa), and fashion and lifestyle (F-Europe, NA,273

and M-Africa). Some other popular topics across274

regions are religion and spirituality, Christian the-275

ology in M; obituaries and genealogy, online dat-276

ing, travel, and sailing in F (see Appendix D for277

a comprehensive list of topics). We provide an278

example of topic clusters in Appendix J.279

4.4.2 Region-wise Bias Dimensions280

Table 3 shows the top five topic pairs per region,281

chosen based on the umass score from the top 10282

topics each for F and M from the topic modeling283

scheme. As expected, topic pairs differ by region,284

and we also note new topic pairs that do not appear285

in the WEAT tests. Among the top ones, there are286

recurring topics in F such as dating and marriage,287

REGION FEMALE MALE

Africa Credit cards and finances,
Royalty and Media, Trad-
ing strategies and market
analysis, Dating and rela-
tionships guides, Parent-
ing and family relation-
ships

Fashion and Lifestyle,
Male enhancement and
sexual health, Nollywood
actresses and movies,
Nigerian politics and
government, Essay
writing and research

Asia Hobbies and Interests,
Healthy eating habits for
children, Social media
platforms, Royal wed-
ding plans, Online Dating
and Chatting

DC comic characters,
Mobile Application,
Phillippine Politics and
Government, Sports and
Soccer, Career

Europe Pets and animal care,
Fashion and Style, Educa-
tion, Obituaries and Ge-
nealogy, Luxury sailing

Political developments in
Northern Ireland, Chris-
tian Theology and Prac-
tice, Crime and murder
investigation, EU Refer-
endum and Ministerial
Positions, Criminal Jus-
tice System

North America Pets, Cooking: culinary
delights and chef recipes,
Fashion and style, Fam-
ily dynamics and relation-
ships, Reading and fic-
tion

Civil War and history,
Middle East conflict and
political tensions, Movies
and filmmaking, Political
leadership and party dy-
namics in Bermuda, Rock
Music and songwriting

Oceania Cooking and culinary de-
lights, Romance, Weight
loss and nutrition for
women, Water travel ex-
perience, Woodworking
plans and projects

Harry Potter adventures,
Art and Photography, Su-
perheroes and their Uni-
verses, Music recording
and Artists, Football in
Vanuatu

Table 2: Top five topics for F and M for each region,
extracted using Bertopic and Llama2.

family and relationships, luxury sailing, and edu- 288

cation, whereas in M, we have politics, religion, 289

sports, and movies. These region-specific pairs may 290

supplement generic tests to detect regional biases. 291

4.4.3 Unigram/Bigram Analysis 292

We find several topics that are common across 293

regions. However, they may differ across cul- 294

tures and may reveal varied perceptions of biases. 295

Several topics also change associations to gen- 296

ders based on regions. For example, ‘fashion and 297

lifestyle’ in Africa is associated with males, how- 298

ever, it is associated with females in Europe and 299
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Figure 3: Human validation results across regions. ‘Unreversed’ refers to bias dimensions with the same gender
associations as our topic pairs, ‘Reversed’ refers to bias dimensions with the opposite gender associations.

REGION F-M TOPIC PAIR

Africa

Parenting and family relationships-Nollywood Actress and
Movies (P1)
Marriage and relationships - Sports and Football (P2)
Womens’ lives and successes - Fashion and Lifestyle (P3)
Music - Social Media (P4)
Dating and relationships advice - Religious and Spiritual
growth (P5)

Asia

Hotel royalty - Political leadership in India (P1)
Healthy eating habits for children - Sports and Soccer (P2)
Royal wedding plans - Social Media platforms for video
sharing (P3)
Royal wedding plans - Religious devotion and spirituality
(P4)
Marriage - Bollywood actors and films (P5)

Europe

Education - Music (P1)
Comfortable hotels - Political decision and impact on society
(P2)
Luxury sailing - UK Government Taxation policies (P3)
Obituaries and Genealogy - Christian Theology and Practice
(P4)
Fashion and style - Christian theology and practice (P5)

Online Dating for Singles - Religion and Spirituality (P1)
North Fashion and Style - Reproductive Health (P2)
America Education and achievements - Reinsurance and capital mar-

kets (P3)
Family dynamics and relationships - Nike shoes and fashion
(P4)
Reading and fiction - Cape Cod news (P5)

Oceania

Family relationships - Religious beliefs and figures (P1)
Woodworking plans and projects - Music record and Artists
(P2)
Weight loss and nutrition for women - Building and design-
ing boats (P3)
Exercises for hormone development - Superheroes and their
Universes (P4)
Kids’ furniture and decor - Building and designing boats
(P5)

Table 3: Top five region-aware topic pairs for F and M
for each region using en embedding-based approach.

North America. Several topics like ‘family and300

parenting’ are commonly associated with females301

across different regions while ‘politics’ is associ-302

ated with males. To this end, we compute the top303

uni-grams and bi-grams for topic pairs that are 304

common across regions in Appendix E. 305

4.4.4 Human Validation Results 306

Fig 3 shows response times for top five topic pairs 307

in each region for un-reversed and reversed sce- 308

narios. Larger time differences indicate more bias, 309

suggesting that the pair could be a potential gender 310

bias dimension for that region. If un-reversed time 311

is lower, it suggests a stronger association of Tf 312

with the F group and Tm with the M group. The 313

family-career pair was also surveyed as a standard 314

WEAT bias dimension. Please refer to Table 3 for 315

topic pair numbers (P1...P5) of each topic pair. 316

As expected, the family–career pair shows the 317

highest bias across all three general IAT topic 318

pairs. There are smaller differences among the 319

other math–arts and science–arts. We also note that 320

some pairs, such as dating and relationships advice– 321

religious and spiritual growth (P5) for Africa, ho- 322

tel royalty–political leadership in India (P1) for 323

Asia, obituaries and geneology–Christian theol- 324

ogy (P4), education–music (P1), and fashion and 325

style–Christian theology (P5) for Europe, and on- 326

line dating–religion and spirituality (P1), fashion 327

and style–reproductive health (P2) for North Amer- 328

ica have differences higher than those for family– 329

career in the respective regions, indicating that 330

the participants associated more biases on our un- 331

covered bias dimensions than the existing one in 332

WEAT. These findings support our hypothesis that 333

gender bias dimensions vary across regions and 334

also bring preliminary evidence that the region- 335

aware bias dimensions we uncover are in line with 336
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REGION F-M TOPIC PAIR REDDIT UN GENERAL
DEBATES

Parenting and family relationships-Nollywood Actress and Movies 0.500 0.979
Marriage and relationships - Sports and Football -0.051 0.224

Africa Womens’ lives and successes - Fashion and Lifestyle 0.480 0.493
Music - Social Media 1.894 1.721
Dating and relationships advice - Religious and Spiritual growth 1.475 1.061

Hotel royalty - Political leadership in India 1.365 1.768
Healthy eating habits for children - Sports and Soccer 0.006 -0.068

Asia Royal wedding plans - Social Media platforms for video sharing 1.05 1.393
Royal wedding plans - Religious devotion and spirituality 1.183 1.335
Marriage - Bollywood actors and films 1.543 0.918

Education - Music 1.261 1.920
Comfortable hotels - Political decision and impact on society 0.324 0.485

Europe Luxury sailing - UK Government Taxation policies 1.232 1.558
Obituaries and Genealogy - Christian Theology and Practice 0.001 -0.405
Fashion and style - Christian theology and practice 1.730 1.028

Online Dating for Singles - Religion and Spirituality 1.728 1.830
Fashion and Style - Reproductive Health 1.723 1.095

North America Education and achievements - Reinsurance and capital markets -0.148 -0.364
Family dynamics and relationships - Nike shoes and fashion 0.109 0.691
Reading and fiction - Cape Cod news 0.251 0.506

Family relationships - Religious beliefs and figures 0.305 0.267
Woodworking plans and projects - Music record and Artists 0.056 -0.258

Oceania Weight loss and nutrition for women - Building and designing boats 0.336 0.582
Exercises for hormone development - Superheroes and their Universes -0.05 -0.07
Kids’ furniture and decor - Building and designing boats 0.612 0.524

Table 4: Region-aware WEAT-based evaluation on Reddit and UNGDC. Highest scores are highlighted for each
dataset across regions.

the human perception of bias in those regions. We337

also find that all the regions have biases that con-338

form to our topic pairs gender association except339

P3: education–reinsurance and capital markets in340

North America, where the associated bias is nega-341

tive. These findings confirm that topic pairs indeed342

differ across regions and that these differences must343

be taken into consideration when identifying and344

evaluating biases.345

5 WEAT-based Evaluation Using346

Region-aware Topic Pairs347

To measure biases in different data domains and348

regions, we extract region-aware topics using the349

GeoWAC dataset which spans Common Crawl sep-350

arated by regions, and create a WEAT-style evalua-351

tion setup using these topics.352

Data. We consider two datasets: (i) Reddit data353

and (ii) UN General Debates (Baturo et al., 2017).354

The Reddit data consists of data from subred-355

dits corresponding to specific regions: r/asia,356

r/africa, r/europe, r/northamerica, and357

r/oceania. We use the official Reddit API to ex-358

tract data, consisting of 500 top posts2 from each359

2The Official Reddit API has rate limits, therefore 500
top posts from each subreddit ensures an equal number of
examples for each region.

subreddit. The posts are pre-processed to remove 360

URLs and signs, and each post contains at least 30 361

words. The UN General Debate Corpus (UNGDC) 362

includes texts of General Debate statements from 363

1970 to 2016. These statements, similar to annual 364

legislative state-of-the-union addresses, are deliv- 365

ered by leaders and senior officials to present their 366

government’s perspective on global issues. We fil- 367

ter the countries for each region and extract 500 368

data points per region, maintaining equal represen- 369

tation across region.3 370

Method. WEAT tests consist of keywords cor- 371

responding to each attribute and topic word sets 372

like family-career and male-female terms. To cre- 373

ate a similar setup, we utilize KeyBERT (Grooten- 374

dorst, 2020) to gather top topic representations cor- 375

responding to each topic extracted from GeoWAC. 376

For male/female terms, we use the same represen- 377

tative words from WEAT. To further make it spe- 378

cific to a particular region, we employ GPT-4 (Ope- 379

nAI et al., 2024) to generate common male/female 380

names used in the regions and add them to the 381

list. We provide the list of words in Table 12 of 382

Appendix F. We use fastText (Bojanowski et al., 383

3Oceania has limited available countries in UNGDC, hence
the adherence to 500 data points for each region.
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Figure 4: Example Prompt for Persona Generation

2017)4 embedding algorithm to generate embed-384

dings of the lists and compute the distances be-385

tween the topic words and male/female terms (like386

WEAT).387

Results. In Table 4, a high number of positive388

scores indicates the presence of a positive bias for389

our region-aware topic pairs. This means a pres-390

ence of bias with the same gender association as391

our topic pairs, for example, if ‘music-social me-392

dia’ is F-M topic pair in Africa according to our393

study, a positive score on the Reddit dataset means394

that bias is in the same direction. The few negative395

scores in the table indicate that these topic pairs do396

not conform to the same gender bias associations.397

However, a higher negative magnitude also shows398

the presence of bias, therefore, these topic pairs are399

still important.400

Additionally, magnitudes of many scores are401

high (> 0.5) which shows a high presence of bias402

(positive/negative) corresponding to the topic pairs.403

We highlight the top-scoring bias topic pairs for404

each region in Table 4. High-bias topics vary for405

each region based on the dataset. For example,406

‘music-social media’ has the highest bias in Africa407

for both datasets, however for Asia, we find that408

‘marriage - Bollywood actors and films’ and ‘Ho-409

tel royalty - Political leadership in India’ are the410

topic pairs with the highest biases in Reddit and411

UN General Debates respectively, indicating that412

biased topic pairs may be domain-dependent.413

Using our topic pairs in this WEAT-style evalu-414

ation setup provides an illustration of how our au-415

tomatically curated region-aware bias dimensions416

can be used in designing a region-aware bias eval-417

uation test. It also shows the effectiveness of our418

region-aware bias topic pairs in capturing the di-419

mensions that are likely to contain gender biases420

across regions.5421

4We choose fastText because it allows to extract embed-
dings of words that are not present in the target text (as our
topics are derived from GeoWAC).

5Note that our topic pairs although extracted from Ge-
oWAC are somewhat generalizable to other datasets like Red-
dit and UNGDC, we do not claim that these are best topic
pairs achievable as topic pairs are also data dependent, but we

6 Alignment of Region-Aware Bias 422

Dimensions with LLM outputs 423

To understand if LLMs generate similar biases 424

as our region-aware bias topic pairs, we devise 425

a persona generation task by LLMs. We prompt 426

the LLM to output personas interested in differ- 427

ent ‘topics’ from the topic pairs that we extract. 428

Fig 4 shows an example of the prompt given to an 429

LLM to generate personas. We experiment with 430

different LLMs: GPT-3.5 (Brown et al., 2020), 431

GPT-4, Mistral-7b-Instruct (Jiang et al., 2023), 432

Claude-3 Sonnet,6 and Gemini-Pro (Team et al., 433

2024). Many studies use LLM-generated personas 434

for multi-agent interactions in different settings in 435

societies (Park et al., 2023; Zhou et al., 2024). But, 436

if an LLM generates biased personas, for exam- 437

ple, a female persona takes care of children, and a 438

male persona is strong and takes care of emergen- 439

cies, this would lead to further biases in consequent 440

tasks. Therefore, we employ persona generation to 441

check for the presence of any biases in the personas 442

created by LLMs. To measure biases, we find the 443

number of matched LLM output persona genders 444

to the genders of our topic pairs. We average our 445

results over seven runs. 446

Results. We plot the results of persona gender 447

mismatched by LLMs in Fig 5. The y-axis shows 448

% mismatch between the LLM generated persona 449

gender and the gender of the topic in our topic 450

pair. For example, a mismatch is when LLM out- 451

puts a persona with ‘female’ for Politics in Asia, 452

which is a ‘male’ topic according to our findings. 453

Regions with high representation: North Amer- 454

ica, Europe and Asia have fewer mismatches, with 455

North America having the lowest mismatch. Con- 456

versely, less represented regions like Africa and 457

Oceania show higher mismatch rates. Among mod- 458

els, Mistral-7b (7B) has the highest mismatch 459

rate while Gemini-Pro (50T) has the least, which 460

may stem from varying model sizes. Overall, all the 461

models exhibit similar mismatch trends for both 462

highly and less represented regions. Fewer mis- 463

matches in highly-represented regions show the im- 464

portance of evaluation using region-specific topic 465

pairs. Higher mismatches in underrepresented re- 466

gions like Africa and Oceania suggest LLMs don’t 467

mimic these areas’ biases, which can be benefi- 468

cial. However, due to growing research on LLMs’ 469

cultural alignment, a more precise, region-specific 470

bias evaluation metric becomes essential. 471

can use our methodology to extract bias topic pairs that may
exist in specific datasets.

6https://claude.ai/
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Figure 5: Bias Evaluation of LLM outputs using region-aware bias topic pairs through ‘persona generation’.

7 Related Work472

IAT is one of the earliest and well-known method473

for measuring implicit social biases in humans474

(Greenwald et al., 1998). Inspired by the IAT,475

WEAT uses word embeddings to measure biases476

in text (Caliskan et al., 2017). Another extension477

of WEAT is the Sentence Embedding Association478

Test (SEAT), which measures biases at the sen-479

tence level (May et al., 2019). Additionally, vari-480

ous bias detection measures in NLP focus on post-481

training model predictions, such as gender swap-482

ping (Stanovsky et al., 2019). Moreover, there are483

specific gender bias evaluation test sets in tasks like484

coreference resolution (Rudinger et al., 2018; Zhao485

et al., 2018; Webster et al., 2018) and sentiment486

analysis (Kiritchenko and Mohammad, 2018b).487

Several studies have emphasized the significance488

of considering cultural awareness in the study of489

social phenomena. The demographics of indi-490

viduals can shape their worldviews and thoughts491

(Garimella et al., 2016), potentially influencing492

their language preferences and biases in daily life.493

Notably, some studies have observed a bias to-494

wards Western nations in current LLMs (Dwivedi495

et al., 2023). Recent research has focused on cross-496

cultural aspects of LLMs, including aligning them497

with human values from different cultures (Glaese498

et al., 2022; Sun et al., 2023) and exploring them499

as personas representing diverse cultures (Gupta500

et al., 2024). To the best of our knowledge, no501

previous work has proposed a data-dependent ap-502

proach to extract region-aware bias topics. Given503

the known biases in LLMs, a region-specific met-504

ric could greatly lead to an accurate evaluation of505

biases. This research holds significant importance 506

in addressing cross-cultural biases effectively. 507

8 Conclusion 508

In this paper, we proposed a bottom-up approach 509

using data to identify region-aware topic pairs that 510

capture gender biases across different regions. Our 511

human evaluation results demonstrated the validity 512

of our proposed region-aware dimensions. 513

We employed a region-aware WEAT-based eval- 514

uation setup to assess biases in two additional 515

datasets: Reddit and the UN General Debate Cor- 516

pus. The presence of region-specific biases in these 517

datasets underscores the importance of a region- 518

aware bias evaluation metric. Additionally, when 519

examining LLM outputs against the gender asso- 520

ciations in our region-aware bias topic pairs, we 521

found that biases align closely for three highly rep- 522

resented regions: North America, Europe, and Asia. 523

This emphasizes the value of region-aware topic 524

pairs in bias evaluation of LLMs. Conversely, bi- 525

ases do not align well for Africa and Oceania, in- 526

dicating that LLMs do not adopt these regions’ 527

specific biases–a potential benefit. Yet, it also high- 528

lights the ’cultural alignment’ issue in LLMs. More 529

research on the cultural alignment of LLMs under- 530

lines the need to consider region-specific bias topic 531

pairs for all regions in future studies. 532

Future work includes incorporating testing dif- 533

ferent model/dataset combinations and topic-pair 534

dependency on data. We aim to study biases in 535

different languages and explore region-aware bias 536

mitigation techniques. 537
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9 Limitations538

We utilized the GeoWAC corpus as our sole data539

source for extracting topic pairs from various re-540

gions. However, we acknowledge the importance541

of incorporating additional datasets in our future542

work. Additionally, our WEAT-based evaluation543

was conducted on relatively smaller datasets. So,544

we intend to conduct further analysis on a larger545

dataset to ensure a comprehensive evaluation based546

on WEAT.547

Our study did not account for different languages548

due to the diverse linguistic landscape of the re-549

gions (continents) included in our study. However,550

the significance of conducting a more detailed anal-551

ysis to examine variations among different coun-552

tries would be interesting.553

Unfortunately, we encountered difficulties in554

finding participants from Oceania for human valida-555

tion. Moving forward, we plan to include insights556

and findings from Oceania and incorporate a larger557

population to ensure a more comprehensive human558

validation.559

10 Ethical Considerations560

When developing our region-aware topic pairs, it561

is essential to consider the ethical implications.562

Since we utilize a much broader aspect of culture,563

i.e. continents to distinguish among cultures, the564

region-aware topic pairs we extract may not trans-565

late to cultures of communities that are not well-566

represented in models. Hence, it is important that567

we utilize topic pairs carefully.568

It has been found that AI models often tend to569

output responses that are Western, educated, in-570

dustrialized, rich, and democratic (Henrich et al.,571

2010). In our experiments, we see LLMs also gen-572

erate biases having the highest alignment with the573

West. Therefore, LLM experiments also need to be574

utilized carefully.575

Our Reddit data for the region-aware evaluation576

metric may contain offensive content. However,577

we have anonymized the data (removed the user-578

names).579
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REGION COUNTRY #EXAMPLES

Nigeria 3,153,761
Africa Mali 660,916

Gabon 645,769

India 12,327,494
Asia Singapore 6,130,047

Philippines 3,166,971

Ireland 8,689,752
Europe United

Kingdom
7,044,434

Spain 465,780

Canada 7.965,736
North America United

States
8,521,094

Bermuda 244,500

New
Zealand

94,476

Oceania Palau 486,437
Vanuatu 165,355

Table 5: Region-specific details in GeoWAC

A GeoWAC dataset details1146

Table 5 contain the total number of examples per1147

country in a region. We consider the top three1148

countries with the highest number of examples per1149

region.1150

B F-M Dataset statistics1151

Table 6 displays the total number of examples from1152

female and male groups per region for the region-1153

specific F-M dataset.1154

C Cultural differences in biases using1155

WEAT1156

Table 7 shows the WEAT scores for all WEAT di-1157

mensions defined in (Caliskan et al., 2017). We1158

find that scores and p-values differ across regions1159

for different dimensions. High bias dimensions dif-1160

fer across regions, hence it is important to consider1161

region-specific topic pairs.1162

REGION TOTAL #FEMALE #MALE

Africa 57895 20153 37742
Asia 56877 21400 35477
Europe 59121 21049 38072
North America 70665 27627 43038
Oceania 62101 25951 36150

Table 6: F-M dataset statistics for regions (Total refers
to the total number of examples in each region, therefore,
total = #female + #male)

D Region-wise topic lists in GeoWAC 1163

Table 8 displays a comprehensive list of topics for 1164

female and male groups across all regions. 1165

E Unigram/Bigram Analysis 1166

Table 10 shows the unigrams and bigrams of com- 1167

mon topics with different gender associations. We 1168

find that ‘fashion’ is highly associated with shoes 1169

when it is a male topic in Africa, whereas in Eu- 1170

rope and North America, it is mostly associated 1171

with accessories like sunglasses, rings, etc. This 1172

shows the typical association of women with jew- 1173

elry and men with shoes (Russell, 2010; Nichols, 1174

2011). In the case of ‘Music’, we see that unigrams 1175

and bigrams pertaining to Africa contain words 1176

related to hip-hop music and artists. For Europe, 1177

we find location references and metal music. And 1178

finally, Oceania shows references of jazz and rock. 1179

We do not find any obvious gender associations 1180

in the analysis of the music topic. Table 11 pro- 1181

vides a unigram/bigram analysis of topics that are 1182

commonly associated with a specific gender across 1183

regions. For parenting and family relationships, 1184

Africa has mentions of children, while Asia and 1185

Oceania contain mentions of family events, etc. In 1186

North America, we mostly find text about maintain- 1187

ing health in families. For religion and spirituality, 1188

the unigrams/bigrams are mostly about Jesus and 1189

Christianity across regions. For politics, we find 1190

mentions of specific regions, as expected. Educa- 1191

tion topic is more about being successful in Europe, 1192

where it is about degrees in North America. Finally, 1193

‘social media’ trends are mostly similar. Overall 1194

for topics with same gender associations across 1195

regions, do not have stark differences. 1196

F WEAT-based evaluation setup details 1197

For male/female terms, we use the same represen- 1198

tative words from WEAT: brother, father, uncle, 1199

grandfather, son, he, his, him, man, boy, male for 1200

male and sister, mother, aunt, grandmother, daugh- 1201

ter, she, hers, her, woman, girl, female for female. 1202
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TARGET WORDS - ATTRIBUTE WORDS REGION REGION-SPECIFIC P-VALUE REGION-SPECIFIC WEAT SCORE ORIGINAL WEAT
SCORE, P-VALUE

Africa 0.016 1.798 1.81, 0.001
Asia 0.007 1.508

Male names vs Female names North America 0.04 1.885
- career vs family Europe 6 ·10−4 1.610

Oceania 0.03 1.727

Africa 0.003 1.429 1.06, 0.018
Asia 0.045 1.187

Math vs Arts North America 0.007 0.703
- Male vs Female terms Europe 0.005 0.334

Oceania 0.03 1.158

Africa 0.048 1.247 1.24, 0.01
Asia 0.004 0.330

Science vs Arts North America 1 ·10−5 0.036
- Male vs Female terms Europe 1 ·10−7 -0.655

Oceania 2 ·10−4 0.725

Africa 3 ·10−5 0.855 1.21, 0.01
Young people names Asia 4 ·10−4 0.917
vs old people names North America 0.032 1.325
- pleasant vs unpleasant Europe 0.009 0.917

Oceania 0.014 0.947

Africa 1·10−5 0.008 1.28, 0.001
European American names Asia 1 ·10−6 -0.453
vs African American names North America 0.009 1.29
- pleasant vs unpleasant Europe 0.001 0.617

Oceania 1·10−4 0.492

Africa 0.03 1.443 1.53, < 10−7

Asia 0.009 1.001
Instruments vs Weapons North America 0.01 1.202
- pleasant vs unpleasant Europe 0.02 1.21

Oceania 0.001 0.951

Africa 0.002 0.312 1.5, < 10−7

Asia 0.009 0.869
Flowers vs Insects North America 0.003 0.382
- pleasant vs unpleasant Europe 0.001 0.332

Oceania 0.009 0.660

Africa 0.008 0.835 1.38, 0.01
Asia 0.02 1.201

Mental disease vs Physical disease North America 0.008 0.692
- temporary vs permanent Europe 0.04 1.382

Oceania 0.009 1.620

Table 7: Region-wise WEAT scores and p-values across all dimensions specific in WEAT using word2vec. Negative
scores are highlighted. We compare our region specific scores and p-values with the scores and p-values of the
Original paper by (Caliskan et al., 2017)

Figure 6: Llama2 prompt
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REGION FEMALE MALE
Africa Credit cards and finances, Royalty and

Media, Trading strategies and market
analysis, Dating and relationships guides,
Parenting and family relationships, Fash-
ionable Ankara Styles, women’s lives and
successes, online dating

Fashion and Lifestyle, Male enhancement
and sexual health, Nollywood actresses
and movies, Nigerian politics and govern-
ment, Essay writing and research, Medi-
cal care for children and adults, Journal-
ism and Media Conference, Music indus-
try news and releases, Football league
standing and player performances, Aca-
demic success and secondary school ed-
ucation, Religious inspiration and spiri-
tual growth, Economic diversification and
Socio-economic development

Asia Hobbies and Interests, Healthy eating
habits for children, Social media plat-
forms, Royal wedding plans, Online Dat-
ing and Chatting, Adult Services, Gift
ideas for Valentine’s Day

DC comic characters, Mobile Applica-
tion, Philippine Politics and Government,
Sports and Soccer, Career, Bike enthusi-
asts, Artists and their work, Youth Soccer
Teams, Career in film industry, Political
leadership in India, Bollywood actors and
films, Religious devotion and spirituality,
Phone accessories

Europe Pets and animal care, Fashion and Style,
Education, Obituaries and Genealogy,
Luxury sailing, Traveling, Energy and cli-
mate change, Family and relationships,
Pension and costs, Tech and business
operations, Dating, Comfortable hotels,
Government transportation policies

Political developments in Northern Ire-
land, Christian Theology and Practice,
Crime and murder investigation, EU Ref-
erendum and Ministerial Positions, Crim-
inal Justice System, Israeli politics and
International relations, Cancer and med-
ications, UK Government Taxation poli-
cies, Art Exhibitions, Political decision
and impact on society, Music Gendres
and artists, Medical specialties and uni-
versity training, Political discourse and
parliamentary debates

North America Pets, Cooking: culinary delights and chef
recipes, Fashion and style, Family dy-
namics and relationships, Reading and
fiction, Scheduling and dates, Life and
legacy of Adolf Hitler, Gender roles and
inequality, Education and achievements,
Online dating for singles, Luxury hand-
bags, Footwear and Apparel brands, Es-
say writing and literature

Civil War and history, Middle East con-
flict and political tensions, Movies and
filmmaking, Political leadership and party
dynamics in Bermuda, Rock Music and
songwriting, Wartime aviation adven-
tures, Religion and Spirituality, Repro-
ductive health, Reinsurance and Capital
markets, Nike shoes and fashion, Cape
Cod news, NHL players

Oceania Cooking and culinary delights, Romance,
Weight loss and nutrition for women, Wa-
ter travel experience, Woodworking plans
and projects, Time management and pro-
ductivity, Inspiring stories and books for
alleges, Sexual violence and abuse, Car
insurance, Exercises for hormone devel-
opment, kid’s furniture and decor

Harry Potter adventures, Art and Photog-
raphy, Superheroes and their Universes,
Music recording and Artists, Football
in Vanuatu, Pet care and veterinary ser-
vices, Building and designing boats, Reli-
gious beliefs and figures, Fashion, Classic
movie stars, Men’s hairstyle and fashion,
Male sexual health and supplements

Table 8: Region-wise topics for female and male.

We also utilize GPT-4 to output the ten most com-1203

mon male/female names specific to each region.1204

We provide the lists of word belonging to each1205

topic in Table 12.1206

G Paired-list for F-M datasets1207

Here is the list of the 52 pairs used to create the1208

F-M datasets per region:1209

[monastery, convent], [spokesman, spokeswoman],1210

[Catholic priest, nun], [Dad, Mom], [Men,1211

Women], [councilman, councilwoman], [grandpa,1212

grandma], [grandsons, granddaughters], [prostate1213

cancer, ovarian cancer], [testosterone, estrogen],1214

[uncle, aunt], [wives, husbands], [Father, Mother],1215

[Grandpa, Grandma], [He, She], [boy, girl], [boys,1216

girls], [brother, sister], [brothers, sisters], [business-1217

man, businesswoman], [chairman, chairwoman],1218

[colt, filly], [congressman, congresswoman], [dad,1219

mom], [dads, moms], [dudes, gals], [ex girlfriend,1220

ex boyfriend], [father, mother], [fatherhood, moth-1221

erhood], [fathers, mothers], [fella, granny], [frater-1222

nity, sorority], [gelding, mare], [gentleman, lady],1223

[gentlemen, ladies], [grandfather, grandmother], 1224

[grandson, granddaughter], [he, she], [himself, her- 1225

self], [his, her], [king, queen], [kings, queens], 1226

[male, female], [males, females], [man, woman], 1227

[men, women], [nephew, niece], [prince, princess], 1228

[schoolboy, schoolgirl], [son, daughter], [sons, 1229

daughters], [twin brother, twin sister]. 1230

Each pair in the above is denoted as a [male, fe- 1231

male] pair. 1232

H Llama 2 prompt for topic modeling 1233

The prompt scheme for Llama2 consists of three 1234

prompts: (1) System Prompt: a general prompt that 1235

describes information given to all conversations, (2) 1236

Example Prompt: an example that demonstrates the 1237

output we are looking for, and (3) Main Prompt: 1238

describes the structure of the main question, that 1239

is with a given set of documents and keywords, 1240

we ask the model to create a short label for the 1241

topic. Fig 6 displays the three prompts as used in 1242

the code. 1243
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REGION FEMALE TOPICS MALE TOPICS

Africa Credit card-based fi-
nancial services

Fashion - footwear
and celebrities

Royalty and feminin-
ity

Male enhancement
and sexual health

Financial trading Nollywood
Dating guides Nigerian politics
Motherhood and par-
enting

Academic writing

Asia Hobbies Superhero comic
books

Food and nutrition Mobile applications
Social media plat-
forms and content
creation

Philippines politics
and people

Royal weddings Sports
Online social inter-
action and dating

Career

Europe Pets Irish politics
Fashion Christianity
Education Law enforcement

and crime
Deaths and funerals EU and Brexit
Luxury yachting and
sailing

Criminal justice sys-
tem

North America Pets Civil War Military
Cooking and Food Middle Eastern poli-

tics and conflicts
Fashion Movies and direc-

tion
Family and relation-
ships

Bermuda politics

Reading novels Rock music

Oceania Food and eating
habits

Harry Potter

Romance and emo-
tions

Artistic expressions

Weight loss and nu-
trition

Superheroes of Mar-
vel and DC

Boat and sailing ex-
perience

Albums, songs and
artists

Woodworking and
carpentry

Vanuatu Football

Table 9: Topic labels by gpt-4, see Table 2 for compar-
ison with Llama2 topic labels

I Topic Cluster Labels using other LLMs1244

We use Llama2 to fine-tune our topics to label them1245

for better coherence in our paper. However, we1246

also experiment with GPT-4 and arrive at similar1247

topics in Table 9. (see Table 2 for comparison with1248

Llama2 topic labels).1249

J Topic Word Clusters Example - Africa1250

Here, we provide an example of how topics look1251

in our data. In Fig 7, we provide word clusters of1252

topics from Africa. The word clusters contain the1253

top 10 words from each topic in Africa. We find1254

that topic labels by Llama2 are coherent in terms1255

of top topic words.1256

K Region specific BERTs to identify top1257

words in F/M direction1258

To motivate our case to investigate differences in1259

biases across regions, we use BERT to compute1260

the top words corresponding to the she-he axis1261

in the embedding space. BERT is a pre-trained1262

transformer-based language model that consists of 1263

a set of encoders. As a motivation experiment to 1264

identify differences in the contextual embedding 1265

space for different regions, we fine-tune BERT 1266

with the masked language modeling task (no la- 1267

bels) for each region separately. For a given word, 1268

we compute its embeddings by averaging out all 1269

sentence embeddings where it occurs across the 1270

dataset.Similarly, we compute embeddings for all 1271

words in the dataset. The tokenized input goes 1272

through the BERT model and we take the hidden 1273

states at the end of the last encoder layer (in our 1274

case, BERT-base, i.e. 12 encoder layers) as sen- 1275

tence embeddings. We identify the top words with 1276

the highest projection across the she-he axis in the 1277

region-specific datasets. If we find differences in 1278

the top words across regions, it is possible that dom- 1279

inating bias topics vary by region as well. Fig 8 1280

shows the top words closest to ‘she’ and ‘he’ con- 1281

textual embeddings in our data for each region. We 1282

find that top words differ quite a bit across differ- 1283

ent regions. We find many differences in the top 1284

F (close to she) and M (close to he) words across 1285

regions. Some top F words are soprano, archaeo- 1286

logical (Africa); graduate, secretary (Asia); inno- 1287

vative, graphics (Europe); poets, sentiments (NA); 1288

and arts, sleep (Oceania). Some top M words are 1289

history, leading (Africa); astronomer, commission- 1290

ers (Asia); honorary, songwriters (Europe); owner, 1291

hospital (NA); and wrestlemania, orbits (Oceania). 1292

Gender-neutral words such as poets, secretaries, 1293

astronomers, commissioners, songwriters, owners, 1294

and so on are closer to either the she or he axes. 1295

Although comparable to the findings of (Bolukbasi 1296

et al., 2016), the variances among regions inspire 1297

us to look deeper into the data to arrive at culture- 1298

specific bias themes. 1299

L Implementations details 1300

For training our Bertopic model, we use Google 1301

Colab’s Tesla T4 GPU, and it takes 15 min 1302

to run topic modeling for a region-specific F- 1303

M dataset. Region-specific BERTs are run on 1304

NVIDIA RTX2080 GPUs. Each BERT train- 1305

ing experiment takes 1 GPU hour. For our 1306

LLM experiment, we used NVIDIA-A40 for 1307

Mistral-7b-Instruct and Llama-3-8b for an 1308

hour. We do not use any GPUs for GPT-4, 1309

Claude-3-Sonnet and Gemini-Pro. 1310

L.1 Bertopic 1311

We use Bertopic’s default models: SBERT (Reimers 1312

and Gurevych, 2019) to contextually embed the 1313

dataset, UMAP (McInnes et al., 2018) to perform 1314
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TOPIC REGION UNIGRAMS BIGRAMS

Africa (male) march, outlet, air, max, tods, man, said,
pas, cher, people

air max, pas cher, princess j, roshe run, nike air, tods outlet, j march,
roger vivier, posts email, notify new

Fashion and lifestyle Europe (fe-
male)

one, women, fashion, like, new, look,
make, hair, girl, dress

oakley sunglasses, louis vuitton, red carpet, new york, fashion
model, engagement rings, per cent, year old, christian louboutin,
diamond ring

North America
(female)

one, love, like, little, new, made, time, get,
make, women

s cooper, cooper main, t shirt, new york, little girl, men women,
look good, main store, years ago, check out

Africa (female) music, song, album, new, video, single,
one, singer, also, songs

music industry, hip hop, record label, single titled, new single, chris
brown, tiwa savage, ice prince, kanye west, niegrian music

Music Europe (male) man, single, stage, years, world, many,
metal, guitar, solo, irish

year shelfmark, black metal, time exercise, musical content, dundee
repertory, singer songwriter, edinburgh year, zumba days, male
vocalists, millions men

Oceania (male) music, album, new, songs, band, first, time,
jazz, released, rock

new york, elizabth ii, debut album, years later, big band, rock roll,
first time, studio album, los angeles, solo artist

Table 10: Common topics with different gender associations across regions

Parenting and family relationships Nollywood Actress and Movies Marriage and relationships Sports and Football  Womens lives and successes

Fashion and Lifestyle Music Social Media Dating and relationships advice Religious and Spiritual growth

Figure 7: Topic Word Clusters - Africa

dimensionality reduction, HDBSCAN (Malzer and1315

Baum, 2020) for clustering to perform topic1316

modeling. We choose the embedding model1317

BAAI/bge-small-en from Huggingface (Wolf1318

et al., 2019). We set top_n_words to 10 and1319

verbose as True and set the min_topic_size to1320

100 for the Bertopic model. Finally, we use1321

Bertopic’s official library to implement the model.1322

L.2 Llama21323

We use Llama2 to finetune the topics to give1324

shorter labels for each topic. We set the1325

temperature to 0.1, max_new_tokens to 5001326

and repetition_penalty to 1.1. We utilize1327

Bertopic’s built-in representation models to use1328

Llama2 in our topic model.1329

L.3 LLM experiment 1330

For GPT-4, and Mistral-7b-Instruct and 1331

Llama-3-8b, we utilize the Microsoft Azure API7, 1332

huggingface8, and huggingface9 for inference re- 1333

spectively. We use a temperature 0.8 for all models. 1334

For Gemini-Pro and Claude-3-Sonnet, we use 1335

the available chat interface. 1336

L.4 Region-specific BERT 1337

We use the uncased version BERT (Devlin et al., 1338

2019) for our region-specific BERT model trained 1339

for the MLM objective. We use a batch size of 8, a 1340

learning rate of 1 · 10−4, and an AdamW optimizer 1341

7https://learn.microsoft.com/en-us/rest/api/
azure/

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

9https://huggingface.co/meta-llama/
Meta-Llama-3-8B
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TOPIC REGION UNIGRAMS BIGRAMS

Africa (female) child, registration, form, information, sent,
women, foster, best, catholic, women

registration form, form information, child assigned, surgery
doctors, new catholic, catholic women, contemporary challenge,
best everything, foster short, doctors clinic

Parenting and
family relation-
ships

Asia (female) year, old, weekly, fortnightly, clicking, cre-
ate, alert, state, 1, terms

year old, weekly fortnightly, create alert, stated agree, conditions
acknowledge, finals appearances, together playing, dial guarded,
came work, outlet jackets

North America (fe-
male)

women, healthday, loss, three, worked,
closely, together, she, elegant, dignified

three women, women worked, closely together, elegant digni-
fied, very pleasant, soft spoken, women men, healthday reporter,
tuesday march, participate more

Oceania (female) laurel, school, moved, one, day, royal,
wedding, house, sister, hopefully

moved one, royal wedding, laurel school, 1 california, weeks
dad, high school, one hopefully, nobody knew, sister means, fu
school

Africa (male) god, man, church, one, life, people, jesus,
us, lord, christ,

short description, jesus christ, man god, holy spirit, god said,
thank god, bible says, catholic church, today god, every man

Asia (male) life, jesus, us, church, one, man ,lord, said,
father, christ

holu spirit, jesus christ, pope francis, brothers sisters, son god,
men women, holy father, opus dei, eternal life, paul ii

Religion and
Spirituality

Europe (male) god, one, jesus, church, life, people, father,
man , said, christ

jesus christ, son man, catholic church, holy spirit, men women,
said him, holy father, john paul, jesus said, word god

North America (male) god, jesus, one, man, us, life, would, christ,
lord, people

recognizable cheering, section league, jesus christ, exact syn-
onyms, past years, god said, years before, thanks mostly, mostly
steph, father dell

Oceania (male) also, said, best, love, new, come, good,
like, men, made

god said, jesus christ, holy spirit, lord krishna, temple god, father
devil, eternal life, son god, son man, god father

Asia (male) said, one, India, time, people, minister,
government, years, state, police, court

indian congress, government plans, modi ministry, human rights,
foreign politics, armed forces, international warfare, foreign
ministry, middle east, united nations

Politics Europe (male) government, said, minister, people, inter-
national, country, one, foreign, president,
state

make statement, prime minister, human rights, armed forces,
secretary state, middle east, united nations, hon friend, foreign
secretary, united states

Europe (female) school, primary, teacher, founder, CEO,
judgment, group, named, ranking, presti-
gious

as founder, founder CEO, judgment group, named fortune, rank-
ing prestigious, world scientist, scientist women, students com-
prehend, program support, support students

Education North America (fe-
male)

bachelor, years, student, leader, degree, an-
imal, veterinary, music, taught, communi-
cation

bachelors degree, animal veterinary, bachelor music, alison
taught, privately years, students ranging, development pro-
grammes, including leader, art communication, recent years

Africa (male) onigbinder, aura, pictures, first, gained,
popularity, match, beaut, designed, music

aura pictures, gained popularity, match beaut, designed wonder,
attending music, music festival, schomburg library, Instagram
account, sugar coating, schedule tomorrow

Social Media Asia (male) time, later, latest, tracks, speedy, Zulfiqar,
nasty, children, tweeted, guys

gets later, latest tracks, speedy zulfiqar, children pti, pti tweeted,
taking long, long time, hosted pageant, time vincent, love fleet-
ing

Table 11: Common topics with same-gender associations across regions

to train our BERT models for 3 epochs.1342

M Human Validation1343

Students and staff from a college campus were1344

recruited as annotators in the study. Screenshots1345

of the form are displayed in Fig 9. We have 61346

annotators per region (3 male and 3 female).1347

N Reproducibility1348

We open-source our codes, which are uploaded1349

to the submission system. We include commands1350

with hyperparameters in our codes. This would1351

help future work to reproduce our results.1352

19



REGION TOPICS: WORD LISTS

Nollywood Actress and Movies: nollywood, actress, actors, drama, celebrity, movie, acting, movies, producer, tv
Parenting and family relationships: mother, mom, mothers, mum, moms, parent, her, child, momodu, parents
Sports and Football: players, sports, fifa, team, player, football, mourinho, scored, league, champions
Marriage and relationships: wives, marriage, husbands, marriages, married, wife, relationships, husband, marry, relationship
Fashion and lifestyle: cher, nike, max, air, looked, face, love, tods, soldes, scarpe

AFRICA Womens lives and successes: women, ladies, woman, female, girls, men, gender, ones, employees, male
Social Media: instagram, facebook, social, twitter, tweet, snapchat, tweets, tweeted, hashtag, followers
Music: song, songs, album, hits, music, released, rap, singer, tracks, rapper
Religious and Spiritual Growth: god, almighty, bible, christ, faith, believers, christian, jesus, prayer, religion
Dating and relationships advice: dating, women, relationships, ladies, sites, singles, online, single, escorts, websites
Male terms: male, man, boy, brother, he, him, his, son, Kwame, Mandela, Moyo, Jelani, Tariq, Keita, Obi, Simba, Ayo, Kofi, Jabari,
Tunde, Mekonnen, Anwar, Chukwuemeka
Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her, Aisha, Zahara, Nia, Sade, Amara, Chinelo, Layla, Ayana,
Nala, Zuri, Imani, Lola, Kamaria, Nyala, Kaya

Political Leardership in India: modi, political, said, bjp, told, says, leader, congress, minister, public
Hotel Royalty: visited, places, stayed, hotels, adventure, pictures, favourite, guest, hiking, hemingway
Sports and Soccer: sports, team, basketball, players, nba, league, championship, coach, rebounds, finals
Healthy eating habits for children: food, foods, eating, meals, nutrition, cuisine, diet, dishes, cooking, eat
Social Media platforms for video sharing: instagram, video, videos, twitter, tweet, facebook, gifs, vlog, youtube, followers

ASIA Royal wedding plans: meghan, duchess, engagement, england, royal, royalty, prince, kate, london, married
Religious devotion and spirituality: god, bible, holy, faith, prayer, believe, christian, blessed, christ, spiritual
Royal wedding plans: meghan, duchess, engagement, england, royal, royalty, prince, kate, london, married
Bollywood actors and films: bollywood, bachchan, kapoor, actors, acting, kareena, actor, film, shahrukh, hindi
Marriage: married, marriage, marriages, couple, couples, wife, marry, wedding, husband, divorced
Male terms: male, man, boy, brother, he, him, his, son, Hiroshi, Ravi, Kazuki, Jin, Satoshi, Rohan, Haruki, Dai, Akira, Yuan
Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her, Sakura, Mei, Aiko, Yuna, Lina, Ji-hye, Mika, Nami, Anika,
Rina

Music: music, songs, vocalists, album, albums, singing, vocals, singles, rock, song
Education: school, schools, classroom, students, education, educational, pupils, boys, academy, college
Political decisions and impact on society: government, public, minister, said, hon, people, first, the, column, committee
Comfortable hotels: guests, staying, rooms, friendly, welcoming, stayed, hotel, beds, stay, comfortable
UK Government Taxation Policies: corbyn, taxation, fiscal, tax, taxes, exchequer, labour, governments, government, deficit

EUROPE Luxury Sailing: yachts, yacht, boat, sailing, sails, cruising, sail, berths, cruiser, cabin
Christian Theology and Practice: god, bible, christ, jesus, faith, christian, religious, religion, holy, gave
Obituaries and Genealogy: died, edward, relatives, anne, lived, elizabeth, funeral, irish, mrs, galway
Christian Theology and Practice: god, bible, christ, jesus, faith, christian, religious, religion, holy, gave
Fashion and style: fashion, shoes, style, clothes, clothing, shoe, wear, nike, dress, stylish
Male terms: male, man, boy, brother, he, him, his, son, Lukas, Matteo, Sebastian, Alexander, Gabriel, Nikolai, Maximilian, Leonardo,
Daniel, Adrian
Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her, Emma, Sophia, Olivia, Isabella, Ava, Mia, Charlotte, Amelia,
Lily, Emily

Religion and Spirituality: god, christ, jesus, bible, christian, holy, christians, scripture, faith, heaven
Online Dating for Singles: dating, singles, hookup, single, relationships, dates, flirting, personals, date, mingle
Reproductive Health: download, available, pdf, online, edition, manual, free, reprint, kindle, file
Fashion and style: fashion, dresses, dress, wardrobe, clothes, clothing, style, outfit, vintage, wear
Reinsurance and capital markets: reinsurance, reinsurers, insurers, insurance, securities, investors, investment, finance, trading,
pension

NORTH Education and achievements: school, schools, graduated, college, students, undergraduate, graduation, graduate, attended, education
AMERICA Nike shoes and fashion: nike, shoes, sneakers, jordans, jeans, tops, black, boys, men, casual

Family dynamics and relationships: family, families, children, kids, grandchildren, relatives, grandparents, parents, child, parent
Cape Cod news: lifeguard, drowned, drowns, newstweet, hospitalized, snorkeling, cape, reported, reuterstweet, pulled
Reading and fiction: books, book, reading, novels, series, enjoyed, novel, romance, katniss, readers
Male terms: male, man, boy, brother, he, him, his, son, Liam, Noah, Ethan, Jacob, William, Michael, James, Alexander, Benjamin,
Matthew
Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her, Emma, Olivia, Ava, Sophia, Isabella, Mia, Charlotte, Amelia,
Harper, Evelyn

Religious beliefs and figures: god, gods, bible, mankind, faith, christ, spiritual, christian, religion, jesus
Family relationships: mum, mother, mom, mums, parent, family, parents, baby, dad, father
Music record and Artists: music, album, albums, jazz, songs, hits, musicians, artists, recordings, blues
Woordworking plans and projects: plans, furniture, woodwork, wood, woodcraft, woodworking, plywood, carpentry, cabinets,
wooden
Building and designing boats: boatbuilder, boatbuilding, boats, plans, boat, sauceboat, sailboat, build, catamaran, kits
Weight loss and nutrition for women: diet, workout, exercise, foods, weight, food, eating, healthy, pounds, fat

OCEANIA Superheroes and their Universes: superhero, superheroes, avengers, marvel, comics, superman, aquaman, heroes, comic, hero
Exercises for hormone development: hormones, weightlifting, workouts, deadlifts, hormonal, exercises, lifting, testosterone, fitness,
squats
Building and designing boats: boatbuilder, boatbuilding, boats, plans, boat, sauceboat, sailboat, build, catamaran, kits
Kids furniture and decor: furniture, chairs, sofas, ikea, sofa, cushions, sectional, upholstered, couch, childrens
Male terms: male, man, boy, brother, he, him, his, son, Manaia, Tane, Kai, Ariki, Mika, Koa, Rangi, Kane, Tama, Hemi
Female terms: sister, mother, aunt, grandmother, daughter, she, hers, her, Aroha, Moana, Tui, Lani, Kahurangi, Ariana, Malie,
Marama, Ava, Kaia

Table 12: Word lists corresponding to each topic for computing region-aware WEAT metric
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Figure 8: Top words for each region(Africa, Asia, Europe, North America and Oceania) using region-specific
BERTs
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Figure 9: Annotation Form Screenshots (We do not include screenshots with faces to protect privacy)
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