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Abstract

Large language models (LLMs) excel in in-
context learning (ICL), adapting to new tasks
via example-based prompts without parameter
updates. Despite their capabilities, the internal
representation and generalization of ICL tasks re-
main elusive. We introduce a method that encodes
task information in ICL prompts by computing
a single vector embedding as a weighted sum
of the transformer’s attention heads, optimized
via gradient descent to address performance chal-
lenges. Our results indicate that current methods
fail to generalize numeric tasks beyond trained
lengths, exhibiting significant degradation with
even minimal exceedance. Our approach not only
addresses these shortcomings but also enhances
performance across numeric and linguistic tasks,
maintaining high task fidelity. This demonstrates
our method’s efficacy in deriving task-specific
information from in-context demonstrations, sug-
gesting broader applications for LLMs in ICL.

1. Introduction
Large language models (LLMs) based on the transformer
architecture (Vaswani et al., 2017) have seen dramatic im-
provements in recent years. A notable feature of these
models, such as GPT-3 (Brown et al., 2020), is their capabil-
ity for in-context learning (ICL). This process involves the
model receiving a prompt that includes demonstrations of a
task in the form of input-output pairs. When presented with
a new query input, the language model (LM) can generate
the appropriate output by extrapolating from the provided
examples. For instance, after being prompted with a few ex-
amples, these models are capable of producing the antonyms
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of given input words. A concrete example is

vanish→ appear, short→ tall,︸ ︷︷ ︸
examples

increase→︸ ︷︷ ︸
query

decrease︸ ︷︷ ︸
completion

,

(1)
where the blue text is the prompt and the red text is the
completion given by an LLM.

Not limited to linguistic tasks, it has been also demonstrated
that transformers can in-context learn a general class of func-
tions F (Garg et al., 2023). Specifically, for any function
f ∈ F , the model is capable of approximating f(xquery) for
a new query input xquery. This class may include linear or
nonlinear relationships, potentially represented by various
machine learning models such as linear regression, multi-
layer ReLU networks, and decision trees. This capability
is particularly intriguing as it enables models to adapt to a
wide range of downstream tasks on-the-fly—i.e., without
requiring any parameter updates post-training (Brown et al.,
2020). As the prompted in-context data points are not part of
the pre-training dataset, the LM’s ICL ability suggests that
it can extract the task information (the relationship between
the input-output pairs) from the prompt and use it to output
the correct response for the query input. However, due to
the complex nature of the LM’s architecture, the computa-
tional mechanisms that facilitates the task encoded in the
transformer’s internal structure remains elusive.

Recent studies on ICL have characterized function vectors
(FV) as a key mechanism in understanding the information
flow during ICL processes (Todd et al., 2024; Hendel et al.,
2023). These vectors elucidate how transformer models
process and respond to various prompts. While task repre-
sentation capabilities of FVs has been empirically supported,
their exact computation within transformers remains a sub-
ject of debate. Early findings suggest that layer or attention
activations significantly influence ICL performance (Hendel
et al., 2023; Liu et al., 2024; Todd et al., 2024). However,
there is no consensus on an optimal way to conceptualize or
compute these vectors, leading to varied methodologies and
inconsistent results across different studies.

This lack of a unified framework highlights a critical chal-
lenge in ICL research: the generalization of FVs across
different task types, model architectures, and modalities.
Notably, current approaches often fail to generalize to syn-
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thetic tasks1 consisting of a range of linear and nonlinear
functions. Moreover, the requirement to adapt FV computa-
tion to specific transformer models complicates the devel-
opment of a standardized, automated pipeline. This issue
raises concerns about the scalability and practical utility of
the current formulations of function vectors. Consequently,
in pursuit of a more principled conceptualization of function
vectors, we hypothesize that:

In-context learning tasks can be effectively repre-
sented by a weighted sum of all attention heads
within a transformer, where the weights can be
learned using gradient descent applied across the
model.

1.1. Contributions and Findings

Motivated by the identification of the aforementioned failure
mode, our study primarily focuses on in-context learning of
synthetic tasks, and also includes a brief exploration within
the language domain.

Transformers cannot generalize to longer prompts of
synthetic data. We identify a distinct failure mode in syn-
thetic tasks, observing that when a transformer is trained
with prompts containing up to Ttrain examples, its ICL per-
formance significantly deteriorates for prompts of length
T > Ttrain. Notably, divergence consistently occurs even
when T = Ttrain + 1. This issue, unlike the conventional
generalization challenges observed in LLMs, can occur with
very few tokens. For example, our experiments show that a
transformer trained with Ttrain = 41 demonstrations (equiv-
alent to 82 tokens) always fails to generalize to T = 42
during ICL, resulting in a significant increase in prediction
error.

An approach to assess the performance of function vec-
tors in synthetic tasks. If a function vector accurately
represents the underlying task, it could technically extend
the model’s task memory beyond Ttrain examples. There-
fore, assessing the effectiveness of FVs on prompts longer
than those used during training forms the foundation of our
empirical analysis. In line with this, existing formulations
of FVs either fail to enhance the transformer’s performance
or cannot maintain performance on prompts that exceed the
length T > Ttrain.

Learning weights for attention heads is superior. We in-
troduce a method that assigns a weight to each attention head
within the multi-head self-attention mechanism of transform-
ers, thereby computing the FV as a weighted sum of these
heads’ activations. The weights are optimized to enhance the

1We refer to the class of functions F as synthetic tasks since
they are generated by sampling from probability distributions.

transformer’s performance in scenarios where it tradition-
ally underperforms. This approach requires learning only
L× J parameters, where L is the number of hidden layers
and J is the number of attention heads per layer. Empiri-
cal studies demonstrate that our weighted FV formulation
achieves near-optimal results and effectively generalizes
across longer prompts.

Additional benefits in linguistic tasks The proposed for-
mulation not only excels with synthetic data but also shows
advantages in linguistic tasks. Experiments reveal that our
method offers a superior task representation, achieving sig-
nificantly lower perplexity compared to the benchmark FV
formulation (Todd et al., 2024).

2. Related Work
Here, we discuss studies that specifically focus on learning
task representations in ICL. A more comprehensive review
of related works is available in Appendix A.

Initial studies on developing task representations for trans-
formers were documented in (Lampinen & McClelland,
2020; Shao et al., 2023; Mu et al., 2023; Panigrahi et al.,
2023; Ilharco et al., 2023). These works introduced meth-
ods to create compositional task encodings through model
perturbations in the parameter space, “soft” prompts, code-
books, and meta-mappings. Notably, the term task vectors
was first used in (Ilharco et al., 2023). In contrast, by apply-
ing causal mediation analysis (Pearl, 2001; Vig et al., 2020;
Wang et al., 2023a; Geva et al., 2023), function vectors were
discovered to be inherently present within the transformer
architecture and demonstrate strong causal effects (Todd
et al., 2024). This finding parallels research in RNNs, where
it was shown that RNN hidden states can be grouped based
on task similarities (Lake & Baroni, 2018; Hill et al., 2019).

In this study, we aim to design a structured method for ex-
tracting function vectors from the transformer architecture,
building on the approach of Todd et al. (Todd et al., 2024).
Initially, Todd et al. identify a subset of attention heads, de-
noted by A, across the architecture using a causal analysis
metric (Pearl, 2001). An FV is then defined as the sum of
activations from these heads in response to a prompt, captur-
ing the task. This FV can enhance task performance when
added to the outputs of specific hidden layers. Our approach
extends this by applying learnable scalar weights to each
attention head, allowing for the aggregation of all attention
and the automatic adjustment of weights for heads that are
less critical for task representation. Additionally, the orig-
inal formulation of FVs risks disrupting the transformer’s
feedforward structure by potentially including attention acti-
vations from future layers into earlier layers, a point we will
explore further. Despite these detrimental oversights, this
formulation of FVs proves to be highly effective in language
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tasks and reasonably decent, though not generalizable, in
synthetic tasks. This establishes it as a benchmark in our
studies.

3. Technical Preliminaries
The transformer architecture uses self-attention mechanisms
to process sequences of data. Initially, input data is tok-
enized into a sequence, where each token represents data
units such as words or numerical segments. In this work,
we consider autoregressive transformers denoted by Mθ and
parameterized θ. The model predicts the next element in a
sequence based on previous outputs. It consists of L layers,
each transforming encoded token vectors of dimension d
through linear and nonlinear operations. Our focus is on the
computation at the last token position within these layers,
where each layer ℓ ≤ L generates a vector representation
hℓ ∈ Rd from its preceding layer’s output.

Self-attention in the transformer architecture employs multi-
head attention at each layer:

MultiHeadℓ(Qℓ,Kℓ, Vℓ) = Concat(aℓ,1, . . . , aℓ,j)W
O,

aℓ,j ∈ Rq := Attnℓ,j = softmax
(
Qℓ,jK

⊤
ℓ,j/

√
dk)Vℓ,j .

Here WO ∈ RJq×d is the output projection matrix, and
Qℓ,j , Kℓ,j , and Vℓ,j are the query, key, and value matrices
for each attention head j ≤ J at layer ℓ. The term

√
dk

normalizes the softmax operation for stability, where dk is
the dimension of the key matrix. This multi-head approach
allows the model to dynamically adjust its focus across
different parts of the input based on the context.

3.1. In-Context Learning

A prompt pt, corresponding to task t, comprises a se-
quence of tokens including T input-output exemplar pairs
{(xi, yi)}Ti=0. Here the superscript t indicates the task. We
note that the length of the prompts may occasionally be
referred to by the number of examples they contain. Each
pair demonstrates the execution of the same underlying task
t. This set defines a functional mapping between each in-
put x and its corresponding output y. In addition to these
exemplar pairs, each prompt includes a specific query input
xquery. The goal of ICL is to use a pre-trained LLM to pre-
dict a target response yquery corresponding to xquery, based
on the prompt containing T demonstrations and xquery. We
consider both synthetic and language tasks.

In-Context Learning of Synthetic Tasks We consider
synthetic tasks where the transformer in-context learns a
function class F from demonstrations. We adhere closely
to the formulation proposed in (Garg et al., 2023) for
training and testing the LM on synthetic data. For each
prompt, a random function f from F is sampled accord-

ing to a distribution DF , and a set of random inputs
xi ∈ Rm for i = 1, . . . , T is drawn from DX . These
inputs are then evaluated by f to produce the prompt
pf = {x1, f(x1), . . . , xT , f(xT ), xquery}. The output, i.e.,
prediction on xquery, of a pre-trained LLM is denoted by
Mθ(p

f ). For example, in the case of linear functions, in-
puts might be drawn from an isotropic Gaussian distribution
N (0, Im), and a random function is selected by sampling a
weight vector w fromN (0, Im), setting f(x) = w⊤x. Here,
the task would be defined by the weight vector w ∈ Rm. For
nonlinear functions, possible forms of f include multi-layer
ReLU networks or decision trees. We employ the models
pre-trained by Garg et al. (Garg et al., 2023), with the train-
ing procedure and additional details provided in Appendix
B.1.2.

In-Context Learning of Language Tasks In language
tasks, we focus on straightforward natural language process-
ing applications such as antonym and synonym generation,
where an example is shown in (1). During the ICL infer-
ence stage, following the framework in (Todd et al., 2024),
we evaluate the ICL inference abilities of a pre-trained LM
rather than training it for specific tasks. We use a dataset
P t that consists of in-context prompts pti. The model Mθ

processes each prompt pti and produces a next-token distri-
bution Mθ(· | pti) over the words in vocabulary V . In our
empirical tests to assess robustness, we generate corrupted
prompts p̃ti, wherein the labels within each prompt are shuf-
fled. This shuffling breaks the direct link between the inputs
xi,k and the outputs ỹi,k, leaving the provided examples
uninformative about the task.

4. Learning Task Representations
4.1. Motivational Observations

Our study begins with the observation that transformers,
when trained with prompts containing up to Ttrain exam-
ples of task f , effectively minimize the squared error,
(f(xquery)−Mθ(xquery | pf ))2, during ICL inference. How-
ever, performance deteriorates when test prompts exceed
Ttrain examples. Even when models are initialized to ac-
commodate T > Ttrain demonstrations, they fail to maintain
accuracy in predicting query inputs, resulting in significantly
increased squared errors unless they are explicitly trained
with T examples.

If a task representation accurately encodes the task, it could
sustain the model’s performance beyond Ttrain, thereby en-
abling it to effectively handle longer prompt sequences dur-
ing inference. We evaluated the capability of function vec-
tors—the only previous formulation that did not diverge
on synthetic data—to extend ICL to longer prompts. The
results, illustrated in Figure 1, show that this approach fails
to generalize across the tasks tested. Despite notable perfor-
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mance in the language domain, its shortcomings in synthetic
tasks raise questions about the functionality and generaliz-
ability of the existing task encoding schemes.

As our investigation deepens, we articulate the central re-
search questions:

(i) How can we develop a task representation in a prin-
cipled manner that is generalizable across different
modalities, such as language or mathematical func-
tions?

(ii) How can this new representation enhance performance
on downstream tasks?

4.2. Learnable Task Vector

We introduce a framework that learns task-specific repre-
sentations from in-context data, applicable to both language
and synthetic domains. The proposed method causally op-
timizes the task representation, with a particular focus on
scenarios where the model underperforms, such as when
generalizing to longer prompts. First, we identify two pri-
mary reasons for the shortcomings of the previous work
(FV). Building on these insights, we propose remedies to
these drawbacks. To avoid confusion with the existing FV
formulation, we have centered our method around the term
task vector.

Variability in contributions of attention heads While
the FV formulation sums activations across attention heads
assuming equal contributions, we argue that the influence of
each head varies. Some heads may significantly contribute

Transformer Transformer + FV
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(a) Linear functions

0 25 50 75 100
# in-context examples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

(b) Sparse linear
functions
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(c) 2-layer ReLU NN

Figure 1. Squared error on the query input as a function of the
number of demonstrations in the prompts. We evaluate three differ-
ent function classes: (a) linear functions f(xquery) = w⊤xquery, (b)
sparse linear functions f(xquery) = w⊤

s x, and (c) 2-layer ReLU
neural networks (NNs) f(xquery) = W2 ReLU(W1xquery). Results
are averaged over a batch of 256 tasks randomly selected from the
same function class. The shaded area represents the 95% confi-
dence interval over the sampled prompts. The dashed line indicates
the maximum number of examples that the transformer was trained
with.

to task representation, reflected by large coefficient magni-
tudes. Thus, constraining weights to unity is impractical,
and focusing solely on a subset of attention heads, denoted
by A, may overlook subtle nuances in other heads. Hence,
each attention head should be weighted in the summation to
accurately represent their contribution.

Layer-specific task vectors A differentiated task vector,
tailored to each hidden layer, would more effectively pre-
serve the unique contributions of each layer to the task repre-
sentation. Aligned with this, one might consider initializing
separate sets of weights for each of the L layers; however,
this approach would be expensive. Instead, we propose a
more efficient approach. We calculate layer-specific task
vectors by computing a weighted sum of the attention heads
exclusively within each layer:

vtℓ =
J∑

j=0

ωℓ,j · āℓ,j , (2)

where ωℓ,j ∈ R represents the set of weight parameters as-
signed to attention heads, organized in the parameter vector
Φ ∈ RLJ , and ā represents the attention activations aver-
aged on a separate sample set of prompts corresponding
to task t, following (Todd et al., 2024). This method en-
sures that each layer-wise FV is composed solely of the J
heads within that specific layer, avoiding the aggregation of
attention across all L× J heads.

Although excluding attention heads from layers ℓ′ ̸= ℓ
in the latter modification might seem contradictory, this
is counterbalanced by the transformer’s feedforward, au-
toregressive design. Including attention from earlier layers
could introduce redundancy and complicate learning, as the
hidden state at layer ℓ already encapsulates all transformed
information in layers ℓ′ < ℓ. Furthermore, integrating at-
tention heads from future layers would conflict with the
transformer’s sequential processing, which avoids forward-
looking capabilities, and could disrupt gradient flow during
backpropagation, complicating training.

How is it used during ICL inference? Initially, a batch
of sample data corresponding to a certain task t is collected,
and the model’s attention activations are gathered. These
activations are then averaged across the sample data. The
average activations for each layer are weighted and summed
to compute the respective layer’s LTV. This task encoding
is then added to the hidden states through simple vector
addition to incorporate the desired task behavior or repre-
sentation to the model, in alignment with the prior work
(Todd et al., 2024). This process is depicted in Figure 2. We
refer to the resulting refined approach as Learnable Task
Vector (LTV) and describe the methodology for learning the
weights Φ of an LTV next.
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Figure 2. Illustration of the operation. Additional and output operations may include residual connections, normalization, feedforward, or
prediction layers, depending on the architecture. Each layer’s LTV is added consecutively, not simultaneously, allowing for the effects of
the integrated LTV to be observed progressively across subsequent layers.

 

Figure 3. Optimization pipeline of LTV, where example is given on synthetic data. The LTV is first computed using a separate sample
batch of data. It is then integrated into the model operating on perturbed data, such as longer synthetic prompts or language data with
shuffled labels. The parameters are subsequently updated to minimize the loss on the query input, optimizing performance.

4.3. How to Optimize Learnable Task Vectors?

An effective strategy for learning the parameters Φ involves
optimizing the LTV in specific scenarios where the LM typ-
ically exhibits shortcomings, while keeping the transformer
parameters frozen. Hence, this approach renders our method
both data-driven and causal, facilitating its application to
downstream tasks with learning only |Φ| = L× J param-
eters. We employ gradient descent to optimize Φ through
the LM and integrate the LTV into the model for challeng-
ing/perturbed data, such as longer synthetic prompts or lan-
guage data with shuffled labels. The general pipeline for
training an LTV is illustrated in Figure 3.

Synthetic Tasks The LTV is computed given the prompts
longer than the training length Tv > Ttrain. The integration
of the LTV naturally alters the transformer’s output. Subse-
quently, we backpropagate over Φ through the transformer
to minimize the loss on the query input xquery:

min
Φ

Ef∼DF ,x∼DX

[(
M̃θ

(
pf | vf

Φ

)
− f(xquery)

)2
]
, (3)

where vf
Φ = {vfℓ }Lℓ=1 is the set of layer-wise LTVs com-

puted for function f and M̃θ(· | vf
Φ) denotes the prediction

of the transformer on the query input xquery ∈ pf modified
by adding vf

Φ to the corresponding hidden layers.

Language Tasks A failure mode in linguistic tasks, recog-
nized in (Todd et al., 2024), is the fragile in-context predic-
tion performance on shuffled prompts. Hence, with the true
query output yquery known, the LTV is trained in a super-
vised manner to minimize the cross-entropy loss on these
shuffled prompts:

min
Φ

Ep̃t∼P̃ t

[
− log

(
M̃θ

(
yquery | p̃t;vt

Φ

))]
, (4)

where M̃θ(yquery | p̃t;vt
Φ) is the probability predicted by

the model for the true class yquery given the shuffled prompt
p̃t and when the LTV is incorporated.

5. Experiments
Models We employ decoder-only autoregressive trans-
formers: GPT-2 (Radford et al., 2019) for synthetic tasks
and GPT-J (Wang & Komatsuzaki, 2021) for tasks in the
language domain. The huggingface implementations
(Wolf et al., 2020) of these models are used. GPT-2 is config-
ured with 9.5M parameters across 12 layers and 8 attention
heads per layer, while GPT-J features 6B parameters, 28
layers, and 16 attention heads per layer. The pre-trained
GPT-2 models that we use adhere to the training proce-
dure described in Appendix B.1.2 and are sourced from the
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GitHub repository2.

Tasks For synthetic tasks, as outlined in Figure 1, we
evaluate the models using linear functions, sparse linear
functions, and 2-layer ReLU networks. Although decision
trees was also explored as a function class (Garg et al., 2023),
we did not encounter the same failure modes with trees; the
model remains stable with increasing prompt length and can
generalize effectively. For tasks in the language domain,
we use the datasets curated in (Todd et al., 2024). Since
our primary focus is on synthetic data, we consider two
linguistic tasks: generating antonyms and synonyms.

Function Vector As a benchmark for our study, we opti-
mized the benchmark FV in synthetic tasks through several
targeted modifications. These modifications significantly en-
hanced the effectiveness of FV, and we present the optimized
configuration in our experiments with synthetic data. The
details of this optimization is described in Appendix B.3.
For the language domain, to ensure a fair evaluation, we
directly employed the code and experimental setup outlined
in the authors’ GitHub repository3.

Learnable Task Vector We train LTVs for approximately
2000 iterations in synthetic tasks and 120,000 iterations in
language tasks. Each iteration involves sampling a batch of
input prompts with a size of 256 and performing gradient
descent based on the objectives outlined in (3) and (4) for
synthetic and language tasks, respectively. While we have
not encountered any significant limitation in our approach
since the burden of updating weights is very minimal, it is
notable that creating or sampling data for LTV can consume
a considerable amount of time, especially when the number
of iterations is large such as in the language domain.

All details regarding our experimental setup and com-
plete set of results are provided in Appendices B
and C, respectively. To ensure reproducibility, we
have made our code available in the GitHub repos-
itory (https://github.com/baturaysaglam/
ICL-Task-Representations).

5.1. Evaluation on Synthetic Tasks

The loss curves in ICL inference are shown in Figure 4,
with additional evaluation under distribution shift detailed
in Appendix C.2. We note that 2-layer neural networks
exhibit higher error levels than linear functions due to the
complexity induced by two weight matrices and ReLU ac-
tivation. FV offers some benefits in linear regression by
maintaining lower error values than the vanilla transformer

2https : / / github . com / dtsip /
in-context-learning

3https://github.com/ericwtodd/function_
vectors

for T > Ttrain, although the squared error of 2.5 is still high.
However, FV fails to generalize to the more complex tasks
and a notable error margin persists even for T < Ttrain. This
is likely due to FVs overly perturbing the hidden states,
which, while helping sustain performance beyond Ttrain, in-
dicates that FVs, originally crafted for the language domain,
do not effectively translate to other modalities.

LTV yields near-optimal performance without model
fine-tuning. LTV shows minimal performance differences
when trained with prompt lengths near Ttrain. As Tv in-
creases, LTV’s impact grows, reaching optimal levels seen
with the vanilla model for T = Ttrain. Notably, LTV
trained with prompt lengths just above Ttrain—specifically,
Tv = 1.37×Ttrain for linear functions and Tv = 1.25×Ttrain
for 2-layer ReLU networks—suffices for maintaining this
performance. Extending Tv further does not yield signifi-
cant gains. This underscores that training a small subset of
parameters (|Φ| = L×J) with slightly more data effectively
allows the model to handle longer prompts without the need
for extensive model fine-tuning.

No special training technique is needed for LTV. As de-
tailed in Appendix B.4.1, no regularization or optimization
techniques, such as dropout, specific weight initialization,
or specialized activation functions, are employed in learning
the weights of the LTV. The weights are not bounded, nor
are interventions made during the training phase. The suc-
cess of this straightforward approach, yielding near-optimal
results, supports the hypothesis that the ICL task may be
effectively encoded as a weighted sum of the attention ac-
tivations. This suggests that the weights of the attention
heads naturally reach their optimal values given sufficient
training.

5.2. Evaluation on Language Tasks

The accuracy scores are reported in Table 1. While “filtered”
accuracies was primarily considered in (Todd et al., 2024),
which take into account only the test queries where at least
one model responds correctly, we present unfiltered accu-
racies as a fairer metric, counting all samples regardless of
model performance. Filtered results, along with perplexity
scores and losses, are available in Appendix C.3. For com-
parative analysis, we also trained an LTV on a joint dataset
equally composed of antonyms and synonyms.

LTV is also superior in the language domain. Across all
tests, both LTV versions improve the vanilla transformer’s
performance, surpassing FV with notably higher accuracy
scores and lower perplexity and cross-entropy losses. Syn-
onym generation, more complex due to subtle semantic dif-
ferences, sees LTV enhance performance from 1% to 16% in
zero-shot prediction, while FV stalls at 2%. However, LTV
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Transformer Transformer + FV (optimized) Transformer + LTV
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Tv = 42
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Tv = 56
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Tv = 71
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Tv = 86

(a) Linear functions – Ttrain = 41
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Tv = 42
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Tv = 56
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Tv = 71
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Tv = 86

(b) Sparse linear functions – Ttrain = 41
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(c) 2-layer ReLU NN – Ttrain = 101

Figure 4. Squared error on the query input as a function of the number of demonstrations in prompts. Results are averaged over a batch of
256 tasks randomly selected from the same function class. The shaded area represents the 95% confidence interval over the sampled
prompts. The dashed line indicates the number of examples the transformer was trained with, while Tv indicates the prompt length used
in LTV training.

Table 1. Unfiltered accuracy scores for few-shot (5-shot) and zero-shot predictions, averaged across 256 random seeds. ± denotes the
95% confidence interval for the trials. The term “mixed” indicates the LTV weights trained on a joint dataset containing samples from
both tasks. The highest accuracy is marked with boldface and highlighted .

Model
Antonym Synonym

Few-shot Zero-shot Few-shot Zero-shot

Transformer 0.316 ± 0.06 0.023 ± 0.02 0.051 ± 0.03 0.008 ± 0.01
Transformer + FV 0.562 ± 0.06 0.348 ± 0.06 0.160 ± 0.05 0.023 ± 0.02
Transformer + LTV (mixed) 0.617 ± 0.06 0.305 ± 0.06 0.363 ± 0.06 0.062 ± 0.03
Transformer + LTV 0.641 ± 0.06 0.500 ± 0.06 0.402 ± 0.06 0.164 ± 0.05
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Table 2. KL divergence values are computed between the distributions of the last hidden states of the transformer collected at T = Ttrain

and the listed configurations at the maximum position Tmax, which is 101 for linear functions and 201 for neural networks. Kernel density
estimation (KDE) is employed to estimate the probability densities using a dataset of 25,600 samples. The lowest KL divergence score
(i.e., the most similar configuration) is marked with boldface and highlighted .

Configuration at Tmax Linear regression Sparse linear regression 2-layer ReLU NN

Transformer 1.098 1.110 0.103
+ FV 0.646 0.572 0.223
+ LTV – Tv = {41, 41, 101} 1.000 1.056 0.095
+ LTV – Tv = {42, 42, 102} 0.952 0.984 0.037
+ LTV – Tv = {56, 56, 126} 0.532 0.260 0.016
+ LTV – Tv = {71, 71, 151} 0.460 0.203 0.017
+ LTV – Tv = {86, 86, 176} 0.344 0.199 0.013
+ LTV – Tv = {101, 101, 201} 0.300 0.096 0.038

trained on a mixed dataset performs slightly worse than its
task-specific counterpart, as common weights across tasks
sacrifices some efficacy. These findings confirm that indi-
vidual weight learning and layer-wise optimization of task
vectors excel in both synthetic and challenging linguistic
tasks.

5.3. Ablation Studies

We aim to understand how and why LTVs sustain perfor-
mance beyond the training duration T > Ttrain. Our focus is
on the last hidden states as they accumulate the most refined
representations for predictions, which is crucial when the
prompt length varies. We use the Kullback-Leibler (KL)
divergence to measure the distributional stability of these
last hidden states, assessing how closely the model’s outputs
with extended prompts align with those observed within the
training prompt length. The results are reported in Table
2. A detailed description of our experimental methods, in-
cluding a figure illustrating the pipeline, are provided in
Appendix B.5. Additionally, probability densities of the last
hidden state distributions, visualized using histograms, are
depicted in Appendix C.4.

LTV maintains the last hidden state distribution with
that of the optimal-performing model. We observe that
the divergence between the last hidden states of the optimal-
performing model (empirically, for T = Ttrain) and the
LTV-integrated model decreases as the LTV training length
increases. This observation supports the finding that extend-
ing the LTV training prompt length reduces prediction errors.
Therefore, the effectiveness of the LTV can be linked to its
ability to closely align the distribution of the last hidden state
with that of the optimally performing model. Specifically,
when the LTV training length matches or exceeds roughly
the middle length (56 for linear models and 126 for 2-layer
NN functions), the KL divergence reduces significantly.

Learned LTV weights do not exhibit an interpretable
pattern. We observed that the learned attention weights,
with magnitudes generally between [-3, 3], showed no con-
sistent distribution pattern across different tasks, training
durations of the LTV, or those found by Todd et al. (2024).
This suggests that LTV weights might capture subtle nu-
ances and be very sensitive to small changes in the training
setup, such as the LTV training length.

6. Conclusion
In this study, we examine how tasks in in-context learning
(ICL) are represented by large language models (LLMs).
Motivated by the empirical observation that transformers do
not generalize well to numerical ICL examples beyond the
horizon encountered during training, we investigate whether
task representations developed for language tasks can ef-
fectively address this limitation. Finding the existing repre-
sentations insufficient, we propose a principled formulation
that respects the feedforward nature of autoregressive trans-
formers. This new approach represents ICL tasks through a
weighted sum of attention head activations, optimized via
gradient descent to enhance LLM performance in challeng-
ing scenarios.

Our findings indicate that this method not only preserves
task fidelity but also enhances performance on prompts
longer than those encountered during training. This im-
provement is achieved by training only a few parameters,
rather than a vast array of fine-tunable transformer parame-
ters. Consistent with these results, our proposed formulation
also excels in language tasks, achieving near-optimal per-
formance and surpassing the prior work. Ultimately, we
believe this study not only opens new avenues for employ-
ing LLMs in diverse ICL applications but also establishes a
promising direction for future research focused on refining
and expanding the applicability of our approach.
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ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1580. URL
https://aclanthology.org/P19-1580.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymy-
rov, M. Transformers learn in-context by gradient
descent. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf
https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=6axIMJA7ME3
https://aclanthology.org/2022.findings-acl.48
https://aclanthology.org/2022.findings-acl.48
https://aclanthology.org/2022.findings-acl.48
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://aclanthology.org/P18-1117
https://aclanthology.org/P19-1580


Learning Task Representations from In-Context Learning

Learning Research, pp. 35151–35174. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/von-oswald23a.html.

Wang, B. and Komatsuzaki, A. Gpt-j-6b: A 6 billion parame-
ter autoregressive language model. https://github.
com / kingoflolz / mesh-transformer-jax,
May 2021.

Wang, L., Li, L., Dai, D., Chen, D., Zhou, H., Meng, F.,
Zhou, J., and Sun, X. Label words are anchors: An in-
formation flow perspective for understanding in-context
learning. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 9840–9855,
Singapore, December 2023a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
609. URL https://aclanthology.org/2023.
emnlp-main.609.

Wang, X., Wen, K., Zhang, Z., Hou, L., Liu, Z., and Li,
J. Finding skill neurons in pre-trained transformer-based
language models. In Goldberg, Y., Kozareva, Z., and
Zhang, Y. (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp.
11132–11152, Abu Dhabi, United Arab Emirates, Decem-
ber 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.765. URL https://
aclanthology.org/2022.emnlp-main.765.

Wang, X., Zhu, W., Saxon, M., Steyvers, M., and Wang,
W. Y. Large language models are implicitly topic mod-
els: Explaining and finding good demonstrations for in-
context learning. In Workshop on Efficient Systems for
Foundation Models @ ICML2023, 2023b. URL https:
//openreview.net/forum?id=HCkI1b6ksc.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., and Ma, T. Larger
language models do in-context learning differently, 2023.

Wiegreffe, S. and Pinter, Y. Attention is not not ex-
planation. In Inui, K., Jiang, J., Ng, V., and Wan,
X. (eds.), Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 11–20, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1002. URL
https://aclanthology.org/D19-1002.

Wies, N., Levine, Y., and Shashua, A. The learnability of in-
context learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f3JNQd7CHM.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. Transform-
ers: State-of-the-art natural language processing. In Liu,
Q. and Schlangen, D. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online,
October 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An ex-
planation of in-context learning as implicit bayesian infer-
ence. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=RdJVFCHjUMI.

Yoo, K. M., Kim, J., Kim, H. J., Cho, H., Jo, H., Lee, S.-W.,
Lee, S.-g., and Kim, T. Ground-truth labels matter: A
deeper look into input-label demonstrations. In Goldberg,
Y., Kozareva, Z., and Zhang, Y. (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2422–2437, Abu Dhabi, United
Arab Emirates, December 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
155. URL https://aclanthology.org/2022.
emnlp-main.155.

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What and how
does in-context learning learn? bayesian model averaging,
parameterization, and generalization, 2023.

12

https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2022.emnlp-main.765
https://aclanthology.org/2022.emnlp-main.765
https://openreview.net/forum?id=HCkI1b6ksc
https://openreview.net/forum?id=HCkI1b6ksc
https://aclanthology.org/D19-1002
https://openreview.net/forum?id=f3JNQd7CHM
https://openreview.net/forum?id=f3JNQd7CHM
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://aclanthology.org/2022.emnlp-main.155
https://aclanthology.org/2022.emnlp-main.155


Learning Task Representations from In-Context Learning

A. Extended Related Work
A substantial body of research on ICL has been ongoing since its introduction. We review previous studies through different
facets of ICL. While our study shares similarities with others, it most closely aligns with the studies described in Section 2,
where complementary details are provided in the final paragraph of this section.

In-Context Learning The ICL capabilities of LLMs were first identified in (Brown et al., 2020). Since then, ICL has
been extensively studied from various angles. The effects of different ICL prompts styles have been examined (Min et al.,
2022; Yoo et al., 2022). ICL during inference time has also been explored through meta-learning analyses in references
such as (Akyürek et al., 2023; Dai et al., 2023; Von Oswald et al., 2023; Li et al., 2023b; Garg et al., 2023). In addition,
investigations into ICL task inference from a Bayesian perspective have been conducted (Xie et al., 2022; Wang et al.,
2023b; Wies et al., 2023; Zhang et al., 2023). Additionally, the scalability of ICL across different model sizes has been
examined (Wei et al., 2023; Wang et al., 2023b; Pan et al., 2023). While these studies primarily focus on the externally
observable behaviors of models during inference and ICL, our study delves into the internal mechanisms of transformers to
encode ICL tasks.

The Role of Attention Mechanism in Explaining Model Behavior Past analyses of the attention mechanism (Voita
et al., 2018; Clark et al., 2019; Voita et al., 2019; Kovaleva et al., 2019; Reif et al., 2019; Lin et al., 2019; Htut et al., 2019;
Kobayashi et al., 2020) have revealed that attention weights often align with linguistic structures. However, these studies
primarily focused on explaining the behavior of bidirectional architectures. Moreover, attention scores alone have not been
found to fully explain the model’s outputs (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019; Bibal et al., 2022). In our
work, we aim to deepen the understanding of the role of multi-head self-attention in ICL. Specifically, we investigate the
contribution of each attention head to the model’s internal representation of the ICL task, presenting interpretable findings
that demonstrate how content of information is transported within the transformer architecture.

Mechanisms to Explain Task Performance in In-Context Learning The components of transformers during ICL
inference have been investigated to identify the origins of incorrect predictions and false statements (Merullo et al., 2024;
Halawi et al., 2024). Similarly, numerous studies have adjusted attention mechanisms or activations of hidden layers during
inference to steer model behavior (Li et al., 2023a; Subramani et al., 2022; Turner et al., 2023; Rimsky et al., 2024; Liu et al.,
2024). It was observed that tokens representing labels in an ICL prompt might hold the semantic information crucial for the
language model’s final prediction (Wang et al., 2023a). Moreover, it was suggested that certain neurons within pre-trained
transformers are highly predictive of task labels and empirically demonstrate that these neurons encode task-specific skills
(Wang et al., 2022). In contrast to these methods, our paper seeks to develop a principled conceptualization (e.g., a function
of the transformer’s components) that can effectively represent and differentiate a variety of tasks across a distribution,
regardless of the task modality. We further use the designed conceptualization to steer the language model’s behavior
towards various tasks, similar to the previous works described next.

Tasks Representations in In-Context Learning It was suggested that tasks may be represented at one of the layer
activations at the last token position (Hendel et al., 2023), while it was shown that the principal direction of the layer
activation differences can effectively direct the ICL task (Liu et al., 2024). Nonetheless, it has been recently argued that
the focus should be on attention heads (Todd et al., 2024), as these are crucial for transferring information between token
positions (Vaswani et al., 2017; Elhage et al., 2021). To address these varying methodologies, function vectors are computed
as the sum of the outputs from a selectively chosen subset of attention heads based on an indirect metric (Todd et al., 2024),
derived from causal inference literature (Pearl, 2001). To the best of our knowledge and based on our preliminary analyses,
the most effective empirical representation of tasks in ICL was provided in (Todd et al., 2024). Therefore, our approach
starts by deriving from (Todd et al., 2024), in contrast to methods the outlined in (Hendel et al., 2023; Liu et al., 2024).
Instead of merely using raw activations, we optimize weights assigned to these heads to enhance transformer performance
in scenarios where it typically underperforms. Ultimately, this leads to a more formalized conceptualization that can be
adapted to various models and tasks, whether synthetic or linguistic.
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B. Experimental Details
B.1. Experiments on Synthetic Data

We precisely follow to the experimental setup established in (Garg et al., 2023). For completeness, we also provide the
relevant details here. Additional information can be found in the cited reference.

B.1.1. MODEL

The GPT-2 model processes a sequence of vectors in the embedding space and outputs a sequence in the same space.
However, the tasks we examine involve functions from a lower-dimensional vector space (e.g., 20 dimensions) to a scalar
value. To use a prompt such as p = {x1, f(x1), x2, f(x2), . . . , xquery}, we must map xi and f(xi) into the embedding
space. This mapping involves first converting the scalar values f(xi) into vectors of the same dimension as xi by appending
zeros, followed by applying a learnable linear transformation to all these vectors into the embedding space. The model’s
output vector is then transformed into a scalar value through a dot product with a learnable vector.

We consider the model’s prediction at the position corresponding to xi (i.e., the absolute position 2i− 1) as the prediction
of f(xi). Due to the model’s structure, this prediction relies solely on the pairs (xj , f(xj)) for j < i and xi itself. We
disregard the model predictions at positions corresponding to f(xi).

The GPT-2 models were trained to accommodate up to 101 examples for linear and sparse linear functions, and up to 201
examples for 2-layer ReLU neural networks in a prompt. While it is possible to feed the model prompts with more examples
by adjusting the initialization, this would exceed our computational resources. We also did not want to alter the nature of
their experimental process.

B.1.2. TRAINING

We train a model from scratch (i.e., no pre-trained weights are loaded) to predict f(xi) for a given xi, using the set of
examples as reference. Each training prompt is generated by randomly sampling a function f from the function class of
interest, followed by sampling inputs xi from an isotropic Gaussian distribution N(0, Im). The prompt is constructed
as p = {x1, f(x1), . . . , xk, f(xk)}. For each input i ≤ k within a prompt, the model predictions ŷi = Mθ(xi | p =
{x1, f(x1), . . . , xi−1, f(xi−1)}) are obtained, and the loss is computed across all prompt prefixes::

min
θ

Ef∼DF ,x∼DX

[
1

T + 1

T∑
i=0

(
Mθ

(
pf,i = {x1, f(x1), . . . , xi, f(xi), xi+1}

)
− f(xi+1)

)2
]
,

where L(·, ·) is the loss function, typically chosen to be mean squared error, and we have xT+1 = xquery.

During training, we average the loss across a batch of randomly generated prompts, each with different functions and inputs,
and update the model parameters. The Adam optimizer (Kingma & Ba, 2015) is employed and trained for a total of 500,000
steps with a batch size of 64, using a learning rate of 10−4 for all function classes and models.

Curriculum Learning The training procedure is accelerated through curriculum learning. The model starts by observing
prompt inputs xi within a smaller dimensional subspace and with fewer inputs per prompt. Both the subspace dimension
and the number of examples are increased gradually. Specifically, all of the coordinates except the first Tmax, cur of xi are
zeroed out by sampling prompts of size Tcur. For the function classes of linear and sparse linear functions, Tmax, cur = 5 and
Tcur = 11 are used initially, and Tmax, cur and Tcur are increased by 1 and 2, respectively, every 2000 steps until reaching
Tmax, cur = Tmax and Tcur = 2m+ 1. A different schedule is applied for 2-layer neural networks to accommodate the need
for more inputs; starting from Tmax, cur = 5 and Tcur = 26, Tmax, cur and Tcur are incremented by 1 and 5 respectively, every
2000 steps until Tmax, cur = Tmax and Tcur = 5m+ 1.

Consequently, in the curriculum-based training approach, a training prompt p = {x1, f(x1), . . . , xTcur , f(xTcur)} is generated
by sampling a random function f from the function class and drawing inputs xi by sampling i.i.d. from N (0, Im), with all
but the first Tmax, cur coordinates zeroed out. Given the model predictions ŷi, the loss is computed as

1

Tcur

Tcur∑
i=1

(
ŷi − f(xi)

)2
.
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B.1.3. SAMPLING THE FUNCTIONS

For the class of linear functions, we sample the random function f(x) = w⊤x by drawing w ∼ N (0, Im). In the case of
sparse linear functions, w is also sampled from N (0, Im), but we then randomly zero out the first Tcur coordinates within
the first Tmax, cur coordinates. For these linear functions, we set m = 20 for all experiments, with a sparsity level of 3. For
2-layer neural networks, we sample W1 from N (0, Im) and W2 from N (0, 2/r), where f(x) = W2 ReLU(W1x). Here,
we set the dimensions m = 20 and the ratio r = 100.

B.1.4. EVALUATION

To assess performance, we sample a prompt with a maximum length of Tmax, which is equal to 101 for linear and sparse
linear functions and 201 for 2-layer networks. We then trim the prompt to Ti ≤ Tmax demonstrations and independently track
the prediction errors for each i. Consequently, each point in our error curves corresponds to the error at a specific prompt
length i. This analysis is conducted over batches of 256 prompts, with the average error reported. We have determined that
batches larger than 256 prompts do not significantly alter the results, confirming that 256 prompts are sufficient to produce
generalized results.

B.2. Experiments on Language Data

We closely adhere to the experimental methods described in (Todd et al., 2024), providing all relevant details to ensure our
report is self-sufficient.

B.2.1. DATASETS

The antonym and synonym datasets used are compiled in (Todd et al., 2024), originally based on data from (Nguyen et al.,
2017), and can be accessed from their GitHub repository3. An initial dataset is assembled by combining all adjective, noun,
and verb pairs from all data splits and removing duplicate entries. The dataset has been further refined to include only those
word pairs where both words can be tokenized as a single token. As a result, this refinement retained 2398 antonym word
pairs and 2881 synonym word pairs. The corresponding vocabulary size is |V| = 50, 400.

These datasets originally included multiple outputs for single inputs, e.g., “increase” → “decrease” and “increase” →
“reduce”. However, handling such cases would require a more powerful model (Todd et al., 2024). Therefore, the dataset has
been simplified to ensure a one-to-one mapping between terms.

B.2.2. PROMPTING

The default template for prompting the GPT-J model with T exemplars is structured as follows:

Q:{x1}\nA:{y1}\n\n . . .Q:{xT }\nA:{yT }\n\nQ:{xquery}\nA:

In our experiments with shuffled prompts, we randomly shuffle the labels {yi}Ti=1 among each other. For zero-shot prompts,
which contain no exemplars, prompts consists solely of the query: Q:{xquery}\nA:.

B.3. Optimizing the Function Vector

Function vectors were initially proposed for language data. However, our preliminary results showed notable effects on
synthetic data using the setup designed for language, and further improvements were achieved through extensive fine-tuning.

Unlike the original approach which adds the FV to only one layer, our modifications include integrating FVs into multiple
layers of the GPT-2 architecture, which enhances performance. We also introduce dummy examples, such as (0, 0) pairs, at
specific positions within the prompts to minimize output disruption while allowing the addition of FVs at these positions
to “remind” the model of the task. Furthermore, our findings indicate that incorporating 35 attention heads in the FV
computation significantly outperforms the typical 10 used in the original study. After tuning the scale of the FV to 1.0, we
observed optimal performance. We summarize our FV optimization as follows:

1. FV added to multiple layers: Each added FV is divided by the number of layers it integrates into, normalizing its
impact on layer activations. For GPT-2, layers 6, 7, and 8 are identified as the most effective for integrating FVs.

2. Dummy tokens: Positioning dummy tokens at the 0.1, 0.25, 0.5, 0.75, and 0.9 fractions of the prompt length optimizes
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performance.

3. Number of attention heads in the FV computation: Using 35 attention heads maximizes GPT-2 performance, with
worse performance beyond this number.

4. Scale of the added FVs: Optimal performance is achieved without scaling, aligning with findings in (Todd et al., 2024)
for language tasks.

B.4. Training the Learnable Task Vector

The LTV parameters are initially uniformly initialized between 0 and 1, totaling L× J learnable parameters. We did not
employ additional techniques such as dropout, activation functions, or gradient clipping in learning the weights, which are
neither clipped nor bounded. The Adam optimizer, with a learning rate of 5× 10−5, was used in all experiments. Training
is terminated if the validation loss does not decrease for 50 consecutive gradient steps. While transformer parameters remain
frozen, we still backpropagate through them.

B.4.1. LEARNING ON SYNTHETIC DATA

We train the LTV weights using mini-batch gradient descent on a dataset we compiled, consisting of 100× 256 = 25, 600
function samples (100 times the batch size). Prompts of length Tv > Ttrain are constructed for these functions. We reserve
the 20% of the dataset as a validation set for monitoring loss. For each mini-batch of prompts {pfii }Ni=1 sampled from the
dataset, the gradient descent step is defined as:

L(Φ) = 1

N

N∑
i=1

(
M̃θ

(
pfii | v

fi
Φ

)
− fi(xi,query)

)2

,

Φ← Φ− η · ∇L(Φ),

where pfii represents a prompt corresponding to a unique function fi and η is the learning rate. This method and dataset
compilation are applied uniformly across all three function classes.

We recognize that generating distinct functions and prompts at each gradient step could potentially provide an infinite
variety of data and functions. However, this raises concerns about whether the LTV might memorize and overfit to specific
function classes. Although it was argued that the likelihood of the model encountering a training-similar prompt is extremely
low (Garg et al., 2023), we opted for a static dataset approach. Our experiments were conducted using this dataset, with
evaluations performed on the prompts sampled separately during the ICL inference.

B.4.2. LEARNING ON LANGUAGE DATA

Given the dataset P t for task t, each gradient step involves sampling 100 (50-50 for the mixed LTV training) prompts
with replacement, each containing 5 demonstrations. These prompts are processed by the transformer to collect attention
activations, and the mean of these activations across the sampled prompts is computed. This mean is then passed through
the LTV layer to compute the corresponding LTV, as illustrated in (2).

For training, we sample a batch of 32 (16-16 for the mixed LTV training) prompts, each with 5 demonstrations, but with all
labels shuffled, rendering the input-output pairs non-informative. The LTV weights are updated to maximize the probability
of the correct label for the query input:

L(Φ) = − 1

N

N∑
i=1

log
(
M̃θ

(
yquery | p̃ti;vt

Φ

))
.
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B.5. Detailed Ablation Studies

Our argument is based on the premise that while earlier layers build foundational representations, the most refined and
actionable insights for predictions are concentrated in the outputs of the last layer. The motivation for these studies is to
examine the model’s resilience to variations in prompt length.

To this end, we freeze all transformer and LTV parameters to analyze the stability of last hidden state distributions across
varying prompt lengths, rendering stationary distribution. We generate a dataset of 25,600 prompts (100 times the batch
size) with a maximum length Tmax. Prompts were trimmed to Ttrain for the vanilla transformer and extended beyond Ttrain
for the transformer integrated with FV and LTV. The last hidden states from these configurations were compiled into two
datasets, X1 and X2, for the vanilla transformer and FV- and LTV-integrated transformers, respectively. Thus, the samples
within each dataset are independent and identically distributed. Consequently, it is necessary to estimate the probability
distributions from these samples.

We estimate probability distributions using KDE, where the standard KDE implementation from SciPy (Virtanen et al.,
2020) is used with default settings. However, directly estimating a probability distribution in a high-dimensional space
often leads to the curse of dimensionality, where the volume of data required to effectively estimate the distribution grows
exponentially with the number of dimensions. A practical solution to this challenge is to employ SVD for dimensionality
reduction. This involves decomposing the data matrices Xi ∈ RM×d as:

X1 = U1Σ1V
⊤
1 ,

X2 = U2Σ2V
⊤
2 ,

where M is the number of collected samples and Ui contains the principal components ui,1, ui,2, . . . , ui,n as column vectors.
These principal components (PCs) form the column space of Xi:

span(ui,1, ui,2, . . . , ui,n) = colspace(Xi),

where each ui,k is orthogonal to ui,k′ ̸=k and ordered by decreasing variance that they explain. Specifically, the first n
principal components represent the directions along which the data varies the most, capturing the most significant patterns in
the data. These components are likely more informative and relevant for distinguishing different behaviors or properties of
the data.

Rather than estimating the distribution underlying the entire datasets Xi as multivariate distributions, we employ Gaussian
KDE4 to estimate each PC as a unimodal distribution. This approach is advantageous since KDE performs better with
univariate data. However, transitioning from multivariate to univariate requires the assumption that the PCs are uncorrelated.
We validate this assumption by observing that the nondiagonal entries of the correlation matrices of Ui are on the order
of 10−2, with diagonal entries being approximately 1, effectively an identity function, confirming that the PCs are indeed
uncorrelated.

We use KL divergence between the KDE-estimated distributions of the column pairs to quantitatively assess distributional
similarities. However, we find that these divergence values are negligibly small, except for the first one, which accounts
for the most variance within the dataset. The negligible divergence scores for higher-order components suggest that these
vectors contribute minimally to differentiating the datasets. Thus, focusing on the first component, which shows substantial
divergence, is statistically justified and highlights the critical variations relevant to model generalization.

This experimentation process is depicted in Figure 5. Additionally, histograms illustrating the KDE-estimated distributions
of the first principal components are provided in Appendix C.4 to offer a clear view of their similarity.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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Figure 5. The diagram depicts our pipeline for ablation studies. We begin by collecting M = 25, 600 prompts corresponding to a selected
task f . Next, the first principal component of the column space of these datasets is extracted through SVD. We then report the KL
divergence between the KDE-estimated distributions of these components.

B.6. Computational Resources

The computational experiments were conducted using a high-performance system with an AMD Ryzen Threadripper PRO
3995WX 64-Cores processor, featuring 128 CPU cores with a base frequency of 3.31 GHz and a boost up to 4.31 GHz. The
system had 515 GB of RAM. For GPU acceleration, two NVIDIA RTX A6000 GPUs were employed, each with 49,140 MB
of memory and a peak power usage of 300W. This setup provided the necessary computational power to efficiently run the
transformer models used in our research.
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C. Complementary Results
In this section, we present the complete set of results that could not be accommodated in the main body due to lack of space.
Specifically, it includes comprehensive evaluations of the synthetic data, results under distributional shifts, outcomes for the
linguistic tasks, and histograms for the ablation studies.

C.1. Complete Set of Evaluations on Synthetic Data

In addition to the main text, we present results where the LTV is trained with Tv = Ttrain, Tv = Ttrain+1, and Tv = Tmax. As
expected, we do not observe improved performance for Tv = Ttrain since the transformer itself already performs adequately.
The LTV trained with the maximum number of examples is included for comparison purposes, although it does not provide
insights into generalizability, as it is exposed to all Tmax examples.

Transformer Transformer + FV (optimized) Transformer + LTV
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Figure 6. Evaluation of the class of linear functions, with the transformer trained with up to Ttrain = 41 examples per prompt. Results are
averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence interval over the sampled prompts.
Tv indicates the prompt length used in LTV training.
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Figure 7. Evaluation of the class of sparse linear functions, with the transformer trained with up to Ttrain = 41 examples per prompt.
Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence interval over the
sampled prompts. Tv indicates the prompt length used in LTV training.

Transformer Transformer + FV (optimized) Transformer + LTV

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 101

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 102

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 126

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 151

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 176

0 50 100 150 200
# in-context examples

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Tv = 201

Figure 8. Evaluation of the class of 2-layer ReLU neural networks, with the transformer trained with up to Ttrain = 101 examples per
prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence interval over
the sampled prompts. Tv indicates the prompt length used in LTV training.
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C.2. Distributional Shift

We identify two scenarios from (Garg et al., 2023) where the transformer model’s performance notably degrades during ICL
inference: noisy linear regression and skewed covariance matrix.

Noisy linear regression Noise is added to the output of each example in the form of a standard Gaussian distribution.
Specifically, the i-th output is defined as w⊤xi + ϵi, where ϵi ∼ N (0, 1). While the transformer and LTV are trained on
standard linear regression, the data during the ICL inference phase is modified by this additive noise. We observe that while
the performance of FV considerably degrades, LTV is only slightly perturbed. Specifically, LTV requires training on more
examples to maintain the same performance compared to the noise-free setting. For instance, the performance of LTV at
Tv = 71 matches what is achieved in a noise-free environment at around Tv = 56.

Skewed covariance The inputs for the prompts are sampled from a zero-mean skewed Gaussian distribution: x ∼ N (0, Σ̃),
where the eigenbasis of the skewed covariance matrix Σ̃ is chosen uniformly at random. Each i-th eigenvalue of this matrix
is proportional to 1/i2. The results we obtain align with the expectations based on (Garg et al., 2023), with the error curves
are more unstable and oscillate more than in the isotropic Gaussian case. While LTV also shows some vulnerability to this
instability, it still maintains a low mean error and delivers substantial performance enhancement.
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Figure 9. Evaluation of the class of linear functions on prompts with noisy labels, with the transformer trained with up to Ttrain = 41
examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence
interval over the sampled prompts. Tv indicates the prompt length used in LTV training.
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Figure 10. Evaluation of the class of linear functions under skewed covariance, with the transformer trained with up to Ttrain = 41
examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence
interval over the sampled prompts. Tv indicates the prompt length used in LTV training.
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Figure 11. Evaluation of the class of sparse linear functions under skewed covariance, with the transformer trained with up to Ttrain = 41
examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95% confidence
interval over the sampled prompts. Tv indicates the prompt length used in LTV training.
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Figure 12. Evaluation of the class of 2-layer ReLU neural networks under skewed covariance, with the transformer trained with up to
Ttrain = 101 examples per prompt. Results are averaged over a batch of 256 randomly selected tasks. The shaded area represents the 95%
confidence interval over the sampled prompts. Tv indicates the prompt length used in LTV training.

C.3. Additional Results for Language Tasks

For “filtered” accuracy scores, which exclude queries that none of the models predict correctly, the performance differences
align with those observed in the unfiltered results. LTV frequently correctly predicts samples that other models do not, a
distinction that is particularly evident in zero-shot performance on synonym tasks. LTV achieves an outstanding accuracy
score of 0.957, significantly outperforming other models, including the mixed LTV. However, in simpler scenarios, such as
few-shot antonym predictions, the performance of mixed LTV and FV is very close to that of the task-specific LTV. This
similarity suggests that these configurations generally succeed on the same queries.

The recorded cross-entropy losses correspond to the accuracy scores as we train LTVs specifically to minimize this loss.
However, perplexities do not always align with these accuracies. For instance, in the unfiltered zero-shot perplexity scores,
FV achieves lower perplexity despite a higher loss. Since perplexity measures the model’s uncertainty in its predictions, this
discrepancy suggests that while LTV often predicts the correct query, the confidence in its predictions—indicated by the
probability assigned to the predicted tokens—can be lower compared to FV. In contrast, FV’s predictions are marked by
higher probability, suggesting that while LTV is optimized to improve accuracy, it may not necessarily reduce uncertainty as
effectively.
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Table 3. Filtered accuracy scores for few-shot (5-shot) and zero-shot predictions, averaged across 256 random seeds. ± denotes the 95%
confidence interval for the trials. The term “mixed” indicates the LTV weights trained on a joint dataset containing samples from both
tasks. The highest accuracy is marked with boldface and highlighted .

Model
Antonym Synonym

Few-shot Zero-shot Few-shot Zero-shot

Transformer 0.457 ± 0.06 0.027 ± 0.02 0.102 ± 0.04 0.035 ± 0.02
Transformer + FV 0.816 ± 0.05 0.645 ± 0.06 0.336 ± 0.06 0.121 ± 0.04
Transformer + LTV (mixed) 0.887 ± 0.04 0.543 ± 0.06 0.711 ± 0.06 0.258 ± 0.05
Transformer + LTV 0.930 ± 0.03 0.938 ± 0.03 0.926 ± 0.03 0.957 ± 0.03

Table 4. Few-shot perplexity scores and cross-entropy losses corresponding to the results reported in Tables 1 and 3, averaged across 256
random seeds. ± denotes the 95% confidence interval for the trials. The term “mixed” indicates the LTV weights trained on a joint dataset
containing samples from both tasks. The lowest loss and perplexity are marked with boldface and highlighted .

Model
Antonym Synonym

Perplexity Loss Perplexity Loss

Fi
lte

re
d Transformer 516.720 ± 278.41 4.178 ± 0.25 744.817 ± 141.77 5.812 ± 0.16

Transformer + FV 16.541 ± 7.14 1.860 ± 0.14 83.423 ± 14.21 3.964 ± 0.11
Transformer + LTV (mixed) 2.867 ± 0.45 0.703 ± 0.09 5.798 ± 0.66 1.497 ± 0.08
Transformer + LTV 2.636 ± 0.34 0.685 ± 0.08 2.856 ± 0.39 0.850 ± 0.07

U
nfi

lte
re

d Transformer 1147.430 ± 598.90 4.786 ± 0.27 1423.851 ± 325.89 6.367 ± 0.17
Transformer + FV 214.981 ± 186.03 2.701 ± 0.23 203.614 ± 54.01 4.553 ± 0.14
Transformer + LTV (mixed) 914.691 ± 1473.71 1.643 ± 0.24 61.062 ± 42.07 2.431 ± 0.17
Transformer + LTV 852.217 ± 1514.17 1.625 ± 0.23 317.876 ± 378.42 2.097 ± 0.21

Table 5. Zero-shot perplexity scores and cross-entropy losses corresponding to the results reported in Tables 1 and 3, averaged across 256
random seeds. ± denotes the 95% confidence interval for the trials. The term “mixed” indicates the LTV weights trained on a joint dataset
containing samples from both tasks. The lowest loss and perplexity are marked with boldface and highlighted .

Model
Antonym Synonym

Perplexity Loss Perplexity Loss

Fi
lte

re
d Transformer 500.037 ± 210.09 4.962 ± 0.18 552.809 ± 144.96 5.210 ± 0.18

Transformer + FV 15.580 ± 3.52 2.010 ± 0.13 53.688 ± 18.70 3.168 ± 0.14
Transformer + LTV (mixed) 21.237 ± 8.21 1.682 ± 0.17 26.866 ± 9.75 2.329 ± 0.15
Transformer + LTV 3.685 ± 1.84 0.775 ± 0.09 5.071 ± 3.22 0.984 ± 0.08

U
nfi

lte
re

d Transformer 17394.220 ± 20700.69 6.298 ± 0.28 5308.716 ± 2090.15 6.675 ± 0.24
Transformer + FV 5477.572 ± 8715.50 3.503 ± 0.29 604.556 ± 276.66 4.645 ± 0.21
Transformer + LTV (mixed) 29207.165 ± 41862.46 3.647 ± 0.34 5270.422 ± 4532.88 4.623 ± 0.30
Transformer + LTV 3534.645 ± 3968.68 2.496 ± 0.32 4392.303 ± 5894.20 3.301 ± 0.28
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C.4. Histograms for Ablation Studies

The histograms effectively illustrate the (unnormalized) probability density functions of the last hidden states. The plots
correspond well with the computed KL divergence scores reported in Table 2. As the KL divergence values decrease, the
histograms show greater alignment. Specifically, as the training prompt length for the LTV configurations increases, their
density profiles become narrower, more closely resembling the shape of the vanilla transformer’s distribution at Ttrain. From
a different perspective, this visual alignment supports our hypothesis once again: An optimized LTV with sufficiently long
prompts performs near-optimally, as it effectively maintains the last hidden state distribution close to that of the model
performing under T = Ttrain.

Transformer hidden states at Ttrain Configuration hidden states at Tmax

-6.79 -5.68 -4.58 -3.47 -2.37
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

Transformer

-6.62 -5.96 -5.30 -4.65 -3.99
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

FV

-6.76 -5.63 -4.50 -3.36 -2.23
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 41

-6.85 -5.64 -4.43 -3.22 -2.01
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 42

-6.66 -5.77 -4.88 -3.99 -3.10
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 56

-6.62 -6.00 -5.37 -4.75 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 71

-6.57 -5.96 -5.35 -4.74 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 86

-6.58 -5.96 -5.35 -4.74 -4.13
Value (1e-3)

0.00

6.18

12.36

18.53

24.71

30.89

Fr
eq

ue
nc

y 
(1

e2
)

LTV – Tv = 101

Figure 13. Histograms for the empirical distribution of the last hidden states of the vanilla transformer collected at Ttrain and the tested
configuration at the maximum length Tmax = 101 under linear functions. These histograms are generated using the dataset of 25,600
samples and correspond to the KL divergence scores reported in Table 2.
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Figure 14. Histograms for the empirical distribution of the last hidden states of the vanilla transformer collected at Ttrain and the tested
configuration at the maximum length Tmax = 101 under sparse linear functions. These histograms are generated using the dataset of
25,600 samples and correspond to the KL divergence scores reported in Table 2.
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Figure 15. Histograms for the empirical distribution of the last hidden states of the vanilla transformer collected at Ttrain and the tested
configuration at the maximum length Tmax = 201 under 2-layer ReLU neural networks. These histograms are generated using the dataset
of 25,600 samples and correspond to the KL divergence scores reported in Table 2.
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