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Abstract

Machine unlearning has become a focal point in recent research, yet the specific
area of feature unlearning has not been thoroughly explored. Feature unlearning
involves eliminating specific features’ effects from an already trained model, pre-
senting distinct challenges that are not yet comprehensively addressed. This paper
presents a novel and straightforward approach to feature unlearning that employs a
tactical shuffling of the features designated for removal. By redistributing the values
of the features targeted for unlearning throughout the original training dataset and
subsequently fine-tuning the model with this shuffled data, our proposed method
provides a theoretical guarantee for effective feature unlearning. Under mild as-
sumptions, our method can effectively disrupt the established correlations between
unlearned features and the label, while preserving the relationships between the
remaining features and the label. Across both tabular and image datasets, our
empirical results show that our method not only effectively and efficiently removes
the influence of designated features but also preserves the information content of
the remaining features.

1 Introduction

Machine learning models have transformed numerous industries by learning complex patterns from
vast amounts of data, driving productivity and efficiency [29, 19, 24]. However, as these models
become deeply integrated into decision-making processes, significant concerns regarding privacy,
ethical use of data, and compliance with regulatory frameworks, such as the General Data Protection
Regulation [31] and the Health Insurance Portability and Accountability Act [1], have surged. In this
context, machine unlearning has emerged as a critical subfield, focusing on the deliberate removal of
specific information from trained models, effectively enabling them to “forget” certain data points or
features upon request [27, 16, 5, 14]. While machine unlearning has garnered significant attention,
the specific subfield of feature-level unlearning remains relatively underexplored.

Most existing research on machine unlearning has focused on instance-based unlearning, aiming to
remove a certain subset of data samples from models without retraining from scratch [8, 27, 14, 16].
In contrast, feature unlearning targets removing the influence of specific features from a trained
model [32], which poses unique challenges and opportunities that have yet to be fully addressed. One
of the major challenges for feature unlearning lies in the complex interdependencies among features:
disentangling and removing the effect of a targeted feature without disrupting the influence of others
is difficult. The model may have learned complex representations where the influence of one feature
is intertwined with others, making isolation of a single feature’s effect non-trivial. Moreover, changes
to one feature’s influence can inadvertently affect the learned relationships and decision boundaries
associated with other features, potentially leading to unintended bias.
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Existing approaches for feature-level unlearning [32, 26, 15] experience performance degrada-
tion as the number of removed features increases, and they lack theoretical guarantees to fully
negate the influence of removed features while maintaining the integrity of the remaining features.

Figure 1: An example of our feature un-
learning algorithm.

To tackle this issue, in this paper, as shown in Fig. 1,
we introduce a simple yet effective approach to feature
unlearning by strategically shuffling the features desig-
nated for removal from a statistical perspective. This
shuffling technique serves a dual purpose. First, it en-
sures that the modified model gradually loses reliance
on the specified features, as the original correlations are
obscured through randomization. Second, this approach
preserves the structure and statistical properties of the
remaining features, thereby maintaining the integrity of
other predictive relationships in the data.

Despite its simplicity, we provide rigorous theoreti-
cal guarantees for the feature unlearning process. We
demonstrate that the impact of the specified features diminishes to an insignificant level. We also
further validate our proposed method under the concept of Shapley value [33] and mutual infor-
mation [20]. These guarantees provide assurance that the shuffling process effectively isolates and
removes the targeted feature influence without compromising overall model integrity. Through
comprehensive empirical evaluation on diverse tabular and image datasets with different neural
architectures, we show that our approach can robustly unlearn multiple features simultaneously while
efficiently preserving high accuracy and ensuring strong generalization on the retained features.

2 Related Work

Machine unlearning has emerged as a critical area in machine learning, focusing on enabling models
to efficiently forget specific data points or subsets without requiring a complete retraining [27, 16, 5,
14, 13, 3]. Most existing machine unlearning methods primarily focused on data-level unlearning and
proposed several methods, such as Sharded, Isolated, Sliced, and Aggregated (SISA) training, certified
removal, and adaptive unlearning, which can effectively remove specific data points [5, 14, 16].

There have been comparatively limited studies [32, 15, 26] addressing feature-level unlearning,
which aims to remove or diminish the influence of specific features in a trained model. [32] initially
addressed the feature unlearning problem by recalculating the network weights associated with the
removed elements, followed by a fine-tuning phase to maintain performance on remaining features and
labels. Subsequently, [15] proposed a more computationally efficient approach to eliminate specific
attributes using a representation detachment loss defined by mutual information. Yet, this method
lacks a theoretical guarantee for the unlearning process. Also, mutual information is simultaneously
estimated during unlearning, introducing potential bias. [26] expanded feature unlearning to pre-
trained generative models by modifying the generator and encoder-decoder pathways. However,
this method is specifically tailored for the generative adversarial network framework and can lead
to considerable computational overhead. All of the aforementioned models suffer from one of the
two main limitations: (i) Their performance deteriorates as the number of features to be removed
increases; (ii) They lack theoretical guarantees to completely eliminate the influence of removed
features while preserving the information of the remaining features. Instead of simply retraining the
model from scratch, prior studies often prefer fine-tuning a trained model because it only need to
work on a part of the parameter space that already captures wide-ranging and sturdy features and
make minimal yet effective adjustments rather than relearning all features from the beginning [35, 10].
Also, beginning with a pre-trained model acts as a form of prior, effectively limiting the model’s
degrees of freedom. This constraint makes it less prone to fitting random noise and more likely to
preserve features that generalize well. Consequently, this kind of approach tends to reduce overfitting
compared to training a model from scratch [23].

3 Defining Feature Unlearning

Definition 3.1 (Feature Unlearning). Let D̂ = {(xi, yi)}ni=1 be a dataset of n samples with m
features, where the feature vector xi ∈ X ⊆ Rm and the label yi ∈ Y ⊆ R. Each feature, as well
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as the label, can be represented as a random variable, denoted by X1, X2, . . . , Xm, Y . The random
variable of the feature vector is then denoted by X = (X1, . . . , Xm). Each sample in the dataset D̂
is drawn from its underlying distribution D, where (X, Y ) ∼ D.

Suppose a model parameterized by θ, denoted by fθ : X → Y , has been trained on D̂. Let the
j-th feature (which could also include multiple features as a feature mix) be the targeted feature for
unlearning. The dataset with j-th feature removed is defined as D̂−j := {(xi,−j , yi)}ni=1, where the
resulting feature vector xi,−j ∈ X−j ⊆ Rm−1. Let gϕ : X−j → Y be the model parameterized by ϕ

and trained from scratch on D̂−j .

We define the unlearning operator U transforming the original model into an updated model, ex-
pressed as fθ′ = U(fθ), such that the influence of the j-th feature is completely removed. We define
that U achieves the goal of feature unlearning if, with a probability of at least 1 − δ, for all (x, y)
drawn from D̂, there exists a gϕ, such that ∆

(
fθ′(x), gϕ(x−j)

)
≤ ϵ, ∀(x, y) ∼ D̂, where ∆(·, ·) is

an appropriate distance function. In other words, we have P(x, y)∼D̂

[
∆
(
fθ′(x), gϕ(x−j)

)
> ϵ

]
≤ δ.

4 Shuffling-based Feature Unlearning Approach

In the context of feature unlearning, our objective is to ensure that the updated model fθ′ retains no
knowledge of the specific feature to be unlearned. Formally, this implies that fθ′ should not encode
any meaningful information about the values of the removed feature, i.e., the model’s parameters are
independent of the unlearned feature. Meanwhile, it is crucial that the unlearning process does not
degrade information pertaining to other features. In other words, fθ′ should continue to capture the
useful correlations present in the remaining dataset excluding the removed feature. In this section, we
first introduce a straightforward yet highly effective method for unlearning a feature from the dataset,
followed by a theoretical analysis to establish a solid foundation for our method.

Approach Overview: Our proposed feature unlearning consists of two key steps: random shuffling
and fine-tuning. In the first step, the j-th feature is shuffled while its marginal probability distribution
remains unchanged. Meanwhile, as theoretically demonstrated in our work, this shuffling process
effectively disrupts any alignment between Xj and (X−j , Y ), i.e., making Xπ

j and (X−j , Y ) inde-
pendent. The second step involves training the original model using the same loss function but with
the shuffled dataset. The resulted model theoretically loses its ability to exploit the original correlation
between feature Xj and the target Y , while retaining the information associated with remaining
features X−j . Consequently, fθ′ has “forgotten” the specific predictive information provided by
feature Xj in the original dataset D̂.

Feature Random Shuffling

i Draw a random permutation π of the index set {1, . . . , n} uniformly at random.

ii Construct the shuffled dataset D̂π
j by replacing each xi,j with xπ(i),j while keeping the

value of other features the same for each data point. The shuffled dataset is defined as
D̂π

j := {(xπ
i , yi)}ni=1, where xπ

i = (xi,1, . . . , xi,j−1, xπ(i),j , xi,j+1, . . . , xi,m). That is, all
features other than j remain unchanged, while the entries of the j-th feature are permuted.

Fine-Tuning with the Original Loss Suppose we have a loss function, defined as ℓ(fθ(x), y), that
was used to train the original model. In our approach, we fine-tune the original model using the same
loss and the shuffled dataset D̂π

j to get the updated parameters θ′.

4.1 Theoretical Analysis

Independency Between Xπ
j and (X−j , Y ) We assume the distribution D is stationary and ergodic

on the measurable space of X × Y , implying that each coordinate xi,j and label yi also forms
a stationary and ergodic process, denoted by {xi,j , yi}ni=1, in the smaller space Xj × Y . The
shuffled sequence through the random permutation π is written as {xπ(i),j , yi}ni=1. We first define
the empirical distribution of the shuffled sequence as P̂

(n)
(Xπ

j ,Y ) := 1
n

∑n
i=1 δ(xπ(i),j , yi), where

δ(xπ(i),j , yi) is a Dirac point mass at (xπ(i),j , yi).
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Here, we first prove the independency between Xπ
j and (X−j , Y ) after random shuffling.

Theorem 4.1. Over the random permutation π and the sampled datasets D̂ and D̂π
j ,

P̂
(n)
(Xπ

j ,Y )

a.s.−−−−→
n→∞

PXj
× PY , P̂

(n)
(Xπ

j ,X−j)

a.s.−−−−→
n→∞

PXj
× PX−j

. (1)

Proof. In this proof, we provide a comprehensive demonstration for the independency between
Xj and Y , which is analogous to that of the independency between Xj and X−j with full details
presented in Appendix A.

As {xi,j , yi}ni=1 is stationary and ergodic, the coordinate processes {xi,j}ni=1 and {yi}ni=1 both
satisfy the Birkhoff’s ergodic theorem [4], which means that, for each measurable A ⊆ Xj and
B ⊆ Y:

P̂
(n)
Xj

(A) =
1

n

n∑
i=1

1{xi,j ∈ A} a.s.−−−−→
n→∞

PXj (A), P̂
(n)
Y (B) =

1

n

n∑
i=1

1{yi ∈ B} a.s.−−−−→
n→∞

PY (B). (2)

Thus, P̂ (n)
Xj

→ PXj and P̂
(n)
Y → PY almost surely.

The shuffled empirical distribution of a rectangle A×B is written as

P̂
(n)
Xπ

j ,Y (A×B) =
1

n

n∑
i=1

1{xπ(i),j ∈ A, yi ∈ B}. (3)

For this empirical distribution, when conditioning on the process {xi,j , yi}ni=1, for each i, the index
π(i) is uniform in {1, . . . , n}. Therefore, we have

Eπ[1{xπ(i),j ∈ A}|{xi,j , yi}ni=1] = P̂ (n)
xj

(A). (4)

Multiplying by 1{yi ∈ B} and summing over i then shows

Eπ[P̂
(n)
Xπ

j ,Y (A×B)|{xi,j , yi}ni=1] = P̂
(n)
Xj

(A)P̂
(n)
Y (B). (5)

We then un-condition (remove the conditioning of) the above expectation using the law of total
expectation as

Eπ[P̂
(n)
Xπ

j ,Yi
(A×B)] = E{xi,j ,yi}n

i=1
[P̂

(n)
Xj

(A)P̂
(n)
Y (B)] = P̂

(n)
Xj

(A)P̂
(n)
Y (B). (6)

Notably, the last term is derived based on the fact that the product of two marginal probabilities is
constant when fixing (xπ(i),j , yi), i.e., there is no more randomness in π for the marginals.

Given Eq. (6), by defining the difference between the shuffled empirical distributions and the product
of two marginal empirical distributions, i.e.,

Ωn(A,B) := P̂
(n)
Xπ

j ,Y (A×B)− P̂
(n)
Xj

(A)P̂
(n)
Y (B). (7)

We see that Eπ[Ωn(A,B)] = 0, i.e., Ωn(A,B) is mean zero.

Next, we aim to show that Ωn(A,B) is small with a high probability. To prove this we first define
Sn(A,B) =

∑n
i=1 1{xπ(i),j ∈ A, yi ∈ B}. Then, the shuffled empirical distribution P̂

(n)
Xπ

j ,Y (A×B)

can be expressed as 1
nSn(A,B). Changing π in one position affects at most two indicators in Sn.

Hence, the rewritten shuffled empirical distribution 1
nSn(A,B) satisfies the McDiarmid’s inequality

[25] – for some ci > 0 as per-sample sensitivity constants and ϵ > 0,

P (| 1
n
Sn(A,B)− Eπ[

1

n
Sn(A,B)]| > ϵ) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
. (8)

Given Eq. (6), we have Eπ[
1
nSn(A,B)] = P̂

(n)
Xj

(A)P̂
(n)
Y (B). The McDiarmid’s inequality in Eq.

(8) can be rewritten as

P (|P̂ (n)
Xπ

j ,Y (A×B)− P̂
(n)
Xj

(A)P̂
(n)
Y (B)| > ϵ) = P (|Ωn(A,B)| > ϵ) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
. (9)
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Then, summing over n, we have
∑∞

n=1 P (|Ωn(A,B)| > ϵ) ≤ ∞, which, by the Borel-Cantelli
lemma [36, 7], results in Ωn(A,B) → 0 almost surely for each fixed A × B. Combined with the
Birkhoff’s ergodic theorem in Eq. (2) (i.e., the empirical marginal distribution almost surely converges
to its marginal distribution), we have

P̂
(n)
Xπ

j ,Y (A×B) = P̂
(n)
Xj

(A)P̂
(n)
Y (B) + Ωn(A,B)

a.s.−−−−→
n→∞

PXj
(A)× PY (B). (10)

So far, we have point-wise almost sure convergence for each rectangle A × B. To further show
the shuffled empirical distribution P̂

(n)
Xπ

j ,Y (A × B) almost surely converges to PXj
× PY on all

measurable sets, we choose a countable family of rectangles {Al ×Bl} that generates the product
σ-algebra on Xj × Y . By the same exponential tail bound in Eq. (9), a union of the Borel-Cantelli
lemma shows |Ωn(Al, Bl)| → 0 simultaneously for all l with the probability of 1.

Since these rectangles form (or generate) a π-system for Xj × Y , the standard measure-theoretic
uniqueness result implies P̂ (n)

Xπ
j ,Y

a.s.−−−−→
n→∞

PXj
× PY .

Corollary 4.2. If P̂ (n)
Xπ

j ,Y
a.s.−−−−→

n→∞
PXj

× PY and P̂
(n)
Xπ

j ,X−j

a.s.−−−−→
n→∞

PXj
× PX−j

, then the shuffled
feature Xπ

j is almost surely independent of both the label Y and the unshuffled features X−j , such
that Xπ

j ⊥⊥ (Y,X−j).

Proof. Refer to Appendix B.

Remark 4.3. The above corollary aligns with our previous statement: our method effectively disrupts
the established correlations between unlearned features and the label while preserving the relation-
ships between the remaining features and the label. The former is evident, as the shuffled feature
becomes independent of the label. The latter is also satisfied since our approach does not modify
either the remaining features or the label, thereby maintaining their original relationship.

Proof of (ϵ− δ)-Close Between fθ′ and gϕ

Theorem 4.4. If Xπ
j is independent of (Y,X−j), then using the same loss function ℓ : Y × Y → R+

and the same optimizer, the model fθ′ trained on the shuffled dataset D̂π
j and the model gϕ trained

from scratch on D̂−j are (ϵ, δ)-close.

Proof. Let F be the hypothesis class for functions f(x) with domain X ⊆ Rm and G be the
hypothesis class for functions g(x−j) with domain X−j ⊆ Rm−1.

We define the optimal risk in the classes of F and G as

R∗ = inff∈F

{
E(xπ,y)∼Dπ

j
[ℓ (f(xπ), y)]

}
, R∗

−j = infg∈G
{
E(x−j ,y)∼D−j

[ℓ (g(x−j), y)]
}
. (11)

Since Xπ
j is independent of (Y,X−j), the conditional distribution of y given (x−j , x

π
j ) equals that

of y given x−j alone. Therefore, a function that tries to exploit xπ
j cannot improve its predictions

beyond what is already possible with x−j alone. Specifically, for any f(x) ∈ F , we define g̃(x−j) :=

f(x−j , x
π
j ) for an arbitrary fixed value of xπ

j . The expected loss of g̃ under D̂−j matches that of f
under Dπ

j . Therefore, we have

inff∈F

{
EDπ

j
[ℓ (f(xπ), y)]

}
= inf g̃∈G

{
ED−j [ℓ (g̃(x−j), y)]

}
= R∗

−j . (12)

We assume that the model fθ′ trained on the shuffled dataset D̂π
j and the model gϕ trained on the

dataset D̂−j aim to minimize their respective empirical risks. That is, each corresponds to a solution
(or approximate solution) of empirical risk minimization (ERM), such that

R̂D̂π
j
(fθ′) ≤ inff∈FR̂D̂π

j
(f) + α, R̂D̂−j

(gϕ) ≤ infg∈GR̂D̂−j
(g) + α, (13)

where α > 0 is the small sub-optimality that may come from incomplete training or early stopping.
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By the standard uniform convergence theorem, with a probability of at least 1− δ over the draw of D̂
and any randomness in forming D̂π

j or in the training algorithm, we simultaneously have

|R̂D̂π
j
(f)−R(f)| ≤ ϵn, ∀f ∈ F , |R̂D̂−j

(g)−R(g)| ≤ ϵn, ∀g ∈ G, (14)

for some bound ϵn that goes to 0 as n → ∞, depending on the complexities of F and G.

From the above uniform convergence bound, we have

R(fθ′) ≤ R̂D̂π
j
(fθ′)+ ϵn ≤ inf

f∈F
R̂D̂π

j
(f)+α+ ϵn ≤ inf

f∈F
R(f)+2ϵn+α = R∗+2ϵn+α. (15)

Similarly, we have R(gϕ) ≤ R∗
−j + 2ϵn + α. By the triangle inequality, we can further derive the

following inequalities for risks and empirical risks with the probability of at least 1− δ as
|R(fθ′)−R(gϕ)| ≤ |R(fθ′)−R∗|+ |R(gϕ)−R∗| ≤ 4ϵn + 2α, (16)

and
|R̂D̂π

j
(fθ′)− R̂D̂−j

(gϕ)| ≤ 6ϵn + 2α. (17)

Therefore, the empirical risk difference between fθ′ and gϕ is (ϵ− δ)-close, where ϵ = 6ϵn + 2α.

In standard supervised learning theory, the Bayes-optimal predictors (such as fθ′ and gϕ) for ℓ-based
risk are given by

fθ′ = argmin
θ′

R̂D̂π
j
(fθ′), gϕ = argmin

ϕ
R̂D̂−j

(gϕ). (18)

In the following, we will prove that: 1) if ℓ is k-strongly convex, for any fθ′ and gϕ trained via Eq.
(18), they are (ϵ− δ)-close; 2) if ℓ is not strongly convex, under mild assumptions, for any fθ′ trained
via Eq. (18), there must exist a gϕ trained via Eq. (18) such that fθ′ and gϕ are (ϵ− δ)-close.

The proof of the former is shown below and that of the latter is presented in Appendix C.

As ℓ is k-strongly convex, the ERM problem has a unique global minimizer, which means that fθ′

and gϕ obtained via Eq. (18) are unique. Also, at the minimizer, both gradients of the empirical risk
are zero, i.e., ∇R̂D̂π

j
(fθ′) = ∇R̂D̂−j

(gϕ) = 0.

Moreover, for any fθ′ and gϕ in their respective hypothesis classes, the strong convexity yields

R̂D̂−j
(gϕ) ≥ R̂D̂π

j
(fθ′) +∇R̂D̂π

j
(fθ′)T (gϕ − fθ′) +

k

2
||gϕ − fθ′ ||2 ≥ R̂D̂π

j
(fθ′) +

k

2
||gϕ − fθ′ ||2.

(19)
By rearranging Eq. (19), we have

||gϕ − fθ′ ||2 ≤ 2

k
|R̂D̂−j

(gϕ)− R̂D̂π
j
(fθ′)| ≤ 2

k
(6ϵn + 2α). (20)

Therefore, the difference in risk of two models is bounded by
√

4
k (3ϵn + α), which implies that fθ′

and gϕ are (ϵ− δ)-close, where ϵ =
√

4
k (3ϵn + α).

Remark 4.5 (Insights from Mutual Information and Shapley Value). The unlearning capability of our
shuffle-based approach can also be explained from the mutual information and the Shapley value
perspective. For the former, the mutual information between the unlearned feature and the label
vanishes, which is formally stated in the following Theorem 4.6. For the latter, the Shapley value of
the unchanged features (i.e., x−j) derived from the unlearned model fθ′ and the retrained model gϕ
are almost surely identical which is stated in Theorem 4.7.
Theorem 4.6. If Xπ

j ⊥⊥ (Y,X−j) is almost sure when n → ∞, then the empirical mutual information
In(X

π
j , Y )

a.s.−−−−→
n→∞

0, In(Xπ
j ,X−j)

a.s.−−−−→
n→∞

0, and In(X
π
j , θ

′)
a.s.−−−−→

n→∞
0.

Proof. Refer to Appendix D.

Theorem 4.7. Let κi(fθ′) and κi(gϕ) be the Shapley value of the i-th feature derived from models
fθ′ and gϕ. If Xπ

j ⊥⊥(Y,X−j) is almost sure when n → ∞, ∀i ∈ {1, . . . , j − 1, j + 1, . . . ,m}, we
almost surely have κi(fθ′) = κi(gϕ).

Proof. Refer to Appendix E.
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5 Experimental Results

To align with the definition of feature unlearning presented in Definition 3.1, our experiments involve
the following setup. For a given dataset D̂ and its corresponding model fθ, which has been fully
trained on this dataset, the j-th feature in the training set (denoted as D̂Train) is randomly shuffled
to train fθ′ for unlearning. For the retrain from scratch model, the j-th feature is removed from
D̂Train to train gϕ. The test set, denoted as D̂Test, is derived from D̂ using an 80:20 training-test split
ratio. Numerical features undergo standardization, and categorical features are processed via one-hot
encoding.

In this section, we first introduce several metrics to evaluate the effectiveness of feature unlearning in
Section 5.1. We compare our proposed method’s performance against a model retrained from scratch
using the TRI metric and evaluated efficiency via the EI index. We also perform dependence analysis
and assessed feature contributions as part of our evaluation framework. Subsequently, we present the
experimental settings in Section 5.2, followed by the results for both single-feature and multi-feature
unlearning in Sections 5.2.1 and 5.2.2, respectively. The codes are available in the supplementary
materials.

5.1 Evaluation Metrics

TRI [6]: The test retention index (TRI) evaluates the effectiveness of feature unlearning by comparing
the accuracy of the unlearned model (i.e., fθ′) to a model trained from scratch (i.e., gϕ), which

is widely recognized as a gold standard to evaluate unlearning. TRI is defined as TRI =
Accf

θ′
Accgϕ

,

where Accfθ′ and Accgϕ represent the test accuracy on D̂Test for fθ′ and gϕ, respectively. A TRI
value closer to one indicates effective feature unlearning.

EI [6]: In addition to accuracy, to assess the efficiency of the unlearning process, we introduce the
efficiency index (EI), defined as EI =

Timegϕ
Timef

θ′
, where Timefθ′ and Timegϕ denote the training

times (in seconds) for fθ′ and gϕ, respectively. An EI value greater than one suggests the unlearning
algorithm is more time-efficient than training from scratch.

RASI: The unlearning robustness against shuffling index (RASI) examines whether the unlearned
model has successfully eliminated dependency on the unlearned feature. This is evaluated by
shuffling the values of the unlearned feature in D̂Test using the torch.randperm function and
observing the impact on predictions. RASI is defined as RASI =

∑
(x,y)∈D̂Test

1{fθ′(x) =

fθ′(xShuffle)}, measuring the proportion of unchanged predictions. When calculating RASI, we
shuffle the unlearned feature ten times and take the average of the RASI for the final result.

SRI&SDI: Using explainable AI techniques, we assess the significance of the unlearned feature via
SHapley Additive exPlanations (SHAP) [22]. Two metrics are defined: the SHAP retention index
(SRI) and the SHAP distance-to-zero index (SDI). SRI quantifies the relative importance of the
unlearned feature after unlearning, calculated as SRI =

κj(fθ′ )
κj(fθ)

. SDI measures the absolute deviation
of the SHAP value from zero, expressed as SDI = |κj(fθ′)− 0|.
Further, privacy and fairness metrics are considered. For the former, a variant of membership inference
attack (MIA) [30] at the feature level is calculated in the following steps. First, we create an attack
dataset. For each sample, we query fθ′ and gϕ to get their outputs that are then labeled as Unlearned
and Retrained, respectively. An attack model, i.e., a Random Forest binary classifier, is further trained
on the built attack dataset, with the aim of learning the subtle differences between the outputs from
fθ′ and gϕ. The final attack accuracy is the evaluation metric regarding privacy. An accuracy value
near 50% indicates that the attack model cannot do better than random guessing, implying that the
unlearned model is indistinguishable from the model retrained from scratch. For the fairness metric,
we introduce demographic parity (DP) and equalized odds (EO), whose detailed descriptions are
provided in Appendix F. For a successful unlearning, the fairness score of the unlearned model should
be very close to that of the retrained-from-scratch model.
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Figure 2: Single-feature unlearning evaluation results of the Magic tabular dataset.

5.2 Experimental Settings and Results

Datasets – Tabular: This study employs six OpenML datasets [11]: Magic, Credit, and Cali for
the single-feature unlearning setting (i.e., unlearning one feature), and Eye, Comp, and Pol—which
contain more features—to explore multi-feature unlearning. Detailed descriptions of these datasets
are provided in Appendix G.

Dataset – Image: We further extend our unlearning method to an image classification task using the
CelebA [21], a large-scale dataset of over 200K images. The key difference in unlearning between
tabular and computer vision (CV) datasets lies in feature representation. In tabular data, features are
explicitly structured as columns, allowing direct shuffling. In contrast, CV datasets embed features –
like nose shape in CelebA – within images, without explicit separation into variables. Hence, we
focus on shuffling specific visual features, including nose and eyes, to achieve unlearning for image
classification tasks. Examples of processed images with shuffled feature are shown in Appendix H.

Baselines: Feature unlearning is an emerging research area with limited prior work. Two baselines,
as discussed in Section 2, are included in our experiments: 1) First-Order Unlearning (FOUL) [32]:
This method applies small permutations to the unlearned feature and leverages the first-order gradient
differences between the permuted and original inputs to update the neural network and 2) Mutual
Information Unlearning (MIUL) [15]: This approach reduces the learned information of the unlearned
feature and the label using mutual information estimation while preserving others. It requires training
three additional neural networks for mutual information estimation.

Neural Architectures and Training Parameters: All experiments are conducted on an NVIDIA
V100 GPU. For tabular unlearning, we use a standard MLP and two more complex architectures:
ResNet [17] and FT-Transformer [12]. During training, the original model fθ is trained for 1500
epochs. Models trained from scratch run for 2000 epochs to ensure convergence (see training loss
curves in Appendix J). For our approach and the two baselines, unlearning is performed over 1 to
1500 epochs, with selected values at 1, 10, 50, 100, ..., 1000, and 1500. For the CV task, we leverage
the Vision Transformer (ViT) [9] backbone with an MLP classifier head. Model trained from scratch
undergoes training for 100 epochs. Unlearning spans 1 to 100 epochs, including specific values at 1,
20, 30, ..., 100. To mitigate randomness, each model is trained ten times. Detailed configurations are
provided in Appendix I.

5.2.1 Results of Single-Feature Unlearning

Tabular Task– Unlearning Features with Different Feature Importance: To examine the effective-
ness of our method in unlearning different features with varying levels of importance, we perform
unlearning on the most, second most important features. Each feature’s importance is calculated
and represented as their Shapley values, with details provided in Appendix K. For brevity, the results
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Table 1: Averaged MIA accuracy comparison (optimal: 0.5 ).

Method
Epoch

1 10 50 100 200 400 600 800 1000 1500

Ours 0.544 0.520 0.496 0.509 0.525 0.528 0.525 0.520 0.512 0.511
FOUL 0.574 0.620 0.603 0.588 0.569 0.651 0.751 0.763 0.763 0.763
MIUL 0.651 0.596 0.597 0.597 0.605 0.603 0.595 0.612 0.594 0.614

of unlearning the most and the second most important features within the Magic dataset are depicted
in Fig. 2. The full results of single-feature unlearning of each used tabular dataset, in terms of TRI, EI,
RASI, SRI, and SDI, are provided in Appendix L. Additionally, the results of averaged feature-level
MIA accuracy across datasets are provided in Table 1. The fairness-related results are provided in
Appendix O.

Our results demonstrate that our approach consistently achieves TRI values close to 1 across all
datasets for both various neural architectures and various features, indicating that the accuracy
of the unlearned model nearly matches that of a model trained from scratch. In contrast, the baseline
methods exhibit different behaviors: the FOUL method experiences accuracy degradation, while the
MIUL maintains the same accuracy level regardless of the increase in unlearning epochs. Our method
empirically proves that it can achieve TRI values around one within a limited number of unlearning
epochs.

Additionally, our approach is significantly more efficient than retraining from scratch, as demon-
strated by its high EI values. Rather than requiring full retraining until convergence, our method
achieves a TRI value close to one using nearly 200 unlearning epochs across all datasets, making
it approximately 10 times faster than training from scratch. In contrast, both FOUL and MIUL
demand greater computational resources, particularly MIUL, which necessitates training additional
neural networks for mutual information estimation.

For the RASI metric, our method almost consistently achieves the highest values, indicating that
the unlearned feature has been more effectively forgotten compared to the baseline methods. This
observation is further reinforced by the SHAP-based evaluations (SRI and SDI), which provide a more
detailed assessment of the feature’s importance (or dependency with the label) after unlearning. Our
approach achieves the lowest SRI values, confirming that the relative importance of the unlearned
feature is significantly diminished. Additionally, the low SDI values indicate that the absolute
contribution of the unlearned feature is reduced to near zero, meaning that even when the feature
is present, it no longer influences model predictions. Moreover, we further evaluate our method’s
effectiveness when unlearning features that are highly-correlated with others. The correlation
of each two features is calculated via the Pearson correlation coefficient. The resulted correlation
heatmaps are provided in Appendix M. We identify one feature pair as highly-correlated features
if the Pearson correlation coefficient is greater than 0.8. As shown in Appendix N, the results of
unlearning these identified features across all neural architectures and tabular datasets are consistent
with the outcomes of unlearning features with different importance, further justifying the effectiveness
and robustness of our unlearning method. Furthermore, as shown in Table 1 and Appendix O, the
evaluations on MIA, DP, and EO demonstrate the effectiveness of our unlearning methods in terms of
privacy and fairness.

Image Task: We extend our unlearning method to the CelebA dataset for image classification,
targeting the removal of visual features – nose and eyes. Classification classes include gender, big
nose, pointy nose, eyeglasses, and narrow eyes. The evaluation results across all metrics are detailed
in Appendix P, where our method still significantly outperforms baselines and effectively achieves
the unlearning goal.We attained an average TRI of 97.31% after 20 epochs and 99.12% after 100
epochs. The strong performance in this image dataset highlights the broader applicability of our
method to real-world high dimensional complex scenarios.

5.2.2 Results of Multi-Feature Unlearning

We further evaluate the capability of our approach for unlearning multiple features for both tabular
and CV datasets. For the tabular datasets, we unlearned more than half of the features in each dataset
(with results provided in Appendix Q), and for the CV tasks, we simultaneously unlearned both the
nose and eyes features. Fig. 3 shows evaluation results of unlearning both Nose and Eyes when
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performing classification on label class Gender. As shown in Appendix Q and Fig. 3, the request to
unlearn a large number of features for tabular datasets, as well as multiple visual features, does not
compromise the performance of our approach and consistently outperforms the two baseline methods.
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Figure 3: Evaluation results of unlearning Nose and Eyes for label class Gender.

6 Limitations and Conclusion

Similar to most machine unlearning techniques in the literature, our approach requires prior knowledge
of the data to be removed, specifically access to the training data. Detecting privacy leaks in learning
models, which is a complex issue, falls outside the scope of this research. In this paper, we present a
straightforward yet effective method for feature unlearning through shuffling on features designated
for removal. Despite its simplicity, this approach can theoretically achieve outcomes comparable
to retraining a model from scratch under mild assumptions. Extensive empirical evaluations across
various datasets demonstrate that our method can simultaneously unlearn multiple features effectively,
while maintaining high accuracy and strong generalization capabilities for the remaining features.
In summary, our study provides a practical, efficient, and theoretically sound approach to feature
unlearning that could significantly impact how machine learning models are updated and maintained,
particularly in light of increasing data privacy concerns.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly present our claims – outlining the paper’s
contributions alongside its key assumptions and limitations – and these claims are fully
supported by both the theoretical analysis and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:We list all the assumptions and potential limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [Yes]
Justification: We provide the full set of assumptions and a complete (and correct) proof
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the
paper
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code in supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specify all the training and test details

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include sufficient information on the computer resources (type of compute
workers, memory, time of execution) needed to reproduce the experiments in appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use explicitly are mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM only for writing, editing, or formatting purposes
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Empirical Distribution Convergence Between Xπ
j and X−j

Proof. As D is stationary and ergodic, the coordinate processes {xi,j}ni=1 and {xi,−j}ni=1 both
satisfy the Birkhoff’s ergodic theorem [4], which means that, for each measurable A ⊆ Xj and
B ⊆ X−j :

P̂
(n)
Xj

(A) =
1

n

n∑
i=1

1{xi,j ∈ A} a.s.−−−−→
n→∞

PXj
(A), (21)

P̂
(n)
X−j

(B) =
1

n

n∑
i=1

1{xi,−j ∈ B} a.s.−−−−→
n→∞

PX−j
(B). (22)

Hence, P̂ (n)
Xj

→ PXj
and P̂

(n)
X−j

→ PX−j
almost surely.

The shuffled empirical distribution of a rectangle A×B is written as

P̂
(n)
Xπ

j ,X−j
(A×B) =

1

n

n∑
i=1

1{xπ(i),j ∈ A,xi,−j ∈ B}. (23)

For this empirical distribution, when conditioning on the process {xi,j ,xi,−j}ni=1, for each fixed i,
the index π(i) is uniform in {1, . . . , n}. Therefore, we have

Eπ[1{xπ(i),j ∈ A}|{xi,j ,xi,−j}ni=1] = P̂ (n)
xj

(A). (24)

Multiplying by 1{xi,−j ∈ B} and summing over i then shows

Eπ[P̂
(n)
Xπ

j ,X−j
(A×B)|{xi,j ,xi,−j}ni=1] = P̂

(n)
Xj

(A)P̂
(n)
X−j

(B). (25)

We then un-condition the above expectation using the law of total expectation, written as

Eπ[P̂
(n)
Xπ

j ,X−j
(A×B)] = E{xi,j ,xi,−j}n

i=1
[P̂

(n)
Xj

(A)P̂
(n)
X−j

(B)]

= P̂
(n)
Xj

(A)P̂
(n)
X−j

(B).
(26)

Notably, the last term is derived based on the fact that the product of two marginal probabilities is a
constant for a fixing (xπ(i),j ,xi,−j), i.e., no more randomness in π for the marginals.

Given Eq. (26), by defining the difference between the shuffled empirical distributions and the
product of two marginal empirical distributions, i.e.,

Ωn(A,B) := P̂
(n)
Xπ

j ,X−j
(A×B)− P̂

(n)
Xj

(A)P̂
(n)
X−j

(B). (27)

We see that Eπ[Ωn(A,B)] = 0, i.e., Ωn(A,B) is mean zero. Next, we aim to show that Ωn(A,B) is
small with high probability.

To prove that, we first define

Sn(A,B) =

n∑
i=1

1{xπ(i),j ∈ A,xi,−j ∈ B}. (28)

Then, the shuffled empirical distribution P̂
(n)
Xπ

j ,X−j
(A×B) can be expressed as 1

nSn(A,B). Changing
π in one position affects at most two indicators in Sn. Hence, the rewritten shuffled empirical
distribution 1

nSn(A,B) satisfies McDiarmid’s inequality [25] – for some c, ϵ > 0,

P (| 1
n
Sn(A,B)− Eπ[

1

n
Sn(A,B)]| > ϵ) ≤ 2 exp

(
− 2ε2∑n

i=1 c
2
i

)
. (29)

Given Eq. (26), we have Eπ[
1
nSn(A,B)] = P̂

(n)
Xj

(A)P̂
(n)
X−j

(B). The above McDiarmid’s inequality
can be rewritten as

P (|P̂ (n)
Xπ

j ,X−j
(A×B)− P̂

(n)
Xj

(A)P̂
(n)
X−j

(B)| > ϵ)

= P (|Ωn(A,B)| > ϵ) ≤ 2 exp
(
− 2ε2∑n

i=1 c
2
i

)
.

(30)
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Then, summing over n, we have
∞∑

n=1

P (|Ωn(A,B)| > ϵ) ≤ ∞, (31)

which satisfies the Borel-Cantelli lemma [36, 7], resulting in Ωn(A,B) → 0 almost surely for each
fixed A × B. By combining it with the Birkhoff’s ergodic theorem in Eq. (21) and (22) (i.e., the
empirical marginal distribution almost surely converges to its marginal distribution), we have

P̂
(n)
Xπ

j ,X−j
(A×B) = P̂

(n)
Xj

(A)P̂
(n)
X−j

(B) + Ωn(A,B)

a.s.−−−−→
n→∞

PXj
(A)× PX−j

(B).
(32)

So far, we have point-wise almost surely convergence for each rectangle A × B. To further show
the shuffled empirical distribution P̂

(n)
Xπ

j ,X−j
(A×B) almost surely converges to PXj × PX−j on all

measurable sets, we choose a countable family of rectangles {Al ×Bl} that generates the product
σ-algebra on Xj ×X−j . By the same exponential tail bound in Eq. (30), a union-of-Borel-Cantelli
shows |Ωn(Al, Bl)| → 0 simultaneously for all l with the probability of 1.

As these rectangles form (or generate) a π-system for Xj × X−j , the standard measure-theoretic
uniqueness results implies

P̂
(n)
Xπ

j ,X−j

a.s.−−−−→
n→∞

PXj × PX−j . (33)
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B Proof Independence between Xπ
j and (Y,X−j)

Proof. In discrete case, the relationship between the empirical joint probability mass function (PMF)
and the empirical joint probability measure can be written as ∀(xπ

j , y) ∈ Xj × Y:

p
(n)
Xπ

j ,Y (x
π
j , y) = P̂

(n)
Xπ

j ,Y (X
π
j = xπ

j , Y = y). (34)

Similarly, the relationship between the product of empirical marginal PMFs and the product of
empirical marginal probability measures can be written as

pXπ
j
(xπ

j )pY (y) = PXπ
j
(Xπ

j = xπ
j )PY (Y = y). (35)

Given P̂
(n)
Xπ

j ,Y
a.s.−−−−→

n→∞
PXj

× PY , we have, ∀(xπ
j , y) ∈ Xj × Y

P̂
(n)
Xπ

j ,Y (X
π
j = xπ

j , Y = y)
P−−−−→

n→∞ Xπ
j

(Xπ
j = xπ

j )PY (Y = y). (36)

Hence, the PMF p
(n)
Xπ

j ,Y (x
π
j , y) almost surely converges pointwise to pXπ

j
(xπ

j )pY (y) for ∀(xπ
j , y) ∈

Xj × Y , expressed as
p
(n)
Xπ

j ,Y (x
π
j , y)

a.s.−−−−→
n→∞

pXπ
j
(xπ

j )pY (y). (37)

Similarly, we can have

p̂
(n)
Xπ

j
(xπ

j )
a.s.−−−−→

n→∞
pXπ

j
(xπ

j ), p̂
(n)
Y (y)

a.s.−−−−→
n→∞

pY (y). (38)

In continuous case, we assume that both empirical and actual probabilities measures, including
P̂

(n)
Xπ

j ,Y , P̂ (n)
Xπ

j
, P̂ (n)

Y , PXπ
j ,Y , PXπ

j
, PY , are absolutely continuous w.r.t. Lebesgue measure λ. Hence,

there exists PDFs p̂(n)Xπ
j ,Y (x

π
j , y), p̂

(n)
Xπ

j
(xπ

j ), p̂
(n)
Y (y), pXπ

j ,Y (x
π
j , y), pXπ

j
(xπ

j ), pY (y) such that

P̂
(n)
Xπ

j ,Y =

∫
A

p̂
(n)
Xπ

j ,Y (x
π
j , y)dλ(x

π
j , y), ∀Borel Set A ⊆ Xj × Y, (39)

P̂
(n)
Xπ

j
=

∫
A

p̂
(n)
Xπ

j
(xπ

j )dλ(x
π
j ), ∀Borel Set A ⊆ Xj , (40)

P̂
(n)
Y =

∫
A

p̂
(n)
Y (y)dλ(y), ∀Borel Set A ⊆ Y, (41)

PXπ
j ,Y =

∫
A

pXπ
j ,Y (x

π
j , y)dλ(x

π
j , y), ∀Borel Set A ⊆ Xj × Y, (42)

PXπ
j
=

∫
A

pXπ
j
(xπ

j )dλ(x
π
j ), ∀Borel Set A ⊆ Xj , (43)

PY =

∫
A

pY (y)dλ(y), ∀Borel Set A ⊆ Y. (44)

As we already have P̂
(n)
Xπ

j ,Y
a.s.−−−−→

n→∞
PXj

× PY , therefore, it ensures the total variation convergence
expressed as

||P̂ (n)
Xπ

j ,Y − PXj
× PY ||TV =

1

2

∫
|p̂(n)Xπ

j ,Y − pXπ
j
pY |dλ

a.s.−−−−→
n→∞

0. (45)

That is to say ||p̂(n)Xπ
j ,Y −pXj

pY ||1
a.s.−−−−→

n→∞
0 in L1(λ). Similarly, we can have ||p̂(n)Xπ

j
−pXj

||1
a.s.−−−−→

n→∞
0

in L1(λ) and ||p̂(n)Y − pY ||1
a.s.−−−−→

n→∞
0 in L1(λ). Based on the Scheffé’s lemma [28], from L1

convergence of a sequence of non-negative functions to a non-negative limit, it follows that

p̂
(n)
Xπ

j ,Y
a.s.−−−−→

n→∞
pXjpY , (46)

p̂
(n)
Xπ

j

a.s.−−−−→
n→∞

pXj
, (47)

p̂
(n)
Y

a.s.−−−−→
n→∞

pY . (48)
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Therefore, we now have

p̂
(n)
Xπ

j ,Y (x
π
j , y)

a.s.−−−−→
n→∞

pXj (xj)pY (y) = pXπ
j
(xπ

j )pY (y). (49)

Analogously, we also have

p̂
(n)
Xπ

j ,X−j
(xπ

j ,x−j)
a.s.−−−−→

n→∞
pXj (xj)pX−j (x−j) = pXπ

j
(xπ

j )pX−j (x−j). (50)

For every measurable sets A ⊆ X π
j and B ⊆ Y , we have

p(Xπ
j ∈ A, Y ∈ B) =

∫
B

∫
A

pXπ
j ,Y (x

π
j , y)dx

π
j dy =

∫
B

pY (y)dy

∫
A

pXπ
j
(xπ

j )d(x
π
j ). (51)

Hence, we have
p(Xπ

j ∈ A, Y ∈ B) = p(Xπ
j ∈ A)p(Y ∈ B), (52)

and therefore Xπ
j ⊥⊥ Y . Similarly, we can have Xπ

j ⊥⊥ X−j . Finally, when n → ∞, we almost
surely have

Xπ
j ⊥⊥ (Y,X−j). (53)
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C Proof of (ϵ− δ)-Close of fθ′ and gϕ Under Non-Strongly Convex Loss
Function ℓ

Proof. If ℓ is not strongly convex but bounded, the ERM problem may have multiple global mini-
mizers. Therefore, for each fθ′ derived from Eq. (18), there exists a gϕ that their achieved empirical
risks are (ϵ− δ)-close.

We here propose a mild assumption that

|fθ′ − gϕ| ≤ ω|ℓ(fθ′ , y)− ℓ(gϕ, y)|, (54)

where ω represents a scaling factor that bounds how sensitive the model’s output or parameters are to
changes in loss function.

By taking expectations on both sides of Eq. (54), we have

E [|fθ′ − gϕ|] ≤ ωE [|ℓ(fθ′ , y)− ℓ(gϕ, y)|] . (55)

Based on Eq. (17), the RHS of the above inequality, i.e., empirical loss difference, is bounded by
6ϵn + 2α. Therefore, we have

E [|fθ′ − gϕ|] ≤ ω (6ϵn + 2α) . (56)

To further bound the difference of two models, i.e., |fθ′ − gϕ|, we apply the Markov’s inequality:

P (|fθ′ − gϕ| > ϵ) ≤ E [|fθ′ − gϕ|]
ϵ

≤ ω(6ϵn + 2α)

ϵ
. (57)

To ensure such probability is at most δ, we set

ω(6ϵn + 2α)

ϵ
≤ δ, (58)

which is rearranged as

ϵ ≥ ω(6ϵn + 2α)

δ
. (59)

Therefore, by choosing ϵ = ω(6ϵn+2α)
δ , we have fθ′ and gϕ are (ϵ− δ)-close.
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D Empirical Mutual Information Convergence

Proof. The empirical mutual information between Xπ
j and Y can be defined as

In(X
π
j ;Y ) := E

(xπ
j ,y)∼P̂

(n)

Xπ
j

,Y

log p̂
(n)
Xπ

j ,Y (x
π
j , y)

p̂
(n)
Xπ

j
(xπ

j )p̂
(n)
Y (y)

 . (60)

Given the independence between Xπ
j and (Y,X−j) proved in Corollary 4.2, we have

p̂
(n)
Xπ

j ,Y (x
π
j , y)

a.s.−−−−→
n→∞

pXj
(xj)pY (y) = pXπ

j
(xπ

j )pY (y), (61)

p̂
(n)
Xπ

j
(xπ

j )
a.s.−−−−→

n→∞
p̂
(n)
Xπ

j
, (62)

p̂
(n)
Y (y)

a.s.−−−−→
n→∞

pY (y). (63)

Therefore, the ratio inside the logarithm operator of mutual information almost surely converges to 1,
i.e.,

p̂
(n)
Xπ

j ,Y (x
π
j , y)

p̂
(n)
Xπ

j
(xπ

j )p̂
(n)
Y (y)

a.s.−−−−→
n→∞

1. (64)

For large n, this ratio stays in [δ, 1
δ ] for some δ > 0. Therefore, we have∣∣∣∣∣∣log

p̂
(n)
Xπ

j ,Y (x
π
j , y)

p̂
(n)
Xπ

j
(xπ

j )p̂
(n)
Y (y)

∣∣∣∣∣∣ ≤ max

{
|log δ| , log

(
1

δ

)}
, (65)

indicating that log
p̂
(n)

Xπ
j

,Y
(xπ

j ,y)

p̂
(n)

Xπ
j
(xπ

j )p̂
(n)
Y (y)

is uniformly bounded for large n. By leveraging the dominated

convergence theorem [2], we have

E
(xπ

j ,y)∼P̂
(n)

Xπ
j

,Y

log p̂
(n)
Xπ

j ,Y (x
π
j , y)

p̂
(n)
Xπ

j
(xπ

j )p̂
(n)
Y (y)

 = In(X
π
j ;Y )

a.s.−−−−→
n→∞

0. (66)

Analogously, we can have

In(X
π
j ,X−j)

a.s.−−−−→
n→∞

0, (67)

In(X
π
j , θ

′)
a.s.−−−−→

n→∞
0. (68)
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E Almost Surely Equal Shapley Value between Unlearned Model and
Retrained Model

Proof. We treat each feature as a “player” in a cooperative game. For a subset S ⊆ {1, . . . ,m} of
features, we define v(S) as the performance (e.g., accuracy) of model trained with only features in S.

Definition E.1 (Shapley Value of the i-th Feature). The Shapley value of the i-th feature (i ∈
{1, . . . ,m}) is

κi =
∑

S⊆{1,...,m}\{i}

|S|!
(
m− |S| − 1

)
!

m!

[
v(S ∪ {i})− v(S)

]
,

where ϕi is the expected marginal contribution of the i-th feature to the performance, averaging over
all subsets S that do not contain i.

Given that Xπ
j is independent with Y , we have, for any subset of features S ⊆ {1, . . . ,m}:

vfθ′ (S ∪ {j}) = vfθ′ (S). (69)

For the retrained model, we define its corresponding performance as vgϕ(S). If a subset S does not
contain j, we train only on those features in S. If S does contain j, then effectively j is not available.
Therefore, S ∪ {j} is the same as S in terms of actual features used for model gϕ, which means

vgϕ(S ∪ {j}) = vgϕ(S). (70)

Given Eq. (69) and (70), ϕj equals zero in both models, showing they coincide for the “unlearned”
feature (i.e., the j-th feature).

This is the crux: we want to see that each unchanged (or shuffled) feature retains the same Shapley
value in both models.

Consider any subset S ⊆ {1, . . . ,m} \ {i} which does not contain i. The Shapley value for the i-th
feature derived from both model can be simplified as vfθ′ (S∪{i})−vfθ′ (S) and vgϕ(S∪{i})−vgϕ(S),
respectively. We need to show that these two differences are the same for all S, which can be divided
into the following two cases:

Case 1: If j /∈ S and j /∈ (S ∪ {i}), then fθ′ is using exactly the same features as gϕ (because j is
absent in both). Thus,

vfθ′ (S ∪ {i}) = vgϕ(S ∪ {i}), (71)

vfθ′ (S) = vgϕ(S), (72)
resulting in the same Shapley value.

Case 2: If j ∈ S (or j ∈ S ∪ {i}), recall that adding the worthless j-th feature does not affect the
performance of fθ′ . Similarly, in the gϕ, the j-th feature is forcibly absent. Thus effectively S is the
same whether or not it nominally includes j, indicating:

S′ = S \ {j}, (73)

(S ∪ {i})′ = (S ∪ {i}) \ {j}. (74)

Hence, we can identify
vfθ′

(
S ∪ {i}

)
= vfθ′

(
S′ ∪ {i}

)
, (75)

vgϕ
(
S ∪ {i}

)
= vgϕ

(
S′ ∪ {i}

)
, (76)

which is also likewise for vfθ′ (S) v.s. vgϕ(S
′), as the j-th is worthless in fθ′ .

In all cases, for any subset S not containing i, we have
vfθ′ (S ∪ {i})− vfθ′ (S) = vgϕ(S ∪ {i})− vgϕ(S). (77)

Therefore, each marginal contribution term in the Shapley-value sum for the i-th feature is identical
between fθ′ and gϕ. Summing over all subsets S (with appropriate combinatorial weights), we almost
surely conclude that ∀i ∈ {1, . . . , j − 1, j + 1, . . . ,m}:

κi(fθ′) = κi(gϕ). (78)
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F Descriptions of Fairness Evaluation Metrics

The demographic parity (DP) score is calculated in the following steps. Firstly, we identify several
key components related to DP, including

• Unprivileged/Privileged Groups: The group that has historically faced a disadvan-
tage/advantage (e.g., for features like “Race” or “Gender”).

• Favorable Outcome: The desired model prediction (e.g., “loan approved”).
• Model Predictions: The output labels generated by our unlearned model or the retrained-

from-scratch model.

Next, for both the privileged and unprivileged groups, we calculate the rate at which they receive the
favorable outcome from models. The formula for the rate is calculated as

Rate =
Number of Individuals in the group who received the favorable outcome

Total number of individuals in the group
. (79)

The above rates are denoted as DP(Label=Favorable Outcome | Privileged Group) and
DP(Label=Favorable Outcome | Unprivileged Group), respectively.

Finally, we calculate the DP differences (as the DP metric used in evaluation) between unprivileged
and privileged groups, formulated as

DPDifference = DP(Label=Favorable Outcome | Unprivileged Group)
−DP(Label=Favorable Outcome | Privileged Group).

(80)

A DP difference of zero indicates perfectly fair unlearning.

For another fairness metric, i.e., the equalized odds (EO) difference, we calculate the differences of
True Positive Rate (TPR), False Positive Rate (FPR) between the privileged and the unprivileged
groups. Both metrics, i.e., TPR and FPR, should be as close as to zero for a successful unlearning
from the perspective of fairness.
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G Descriptions of Tabular Datasets

A summary of used dataset from OpenML [11, 6] in this paper is presented in Table 2.

Table 2: Summary of used datasets for single-feature unlearning.
Dataset
Name

Number
of Samples

Number
of Features

Number of
Numerical Features

Number of
Categorical Features

Magic 13376 6 6 0
Credit 16714 10 10 0
Cali 20634 8 8 0

• Magic: The data are MC generated (see below) to simulate registration of high energy
gamma particles in a ground-based atmospheric Cherenkov gamma telescope using the
imaging technique. Cherenkov gamma telescope observes high energy gamma rays, taking
advantage of the radiation emitted by charged particles produced inside the electromagnetic
showers initiated by the gammas, and developing in the atmosphere. This Cherenkov
radiation (of visible to UV wavelengths) leaks through the atmosphere and gets recorded in
the detector, allowing reconstruction of the shower parameters. The available information
consists of pulses left by the incoming Cherenkov photons on the photomultiplier tubes,
arranged in a plane, the camera. Depending on the energy of the primary gamma, a total of
few hundreds to some 10000 Cherenkov photons get collected, in patterns (called the shower
image), allowing to discriminate statistically those caused by primary gammas (signal)
from the images of hadronic showers initiated by cosmic rays in the upper atmosphere
(background). The link to this dataset is https://www.openml.org/d/44125.

• Credit: The link to this dataset is https://www.openml.org/d/44089.
• Cali: This dataset, also known as the California Housing Prices dataset, contains information

about housing values in California, collected from the 1990 U.S. Census. It contains
features such as including median income, total rooms, total bedrooms, population, and
geographical attributes such as latitude and longitude. This link to this dataset is https:
//www.openml.org/d/44090.

A summary of used dataset for multi-feature unlearning from OpenML [11, 6] is shown in Table 3.

• Eye: This dataset was published in the Inferring Relevance from Eye Movements Challenge
2005 [18]. The link to the dataset is https://www.openml.org/d/44157.

Table 3: Summary of used datasets for multi-feature unlearning.
Dataset
Name

Number
of Samples

Number
of Features

Number of
Numerical Features

Number of
Categorical Features

Number of
Unlearned Features

Eye 7608 23 20 3 15
Comp 16644 17 8 9 8

Pol 10082 26 26 0 20

• Comp: The link to the dataset is https://www.openml.org/d/44162.
• Pol: The link to the dataset is https://www.openml.org/d/44122.
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H Examples of Processed Images with Shuffled Visual Features

The following example illustrates how an original image is processed for our unlearning method and
retrain-from-scratch approach:

• Shuffled nose feature for our unlearning method: The nose region is shuffled while preserving
the overall structure of the image.

• Masked nose feature for retraining from scratch: The nose region is masked to remove its
influence on the model.

Figure 4: Example of images with shuffled visual features.
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I Configurations of Neural Models and Training Hyperparameter

The batch size is set as 64 and the learning rate is set as 0.001. The optimizer used for neural network
update is the Adam optimizer and the loss function is the cross-entropy loss function.

For the FOUL baseline [32], the scale of permutation on the unlearned feature is set as 0.01.

For the MIUL baseline [34], the training epochs to estimate mutual information is set as 500. The
weight coefficients balancing different mutual information estimations, denoted as λ1, λ2, and λ3,
are set as 5, 5, and 1, respectively.

For our unlearning method within the tabular datasets, the MLP model has two hidden layers with
the number of neurons of 128 and 64. The ResNet model has two residual blocks and a final fully-
connected layer for classification outputs. The FT-Transformer model has two transformer blocks
with a two-layer MLP head (whose hidden layer dimension is 64) for classification.

For our unlearning method within the CV dataset, the ViT backbone is imported through the timm
package – timm.create_model(“vit_base_patch16_224”). The MLP classifier head has two
hidden layers with the number of neurons of 512 and 128.

When implementing the SHAP method to calculate the feature importance of unlearned feature, we
use the shap package developed by [22] and set the background data size and test data size as 1000
and 100, respectively.

All codes are implemented in Python 3.10 and PyTorch 1.12.
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J Training Loss Curves of Models Trained From Scratch Under the Single-
and Multi-Feature Unlearning Setting for Tabular Datasets
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Figure 5: Loss curves of MLP-based models trained from scratch under the single-feature unlearning
setting.
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Figure 6: Loss curves of ResNet-based models trained from scratch under the single-feature unlearn-
ing setting.
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Figure 7: Loss curves of FT-Transformer-based models trained from scratch under the single-feature
unlearning setting.
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Figure 8: Loss curves of MLP-based models trained from scratch under the multi-feature unlearning
setting.
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K Shapley Values of Each Feature for all Used Tabular Datasets

When implementing the SHAP method to calculate the feature importance of unlearned feature, we
use the shap package developed by [22] and set the background data size and test data size as 1000
and 100, respectively.

Table 4 shows the Shapley values of each feature in the Credit dataset. The most, second
most, second last, and last important features are NumberOfTime30-59DaysPastDueNotWorse,
NumberOfTimes90DaysLate, NumberOfDependents, DebtRatio.

Table 4: Shapley values of each feature in the Credit dataset.
Feature Shapley Value

NumberOfTime30-59DaysPastDueNotWorse 0.130686
NumberOfTimes90DaysLate 0.095737

NumberOfTime60-89DaysPastDueNotWorse 0.083108
NumberOfOpenCreditLinesAndLoans 0.080779

age 0.074865
RevolvingUtilizationOfUnsecuredLines 0.074132

NumberRealEstateLoansOrLines 0.062857
MonthlyIncome 0.058103

NumberOfDependents 0.035402
DebtRatio 0.001361

Table 5 shows the Shapley values of each feature in the Cali dataset. The most, second most, second
last, and last important features are Latitude, Longitude, AveBedrms, Population.

Table 5: Shapley values of each feature in the Cali dataset.
Feature Shapley Value

Latitude 0.281184
Longitude 0.248730
MedInc 0.148034

AveOccup 0.081746
AveRooms 0.057758
HouseAge 0.041526
AveBedrms 0.021693
Population 0.019374

Table 6 shows the Shapley values of each feature in the Magic dataset. The most, second most, second
last, and last important features are fWidth, fSize, fLength, fAsym.

Table 6: Shapley values of each feature in the Magic dataset.
Feature Shapley Value
fWidth 0.129222
fSize 0.101183
fConc 0.095207
fConc1 0.089712
fLength 0.079942
fAsym 0.053422

33



L Full Results of Unlearning Features with Different Feature Importance
Under Single-Feature Unlearning Settings

Fig. 9 illustrates the TRI results of unlearning the most, second most, second last, and last important
features across the MLP, ResNet, and FT-Transformer models.
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(c) MLP-Cali
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(g) FT-Transformer-Magic
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(h) FT-Transformer-Credit
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Figure 9: TRI results of unlearning features with different feature importance for tabular datasets.
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Fig. 10 illustrates the EI results of unlearning the most, second most, second last, and last important
features across the MLP, ResNet, and FT-Transformer models.
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Figure 10: EI results of unlearning features with different feature importance for tabular datasets.
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Fig. 11 illustrates the RASI results of unlearning the most, second most, second last, and last
important features across the MLP, ResNet, and FT-Transformer models.
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Figure 11: RASI results of unlearning features with different feature importance for tabular datasets.
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Fig. 12 illustrates the SRI results of unlearning the most, second most, second last, and last important
features across the MLP, ResNet, and FT-Transformer models.
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Figure 12: SRI results of unlearning features with different feature importance for tabular datasets.
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Fig. 13 illustrates the SDI results of unlearning the most, second most, second last, and last important
features across the MLP, ResNet, and FT-Transformer models.
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(c) MLP-Cali
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Figure 13: SDI results of unlearning features with different feature importance for tabular datasets.
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M Feature Correlation Heatmaps of Used Tabular Datasets

In our experiments, we identify two features as highly-correlated features if the Pearson correlation
coefficient is greater than 0.8.

Fig. 14 shows the feature correlation heatmap of the Cali dataset. The highly-correlated feature pairs
of this dataset include Latitude and Longitude, AveRooms, and AveBedrms.
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Figure 14: Feature correlation heatmap of the Cali dataset.
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Fig. 15 shows the feature correlation heatmap of the Credit dataset. For readability, we use the
abbreviations of each feature in the heatmap. The mapping between abbreviations and full names is
provided in Table 7.

The highly-correlated feature pairs of this dataset include
NumberOfTimes90DaysLate/NumberOfTime60-89DaysPastDueNotWorse,
NumberOfTime30-59DaysPastDueNotWorse/NumberOfTime60-89DaysPastDueNotWorse,
and NumberOfTime30-59DaysPastDueNotWorse/NumberOfTimes90DaysLate.

Table 7: Feature abbreviation in heatmap and full name in Credit dataset.
Feature Full Name Feature Abbreviation

NumberOfTime30-59DaysPastDueNotWorse No.30-59
NumberOfTimes90DaysLate No.90

NumberOfTime60-89DaysPastDueNotWorse No.60-89
NumberOfOpenCreditLinesAndLoans No.Loan

age age
RevolvingUtilizationOfUnsecuredLines Rev.

NumberRealEstateLoansOrLines No.Estate
MonthlyIncome Income

NumberOfDependents No.Dep
DebtRatio Debt
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Figure 15: Feature correlation heatmap of the Credit dataset.
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Fig. 16 shows the feature correlation heatmap of the Magic dataset. The highly-correlated feature
pairs of this dataset include fConc and fConc1, fSize and fConc, fSize and fConc1.
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Figure 16: Feature correlation heatmap of the Magic dataset.
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N Full Results of Unlearning Features that are Highly-Correlated with
Others

For the Cali dataset, we have identified two highly-correlated feature pairs in Appendix M – Latitude
and Longitude, AveRooms and AveBedrms. Fig. 17, 18, and 19 show the evaluation results of
unlearning Latitude, Longitude, and AveBedrms, respectively.
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Figure 17: Evaluation results of unlearning Latitude of the Cali dataset.
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Figure 18: Evaluation results of unlearning Longitude of the Cali dataset.

42



1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.8

1.0

TR
I

TRI

TRI=1

50 100 200 400 600 800 1000 1500
Unlearning Epochs

0

20

40

EI

EI
EI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.7

0.8

0.9

1.0

R
A

SI

RASI

RASI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.0

0.5

1.0

SR
I

SRI

SRI=0

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.00

0.01

SD
I

SDI

SDI=0

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.8

1.0

TR
I

TRI=1

50 100 200 400 600 800 1000 1500
Unlearning Epochs

0

20

40

EI

EI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.6

0.8

1.0

R
A

SI RASI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.0

0.5

1.0

SR
I

SRI=0

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.00

0.01

0.02

SD
I

SDI=0

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.8

1.0

TR
I

TRI=1

50 100 200 400 600 800 1000 1500
Unlearning Epochs

0

20

40

EI

EI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.6

0.8

1.0

R
A

SI RASI=1

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.0

0.5

1.0

SR
I

SRI=0

1 10 50 100 200 400 600 80010001500
Unlearning Epochs

0.00

0.01

0.02

SD
I

SDI=0

Unlearned Feature: AveBedrms; Dataset: CALI

M
od

el
: M

LP
M

od
el

: R
es

N
et

M
od

el
: F

T-
Fo

rm
er

Ours FOUL MIUL

Figure 19: Evaluation results of unlearning AveBedrms of the Cali dataset.

For the Credit dataset, we have identified three highly-correlated feature pairs in Ap-
pendix M – NumberOfTimes90DaysLate and NumberOfTime60-89DaysPastDueNotWorse,
NumberOfTime30-59DaysPastDueNotWorse and NumberOfTime60-89DaysPastDueNotWorse,
NumberOfTime30-59DaysPastDueNotWorse and NumberOfTimes90DaysLate. Fig. 20 and
21 show the evaluation results of unlearning NumberOfTime30-59DaysPastDueNotWorse and
NumberOfTimes90DaysLate, respectively.
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Figure 20: Evaluation results of unlearning NumberOfTime30-59DaysPastDueNotWorse of the
Credit dataset.
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Figure 21: Evaluation results of unlearning NumberOfTimes90DaysLate of the Credit dataset.

For the Magic dataset, we have identified three highly-correlated feature pairs in Appendix M –
fConc and fConc1, fSize and fConc, fSize and fConc1. Fig. 22 shows the evaluation results of
unlearning fSize.
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Figure 22: Evaluation results of unlearning fSize of the Magic dataset.
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O Full Results of Fairness Evaluation Metrics under Single-Feature
Unlearning Setting

All results shown below are averaged across all four unlearned features (i.e., the most, the second
most, the second last, and the last important ones), all three neural architectures, and all used datasets.
The features “HouseAge”, “age”, “fConc:” in the CALI, CREDIT, MAGIC_TELE datasets are
considered sensitive attributes, with thresholds of 20, 40, 0.5 to distinguish between privileged and
unprivileged groups, respectively.

Table 8: Averaged DP difference comparison.

Method
Epoch

1 10 50 100 200 400 600 800 1000 1500

Ours 0.0774 0.0330 0.0336 0.0127 0.0271 0.0147 0.0132 0.0206 0.0243 0.0097
FOUL 0.3791 0.2174 0.1654 0.3151 0.2065 0.0417 0.0598 0.1111 0.1054 0.2345
MIUL 0.1869 0.1319 0.0440 0.0954 0.0371 0.0424 0.0895 0.1026 0.0778 0.0291

Table 9: Averaged EO difference calculated via the true positive rate comparison.

Method
Epoch

1 10 50 100 200 400 600 800 1000 1500

Ours 0.0394 0.0281 0.0310 0.0158 0.0288 0.0234 0.0175 0.0222 0.0192 0.0192
FOUL 0.1728 0.1463 0.2902 0.1616 0.2665 0.7684 0.5679 0.3727 0.1668 0.1290
MIUL 0.1841 0.2069 0.1477 0.0747 0.0719 0.0601 0.0574 0.0683 0.0958 0.1170

Table 10: Averaged EO difference calculated via the false positive rate comparison.

Method
Epoch

1 10 50 100 200 400 600 800 1000 1500

Ours 0.1317 0.0462 0.0382 0.0156 0.0257 0.0160 0.0117 0.0207 0.0321 0.0134
FOUL 0.0752 0.0750 0.1627 0.1071 0.3891 0.6737 0.5946 0.3348 0.0927 0.1227
MIUL 0.1857 0.1249 0.0318 0.0782 0.0662 0.0557 0.1001 0.1252 0.0941 0.0218
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P Full Results of Feature Unlearning for CV/Image Classification Tasks

Fig. 23 and 24 depict the results of unlearning visual features nose and eyes when performing
classification for label class Gender.
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Figure 23: Evaluation results of unlearning nose for label class Gender.
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Figure 24: Evaluation results of unlearning eyes for label class Gender.

Fig. 25 depicts the results of unlearning visual features nose when performing classification for label
class Pointy Nose.
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Figure 25: Evaluation results of unlearning nose for label class Pointy Nose.

Fig. 26 depicts the results of unlearning visual features nose when performing classification for label
class Big Nose.
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Figure 26: Evaluation results of unlearning nose for label class Big Nose.

Fig. 27 depicts the results of unlearning visual features eyes when performing classification for label
class Narrow Eyes.
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Figure 27: Evaluation results of unlearning eyes for label class Narrow Eyes.
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Q Full Experimental Results of Multi-Feature Unlearning for Tabular
Dataset

The following figures from Fig. 29 to Fig. 30 depict evaluation results w.r.t. defined all five evaluation
metrics across all used datasets for multi-feature unlearning, with results presented in from Table 11
to Table 13 for cross comparison.

Table 11: Comparison of unlearning evaluation results on Comp dataset. The terms “Eva.Me.” and
“Algo.” are abbreviations for “Evaluation Metrics” and “Algorithm”, respectively.

Eva.Me. Algo. Unlearning Epochs
1 10 50 100 200 400 600 800 1000 1500

TRI
FOUL 108%± 0% 93%± 0% 94%± 0% 85%± 0% 78%± 0% 75%± 0% 56%± 0% 66%± 0% 69%± 0% 61%± 0%
MIUL 108%± 0.2% 108%± 0.2% 108%± 0.3% 108%± 0.4% 108%± 0.2% 108%± 0.4% 109%± 0.2% 108± 0.3% 108%± 0.5% 108%± 0.4%
Ours 105%± 1.1% 97%± 0.6% 94%± 1.5% 93%± 0.8% 95%± 0.7% 96%± 0.3% 97%± 0.3% 97%± 0.4% 98%± 0.8% 98%± 0.4%

EI
FOUL 860 87 22 11 5.6 2.8 1.9 1.4 1.0 0.7
MIUL 1.7 1.6 1.5 1.3 1 0.8 0.6 0.5 0.4 0.3
Ours 1270 170 39 19 9.7 4.9 3.1 2.5 2.0 1.3

RASI
FOUL 58%± 0% 68%± 0.1% 67%± 0.2% 69%± 0.1% 63%± 0.1% 68%± 0.3% 62%± 0.2% 77%± 0.1% 67%± 0.1% 79%± 0%
MIUL 57%± 0.3% 57%± 0.6% 57%± 0.1% 57%± 0.1% 57%± 0.3% 57%± 0.6% 57%± 0.3% 57%± 0.1% 57%± 0.8% 57%± 0.3%
Ours 61%± 1.6% 85%± 0.8% 87%± 1.3% 90%± 2.6% 91%± 1.5% 94%± 0.8% 96%± 0.1% 96%± 0.1% 97%± 0.4% 98%± 0.3%

SRI
FOUL 96%± 3.0% 65%± 3.0% 154%± 2.2% 221%± 0.7% 247%± 2.9% 230%± 0.2% 31%± 0.8% 65%± 2.4% 199%± 0.6% 22%± 0.5%
MIUL 110%± 3.7% 95%± 5.6% 109%± 6.4% 100%± 0.7% 101%± 1.1% 101%± 8.2% 110%± 10% 112%± 3.1% 102%± 1.3% 100%± 7.4%
Ours 81%± 8.8% 51%± 13.8% 58%± 21.2% 52%± 9.1% 26%± 3.0% 19%± 2.1% 12%± 1.5% 11%± 1.8% 12%± 4.8% 8.0%± 1.6%

SDI
FOUL 7.0%± 0.2% 5.0%± 0% 11%± 0.2% 16%± 0.1% 18%± 0.2% 16%± 0.2% 2.0%± 0.1% 5.0%± 2.0% 14%± 0% 2.0%± 0%
MIUL 8.0%± 0.3% 7.0%± 0.4% 8.0%± 0.5% 7.0%± 0.1% 7.0%± 0.1% 7.0%± 0.6% 8.0%± 7.0% 8.0%± 0.2% 7.0%± 0.1% 7.0%± 0.5%
Ours 6.0%± 0.6% 4.0%± 1.0% 4.0%± 1.5% 4.0%± 0.7% 2.0%± 0.2% 1.0%± 0.1% 1.0%± 0.1% 1.0%± 0.1% 1.0%± 0.3% 1.0%± 0.1%
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Figure 28: Unlearning evaluation results of the Comp dataset under the multi-feature unlearning
setting.
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Table 12: Comparison of unlearning evaluation results on Pol dataset. The terms “Eva.Me.” and
“Algo.” are abbreviations for “Evaluation Metrics” and “Algorithm”, respectively.

Eva.Me. Algo. Unlearning Epochs
1 10 50 100 200 400 600 800 1000 1500

TRI
FOUL 179%± 0% 177%± 0% 159%± 0% 160%± 0% 142%± 0% 126%± 0% 145%± 0% 158%± 0% 160%± 0% 164%± 0%
MIUL 181%± 0.2% 180%± 0.2% 181%± 0.6% 181%± 0.2% 181%± 0.3% 181%± 0.4% 181%± 0.2% 181± 0.1% 181%± 0.1% 181%± 0.3%
Ours 179%± 0.6% 175%± 2.5% 146%± 25.2% 110%± 0.6% 105%± 3.5% 102%± 1.0% 105%± 2.7% 105%± 4.6% 102%± 0.4% 106%± 4.3%

EI
FOUL 736 106 22 10 5.5 2.8 1.9 1.4 1.1 0.7
MIUL 1.6 1.5 1.4 1.2 1.0 0.8 0.6 0.5 0.4 0.3
Ours 1032 183 34 17 9.8 4.9 3.1 2.3 1.9 1.3

RASI
FOUL 53%± 0.3% 52%± 0.2% 55%± 0.2% 55%± 0.1% 64%± 0.1% 71%± 0.2% 61%± 0.1% 56%± 0.4% 56%± 0.2% 55%± 0.1%
MIUL 52%± 0.3% 52%± 0.2% 52%± 0.4% 52%± 0.4% 52%± 0.4% 52%± 0.3% 52%± 0.4% 52%± 0.6% 52%± 0.3% 52%± 0.3%
Ours 53%± 0.3% 53%± 0.1% 65%± 16% 89%± 1.7% 96%± 3.6% 98%± 2.9% 96%± 2.8% 96%± 4.7% 99%± 0.4% 99%± 0.4%

SRI
FOUL 101%± 0.8% 100%± 0.5% 91%± 0.1% 96%± 1.8% 72%± 0.8% 47%± 0.5% 46%± 1.5% 65%± 0.8% 69%± 1.9% 72%± 0.4%
MIUL 101%± 1.5% 98%± 0.8% 99%± 1.2% 98%± 0.5% 96%± 1.1% 98%± 3.5% 94%± 3.0% 95%± 6.7% 91%± 4.1% 72%± 0.4%
Ours 99%± 2.5% 93%± 3.6% 55%± 3.7% 4.0%± 2.0% 3.0%± 1.8% 3.0%± 3.0% 5.0%± 2.1% 3.0%± 2.7% 3.0%± 0.2% 3.0%± 1.3%

SDI
FOUL 16%± 0.1% 15%± 0.1% 14%± 0% 15%± 0.3% 11%± 0.1% 7.0%± 0.1% 7.0%± 0.2% 10%± 0.1% 11%± 0.3% 11%± 0.1%
MIUL 16%± 0.2% 15%± 0.1% 15%± 0.2% 15%± 0.1% 15%± 0.2% 15%± 0.5% 14%± 0.5% 15%± 0.1% 14%± 0.6% 14%± 0.6%
Ours 15%± 0.4% 14%± 0.6% 8.0%± 5.7% 1.0%± 0.3% 1.0%± 0.3% 0%± 0.5% 1.0%± 0.3% 0%± 0.4% 0%± 0% 0%± 0.2%
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Figure 29: Unlearning evaluation results of the Pol dataset.

Table 13: Comparison of unlearning evaluation results on Eye dataset. The terms “Eva.Me.” and
“Algo.” are abbreviations for “Evaluation Metrics” and “Algorithm”, respectively.

Eva.Me. Algo. Unlearning Epochs
1 10 50 100 200 400 600 800 1000 1500

TRI
FOUL 103%± 0% 92%± 0% 86%± 0% 90%± 0% 85%± 0% 86%± 0% 88%± 0% 86%± 0% 86%± 0% 86%± 0%
MIUL 105%± 0.7% 105%± 0.4% 106%± 0.5% 106%± 1.1% 107%± 0.1% 105%± 0.9% 105%± 0.6% 106± 0.6% 105%± 0.7% 105%± 1.8%
Ours 102%± 0.1% 101%± 1.6% 100%± 1.8% 100%± 0.6% 103%± 0.6% 100%± 1.3% 102%± 2.8% 101%± 1.7% 102%± 2.3% 102%± 1.4%

EI
FOUL 680 105 17 11 5.5 2.8 1.8 1.4 1.1 0.7
MIUL 1.5 1.5 1.4 1.2 1 0.8 0.6 0.5 0.4 0.3
Ours 871 178 38 19 9.7 4.2 3.2 2.3 1.9 1.3

RASI
FOUL 55%± 0.4% 71%± 0.4% 83%± 0% 91%± 0.1% 60%± 0.5% 99%± 0% 78%± 0.2% 99%± 0% 99%± 0% 100%± 0%
MIUL 57%± 0.3% 56%± 0.2% 57%± 0.3% 56%± 0.5% 56%± 0.2% 56%± 0.9% 57%± 0.5% 57%± 0.3% 57%± 0.3% 57%± 0.4%
Ours 59%± 1.4% 73%± 3.3% 79%± 2.6% 79%± 2.6% 81%± 3.3% 86%± 2.3% 87%± 2.0% 84%± 1.7% 89%± 0.9% 90%± 0.9%

SRI
FOUL 79%± 1.8% 49%± 2.0% 45%± 1.5% 15%± 0.5% 174%± 2.0% 1.0%± 0.2% 56%± 0.6% 1.0%± 0.3% 1.0%± 0.1% 0%± 0%
MIUL 93%± 6.6% 95%± 5.0% 97%± 3.4% 97%± 4.2% 86%± 2.4% 87%± 4.1% 91%± 4.2% 91%± 4.5% 92%± 5.1% 92%± 1.9%
Ours 104%± 18% 87%± 23% 48%± 12% 80%± 28% 32%± 11% 19%± 2.4% 34%± 18.5% 19%± 4.3% 25%± 7.2% 29%± 5%

SDI
FOUL 3.0%± 0.1% 2.0%± 0.1% 2.0%± 0.1% 1.0%± 0% 7.0%± 0.1% 0%± 0% 2.0%± 0% 2.0%± 0% 0%± 0% 0%± 0%
MIUL 4.0%± 0.3% 4.0%± 0.2% 4.0%± 0.1% 4.0%± 0.2% 4.0%± 0.1% 4.0%± 0.2% 4.0%± 0.2% 4.0%± 0.2% 4.0%± 0.2% 4.0%± 0.1%
Ours 4.0%± 0.8% 4.0%± 0.9% 2.0%± 0.5% 3.0%± 1.2% 1.0%± 0.5% 1.0%± 0.1% 1.0%± 0.8% 1.0%± 0.2% 1.0%± 0.3% 1.0%± 0.2%
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Figure 30: Unlearning evaluation results of the Eye dataset.
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