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ABSTRACT

Task-oriented dialogue systems assist users in completing various tasks by gener-
ating appropriate responses. The key lies in effective strategy learning and surface
realization, which are largely mixed together by the cutting-edge methods. They
thus face two problems: a) the learning of high-level strategy could easily be mis-
led by the detailed word sequence optimization, and b) directly emphasizing the
agent’s goal through reinforcement learning (RL) also leads to corrupted solutions
like ungrammatical or repetitive responses. In this work, we propose to decouple
the strategy learning and surface realization in a general framework, called DSSR.
The core is to construct a latent content space for strategy optimization and dis-
entangle the surface style from it. Specifically, we optimize the latent content
distribution for strategy towards task completion, and assume that such distribu-
tion is shared across different surface style realizations. By further constructing
an encoder-decoder scheme for the surface part, it not only facilitates decoupled
optimization via RL for both strategy and surface asynchronously, but also sup-
ports controllable surface style transfer of responses. We test DSSR on the multi-
domain dialogue datasets MultiWoz 2.0 and MultiWoz 2.1 in comparison with
methods mixing strategy and surface realization in different levels, showing im-
provements in the performance evaluated by various evaluation metrics. Finally,
we demonstrate the semantic meanings of latent content distributions to show the
disentangling effect of DSSR, and show that it can do effective surface style trans-
fer as by-products.

1 INTRODUCTION

With the rise of various personal assistants, task-oriented dialogue (ToD) systems have received a
surge in popularity and attention. Different from open-domain dialogues, the ultimate goal of such
ToD systems is to achieve satisfactory task completion, thus the generated responses are evaluated
on both the strategy and surface realization. Traditionally, a ToD system is built using the divide
and conquer approach (Mehri et al., 2019), resulting in multiple modules in a pipeline as shown
in Figure 1 (a). The prediction of annotated dialogue act absorbs the strategy modeling, while the
following response generation realizes the surface forms. However, such hard decoupling scheme
suffers from error propagation and information loss between the modules, e.g. the context details
such as response pattern in former turns are no longer accessible after dialogue act prediction.

To alleviate the limitations of such hard decoupling, another line of efforts uses a single language
model that subsumes modules together (Hosseini-Asl et al., 2020), where all details are kept as
shown in Figure 1 (b). Nonetheless, all labeled results in the middle are indispensable and such
models focus on optimizing the likelihood of the data but fail to foresee the future for strategy
optimization. To address this problem, we see a surge in end-to-end approaches that rely on latent
vectors and apply RL techniques to learn good strategy (Zhao et al., 2019), as illustrated in Figure 1
(c). Although promising performance is achieved, such methods usually mix the strategy and surface
realization together (He et al., 2018). As a consequence, the learning of high-level strategy would
easily be misled by the detailed word sequence optimization, and directly optimizing the strategy
via RL often leads to corrupted utterances that are ungrammatical or repetitive.

In this work, we aim to directly optimize strategy while maintaining good control over surface re-
alization. To realize this aim, it requires the system to moderately disentangle the two aspects and
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Figure 1: The three popular modeling schemes for task-oriented response generation.

optimize them in a collaborative way. However, these aspects interact in subtle ways in natural
language responses. Hence, instead of directly separating them into two-stages for sub-optimal re-
sults, we formalize a latent content space to represent the surface-independent content part of the
agent response, and permit it to be shared across different surface realizations as shown in Figure
2. We further construct an encoder decoder close-loop to deliberately control the surface realiza-
tion: the encoder takes each surface realization form and its style indicator as input to extract the
surface-independent content representation. The learned representation is then carefully aligned and
passed to the surface-dependent decoder for rendering with assigned surface styles. In general, the
surface-independent content space is the crux of our proposed DSSR. It not only enables decoupled
optimization via RL for both the strategy and surface asynchronously, but also supports controllable
surface style transfer of responses.

To demonstrate the effectiveness of the proposed DSSR, we evaluate it on two public multi-domain
dialogue datasets (MultiWoz 2.0 and 2.1). We compare it with the state-of-the-art methods that mix-
ing strategy and surface realization in different levels. The model achieves strong performance im-
provements on automatic evaluation metrics, reaching 110.47 and 107.08 combined scores respec-
tively, leading the board on the total performance in the official records 1. Moreover, we demonstrate
the disentangling effect of DSSR by illustrating the semantic meanings of latent distributions and
show that it can perform effective style transfer between dialogue acts and responses as by-products.

2 RELATED WORK

Separated Response Generation. ToD systems help users to complete tasks such as finding restau-
rants or booking flights. Building such systems typically requires separated modules to construct a
pipeline: natural language understanding to extract user’s intents (e.g. inform) and slot values (e.g.
area-center), dialogue state tracking (DST) to update belief states, dialogue policy to decide the
system’s next action, and natural language generation (NLG) to generate real responses. Such sepa-
rated modules are trained independently with different supervision, e.g. the dialogue policy module
employs dialogue act labels, and the NLG module accesses templatized or natural responses.

• Strategy is mainly modeled in the dialogue policy module (Wen et al., 2017; Zhao & Eskenazi,
2016; Liu & Lane, 2017). It aims to solve real-world challenges more efficiently, e.g. to improve
task completion (Li et al., 2016) or win negotiations (Lewis et al., 2017) etc. A classic solution
employs RL to learn the optimal action distribution conditioned on the belief state. However, the
action space is hand-crafted dialogue acts and slot values e.g. inform(departure time, 17:00). This
is limited because it can only handle simple domains whose entire action space can be enumerated.
More importantly, it is hardly optimal for strategy modeling. Limited by the act and slot numbers,
it not only fails to represent some complicated situations, but also loses many context details.

• Surface realization is the goal of the subsequent NLG module, where two broad categories of
methods are popular. (1) Template-based methods require a minimal set of manually defined
templates to generate simple utterances. Some efforts exploit a retrieval process to replace the
handcrafting procedure (Wu et al., 2019). Thus, the produced responses are often fluent, but

1https://github.com/budzianowski/multiwoz
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Figure 2: An overview of the proposed decoupling framework DSSR. The network φ maps the
dialogue context C to latent content Z in agent action space. Z is shared in responsesR1 andR2 in
two styles s1 and s2. Encoder E extracts the content while stripping off the indicated surface styles,
and generator G generates the response back when given the original style. When indicating with a
different style, transferred R̃1 and R̃2 will be generated respectively.

not always natural as some required semantic information might be mismatched (Langkilde &
Knight, 1998; Kale & Rastogi, 2020; Wang et al., 2021). (2) Seq2seq-based methods are also
commonly leveraged to directly convert a sequential representation of system actions to a system
response (Zhu et al., 2019; Wang et al., 2020b). Such methods can generate utterances containing
novel patterns but heavily rely on a large amount of training data. Thus specific problems such
as domain adaptation and transfer learning in low resource settings has been extensively studied
(Chen et al., 2020; Peng et al., 2020b). However, all of these methods ignore the different styles
in surface realization, let alone support flexible transfer between various realizations.

Entangled Response Generation. To overcome the information loss problem of separated response
generation, numerous end-to-end entangled methods have been proposed, which fall in two lines.
(1) Language modeling methods largely benefit from the large pre-trained transformer-based mod-
els such as BERT (Devlin et al., 2019) and GPT-2 (Radford et al., 2019). By connecting dialogue
context, intermediate results and response into a long sequence, such systems typically rely on lan-
guage modeling techniques to directly optimize the data likelihood while neglecting the planning
altogether (Hosseini-Asl et al., 2020; Peng et al., 2020a; Yang et al., 2021). It sets barriers for
systems to anticipate the future for more intelligent responses. (2) End-to-end RL methods hence
come with latent variables and optimize via RL. Initially, the action space for RL is defined as the
entire vocabulary (Li et al., 2016). However, it blows up the size of action space and the trajectory
length. Also, to simultaneously optimize the language coherence and decision making within one
model can lead to divergence (Das et al., 2017; He et al., 2018). Therefore, Zhao et al. (2019) pro-
pose to construct a latent space between the context encoder and the response decoder as the action
space. Better performance is reported due to the condensed representation and shorter trajectory.
Lubis et al. (2020) further leverage auxiliary tasks to shape the latent variable distribution and Wang
et al. (2020a) model the hierarchical structure between the dialogue policy and NLG with the op-
tion framework (Sutton et al., 1999). While improvements are reported on task completion, lack of
interpretability and controllability remains a major challenge. In our work, we not only decode re-
sponses conditioned on the latent variable to decouple action selection and language generation, but
also encourage the latent variable to truly interpret the content of agent actions and support flexible
control of surface realizations.

3 FORMULATION

In this section, we formalize the response generation task for ToD and illustrate the feasibility of the
decoupling scheme. We assume that the data are generated by the following process:

1. given dialogue context c, a latent content variable z is generated from the distribution p(z|c);
2. a latent style variable s is generated from a prior distribution p(s);

3. a detailed response r is generated from conditional distribution p(r|s, z).

We observe a set of dialogue context c paired with responses with the same content distribution
but in two different styles s1 and s2. Formally, we have a dataset D = {T1, T2, · · · , Ti, · · · , TN}
with N data samples, where each tuple Ti = (c(i), r

(i)
1 , s

(i)
1 , r

(i)
2 , s

(i)
2 ). We do not have the exact

definitions of the styles but can differentiate between them, i.e. each response sample can be viewed
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as drawn from p(r1|s1) or p(r2|s2) respectively. Our goal is to estimate the response generation
functions p(r1|c, s1) and p(r2|c, s2). Since the latent content part z is shared, we also learn the
surface style transfer functions p(r1|r2; s1, s2) and p(r2|r1; s1, s2).
Intuitively, the latent content variable z should carry most of the complexity of response r, while
the surface style indicator s should have relatively simple effects. Still, responses generated from
different surface styles should be “distinct” enough, otherwise, the controlled generation task is not
well defined (Shen et al., 2017). Here, we assume that z is a Gaussian mixture and we demonstrate
that it is probable to recover the generation functions and surface style transfer functions.

Lemma 1. Let z be a mixture of Gaussians p(z) =
∑K
k=1 πkN (z|µk,Σk). Assume K ≥ 2, and

there are two different Σi 6= Σj . Let S = {(A, b)||A| 6= 0} be all invertible affine transformations,
and p(r|s, z) = N (r;Az + b, ε2I), in which ε is a noise. Then for all s 6= s′ ∈ S , p(r|s) and
p(r|s′) are different distributions.

The lemma shows that the controlled generation between r1 and r2, two affine transformations of
content z, can be recovered given the observed marginals p(r1|s1) and p(r2|s2) when surface style
s is distinguishable and z is a mixture of Gaussian distributions with more than two components.

4 METHOD

As discussed, learning decoupled response generation for better interpretability and controllability
is essentially learning the conditional probability p(r1|c, s1) and p(r2|c, s2) under our generative
assumption. In the learning scheme, we also harvest surface style transfer functions p(r1|r2; s1, s2)
and p(r2|r1; s1, s2) bridged by the latent z. We have demonstrated the feasibility of the learning
problem by assuming z as a Gaussian mixture with multiple components and requiring styles being
distinguishable. In this section, we introduce the proposed DSSR framework in detail.

4.1 PRELIMINARIES

In the current popular end-to-end RL framework (Zhao et al., 2019; Lubis et al., 2020), the response
generation task is typically performed in two steps: supervised learning (SL) pretraining and RL
finetuning. In the SL pretraining step, the model learns to generate a response r based on the
dialogue context c in an end-to-end fashion. During SL, it updates the neural network parameters θ
to maximize the log likelihood of the training data as:

LSL = Er,c[ log pθ(r|c)]. (1)

After achieving a good parameter setting θ̂ via SL, the RL step starts from it and further updates
the model parameter w.r.t. the task-specific goal, reflected as a reward. Suppose a dialogue has T
turns, for a specific time-step t, the discounted return is defined as Ot =

∑T
i=t γ

i−toi, where ot is
the immediate reward for turn t and γ ∈ [0, 1] is the discount factor. The model tries to maximize
the expected return from the first time-step onwards, which is J = E[

∑T
t=0 γ

tot].

4.2 DECOUPLING STRATEGY AND SURFACE REALIZATION

To enable appropriate decoupling of strategy and surface realization, we leverage a latent variable z
and introduce a surface style indicator s. Then the SL part becomes p(r|c, s), which can be further
factorized into p(r|c, s) = p(z|c)p(r|z, s). By treating the latent space z as the content part of the
response and adding surface style factor during generation, we not only manage to reduce the action
space size and trajectory length for RL, but also support controllable response generation.

Strategy. Under this setting, the RL finetuning step aims to learn a good strategy towards task
completion goals. We apply REINFORCE (Williams, 1992) to finetune φ which is responsible for
choosing the best latent action z given dialogue context c (c.f., Figure 2). The policy gradient is
defined as:

∇J(φ) = Eφ[
T∑
t=0

Ot∇ log φ(zt|ct)]. (2)

By introducing RL over strategy learning, the model manages to foresee the future for more intelli-
gent response in order to achieve better task completion.
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Surface Realization. As discussed in Section 3, we assume that the content variable z takes the
form as a multivariate Gaussian mixture with a diagonal covariance matrix. It is learned during the
SL pretraining step using stochastic variational inference by maximizing the evidence lowerbound
(ELBO) on the data log likelihood. To further combat the exposure bias in the latent content space,
we may come up with a new variational lower bound as:

LELBO = Ez∼φ(z|c)[ log G(r|z, s)]− η KL [φ(z|c)||p(z)], (3)

where η is a weight to constrain φ(z|c) to be similar to certain priors. Note that in Figure 2, we
defined an encoder network E and a generator G. Formally, let E : R× S → Z be an encoder that
infers the content z from a given response r and a surface style s, and G : Z×S → R be a generator
that generates a response r from a given content z and surface style s. Naturally, the extracted z1
and z2 from r1 and r2 should be aligned to the z predicted by φ(z|c). Hence the second term about
KL divergence in Equation (3) can be replaced as:

α KL [φ(z|c)||E(z1|r1, s1)] + β KL [φ(z|c)||E(z2|r2, s2)], (4)

where α and β are hyper parameters for weights.

Meanwhile, the networks E and G form an auto-encoder model. When applying to the same surface
style, the reconstruction loss for responses will be,

LRE(E,G) = Er1∼R1
[− log pG(r1|s1,E(r1, s1))]+

Er2∼R2
[− log pG(r2|s2,E(r2, s2))].

The overall training objective for SL is defined to update the parameters for the mapping network φ,
encoder E and generator G. It is defined as:

LELBO + λLRE ,

where λ is the weight hyper parameter to adjust the effect of reconstruction. The KL divergence
term in LELBO is defined in Equation (4).

Although the reconstruction loss is only calculated for the same surface style, the alignment of z
by KL divergence in Equation (4) enables the style-controlled response generation, i.e. transferring
styles between responses. For instance, when E and G are well-trained, given a response r1, its
surface style s1 and a transfer target style s2, we can transfer it to r2. Formally,

p(r2|r1; s1, s2) =
∫
z

p(z|r1, s1)p(r2|z, s2)dz

= Ez∼E(r1,s1)[G(r2|z, s2)].

Asynchronous Optimization. After obtaining a good parameter setting for the surface realization
network G via SL pretraining, we can also further finetune it via RL to obtain better results. Hence
we apply REINFORCE again to update G which is responsible for transforming z into the indicated
surface-form. By treating every output word as an action step, the policy gradient is defined as:

∇J(G) = EG[

T∑
t=0

Ut∑
j=0

Otj∇ log G(wtj |w<tj , zt, st)], (5)

where Ut is the number of tokens in the response at turn t and j is the token index in the response.

The goal of the whole DSSR learning process is to find the best maximizers that can maximize
the reward value regarding both strategy and surface realization. The two policies are defined in
Equation (2) and (5), respectively. If we synchronously update these two policies, the composite
state will be inconsistent before and after the update each time. Consequently, the value does not
always monotonically improve during the learning process. It will affect the convergence of both
policies. Therefore, we update the two asynchronously during learning to guarantee the convergence
of these policies to a local maximizer.
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4.3 IMPLEMENTATION OF DSSR

In implementation of DSSR, we represent the content part as latent vectors z, which enables the
flexible decoupling scheme. In detail, a content variable z is sampled from a dialogue strategy
represented as a multivariate Gaussian mixture such that φ(z|c) =

∑K
k=1 πkN (z|µk,Σk). It is

implemented with one-layer linear model and outputs the mean and variance. Inspired by (Chen
et al., 2019), we further append the predicted graph act vector to enhance the model’s generalization
ability to sparse training instances. The input of φ(z|c) is a context vector c. Specifically, the last
user utterances are firstly encoded with a bidirectional RNN with GRU cell and global type attention
mechanism. Then, an oracle dialogue state and an oracle database search result are concatenated
with it to form the c. The utterance encoder is only trained during pretraining and fixed as a context
extractor during asynchronous RL, so that the context space is reduced.

For the surface realization part, we implement the encoder E and the generator G by using single-
layer RNNs with GRU cell. E takes an input sentence r with surface style s. It strips off the
indicated style information from the input sentence and outputs the latent content variable z as its
content representation. G generates a response r from the content vector z with style indicator s.
For the generator G, p(wt|z, s) is represented as a categorical distribution over a word, conditioned
on a content z and a style s. The information in the initial state is assumed to be propagated to the
hidden states at the future time steps, so we only feed it in the initial state in implementation. The
surface style indicator s is implemented via one-layer linear model, only trained during pretraining
and fixed during asynchronous RL.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We conduct experiments on the latest benchmark datasets MultiWoz 2.0 (Budzianowski
et al., 2018) and MultiWoz 2.1 (Eric et al., 2019) to evaluate our proposed decoupling scheme. Mul-
tiWoz 2.0 is a large scale task-oriented dialogue dataset containing over ten thousand dialogues that
spans over seven distinct domains. All the dialogues are collected by human-to-human conversa-
tions via the crowd sourcing WOZ setting. In which, every dialogue is generated where the user is
given a pre-defined goal and the system attempts to fulfill the goal by interacting with the user. We
follow the same delexicalized method provided by (Budzianowski et al., 2018) to pre-process the
dataset, which is widely applied in other works (Zhao et al., 2019; Wang et al., 2020a). MultiWoz
2.1 is a modified version of MultiWoz 2.0 which mainly fixes the noisy dialogue state annotations
and corrects a small fraction of dialogue utterances. Note that we follow the public divisions to split
the datasets into training, validation and testing sets (Budzianowski et al., 2018; Eric et al., 2019).

Evaluation Metric. Following existing response generation works such as (Budzianowski et al.,
2018), we adapt three automatic metrics measured in percentage to evaluate the generated utterances
from a dialogue system such as Inform rate, Success rate and BLEU score. Inform rate measures
whether the system has provided the correct entity (e.g., the name of restaurant). Success rate shows
the ratio of correct answers provided for request slots in the generated utterances. The fluency of
the generated response is measured by BLEU (Papineni et al., 2002) score. The Combined score is
computed as (BLEU +0.5× (Inform+Success)) (Budzianowski et al., 2018) to fairly evaluate
the performance of a dialogue system as a popular total score.

Task Setting. As we focus on decoupling the strategy and different surface realizations of the re-
sponse, experiments are conducted on the dialogue-context-to-text generation task. As originally
proposed in (Budzianowski et al., 2018), we assume that the model has access to the oracle belief
state and database search result. Given the dialogue context, the model is trained to generate appro-
priate utterances as a response in each turn. Besides the natural language responses, we also view
the structured dialogue acts in sequence as another style of surface realization. It carries the same
content meaning as its natural language counterpart but in different surface style. Given the surface
style indicators, our model manages to flexibly transfer between these two realizations. After su-
pervised training of the model, to further fine-tune the model with asynchronous RL, each dialogue
is only evaluated with the goal (e.g. calculating the Success rate) and the BLEU score at the end of
dialogue. More training details can be found on Appendix B.
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Baseline Models. The variation of DSSR without RL finetuning is denoted as DSSR SL. We
compare DSSR with methods mixing strategy and surface realization at different levels. These
baselines are organized into three groups, i.e., pipe-lined, language modeling based and end-to-end
RL based methods. All these models leverage oracle dialogue states and database search results.

• Pipe-lined. SFN (Mehri et al., 2019) learns neural dialogue modules corresponding to the struc-
tured components of traditional dialogue systems. It obtains strong results both with (denoted as
SFN) and without reinforcement learning (SFN SL).

• Language modeling. All compared methods are based on fine-tuning the pretrained GPT-2. Sim-
pleTOD (Hosseini-Asl et al., 2020) works on turn-level sequences, while UBAR (Yang et al.,
2021) treats a whole dialogue session as a single training sequence. They both rely on labeled
intermediate results, but DialogGPT (Zhang et al., 2020) totally ignores such labels.

• End-to-end RL. We also compare with the state-of-the-art end-to-end RL based methods. LaRL
(Zhao et al., 2019) is the first to represent dialogue act as latent vectors in ToD. During RL training,
it only updates dialogue policy. Based on that, LAVA (Lubis et al., 2020) further leverages three
auxiliary tasks to shape the latent variable distribution. HNDO (Wang et al., 2020a) adopts the
option framework (Sutton et al., 1999) to model the hierarchical relation between dialogue policy
and NLG. We also report its SL only version as HNDO SL.

5.2 MAIN RESULTS

How does decoupling work? The main results for response generation are shown in Table 1. The
proposed DSSR method achieves the best performance regarding the overall performance reflected
by the Combined scores. It shows balanced results over both strategy learning for task completion
and surface realization, validating the effectiveness of the decoupling scheme. Specifically, we
observe a general trend that RL applied methods can largely boost the strategy part as expected,
because the task completion rates are directly considered as rewards for optimization. For example,
in pipeline-based methods, the RL applied SFN outperforms its SL counterparts, especially in task
completion metrics like Inform rate and Success rate. This is also true in end-to-end RL based
methods such as HDNO. However, such methods tend to generate as many slots as possible to
increase these rates, which leads to ungrammatical or repetitive responses. Hence, such destruction
of surface realization is often the price to pay for the increasing strategy performance. It is evidenced
by the generally lowest BLEU score reported in LaRL and LAVA, the decrease of BLEU in SFN from
SFN SL and HDNO from HDNO SL.

On the contrary, since the proposed DSSR deliberately decouples the strategy and surface realization
and optimizes them via asynchronous RL separately, it not only enhances the strategy part to predict
succinct slots, but also further helps the surface realization to generate more fluent responses (see
examples in Appendix C.1). For language modeling based methods, the results show that how
to model the task is the key to achieve good performance via the powerful large-scale pretraining
models such as GPT-2. Although UBAR manages to achieve over 100.0 Combined scores, the lack
of foreseeing the future is still a main shortcoming for such models.

Table 1: Main results on MultiWoz 2.0 and MultiWoz 2.1.
MultiWoz 2.0 MultiWoz 2.1

Inform Success BLEU Combined Inform Success BLEU Combined
SFN SL 90.00 74.20 18.35 100.45 63.10 53.10 17.56 75.66
SFN 94.40 83.10 16.34 105.09 87.80 76.20 10.57 92.57
DialogGPT 73.40 48.00 12.16 72.86 72.10 50.10 12.62 73.72
SimpleTOD 88.90 67.10 16.90 94.90 85.10 73.50 16.22 95.52
UBAR 94.00 83.60 17.22 106.02 89.6 78.6 17.34 101.44
LaRL 93.49 84.98 12.01 101.25 92.39 85.29 13.72 102.56
LAVA 97.50 94.80 12.02 108.17 96.39 83.57 14.02 104.00
HDNO SL 78.60 70.40 19.26 93.76 78.80 66.70 18.46 91.21
HDNO 95.80 84.50 18.61 108.76 93.20 81.90 18.35 105.90
DSSR SL 92.90 84.90 19.38 108.28 90.10 82.70 19.99 106.39
DSSR (ours) 94.60 87.20 19.57 110.47 90.40 81.90 20.93 107.08
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On the effect of different surface realization. DSSR also manages to generate the dialogue act
sequences, where each action is organized as a (domain, action, slot, value) tuple. We separately
check the accuracy of domain, action and slot. We also evaluate the tuples via F1 score. Since
the end-to-end RL based methods do not have such outputs, we skip the comparison. Pipeline-
based SFN works well on task completion metrics and predict vector based dialogue acts. However,
its tuple F1 score did not exceed 30 thus we did not report here. We suspect that its RL fine-
tuning process makes the dialogue act vector diverge from its original semantic space where each
dimension corresponds to a specific dialogue act. Instead, we compare with UBAR, which is the best
performing method with such outputs. As shown in Table 2, DSSR performs better, which reflects
that the learned latent vector indeed contains the right content that can be effectively realized in
different surface forms.

Table 2: Dialogue act generation results on MultiWoz 2.0 and MultiWoz 2.1.

MultiWoz 2.0 MultiWoz 2.1
domain action slot F1 domain action slot F1

UBAR 88.42 58.88 50.72 52.41 87.46 59.54 50.56 52.95
DSSR (ours) 89.41 74.72 61.91 59.45 89.27 73.61 61.67 58.73

On the semantic meanings of latent content space. As shown in Figure 3, we visually assess
the latent content space by first clustering the latent content vector of each system response in the
testing set into six clusters, and then projecting them with t-SNE (Van der Maaten & Hinton, 2008) to
analyze the formed clusters. Through inspecting the randomly selected system utterances as shown
in the right hand side, we find that the clusters of latent content vectors of both DSSR and HDNO
possess some semantic meanings. For example, the cluster in blue dots in DSSR is related to train
booking and the cluster in yellow dots is related to restaurant recommendation, while the cluster in
brown dots in HDNO is related to the general phrases for goodbye at the end of service. However, it
is also obvious that the clusters from DSSR as shown in Figure 3 (a) are relatively better separated,
which demonstrates clearer semantic meanings expressed by these content vectors. This might be
due to the successful decoupling of content and surface styles in these latent vectors.

(a) DSSR (ours)

(b) HDNO
Figure 3: The latent content vectors of DSSR and HDNO clustered in six categories visualized via
the T-SNE algorithm. We randomly show three turns of system utterances for each cluster.
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5.3 BY-PRODUCTS

Labeling dialogue acts for natural responses (NR to DA). Thanks to the encoder-decoder close-
loop in the proposed DSSR, it is possible to freely transfer between different surface styles of the
responses. Here, we evaluate its performance on transferring natural language response (NR) to
dialogue act sequence (DA). We feed in a natural language response and input its style indicator
to the encoder, then assign the dialogue act sequence style indicator to the decoder to generate a
corresponding dialogue act sequence. In this way, we are sort of labeling dialogue acts for natural
language responses. The results are reported in Table 3. Generally speaking, the performances are
reasonably well. It’s accuracy scores exceed 90% for domain prediction on both MultiWoz 2.0 and
MultiWoz 2.1, and the (domain-slot-value) tuple F1 scores surpass 70% on both datasets. Such
performance signals a possibility of using our method to assist the tedious dialogue act labeling in
ToD dataset construction, which might save much human labor. Also, the results demonstrate that
the encoder-decoder close-loop is well-trained, and it indeed manages to discriminate the different
surface styles and support style controlled generation. Detailed transfer examples can be found in
Appendix C.2.

Table 3: Dialogue act labeling results for natural responses on MultiWoz 2.0 and MultiWoz 2.1.

MultiWoz 2.0 MultiWoz 2.1
domain slot value F1 domain slot value F1
90.76 64.22 78.03 70.51 90.70 64.96 76.68 71.83

Table 4: Natural response genera-
tion results from dialogue act se-
quence on MultiWoz 2.0.

BLEU Entity F1
HDSA 26.5 87.3
SC-LSTM 21.6 80.4
SC-GPT 30.8 88.4
DSSR (ours) 22.9 88.0

Natural response generation from dialogue acts (DA to NR).
With well-trained encoder-decoder close-loop, we also evalu-
ate its performance on transferring dialogue act sequence (DA)
to natural language response (NR). We compare it with trans-
former based HDSA (Chen et al., 2019), LSTM based SC-
LSTM (Wen et al., 2015) and GPT-2 based SC-GPT (Peng
et al., 2020b). Results are reported in Table 4. Note that DSSR
is based on single-layer RNNs with GRU cell which might have
hindered its learning capability, hence results in relatively low
BLEU score. However, it still exceeds that of SC-LSTM. More
importantly, we observe that DSSR achieves similar Entity F1
score with the best performing SC-GPT which is deliberately
designed for this task. Following (Chen et al., 2019), Entity F1 (Wen et al., 2017) is used to eval-
uate the entity coverage accuracy (including all slot values, days and references, etc.) Therefore,
it indicates that the proposed DSSR works well in generating meaningful responses regarding task
completion. It covers essential details for the dialogues. More detailed transfer examples can be
found in Appendix C.2.

6 CONCLUSION

In conclusion, we proposed to decouple the strategy learning and surface realization of response
for task-oriented dialogues. It deliberately separates the content and surface style to facilitate more
targeted optimization and avoid impinging on each other. Hence on one hand, the content part is
decided by the dialogue context, constrained by the content part of various responses, and further
fine-tuned by RL towards task completion; on the other hand, an encoder-decoder close-loop learns
to extract the content with surface styles stripped off as well as generate the response back with
indicated styles, which is further optimized with RL asynchronously. We carried out extensive
experiments on two public datasets in comparison with a wide range of baselines. The superior
performance results demonstrate that the proposed DSSR scheme not only makes the whole learning
process more effective, but also enables better interpretability of the learned content representation
and flexible control of the response generation.

In the future, we look forward to applying our method for personalized response generation when
more such data is available where surface style is an important factor to model. We would also
like to further improve the strategy part in handling dialogue situations unseen during training and
analyze how our model performs in real dialogue interaction with more unseen situations.
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REPRODUCIBILITY STATEMENT

The source codes and saved model checkpoints have been uploaded as part of the supplementary
material and are publicly accessible. For theoretical results, we give a clear proof in Appendix A
to demonstrate the feasibility of the learning problem by assuming z as a Gaussian mixture with
multiple components and requiring styles being distinguishable. We also provide detailed imple-
mentation details in Section 4.3. For datasets, we follow standard pre-processing codes provided in
their official repository 2 and adopt the public data split to ensure that results are comparable. More
details about our training procedure and hyper-parameter setting can be found in Appendix B.
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Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and Steve Young.
Semantically conditioned lstm-based natural language generation for spoken dialogue systems.
In EMNLP, pp. 1711–1721, 2015.
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A PROOF

Lemma 1. Let z be a mixture of Gaussians p(z) =
∑K
k=1 πkN (z|µk,Σk). Assume K ≥ 2, and

there are two different Σi 6= Σj . Let S = {(A, b)||A| 6= 0} be all invertible affine transformations,
and p(r|s, z) = N (r;Az + b, ε2I), in which ε is a noise. Then for all s 6= s′ ∈ S , p(r|s) and
p(r|s′) are different distributions.

Proof.

p(r | s = (A, b)) =

K∑
k=1

πkN (r;Aµk + b,AΣkA
T + ε2I)

For different s = (A, b) and s′ = (A′, b′), p(r|s) = p(r|s′) entails that for k = 1, · · · ,K,{
Aµk + b = A

′µk + b
′

AΣkA
T = A′ΣkA

′T

Since all S are invertible,
(A−1A′)Σk(A

−1A′)T = Σk

Suppose Σk = QkDkQ
T
k is Σk’s orthogonal diagonalization. If k = 1, all solutions forA−1A′ =

I , i.e. A = A′, and thus b = b′.

Therefore, for all s 6= s′, p(r|s) 6= p(r|s′).

B EXTRA EXPERIMENTAL DETAILS

To train the proposed DSSR model, we first pretrain it using supervised learning and select the
checkpoint model with the best performance on the validation set. Then for asynchronous RL, we
initialize parameters with the pretrained model and select the best model according to the greatest
reward on the validation set. For efficiency, we use greedy search for decoding in validation. During
the testing phase, we also apply greedy search on the testing data and obtain our final results. We use
stochastic gradient descent (SGD) for RL and Adam optimizer for SL pretraining. For the baselines,
we train them with the original source codes. Note that due to the upgrade of the official evaluator 3,
we re-run these models from their original open source codes and obtain the updated performance.

Here we list the specific hyper parameters for DSSR SL and RL training. We set both the maximum
length for the user’s utterance in context and the maximum length for the system’s utterance in
response to 50. A 44-dimension act vector is separately predicted through a BERT model trained as
described in HDSA. We load the ground truth act vector with a dropout rate of 0.6 during training
and use predicted act vector during validation and testing. For constructing the DSSR model, the
embedding size for each word is set to 100. For the input user utterance, target system action
sequence and target system response, both the user utterance encoder (which is part of the context
mapping network φ) and the surface form encoder E are a one-layer bidirectional RNN that uses
GRU cells of size 300. The encoded result is projected to the latent content space, where the size
of the shared latent variable z is 500. The input style label, which is either 0 or 1, is processed by
a label encoder and outputs a 200-dimension vector for each style label. The style generator G is
shared for system action generation and natural response generation. It is a one-layer RNN with a
separate embedding layer and GRU cells. Since the initial state for the generator is a concatenation
of encoded style label and the latent variable z, the cell size for the generator is 700.

To balance the training loss, we have different weights: α and β for the KL divergence loss and λ
for the reconstruction loss. They are all set to be 1.0 in our experiments. During SL training, we
set batch size as 32 and the number of training epochs as 50. During RL training, we fix each batch
as a complete dialogue. For SL training, Adam optimizer is used with an initial learning rate of
0.001 and weight decay 1e-05. For RL training, Stochastic gradient descent (SGD) is used, and the
learning rate in the asynchronous optimization process for the two policies is both 0.09 with weight
decay 1e-05. Generally speaking, the experiments of DSSR were run on a Nvidia GeForce RTX
2080Ti graphic card, which consumed around 2.5 hours for SL training and less than 1 hours for RL
finetuning. Hence, it is not very expensive to reproduce our results as shown in Table 1.

3Please check it under the section Response Generation on the official website of MultiWoz: https:
//github.com/budzianowski/multiwoz.
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C EXTRA EXPERIMENTAL RESULTS

C.1 EXAMPLE DIALOGUES GENERATED

We showcase some system utterances generated in the same dialogue by the baselines and our pro-
posed DSSR, to give a better sense of what has been generated. Since most of the dialogues in
MultiWoz 2.0 and MultiWoz 2.1 are similar, we only show some results on MultiWoz 2.0. As listed
in Table 5, the generated utterances of DSSR is apparently more fluent and task completion oriented.
For example, it manages to keep the whole dialogue on the topic of college recommendation and
successfully book train tickets for the user.

In more details, although all being fine-tuned with RL, DSSR is able to foresee the future better
for response generation than other baselines such as HDNO and LAVA. This is evidenced by the
response on ‘no colleges’ in the first turn, while other models such as HDNO and LAVA mention
‘swimming pools’ and ‘multiple sports attractions’ instead. This is also evidenced in the second
turn that DSSR manages to generate ‘free to get in’ which corresponds to ‘entrance fee’ asked in the
subsequent turn. Moreover, in comparison with other baselines trained with RL, the generated ut-
terances of DSSR is more stringent in generating slots. Especially, LAVA tends to generate as many
slots as possible so as to increase the success rate. e.g. generating the extra [attraction address] in
the third turn. This is the common issue of most RL methods on ToD system as discussed. However,
in DSSR the situation is better. This might be due to our asynchronous RL optimization scheme
where task completion goals and surface realization goals are separately optimized in an iterative
fashion. The improved BLEU score in Table 1 for DSSR also demonstrates this.

It is interesting that we also observe the phenomenon of over-generating slot placeholders in UBAR
generated responses, such as the one in the second turn. It generates [value choice], [value type],
[value area], [value name], [value address] and [value price] in a single turn, which is rather dif-
ferent from the ground truth response where only one [value count] is contained. Since UBAR
purely relies on the powerful language modeling GPT-2 model and does not leverage RL, this might
be due to the context seen in former turns.

C.2 EXAMPLES FOR SURFACE STYLE TRANSFER

We also showcase surface style transfer results for our proposed DSSR. The examples on label-
ing dialogue acts for natural responses is shown in Table 6, and the examples on natural response
generation from dialogue act sequence is shown in Table 7. The term NR stands for natural lan-
guage response, while the term DA stands for dialogue act sequence. Since most of the dialogues in
MultiWoz 2.0 and MultiWoz 2.1 are similar, we only show some examples on MultiWoz 2.0.

For changing natural language response to dialogue act sequence, the examples in Table 6 show that
the resulting dialogue act sequences are generally close to the ground truth ones. Indeed, there are
also some mistakes. For example, in the third example, the (train, inform, time, [value count]) is
missed while an extra (train, request, depart, ?) is predicted. This might be due to some common
patterns learned from training data. However, we also found that certain discrepancies are not real
mistakes. For instance, in the fourth example, we notice that the (attraction inform name [attrac-
tion name]) in ground truth becomes (attraction recommend name [attraction name]) in generated
DA. It is actually unfair to treat it as wrong prediction. Because we need context information to
further decide whether the exact intent is inform or recommend. Also, the ground truth DA misses
the label for ‘free admission’ while the generated DA contains it.

For changing dialogue act sequence to natural language response, the examples in Table 7 show that
the transferred responses are fluent and contain important slot details. For example, the generated
responses in the first two examples exactly express the content in dialogue act sequence. Although
they share the same content with the ground truth responses, their word overlapping ratio is limited,
which might be the reason for the relatively low BLEU score of DSSR in Table 4. In the third
example, we also observe some information loss in the generated responses from dialogue acts, e.g.
the (train request leave ?) is not expressed properly. However, we also observe that the generated
response expresses certain tuples correctly while the ground truth one does not, e.g. (attraction
request price ?) is expressed in the generated NR while not in the ground truth NR.
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Table 5: Some delexicalized responses generated by the baselines and DSSR on MultiWoz 2.0.

Method Delexicalized Dialogue
User: i am looking to go somewhere in the [value area] to enjoy some entertainment. can you help?
GT Sys: i cannot find any entertainment venue -s in the [value area]. would you like to try something

different ? a museum perhaps?
DSSR: there are no colleges in the [value area]. would you like to try a different area or attraction type?
HDNO: i am sorry, there are no swimming pools in the [value area]. would you like me to look in a different

area?
LAVA: i am sorry, there are no multiple sports attractions in the [value area]. would you like to try another

area?
UBAR: i am sorry, there are no [value type] in the [value area]. would you like to try a different area?
User: no museums, what colleges are there around town?
GT Sys: sure, there are [value count] colleges in that area.
DSSR: there are [value count] colleges in the [value area]. i recommend the [attraction name]. it s free to

get in.
HDNO: [attraction name] is a great place. would you like me to book a ticket for you?
LAVA: there are [value count] colleges in the [value area]. i recommend [attraction name]. would you like

more information?
UBAR: there are [value choice] [value type] in the [value area]. [value name] on [value address] is

[value price] and [value name] on [value address] is [value price].
User: can i please get the phone number, postcode and entrance fee?
GT Sys: [attraction name] is [value count] i would recommend, their phone number is [attrac-

tion phone], post code is [attraction postcode], and there is no entrance fee. can i help you
with anything else?

DSSR: [attraction name] is a great college in the [value area]. the phone number is [attraction phone] and
the postcode is [attraction postcode].

HDNO: the phone number is [attraction phone]. the postcode is [attraction postcode]. is there anything else
i can help you with?

LAVA: the [attraction name] is located at [attraction address], postcode [attraction postcode]. the phone
number is [attraction phone].

UBAR: the phone number is [value phone]. the postcode is [value postcode] and the entrance fee is
[value price].

User: i also need a train that leaves on [value day] and arrives by [value time].
GT Sys: where are you traveling from? there are [value count] trains from [value place] that arrive by

that time.
DSSR: there are several trains that meet your criteria. where are you departing from and what is your

destination?
HDNO: where will you be departing from?
LAVA: i have [value count] trains that meet your criteria. would you like to narrow it down by departure

site or arrival time?
UBAR: where will you be departing from?
User: i am leaving [value place] and going to [value place].
GT Sys: the first train leaves at [value time].
DSSR: i have train [train id] that leaves at [value time] and arrives at [value time]. would you like me to

book it?
HDNO: [train id] leaves at [value time]. would you like me to book a ticket for you?
LAVA: i have train [train id] that leaves at [value time] and arrives at [value time]. would you like me to

book that for you?
UBAR: [value id] leaves at [value leave] and arrives at [value arrive]. would you like me to book that for

you?
User: can you book [value count] tickets?
GT Sys: your reservation has been made. the total fee is [value price] gbp payable at the station. refer-

ence number is [train reference].
DSSR: booking was successful, the total fee is [value price] gbp payable at the station. reference number is

[train reference]. can i help with anything else?
HDNO: booking was successful, the total fee is [value price] gbp payable at the station. reference number is

[train reference]. is there anything else i can help you with?
LAVA: booking was successful, the total fee is [value price] gbp payable at the station. reference number is

[train reference].
UBAR: booking was successful, the total fee is [value price] payable at the station. reference number is:

[value reference]. can i help you with anything else today?
User: ok, thank you. that all the information i need today!
GT Sys: i am glad i can help and enjoy.
DSSR: you are welcome. have a great day.
HDNO: you are welcome. have a great day.
LAVA: you are welcome. have a great day!
UBAR: thank you for using our system!
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Table 6: Examples on labeling dialogue acts for natural responses on MultiWoz 2.0.

Surface Style Examples
NR glad i could help, have a great day.
True DA general bye none none; general welcome none none
Generated DA general bye none none; general welcome none none
NR certainly, how many people will be in your party total?
True DA booking request people ?
Generated DA booking request people ?
NR what day would you like to travel? also, when will you need to leave. this train is

[value count] travel minutes.
True DA train inform time [value count]; train request day ?; train request leave ?
Generated DA train request day ?; train request depart ?; train request leave ?
NR the [attraction name] museum is located at [attraction address] [attraction postcode]. it

has free admission.
True DA attraction inform post [attraction postcode]; attraction inform name [attraction name]; attrac-

tion inform addr [attraction address]
Generated DA attraction recommend name [attraction name]; attraction nobook type none; attraction nobook

offerbooked [attraction address]; attraction nobook fee none

Table 7: Examples on natural response generation from dialogue act sequence on MultiWoz 2.0.

Surface Style Examples
DA taxi request leave ?
True NR what time do you want to leave?
Generated NR i need to know what time you will be leaving?
DA booking inform none none; restaurant recommend area [value area]; restaurant recom-

mend name [restaurant name]
True NR you must try [restaurant name] in the [value area] of town! want a reservation?
Generated NR i have found [restaurant name] in the [value area] area. would you like me to make a reserva-

tion for you?
DA train inform choice [value count]; train request leave ?; train request day ?
True NR i have [value count] trains matching your request. is there a specific day and time you would

like to travel?
Generated NR i found [value count] trains. what day would you like to leave?
DA attraction request price ?; attraction recommend type none; attraction nooffer area

[value area]; attraction nooffer type none
True NR i cannot find any entertainment venue -s in the [value area]. would you like to try something

different? a museum perhaps ?
Generated NR i apologize but there are not any colleges in the [value area]. would you like to try a different

part of town, or a different price range?
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