

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ERROR NOTEBOOK-GUIDED, TRAINING-FREE PART RETRIEVAL IN 3D CAD ASSEMBLIES VIA VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

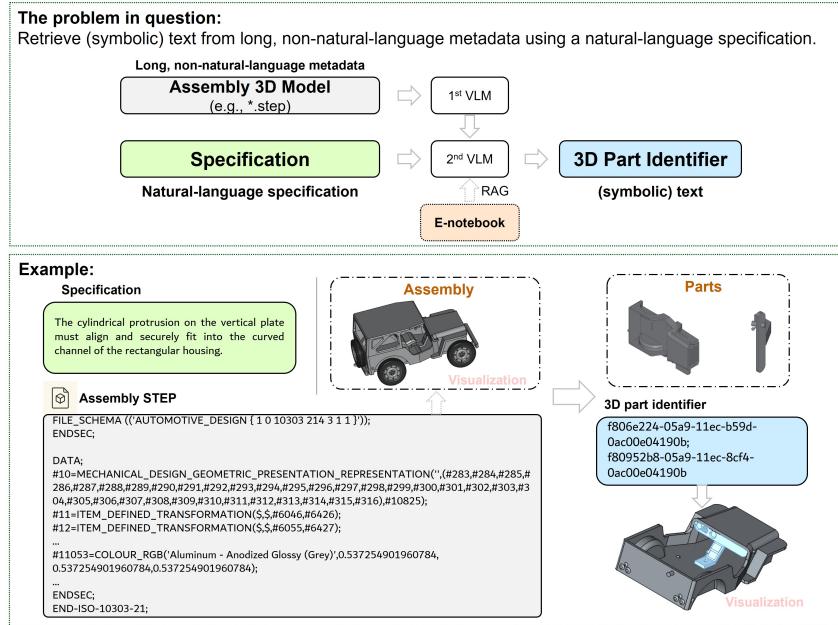


Figure 1: **Scope of work.** The goal is to retrieve symbolic 3D part identifiers from long, non-natural-language STEP assembly metadata using a natural-language specification. Our two-stage VLM pipeline first converts STEP-derived part information into geometric descriptions (1st VLM), then performs specification-aware reasoning (2nd VLM) assisted by *Error Notebook* + RAG.

ABSTRACT

Effective specification-aware part retrieval within complex CAD assemblies is essential for automated engineering tasks. However, using LLMs/VLMs for this task is challenging: the metadata sequences often exceed token budgets, and fine-tuning high-performing proprietary models (e.g., GPT, Gemini) is unavailable. Therefore, we need a framework that delivers engineering value by handling long, non-natural-language metadata associated with real 3D assemblies. We propose an inference-time adaptation framework that combines corrected *Error Notebooks* with RAG to substantially improve VLM-based part retrieval. Each *Error Notebook* is built by correcting initial CoTs through reflective refinement, and then filtering each trajectory using a grammar-constraint (GC) verifier to ensure structural well-formedness. The resulting notebook forms a high-quality repository of specification-CoT-answer triplets, from which RAG retrieves specification-relevant exemplars to condition the model’s inference. We additionally contribute a CAD dataset with preference annotations. Experiments with proprietary models (GPT-4o, Gemini, etc) show large gains, with GPT-4o (Omni) achieving up to +23.4 absolute accuracy points on the human-preference benchmark. **The proposed GC verifier can further produce +4.5 accuracy points. Our approach also surpasses other training-free baselines (standard few-shot learn-**

054 **ing, self-consistency) and yields substantial improvements for open-source**
 055 **VLMs (Qwen2-VL-2B-Instruct, Aya-Vision-8B). Under the cross-model GC**
 056 **setting, where the *Error Notebook* is constructed using GPT-4o (Omni), the**
 057 **2B model inference achieves performance that comes within roughly 4 points**
 058 **of GPT-4o mini.**

060 1 INTRODUCTION

063 Recent efforts demonstrate the promise of LLMs/VLMs in the engineering design and manu-
 064 facturing domain. For instance, Alrashedy et al. (2025) applied LLMs to generate Computer-Aided
 065 Design (CAD) code from natural language descriptions, which can then be executed to render 3D
 066 objects. Such approaches show that general-purpose models can automate the CAD modeling
 067 process. Additionally, Wu et al. (2021) developed deep generative models to create 3D CAD structures
 068 directly (e.g., by modeling sequences of CAD operations), hinting at the potential of combining lan-
 069 guage and vision for CAD design tasks. Recent work has also shown that LLMs can assist in design
 070 ideation and automation, such as guiding parametric modeling, generating shape grammars, and
 071 integrating CAD workflows with natural language instructions (Vardhan (2025); Li et al. (2025);
 072 Akhtar et al. (2025)). These studies further highlight the versatility of LLMs in supporting cre-
 073 ative and engineering tasks within CAD environments. Despite this progress, a critical task remains
 074 challenging for LLMs/VLMs: specification-driven part retrieval within complex CAD assemblies.
 075 Each CAD assembly (often stored as a STEP file) can contain dozens of parts described by lengthy,
 076 non-natural language metadata. Retrieving specific parts that match a given design specification
 077 or relational description is essential for automated design verification and other downstream tasks,
 078 yet directly prompting LLMs or VLMs for this often yields poor results. A primary obstacle is the
 079 extreme sequence length of assembly data, which can exceed current model token limits. Even if
 080 the STEP data is processed, for example, into images, we found that off-the-shelf models still fre-
 081 quently misidentify parts because the task requires fine-grained reasoning about part relationships
 082 and attributes.

083 Fine-tuning a model on this task could improve performance, but it is sometimes impractical: many
 084 models (e.g., GPT or Gemini) are proprietary or lack fine-tuning access, and training a custom
 085 model would demand significant computational resources. However, certain training techniques for
 086 LLMs and VLMs may serve as inspiration for enhancing the performance of methods that do not
 087 require training. For example, in the mathematical domain, Pan et al. (2025) fine-tuned a model
 088 on a special dataset of erroneous reasoning chains paired with corrected solutions. This taught the
 089 model to reflect on and fix its own errors during generation. More broadly, research on reflection and
 090 self-correction in LLMs highlights several strategies that could inspire our training-free framework.
 091 One line of work leverages *external critics or verifier models* to provide feedback on intermediate
 092 reasoning steps, guiding the model away from incorrect trajectories (An et al. (2023); Li et al.
 093 (2023); Tong et al. (2024); Shinn et al. (2023); Renze (2024)). Another line explores *intrinsic*
 094 *self-correction*, where models are fine-tuned on specially constructed datasets that pair erroneous
 095 reasoning trajectories with their corrections (Weng et al. (2023); Yang et al. (2025); Zhang et al.
 096 (2024); Han et al. (2024); Yan et al. (2024)). To collect such data, prior studies often introduce
 097 errors by raising the decoding temperature or by sampling across multiple models, ensuring that the
 098 training set contains both flawed and corrected reasoning paths (Xi et al. (2024)). These approaches
 099 enable models to revise their reasoning, and prevent error accumulation. Although our method
 100 does not involve weight updates, we draw inspiration from these techniques. In particular, the idea
 101 of coupling flawed reasoning with explicit reflection and correction motivates our *Error Notebook*
 102 design. Instead of using fine-tuning to encode these revision patterns into the model parameters, we
 103 operationalize them at inference time: by retrieving analogous past samples and their corrections, we
 104 provide the model with direct exemplars of reflection, thereby encouraging more reliable reasoning
 105 without any additional training cost.

106 As shown in Figure 1, we introduce a novel inference-phase strategy for vision-language part re-
 107 trieval in 3D CAD assemblies. Rather than training or fine-tuning a new model, our approach en-
 108 hances reasoning on-the-fly through retrospective error analysis and retrieval-augmented guidance.
 109 Central to our method is the *Error Notebook*, a mechanism that refines model reasoning at inference
 110 time by recording and organizing corrected reasoning trajectories. For each new assembly query,
 111 we retrieve analogous cases from the *Error Notebook* and provide them as few-shot exemplars to

108 guide the model’s chain-of-thought (CoT) using a retrieval-augmented generation (RAG) strategy.
 109 The grammar-constraint (GC) verifier leads to further performance gains on the part retrieval task.
 110 We evaluate several state-of-the-art VLMs (including GPT-4 variants and Gemini models) and open-
 111 source small VLMs on our benchmark. In summary, our contributions are as follows:

112 (1) We propose a training-free reasoning framework that combines the *Error Notebook* and RAG
 113 for VLM inference. Importantly, our method surpasses traditional training-free inference-time ap-
 114 proaches (standard few-shot, self-consistency) and further demonstrates strong improvements even
 115 on open-source models (e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

116 (2) **We introduce a grammar-constraint (GC) verifier to ensure the structural validity of cor-
 117 rected CoTs used in the *Error Notebook*. This consistently improves the quality of retrieved
 118 exemplars, yielding further gains across all evaluated VLMs.**

119 (3) We reconstruct a multimodal CAD assembly dataset with relational specifications and human-
 120 preference annotations, consisting of 752 assemblies with part counts ranging from 2 to 249.

121 (4) From the perspective of the engineering value, we design an effective two-stage VLM strategy
 122 that first generates part descriptions and then uses these descriptions for retrieval, thereby overcom-
 123 ing the challenge of processing extremely long STEP file inputs.

124 2 METHODOLOGY

125 2.1 DATASET CONSTRUCTION

126 Our study is based on the Fusion 360 Gallery Dataset (Willis et al., 2021b;a; Lambourne et al.,
 127 2021). Specifically, we utilize the *Assembly Dataset*, a subset of the Fusion 360 Gallery Dataset,
 128 which comprises multi-part CAD assemblies enriched with detailed information regarding joints,
 129 contact surfaces, and holes. For this work, we focus on the first archive (a1.0.0_00), which contains
 130 752 assemblies (the Fusion 360 Assembly Dataset is divided into multiple sets whose assembly
 131 counts, and file types are highly consistent). Each assembly project within this archive includes
 132 a single assembly and the corresponding part information (such as PNG images, STEP files, and
 133 additional metadata). The PNG files provide 2D image representations of the 3D models. STEP
 134 files (Standard for the Exchange of Product model data), as defined by ISO 10303, are neutral file
 135 formats that facilitate the exchange of 3D model data across different CAD software platforms,
 136 preserving geometry, structure, and other essential attributes. Figure A.8 shows the overview of the
 137 dataset construction pipeline.

138 To begin, we catalog all part names and count the number of parts per assembly. Next, we utilize the
 139 GPT-4o (Omni) to generate concise and descriptive noun phrases for each individual part. For each
 140 part, we provide both the overall assembly image and the part image as input, so that the model can
 141 generate the part description with full awareness of the assembly context. Each phrase is intended
 142 to succinctly describe the part’s primary shape and distinguishing features, thereby allowing it to be
 143 differentiated from other parts within the same assembly. We provide several few-shot examples to
 144 guide the model toward generating higher-quality descriptions. Figure A.2 presents the prompt for
 145 this process.

146 Subsequently, we leverage the same model to further generate high-level specifications for the 3D
 147 assemblies. Each specification is focused on relationships between selected parts within the assem-
 148 bly. The process is as follows: First, the model reviews the assembly image and the corresponding
 149 list of part descriptions. It then selects two part descriptions that are most likely to exhibit a direct
 150 physical, spatial, or functional relationship (e.g., fit, mounting, alignment, or coupling). For each
 151 pair, the model generates a specification sentence that articulates the relationship, fit, or assembly
 152 condition between the two parts. The resulting set of filenames, f_i , is subsequently adopted as the
 153 ground truth for downstream part retrieval tasks. Figure A.3 presents the prompt for this process.

154 Finally, to facilitate the construction of a human preference database, we incorporate a human anno-
 155 tation stage. Each annotation bundle includes the merged part image, the original assembly image,
 156 and the relevant specification sentence. Professional annotators review and filter items according to
 157 the following procedure:

158 (1) Examine the assembly image to gain a comprehensive understanding of the overall structure.

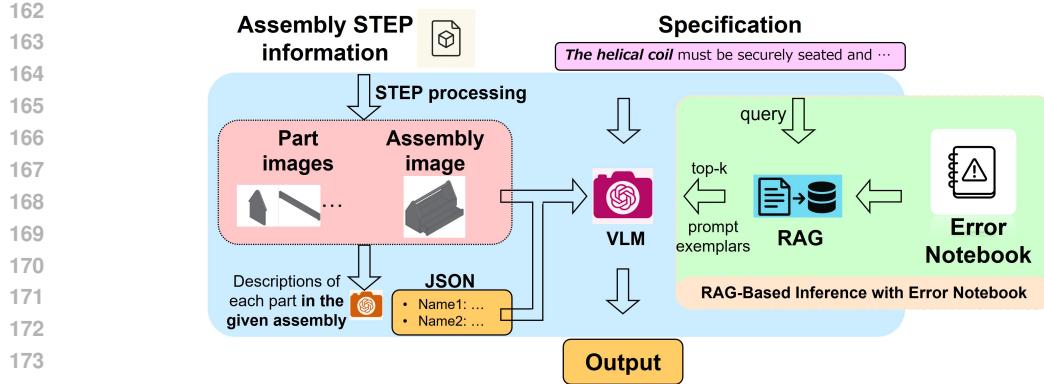


Figure 2: **Overview of the *Error Notebook* + RAG-based inference process.** Given the assembly specification, the system retrieves the most relevant examples from the *Error Notebook* according to the assembly specification, incorporates these as few-shot exemplars, and then performs step-by-step reasoning to generate the final answer.

- (2) Items with overly similar part descriptions are discarded, as such cases can lead to ambiguity and multiple possible answers during part retrieval.
- (3) Assemblies in which the overall structure is nearly indistinguishable from one or more of its constituent parts are also filtered out.
- (4) Any other scenarios that may introduce ambiguity or permit multiple correct answers in part retrieval are excluded.

2.2 PART RETRIEVAL FRAMEWORK

Given a 3D assembly \mathcal{A} consisting of n parts $\{P_1, P_2, \dots, P_n\}$, and a natural language assembly specification S , our goal is to retrieve the subset of parts $\mathcal{P}^* \subseteq \{P_1, \dots, P_n\}$ that satisfy the specified relation described in S . The retrieval process is formulated as a two-stage VLM reasoning pipeline:

Stage 1: Part Description Generation. For each part P_i , we provide both the image of the complete assembly $\mathcal{I}_{\text{assembly}}$ and the image of the individual part \mathcal{I}_{P_i} as input to a model $f_{\text{desc}}(\cdot)$. The model is prompted to generate a concise and discriminative noun phrase d_i describing P_i with explicit reference to the assembly context:

$$d_i = f_{\text{desc}}(\mathcal{I}_{\text{assembly}}, \mathcal{I}_{P_i}, \text{prompt}_{\text{desc}}), \quad (1)$$

where $\text{prompt}_{\text{desc}}$ is a designed instruction that encourages the model to focus on salient geometric and functional features.

Stage 2: Specification-Aware Part Retrieval via CoT Reasoning. Given the assembly image $\mathcal{I}_{\text{assembly}}$, the mapping (JSON) from part filenames (IDs) to their descriptions $\mathcal{D} = \{filename_i : d_i\}_{i=1}^n$, and the specification S , we prompt the model $f_{\text{retr}}(\cdot)$ to identify the relevant parts:

$$\hat{\mathcal{P}}^* = f_{\text{retr}}(\mathcal{I}_{\text{assembly}}, \mathcal{D}, S, \text{prompt}_{\text{retr}}), \quad (2)$$

where $\text{prompt}_{\text{retr}}$ requires the model to reason step-by-step (CoT) and produce both an interpretable rationale and the final answer in the form of a subset of part filenames.

2.3 ERROR NOTEBOOK CONSTRUCTION

To further improve model reasoning, we construct an *Error Notebook* that leverages the ability of VLMs to self-reflect and correct mistakes within their step-by-step reasoning process. Figure 3 shows this process.

Given, for each assembly, the assembly image $\mathcal{I}_{\text{assembly}}$, the mapping from part filenames to their descriptions \mathcal{D} , a specification S , the previous CoT reasoning R^{prev} , and the ground-truth filenames $\mathcal{P}^{*(\text{gt})}$. The goal is to generate a **corrected reasoning trajectory** R^{corr} that leads to the correct solution in a human-like manner.

In theory, we formalize the step-by-step reasoning process as a trajectory $R = (s_1, s_2, \dots, s_n, \hat{a})$, where s_i are intermediate reasoning steps and \hat{a} is the predicted answer. A suboptimal trajectory, R^{prev} , may contain both correct steps and erroneous steps, ultimately leading to an incorrect prediction. Models are expected to identify and revise the first erroneous step in R^{prev} . We define a *corrected reasoning trajectory* R^{corr} as the concatenation of: 1) all steps up to the first error, 2) a natural language reflection that pinpoints and transitions from the error, and 3) the corrected reasoning steps that ultimately yield the ground-truth answer $\mathcal{P}^{*(\text{gt})}$. Formally, if $R^{\text{prev}} = (s_1^g, \dots, s_k^g, s_1^b, \dots, s_m^b, a^b)$, where s_i^g are correct steps and s_j^b are erroneous, we extract the subsequence ending at the first error, $R_{\text{sub}}^{\text{prev}} = (s_1^g, \dots, s_k^g, s_1^b)$. The corrected trajectory is then constructed as:

$$R^{\text{corr}} = R_{\text{sub}}^{\text{prev}} \oplus \text{TR} \oplus R^g, \quad (3)$$

where TR is a transition phrase, and R^g is the correct trajectory from the correction point to the ground-truth answer $\mathcal{P}^{*(\text{gt})}$.

In our approach,

$$R^{\text{corr}} = f_{\text{corr}}(\mathcal{I}_{\text{assembly}}, \mathcal{D}, S, R^{\text{prev}}, \mathcal{P}^{*(\text{gt})}, \text{prompt}_{\text{corr}}). \quad (4)$$

The $\text{prompt}_{\text{corr}}$ instructs the model to:

- (1) Read and follow the previous reasoning R^{prev} step by step.
- (2) Upon encountering the first logical or factual error, stop and explicitly articulate the transition, pointing out the mistake in a natural, self-reflective manner.
- (3) From that point onward, independently correct the error, reasoning step by step until reaching $\mathcal{P}^{*(\text{gt})}$.
- (4) If no errors are detected, simply reproduce the previous correct reasoning and answer.

2.4 VERIFYING CORRECTED REASONING: GRAMMAR-CONSTRAINT FILTERING

To ensure that the corrected trajectories included in the *Error Notebook* are logically well-formed, we introduce a *grammar-constraint filtering* mechanism. This procedure serves as a deterministic verifier that inspects each corrected reasoning trace and determines whether it satisfies a set of structural and semantic validity conditions.

Given a corrected reasoning trajectory R^{corr} and the set of allowable part filenames \mathcal{P} , we check whether the final segment of R^{corr} contains a well-defined and valid answer. Concretely, the verifier searches for a line beginning with the phrase “Final Answer:” and extracts the predicted filenames. A reasoning trace is accepted if and only if (1) such a line exists, (2) at least one filename is provided, and (3) every predicted filename appears in the allowed set \mathcal{P} . In practice, we evaluate two variants of this filtering rule:

Strict grammar constraint (sGC). This variant requires the explicit presence of a *Final Answer:* line and accepts a corrected trajectory only if it satisfies all structural validity rules.

Relaxed grammar constraint (rGC). To accommodate models whose corrected reasoning is logically sound but omits the explicit *Final Answer:* marker, we introduce a relaxed variant that additionally accepts trajectories that are identical to sGC except for missing this indicator.

2.5 ERROR NOTEBOOK + RAG-BASED INFERENCE

In the inference stage, we adopt a RAG strategy that leverages examples from the *Error Notebook* as few-shot exemplars. Specifically, it retrieves the top- n most relevant samples from the *Error Notebook* based on their similarity to the current assembly specification, using the corrected CoT trajectories from these entries to inform and guide the model’s reasoning. Figure 2 shows the overview of the overall inference process based on VLMs.

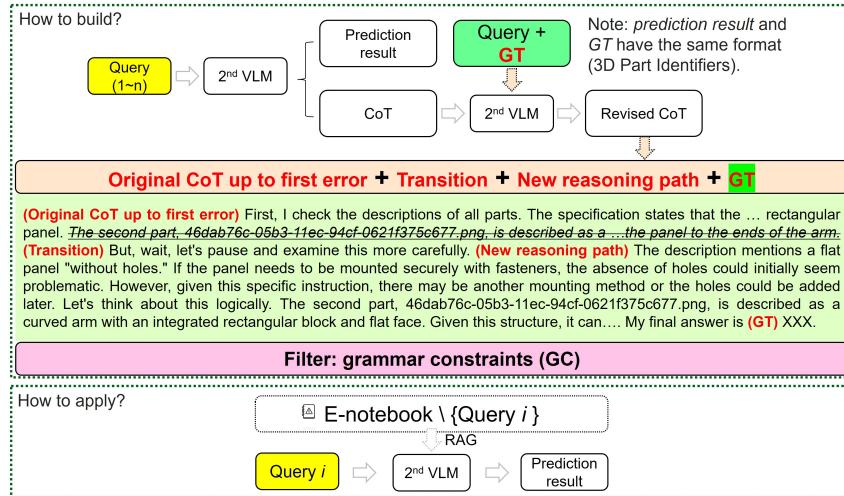


Figure 3: **Error Notebook construction process.** We define a corrected reasoning trajectory as the concatenation of: 1) all steps up to the first error, 2) a natural language reflection that pinpoints and transitions from the error, and 3) the corrected reasoning steps that ultimately yield the ground-truth answer. We also introduce a grammar-constraint filtering mechanism.

Given an instance defined by the assembly image $\mathcal{I}_{\text{assembly}}$, the mapping from part filenames to descriptions \mathcal{D} , and a specification S , the RAG-based inference proceeds as follows:

(1) **Sample Retrieval:** Let $\mathcal{E} = \{e_1, \dots, e_M\}$ denote the set of entries in the *Error Notebook*, each comprising a specification S_j , part descriptions \mathcal{D}_j , and a corrected CoT trajectory R_j^{corr} . For the current query, compute the similarity $\text{sim}(S, S_j)$ between S and each S_j in \mathcal{E} . **To avoid data leakage, the current query instance e_{cur} is excluded from retrieval and will never appear among its own few-shot exemplars.** The top- n most similar samples are selected:

$$\{e_{k_1}, \dots, e_{k_n}\} = \arg \max_{e_j \in \mathcal{E} \setminus \{e_{\text{cur}}\}} \text{sim}(S, S_j), \quad (5)$$

where e_{cur} denotes the current query instance.

(2) **Few-Shot Prompt Construction:** For each retrieved sample e_{k_i} , construct a prompt block containing the assembly context, part descriptions, specification, the corrected CoT $R_{k_i}^{\text{corr}}$, and the corresponding final answer. These prompt blocks are concatenated to serve as few-shot exemplars for the current query.

(3) **Main Query Prompt:** The final model input consists of (i) the few-shot exemplars constructed above and (ii) the current query context, which includes the assembly image $\mathcal{I}_{\text{assembly}}$, part descriptions \mathcal{D} , and specification S . The model is prompted to perform step-by-step reasoning, leveraging the retrieved exemplars as references.

Formally, let F denote the few-shot prompt constructed from the top- n retrieved entries. The model's output is given by:

$$R^{\text{RAG}} = f_{\text{rag}}(F, \mathcal{I}_{\text{assembly}}, \mathcal{D}, S, \text{prompt}_{\text{main}}), \quad (6)$$

where R^{RAG} is the model's answer, and $\text{prompt}_{\text{main}}$ provides the instructions for the inference task.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Our pipeline interacts with VLMs (e.g., GPT-4o, Gemini) via API endpoints. For each inference call, images are encoded as base64 data URLs. We implement error handling with exponential backoff and up to 3 retries in the event of API errors. To process the dataset efficiently, all major

324 computation steps are parallelized for asynchronously executing functions using multiple threads.
 325 Each assembly is processed as an independent unit. The generated part descriptions, which serve as
 326 intermediate outputs, are stored in JSON format. For fair comparison, both/all experiments on the
 327 same model/group employ identical description JSON files. Unless otherwise specified, the value
 328 of k for RAG’s top- k retrieval is equal to the number of exemplars in the part retrieval stage, which
 329 defaults to 2.

330

331

332 3.2 MAIN RESULT

333

334

(1) Our experimental results demonstrate that the proposed *Error Notebooks* with RAG framework enhances retrieval accuracy across all evaluated models and assembly complexities, as summarized in Table 1. The performance gains are particularly pronounced on the human preference dataset. For example, GPT-4o (Omni) improves from 41.7% to 65.1% overall on the Human preference dataset, marking an absolute gain of 23.4%, while its performance on the self-generated dataset also rises from 28.5% to 48.3% (+19.8%). Similar trends are observed for other models: GPT-4o mini increases from 19.3% to 35.4% (+16.1%), Gemini 2.0 Flash Non-streaming from 44.2% to 56.8% (+12.6%), and Gemini 1.5 Pro Non-streaming from 43.0% to 46.7% (+3.7%). Another clear trend is that improvements are not limited to small assemblies: while the largest absolute gains often appear in cases with fewer parts (e.g., < 10 parts, GPT-4o Omni rises from 47.9% to 75.5%), consistent accuracy improvements are observed across all part-count intervals, including the more challenging > 50 parts group. These results highlight the effectiveness and generality of the proposed *Error Notebooks* + RAG strategy, which enhances inference across different proprietary (GPT, Gemini) models, without requiring additional training.

347

348

349

350

351

352

353

354

While Table 1 demonstrates the performance gap between models with and without *Error Notebooks*, Table 2 further shows that once *Error Notebooks* are incorporated, the **number** of exemplars retrieved by RAG has only a minor effect on final accuracy. For instance, on the self-generated dataset, the overall accuracy of the Non-CoT group varies only slightly between 49.4% (1 exemplar) and 52.7% (50 exemplars). A similar trend holds for the CoT group, where performance remains stable in the narrow range of 49.4% to 51.7%. Consistent patterns are observed on the human preference dataset. These results indicate that the key factor driving improvements is the presence of *Error Notebooks* themselves, and the effect of the specific number of exemplars sampled is negligible.

355

356

357

Further discussion on Table 1. We then rebuilt the *Error Notebook* using entries that passed this strict grammar constraints (sGC) check, and re-ran inference with the same RAG pipeline. And this trick further produces up to 4.5 points of improvement on the human preference dataset.

358

359

360

361

362

363

364

365

366

367

368

369

(2) The results in Table 2 and Figure A.6 show that incorporating CoT reasoning from the *Error Notebook* is particularly valuable for challenging cases with higher part counts (> 10). For assemblies with fewer parts (< 10), the Non-CoT group, where only final answers are given, often performs comparably or even slightly better, suggesting that in simple scenarios, direct access to the final correct solution is sufficient. By contrast, for complex assemblies with 10–50 parts, the CoT group consistently outperforms the Non-CoT group across nearly all exemplar sizes, confirming that step-by-step reasoning provides crucial guidance for harder queries. This trend is observed across all exemplar group sizes, with one notable exception: when using 50 exemplars, the CoT group shows a drop in accuracy. We attribute this to excessively long prompts caused by concatenating many CoTs, which may interfere with the model’s judgment. A second important observation is that for simple assemblies, increasing the number of exemplars has little effect, regardless of whether CoT is used. In contrast, for complex assemblies, accuracy steadily improves as the number of exemplars increases, up to around 20 exemplars.

370

371

372

373

374

375

376

377

(3) The ablation experiments show that our method outperforms two traditional training-free, inference-time approaches. We conducted ablation experiments to compare our *Error Notebook* method with two representative training-free, inference-time approaches. The experimental settings are as follows. For **standard few-shot learning**, we use GPT-4o (Omni) with 2 API endpoints, and adopt two GPT-generated exemplars as few-shot examples (aligned with the 2-exemplar setting in Table 1). We keep the full two-stage pipeline: the 1st VLM generates part descriptions from the assembly and part images; the second VLM performs reasoning. Standard few-shot is applied to the 2nd VLM (reasoning stage). For **self-consistency**, we keep the same two-stage VLM pipeline. The 1st VLM generates part-level descriptions exactly as in our main method. For the 2nd VLM,

378
 379 Table 1: Accuracy comparison of general models with and without *Error Notebook-RAG* integration
 380 on self-generated and human preference datasets. The best result is highlighted in **bold**. We divided
 381 the data from both datasets into 4 groups based on the number of parts in each assembly, reflecting
 382 the varying difficulty levels.

382 383 384 Strategy	385 386 387 388 Self-generated dataset					389 390 391 392 Human preference dataset				
	393 394 Overall	395 < 10	396 10 – 20	397 20 – 50	398 > 50	399 Overall	400 < 10	401 10 – 20	402 20 – 50	403 > 50
GPT-4o (Omni)										
w/o E-Notebook	28.5	40.7	22.4	15.3	5.0	41.7	47.9	32.4	26.5	0.0
w/ E-Notebook	48.3	66.8	35.9	29.7	16.3	65.1	75.5	42.6	41.2	21.4
w/ E-Notebook+sGC	48.5	67.0	36.5	32.2	12.5	66.8	75.5	48.5	50.0	21.4
GPT-4o mini										
w/o E-Notebook	13.6	20.5	10.9	4.2	1.3	19.3	24.8	10.3	0.0	0.0
w/ E-Notebook	24.9	34.9	25.0	5.9	7.5	35.4	41.5	29.4	8.8	7.1
w/ E-Notebook+sGC	25.9	37.7	20.5	11.0	5.0	36.4	42.6	29.4	11.8	7.1
Gemini 2.5 Pro Non-streaming										
w/o E-Notebook	36.5	55.1	25.6	14.4	6.2	54.0	65.2	35.3	20.6	0.0
w/ E-Notebook	42.2	60.9	30.8	21.2	11.3	59.5	69.5	42.6	29.4	14.3
w/ E-Notebook+sGC	42.9	64.8	28.8	20.3	5.0	62.1	74.1	38.2	32.4	7.1
Gemini 2.0 Flash Non-streaming										
w/o E-Notebook	30.9	46.8	21.2	12.7	5.0	44.2	53.5	23.5	20.6	14.3
w/ E-Notebook	40.4	58.2	31.4	19.5	8.7	56.8	67.0	39.7	23.5	14.3
w/ E-Notebook+sGC	40.3	57.3	30.1	19.5	13.8	57.0	66.3	39.7	29.4	21.4
Gemini 1.5 Pro Non-streaming										
w/o E-Notebook	29.9	44.3	21.2	13.6	6.2	43.0	52.1	23.5	17.6	14.3
w/ E-Notebook	32.4	49.3	22.4	11.9	6.2	46.7	57.1	25.0	17.6	14.3
w/ E-Notebook+sGC	36.2	51.8	26.3	17.8	12.5	50.3	60.6	30.9	14.7	21.4
Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming										
w/o E-Notebook	35.0	51.8	25.0	14.4	8.7	50.0	58.9	38.2	17.6	7.1
w/ E-Notebook	40.4	59.3	30.1	16.1	11.3	57.8	66.3	47.1	29.4	7.1
w/ E-Notebook+sGC	43.2	63.2	32.7	17.8	11.3	62.3	73.0	48.5	20.6	14.3

410
 411 we replace the *Error Notebook* with a self-consistency strategy: GPT-4o (Omni), temperature 0.7, 5
 412 independent samples, followed by majority voting. **Across both datasets, our method consistently**
 413 **outperforms those baselines.**

414
 415 **(4) Our method also demonstrates strong performance on open-source models.** We further
 416 evaluated our approach on two open-source VLMs, **Qwen2-VL-2B-Instruct** and **Aya-Vision-8B**.
 417 All experimental settings (prompting format, RAG retrieval, and evaluation protocol) were kept
 418 identical to those used in Table 1. For Qwen2-VL-2B-Instruct, experiments were conducted on
 419 8×A40 GPUs for approximately 3 days. A detailed breakdown of its performance is reported in
 420 Table 4, and the results for Aya-Vision-8B appear in Section A.5.

421 During the *grammar-check filtering* evaluation, we compared three variants. The **E-**
 422 **Notebook+sGC** configuration applies the same strict rule used for proprietary models. How-
 423 ever, we found that the 2B model frequently produced otherwise valid reasoning traces that
 424 lacked the explicit *Final Answer*: marker, causing many acceptable traces to be discarded.
 425 This substantially reduced the size of the *Error Notebook* and degraded performance. The
 426 **E-Notebook+rGC** variant therefore relaxes this requirement, leading to improved accuracy
 427 compared to the basic **E-Notebook** setup. Finally, the **gE-Notebook+sGC** variant uses an *Error*
 428 *Notebook* *constructed entirely from GPT-4o (Omni)* while still performing inference with the
 429 2B model, reinstating the strict grammar rule under this cross-model setting. Strikingly, the
 430 cross-model variant (**gE-Notebook+sGC**) achieves the strongest performance across all config-
 431 urations. On the human-preference dataset, the 2B model equipped with **gE-Notebook+sGC**
 432 performs only 4.2 points below GPT-4o mini in the <10 group. These results indicate that a
 433 lightweight open-source model, when paired with a high-quality *Error Notebook* and appropri-

432 Table 2: Ablation study on the number of exemplars retrieved from the *Error Notebook*. We also
 433 analyze the effect of excluding explicit CoT reasoning in each exemplar. *CoT Group* indicates that
 434 each retrieved exemplar includes explicit step-by-step reasoning, while *Non-CoT Group* omits such
 435 reasoning in the exemplars and includes ground truth only. The data from both datasets are divided
 436 into four groups based on the number of parts in each assembly, reflecting varying difficulty levels.

Number of Exemplars	Self-generated dataset					Human preference dataset				
	Overall	< 10	10 – 20	20 – 50	> 50	Overall	< 10	10 – 20	20 – 50	> 50
Non-CoT Group										
1	49.4	69.5	37.8	27.1	13.8	69.3	80.5	50.0	38.2	14.3
5	50.1	70.4	38.5	29.7	11.3	69.1	79.8	51.5	41.2	7.1
10	50.6	69.8	37.8	32.2	16.3	70.4	79.4	55.9	44.1	21.4
20	50.8	69.3	42.3	32.2	11.3	69.1	77.7	60.3	38.2	14.3
50	52.7	72.0	42.3	32.2	16.3	72.9	83.0	57.4	41.2	21.4
CoT Group										
1	49.7	68.4	39.7	30.5	12.5	67.8	77.7	54.4	38.2	7.1
5	49.4	67.0	38.5	32.2	16.3	67.8	75.5	52.9	50.0	28.6
10	49.4	66.5	42.3	29.7	15.0	68.8	76.2	61.8	44.1	14.3
20	51.7	69.0	42.3	35.6	16.3	71.1	79.8	57.4	52.9	7.1
50	49.5	67.9	37.8	33.1	13.8	68.1	77.0	51.5	52.9	7.1

452
453 Table 3: Ablation comparison between training-free baselines and our proposed method.

Strategy	Self-generated dataset					Human preference dataset				
	Overall	< 10	10–20	20–50	> 50	Overall	< 10	10–20	20–50	> 50
Standard few-shot	26.6	37.4	19.2	16.9	6.2	37.7	42.9	29.4	17.6	21.4
w/o E-Notebook	28.5	40.7	22.4	15.3	5.0	41.7	47.9	32.4	26.5	0.0
Self-consistency	38.9	54.6	30.1	21.2	11.3	54.8	61.7	42.6	29.4	35.7
w/ E-Notebook (ours)	48.3	66.8	35.9	29.7	16.3	65.1	75.5	42.6	41.2	21.4

462 ate grammar-check strategies, can closely approach the performance of substantially stronger
 463 proprietary VLMs.

464 Overall, these findings confirm that the *Error Notebook* framework provides substantial and
 465 meaningful gains for open-source VLMs. Moreover, the improvements achieved through cross-
 466 model distillation show that the *Error Notebook* can serve as an effective mechanism for transferring
 467 high-quality reasoning traces from powerful proprietary models to compact open-source ones **with-
 468 out any finetuning or additional training**.

470 3.3 EFFICIENCY ANALYSIS

472 **Token Usage and Latency.** We conducted a runtime and token-cost evaluation on 100 samples
 473 under: GPT-4o (Omni), a single API endpoint, one worker, and no batching. Table 5 summarizes the
 474 results. Although using the *Error Notebook* increases prompt tokens, **inference does not become**
 475 **slower** (8.04s vs 6.50s). Corrected exemplars may improve reasoning coherence and reduce internal
 476 search depth. The one-time correction step is lightweight (7.39 s per sample). Also, 1st VLM latency
 477 is high since it depends on the **number** of STEP parts. Overall, the *Error Notebook* introduces no
 478 prohibitive overhead, and RAG-enhanced inference remains efficient.

479 **API Call Cost.** The total number of VLM calls required to construct the *Error Notebook* over n
 480 samples is:

$$481 \sum_{i=1}^n (\text{part count}_i + 1) + n \times 1. \quad (7)$$

484 For each sample i , part count_i VLM calls are used to generate part-level descriptions, plus **one** call
 485 for the initial retrieval result. Then, new CoTs must be generated for correction, adding one more
 call per sample.

486
487 Table 4: Results of Qwen2-VL-2B-Instruct. We report both accuracy and the number of correctly
488 solved cases (in parentheses) under identical settings as Table 1.

Strategy	Self-generated dataset			Human preference dataset	
	Overall	< 10 (361)	10–20 (156)	Overall	< 10 (282)
w/o E-Notebook	0.8 (6)	1.7 (6)	0.0 (0)	1.5 (6)	2.1 (6)
w/ E-Notebook	6.4 (46)	12.5 (45)	0.6 (1)	10.8 (43)	15.2 (43)
Improvement	+5.6 (+40)	+10.8 (+39)	+0.6 (+1)	+9.3 (+37)	+13.1 (+37)
w/ E-Notebook+sGC	3.6 (26)	7.2 (26)	0.0 (0)	6.0 (24)	8.5 (24)
w/ E-Notebook+rGC	6.6 (47)	12.7 (46)	0.6 (1)	10.8 (43)	15.2 (43)
w/ gE-Notebook+sGC*	8.4 (60)	16.6 (60)	0.0 (0)	14.6 (58)	20.6 (58)
Improvement (* - w/o)	+7.6 (+54)	+14.9 (+54)	+0.0 (+0)	+13.1 (+52)	+18.5 (+52)

501 Table 5: Latency and token usage for *Error Notebook* construction and inference.

Setting	Avg time (s)	Prompt tokens	Completion tokens
1st VLM (part description)	78.32	-	-
2nd VLM (w/o E-Notebook)	8.04	967.7	235.4
2nd VLM (w/ E-Notebook)	6.50	1815.3	278.7
CoT Correction Step	7.39	1328.7	377.5

508 4 CONCLUSION

510 In this work, we introduced a novel *Error Notebook*-guided, training-free part retrieval approach for
511 complex 3D CAD assemblies. Our framework leverages retrospective error analysis and RAG to en-
512 hance VLM reasoning without additional training or fine-tuning. By systematically constructing *Er-
513 ror Notebooks* that capture and correct flawed reasoning trajectories, and by retrieving specification-
514 similar exemplars at inference time, our method consistently improves accuracy across multiple
515 proprietary VLMs, with gains of up to 23.4% absolute accuracy on human-preference benchmarks.
516 Importantly, our method surpasses traditional training-free inference-time approaches (standard few-
517 shot, self-consistency) and further demonstrates strong improvements even on open-source models
518 (e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

519 Future work will explore open-source VLM integration, larger-scale datasets, and cross-domain
520 applications of *Error Notebooks*, aiming to establish a more general paradigm for training-free re-
521 flective reasoning in multimodal AI.

523 5 THE USE OF LARGE LANGUAGE MODELS (LLMs)

525 We used LLMs as the experiment subject to study the improvement of our method on existing LLMs.
526 We also used LLMs to polish writing.

528 6 ETHICS STATEMENT

531 Our dataset construction process relies on professional human annotators, who were compensated
532 fairly and provided clear annotation guidelines. Care was taken to exclude ambiguous or misleading
533 cases to avoid introducing bias into the dataset. No personally identifiable information or sensitive
534 data is involved. The proposed methods are intended for engineering and design applications, such
535 as automated verification in CAD workflows, and do not pose foreseeable risks of misuse.

536 7 REPRODUCIBILITY STATEMENT

538 All code for dataset preprocessing, part description generation, *Error Notebook* construction, and
539 inference experiments will be released. Detailed descriptions of dataset construction (including

540 filtering and annotation protocols) are provided in Section 2.1. Experimental settings, including
 541 API interaction details, hyperparameters, and error-handling mechanisms, are documented in Sec-
 542 tion 3.1. Reproduction of our results only requires access to the Fusion 360 Gallery Assembly
 543 dataset and VLM APIs (e.g., GPT-4o, Gemini).

544

545

REFERENCES

546

Naveed Akhtar et al. Large language models for computer-aided design: A survey. *arXiv preprint arXiv:2505.08137*, 2025.

547

548

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and
 550 Matthew Gombolay. Generating cad code with vision-language models for 3d designs. In *Int-
 551 ernational conference on learning representations (ICLR)*, 2025.

552

553

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
 554 from mistakes makes llm better reasoner, 2023.

555

556

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can
 557 self-correct. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 558 18162–18170, 2024.

559

560

Joseph G. Lambourne, Karl D.D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer,
 561 and Hooman Shayani. Brepnet: A topological message passing system for solid models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 562 pp. 12773–12782, June 2021.

563

564

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
 565 llama: Leveraging large language models for computer-aided design parametric 3d model gener-
 566 ation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 567 pp. 18563–18573, 2025.

568

569

Ming Li, Lichang Chen, Juhai Chen, Shuai He, and Tianyi Zhou. Reflection-tuning: Recycling data
 570 for better instruction-tuning. In *NeurIPS 2023 Workshop on Instruction Tuning and Instruction
 571 Following*, 2023.

572

573

Zhuoshi Pan, Yu Li, Honglin Lin, Qizhi Pei, Zinan Tang, Wei Wu, Chenlin Ming, H. Vicky Zhao,
 574 Conghui He, and Lijun Wu. Lemma: Learning from errors for mathematical advancement in llms.
 575 *arXiv preprint arXiv:2503.17439*, 2025.

576

577

Matthew Renze. The effect of sampling temperature on problem solving in large language models.
 578 In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 7346–7356, 2024.

579

580

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
 581 Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

582

583

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can llms learn from
 584 previous mistakes? investigating llms’ errors to boost for reasoning. In *Proceedings of the 62nd
 585 Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 3065–3080, 2024.

586

587

Harsh Vardhan. Generative ai for cad automation: Leveraging large language models for 3d mod-
 588 elling. In *arXiv preprint arXiv:2508.00843*, 2025.

589

590

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
 591 Jun Zhao. Large language models are better reasoners with self-verification. In *Findings of the
 592 Association for Computational Linguistics: EMNLP*, pp. 2550–2575, 2023.

593

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando
 594 Solar-Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for pro-
 595 grammatic cad construction from human design sequences. *ACM Transactions on Graphics (TOG)*, 40(4), 2021a.

594 Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi,
 595 Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, and Wojciech Ma-
 596 tusik. Joinable: Learning bottom-up assembly of parametric cad joints. *arXiv preprint*
 597 *arXiv:2111.12772*, 2021b.

598 Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
 599 aided design models. In *Proceedings of the IEEE/CVF International Conference on Computer*
 600 *Vision (ICCV)*, pp. 6772–6782, October 2021.

601 Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang
 602 Hong, Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time
 603 and training-time supervision. *arXiv preprint arXiv:2411.16579*, 2024.

604 Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Xunliang Cai, Jian Shao, et al. S3c-math:
 605 Spontaneous step-level self-correction makes large language models better mathematical reason-
 606 ers. *arXiv preprint arXiv:2409.01524*, 2024.

607 Zhe Yang, Yichang Zhang, Yudong Wang, Ziyao Xu, Junyang Lin, and Zhifang Sui. Confidence
 608 v.s. critique: A decomposition of self-correction capability for llms. In *Proceedings of the 63rd*
 609 *Annual Meeting of the Association for Computational Linguistics (ACL)*, 2025.

610 Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
 611 Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
 612 soning. In *Findings of the Association for Computational Linguistics: ACL*, pp. 15637–15653,
 613 2024.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 ABBREVIATIONS

652

VLM	Vision-Language Model
LLM	Large Language Model
CAD	Computer-Aided Design
STEP	Standard for the Exchange of Product Model Data (ISO 10303)
CoT	Chain-of-Thought
RAG	Retrieval-Augmented Generation
API	Application Programming Interface
GT	Ground Truth
GPT	Generative Pre-trained Transformer

653

654

655

656

657

658

659

660

661

662

663

664

665

A.2 FULL ENGINEERING PIPELINE ILLUSTRATION

666

To clarify the broader engineering context of our method and help better understand the meaning of *part retrieval* in practical CAD assembly analysis, we provide in Figure A.1 a complete overview of our proposed pipeline in an engineering setting. This illustration highlights the processing and visualization stages that do not require large model participation. Specifically, the left side depicts the *STEP processing* stage: an input assembly (in STEP format) is decomposed into its constituent parts using freecad, and subsequently rendered into 2D images using the pythonocc library. This generates intermediate representations (part-level STEP files and rendered images) that provide concrete references for the VLM-based retrieval process. On the right side, a textual specification is provided, and the VLMs enhanced with *Error Notebook + RAG* reasoning produce candidate part identifiers. These are then fused back into the assembly using freecad, and the resulting structure can be visualized with pythonocc.

667

668

669

670

671

672

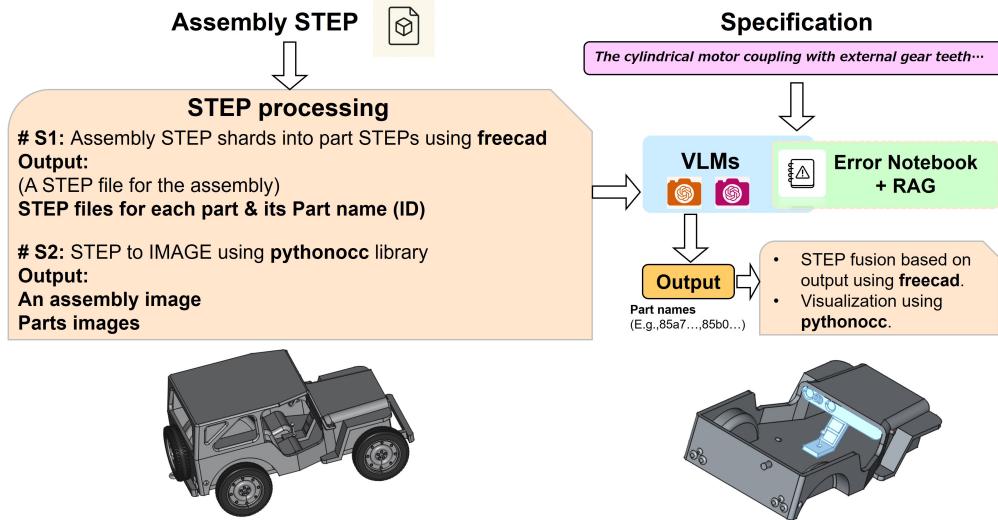
673

674

675

676

677



695

696

697

698

699

700

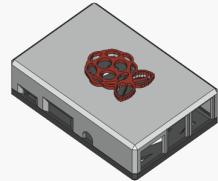
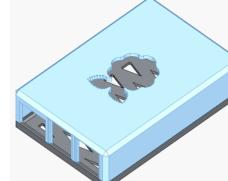
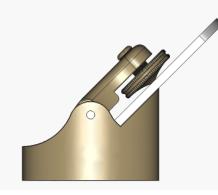
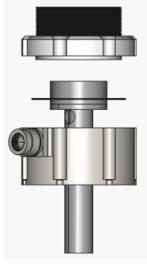
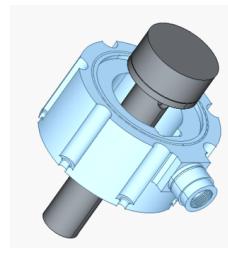
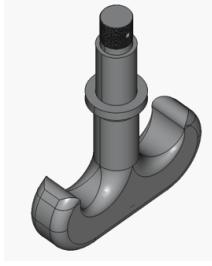
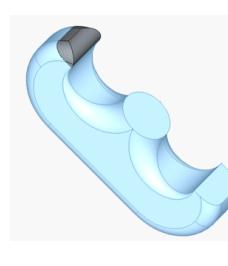
701

Figure A.1: Full engineering pipeline for specification-driven part retrieval. The assembly STEP file is first decomposed into part-level STEP files using freecad, and both the assembly and part images are generated via pythonocc. Given a textual specification, VLMs enhanced with *Error Notebook + RAG* output candidate part identifiers, which are then fused back into the assembly with freecad for visualization.

A.3 CASE STUDIES

702
 703 Table A.1: Case studies of assembly-level part retrieval by GPT 4o (Omni) with *Error Notebook*.
 704 Each row shows the assembly image, the part count, the specification, and the retrieved results in
 705 image format.
 706

| 707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755 |
|---|---|---|---|---|---|---|
| 1 | | 16 | The cylindrical protrusion on the vertical plate must align and securely fit into the curved channel of the rectangular housing. | | | |
| 2 | | 10 | The concave plate with a central circular hole on a short cylindrical base must be securely seated on the cylindrical base with radial grooves, ensuring proper alignment and fit. | | | |
| 3 | | 5 | The curved tapered arm with detailed thumb and fingers must fit snugly within the arm-shaped cavity of the curved block, ensuring full contact and proper alignment. | | | |
| 4 | | 10 | The semi-cylindrical block must fit securely onto the circular grid's central hub without obstructing the radial struts. | | | |
| 5 | | 8 | The cylindrical cap with integrated spout and loop handle must be securely screwed onto the threaded top collar of the cylindrical bottle body, ensuring a leak-proof seal. | | | |
| 6 | | 8 | The curved cylindrical shackle must be securely fitted into one of the lateral round holes on the cylindrical body. | | | |

756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	ID	Assembly Image	Part Count	Specification	Retrieval Results
7		10	A flat rectangular plate with diagonal cutouts and rounded corners; A rectangular plate with a larger cut-out featuring a stylized raspberry design																																																							
8		6	The helical coil must be securely seated and centered on the cylindrical rod with a flat circular base to ensure stable alignment.																																																							
9		5	The threaded shaft of the knurled cylindrical knob must be securely fastened into the threaded hole of the curved lever arm to ensure proper functionality and alignment of the assembly.																																																							
10		9	The long, curved cylindrical tube must be snugly inserted into the perforated cylindrical opening of the elbow-shaped casing for a secure fit without gaps.																																																							
11		4	The cylindrical rod with a flat end must be fully inserted into the internal square socket of the cylindrical housing, ensuring secure attachment.																																																							
12		4	The hollow cylindrical cap must be securely fitted over the central circular protrusion of the curved base block, ensuring no gaps between the mating surfaces.																																																							

810 A.4 PROMPTS
811
812
813
814
815
816

817 You are an expert mechanical engineer. Given Image 1 (the assembly) and Image
818 2 (an individual part from the assembly), please generate a concise and descriptive
819 noun phrase (not a full sentence). The phrase should briefly describe the part's main
820 shape and any key features, in a way that clearly distinguishes it from the other parts
821 in the assembly. Avoid generic names like 'part' or 'component'. Be specific about the
822 shape and any holes, slots, or functional features. Your output should be a single noun
823 phrase.

824
825 For example:
826 - A conical mount with a forked top;
827 - A cylindrical pin;
828 - Two plates with each having holes;
829 - A flat round disk with three small holes;
830 - A rectangular bracket with two mounting slots.

831 Figure A.2: **Prompt used to generate part-level descriptions in the dataset construction**
832 **pipeline.**

833
834
835
836
837
838
839 You are an expert mechanical engineer. Given an image of an assembled product
840 (assembly) and a list of its part descriptions below:

841 Part descriptions:
842 {desc_list_str}

843
844 Your task:
845 1. Review the assembly image and the list of part descriptions.
846 2. Choose any two part descriptions that are most likely to have a direct physical,
847 spatial, or functional relationship in the assembly (such as fit, mounting, alignment, or
848 coupling).
849 3. Generate one specification sentence (inspection/check item) that describes the
850 required relationship, fit, or assembly condition between these two parts, as would
851 appear in a manufacturing or assembly checklist.
852 4. Your specification should be clear, specific, and professional, mentioning both se-
853 lected part descriptions explicitly.
854 5. Output only one specification sentence. Do not explain your reasoning.
855 6. Output format: The selected two part descriptions (exactly as shown above, se-
856 parated by a semicolon), then a line break, then the specification sentence.

857
858 For example, given descriptions like:
859 1. A cylindrical pin
860 2. A flat plate with holes

861 Output:
862 A cylindrical pin;A flat plate with holes
863 The cylindrical pin must be fully inserted into one of the holes on the flat plate.

864 Figure A.3: **Prompt used to generate specification for each assembly in the dataset construction**
865 **pipeline.**

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887

You are an expert mechanical engineer with a sharp analytical mind. You are given the assembly image, the descriptions of all parts (each as 'filename: description'), the inspection specification, and a previous reasoning process (including its step-by-step thoughts and its Final Answer).

 Your job:
 1. Carefully read the previous reasoning step-by-step. Follow along and reproduce the steps until you encounter the first error or mistake.
 2. Once you spot the first mistake, stop following the previous reasoning and use a natural transition phrase (such as: "But, wait, let's pause and examine this more carefully." or "Wait, something seems off. Let's pause and consider what we know so far.") to point out the error and correct it.
 3. From that point on, continue the reasoning process in your own words, step-by-step, until you reach the correct answer (i.e., the filenames consistent with the correct ground-truth solution).
 4. Do not mention "previous attempt" or "ground-truth solution" explicitly. Make your reasoning sound like a student discovering and correcting their own mistake in real time.
 5. If the previous reasoning is already correct, simply reproduce the previous reasoning and the final answer as is.
 6. End your output with a "Final Answer:" line followed by the filenames (from the keys above), separated by semicolons (;), with no extra words or punctuation.

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

Now, for the following question, use the above reasoning as reference and answer step-by-step:
 Assembly image:
 [image attached]
 Part descriptions:{desc_lines}
 Specification:{spec}

 Your task:
 1. Think step by step (Chain-of-Thought) and explain how you identify the required part(s).
 2. In the last line, write 'Final Answer:' followed by only the selected part filenames (from the keys above), separated by semicolons (;), with no extra words or punctuation.
 Example output:
 Chain-of-Thought:
 First, I check the descriptions of all parts. Only part1.png and part2.png are described as cylindrical pins. Therefore, the required parts are part1.png and part2.png.
 Final Answer:
 part1.png;part2.png

908
909
910
911
912
913
914
915
916
917

Figure A.4: **Prompt used to revise CoTs.**

A.5 SUPPLEMENTARY RESULTS

(1) **Retrieval relevance to Table 1.** We report the *retrieval relevance* results as shown in Table A.2. Define $TP = |\text{GT} \cap \text{Pred}|$, $FP = |\text{Pred} - \text{GT}|$, $FN = |\text{GT} - \text{Pred}|$, Then Recall and F1 are computed as:

$$\text{Recall} = \frac{TP}{TP + FN}, \quad (8)$$

$$F1 = \frac{2PR}{P + R}. \quad (9)$$

We report both **global averaged Recall/F1** and **per-group Recall/F1** based on the number of parts (< 10, 10–20, 20–50, > 50), evaluated on the self-generated dataset. **We can see that the proposed Error Notebook consistently yields clear and meaningful improvements in retrieval relevance.**

Table A.2: Retrieval relevance evaluation.

Strategy	Global Recall	Global F1	Per-group Recall / F1			
			< 10	10–20	20–50	> 50
GPT-4o (Omni)						
w/o E-Notebook	0.406	0.532	0.520 / 0.664	0.362 / 0.481	0.277 / 0.370	0.171 / 0.239
w/ E-Notebook	0.692	0.686	0.828 / 0.837	0.644 / 0.629	0.557 / 0.534	0.367 / 0.364
GPT-4o mini						
w/o E-Notebook	0.261	0.385	0.344 / 0.494	0.218 / 0.325	0.179 / 0.269	0.089 / 0.144
w/ E-Notebook	0.500	0.523	0.619 / 0.675	0.500 / 0.504	0.289 / 0.288	0.272 / 0.275
Gemini 2.5 Pro Non-streaming						
w/o E-Notebook	0.627	0.607	0.778 / 0.781	0.571 / 0.532	0.451 / 0.416	0.316 / 0.304
w/ E-Notebook	0.662	0.595	0.815 / 0.796	0.590 / 0.569	0.472 / 0.444	0.392 / 0.225
Gemini 2.0 Flash Non-streaming						
w/o E-Notebook	0.552	0.573	0.681 / 0.728	0.529 / 0.531	0.400 / 0.392	0.241 / 0.254
w/ E-Notebook	0.630	0.628	0.777 / 0.784	0.583 / 0.584	0.468 / 0.446	0.297 / 0.296
Gemini 1.5 Pro Non-streaming						
w/o E-Notebook	0.565	0.554	0.717 / 0.727	0.522 / 0.497	0.366 / 0.340	0.253 / 0.247
w/ E-Notebook	0.575	0.557	0.745 / 0.738	0.474 / 0.456	0.396 / 0.362	0.272 / 0.261
Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming						
w/o E-Notebook	0.617	0.604	0.750 / 0.776	0.583 / 0.553	0.438 / 0.398	0.342 / 0.318
w/ E-Notebook	0.636	0.622	0.788 / 0.794	0.577 / 0.562	0.447 / 0.412	0.342 / 0.326

(2) Our method is not highly sensitive to the specific retrieval scoring function. In Table 1, the *Error Notebook* relies on a *character-level similarity retriever*, which computes a normalized character-level matching score between textual specifications. To further examine whether our method is sensitive to the retrieval scoring function, we additionally implemented a new retriever based on *token-level Jaccard similarity* as shown in Table A.3. This new version tokenizes each specification and measures the overlap between the resulting token sets. Overall, the token-level Jaccard retriever yields slightly higher accuracy (approximately +2% on the self-generated dataset). Importantly, across all retriever variants, the **Error Notebook consistently provides large and robust gains** over the baseline.

Table A.3: Comparison between character-level and token-level retrieval scoring functions.

Strategy	Self-generated dataset					Human preference dataset				
	Overall	< 10	10–20	20–50	> 50	Overall	< 10	10–20	20–50	> 50
w/o E-Notebook (Table 1)	28.5	40.7	22.4	15.3	5.0	41.7	47.9	32.4	26.5	0.0
w/ E-Notebook (Table 1, character-level)	48.3	66.8	35.9	29.7	16.3	65.1	75.5	42.6	41.2	21.4
w/ E-Notebook (New, token-level)	50.2	68.4	39.7	31.4	16.3	68.1	77.3	50.0	47.1	21.4

(3) The results in Figure A.6 show that incorporating CoT reasoning from the Error Notebook is particularly valuable for challenging cases with higher part counts (> 10).

(4) We demonstrate the effectiveness of the proposed two-stage pipeline. As shown in Figure A.7, the proposed two-stage pipeline for part retrieval in 3D CAD assemblies achieves significantly higher accuracy compared to the image-only reasoning baseline. In the image-only setup, both the assembly image and individual part images are directly fed to the VLM in a single inference step, relying solely on visual input. In contrast, our proposed method first utilizes the VLM

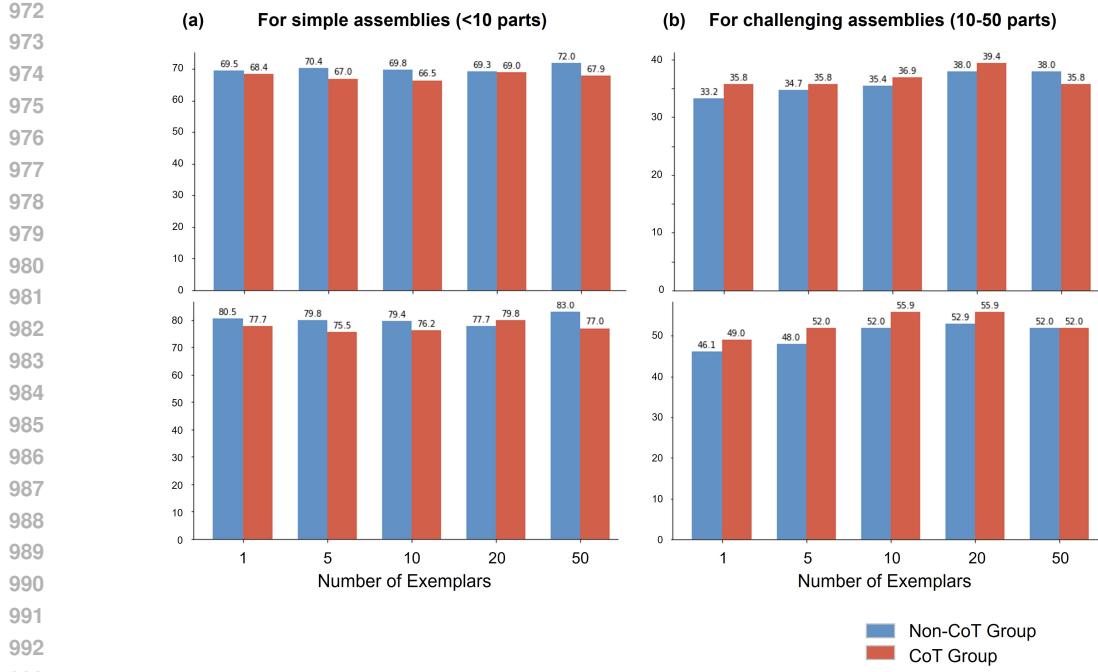


Figure A.6: **Effect of CoT reasoning and exemplar number on retrieval accuracy across different assembly complexities and datasets.** Top row: results on the **self-generated dataset**; bottom row: results on the **human preference dataset**. (a) For simple assemblies (< 10 parts). (b) For more complex assemblies (10–50 parts). The *x*-axis indicates the **number of exemplars retrieved from the Error Notebook**, where each exemplar consists of either (i) the final corrected answer only (Non-CoT group) or (ii) the corrected CoT reasoning steps plus the final answer (CoT group).

to generate concise part descriptions within the assembly context, and then performs part retrieval as a second reasoning step with the assistance of these textual descriptions. This design introduces an additional layer of interpretability and context-awareness, leading to consistent performance improvements across all part count groups. Quantitatively, the image-only baseline yields an overall accuracy of 15.0% (107/715). The proposed pipeline achieves an overall accuracy of 33.6% (240/715), with 51.2% (185/361) for < 10 parts, 23.7% (37/156) for 10–20 parts, 11.9% (14/118) for 20–50 parts, and 5.0% (4/80) for > 50 parts. These results demonstrate the effectiveness of incorporating part descriptions as intermediate representations.

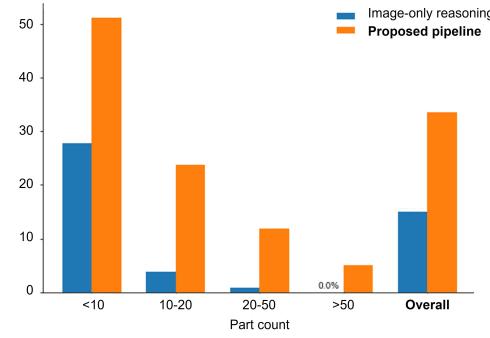


Figure A.7: **Accuracy comparison between proposed pipeline and image-only reasoning.** Performance is shown for the proposed pipeline, which leverages part descriptions as intermediate references, versus the one that directly reasons over images.

Table A.4: Results of Aya-Vision-8B.

Strategy	Self-generated dataset (666 cases)			Human preference dataset (370 cases)		
	Overall	< 10	10–20	Overall	< 10	10–20
w/o E-Notebook	16	16	0	14	14	0
w/ E-Notebook (ours)	54	53	1	51	50	1
Improvement	+38 (3.4×)	+37	+1	+37 (3.6×)	+36	+1

(5) Our method can demonstrate strong performance on *open-source* models. The results of Aya-Vision-8B is shown in Table A.4. For efficiency, we used 7× A40 GPUs for around 36 hours, and an additional run on 3× H20 GPUs for around 12 hours. All experimental settings (except the model itself) remained identical to those in Table 1. Therefore, for open-source VLMs, our *Error Notebook* method still brings substantial and meaningful gains.

A.6 VISUALIZATION

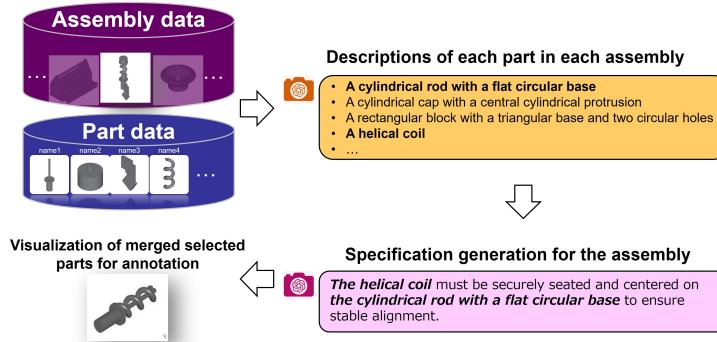


Figure A.8: **Overview of the dataset construction pipeline.** For each assembly, a vision-language model is used to generate concise and discriminative natural language descriptions for every part. Subsequently, the model generates assembly-level specification sentences describing the required relationship or fit between selected parts. To support human annotation, the specified parts are merged and visualized as a single 3D model image.

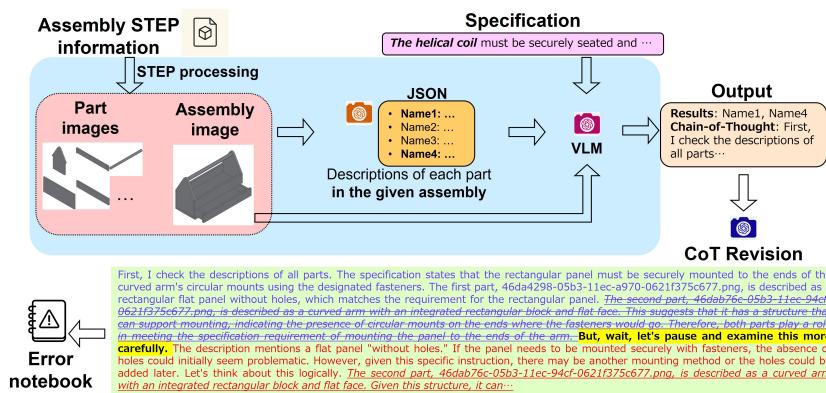


Figure A.9: **Supplementary overview of the verification of the corrected reasoning trajectories.**