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ERROR NOTEBOOK-GUIDED, TRAINING-FREE
PART RETRIEVAL IN 3D CAD ASSEMBLIES VIA
VISION-LANGUAGE MODELS
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Figure 1: Scope of work. The goal is to retrieve symbolic 3D part identifiers from long, non-
natural-language STEP assembly metadata using a natural-language specification. Our two-stage
VLM pipeline first converts STEP-derived part information into geometric descriptions (1st VLM),
then performs specification-aware reasoning (2nd VLM) assisted by Error Notebook + RAG.

ABSTRACT

Effective specification-aware part retrieval within complex CAD assemblies is es-
sential for automated engineering tasks. However, using LLMs/VLMs for this
task is challenging: the metadata sequences often exceed token budgets, and
fine-tuning high-performing proprietary models (e.g., GPT, Gemini) is unavail-
able. Therefore, we need a framework that delivers engineering value by handling
long, non-natural-language metadata associated with real 3D assemblies. We pro-
pose an inference-time adaptation framework that combines corrected Error Note-
books with RAG to substantially improve VLM-based part retrieval. Each Error
Notebook is built by correcting initial CoTs through reflective refinement, and
then filtering each trajectory using a grammar-constraint (GC) verifier to ensure
structural well-formedness. The resulting notebook forms a high-quality reposi-
tory of specification-CoT-answer triplets, from which RAG retrieves specification-
relevant exemplars to condition the model’s inference. We additionally contribute
a CAD dataset with preference annotations. Experiments with proprietary mod-
els (GPT-4o, Gemini, etc) show large gains, with GPT-4o (Omni) achieving up
to +23.4 absolute accuracy points on the human-preference benchmark. The
proposed GC verifier can further produce +4.5 accuracy points. Our ap-
proach also surpasses other training-free baselines (standard few-shot learn-
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ing, self-consistency) and yields substantial improvements for open-source
VLMs (Qwen2-VL-2B-Instruct, Aya-Vision-8B). Under the cross-model GC
setting, where the Error Notebook is constructed using GPT-4o (Omni), the
2B model inference achieves performance that comes within roughly 4 points
of GPT-4o mini.

1 INTRODUCTION

Recent efforts demonstrate the promise of LLMs/VLMs in the engineering design and manufac-
turing domain. For instance, Alrashedy et al. (2025) applied LLMs to generate Computer-Aided
Design (CAD) code from natural language descriptions, which can then be executed to render 3D
objects. Such approaches show that general-purpose models can automate the CAD modeling pro-
cess. Additionally, Wu et al. (2021) developed deep generative models to create 3D CAD structures
directly (e.g., by modeling sequences of CAD operations), hinting at the potential of combining lan-
guage and vision for CAD design tasks. Recent work has also shown that LLMs can assist in design
ideation and automation, such as guiding parametric modeling, generating shape grammars, and
integrating CAD workflows with natural language instructions ( Vardhan (2025); Li et al. (2025);
Akhtar et al. (2025)). These studies further highlight the versatility of LLMs in supporting cre-
ative and engineering tasks within CAD environments. Despite this progress, a critical task remains
challenging for LLMs/VLMs: specification-driven part retrieval within complex CAD assemblies.
Each CAD assembly (often stored as a STEP file) can contain dozens of parts described by lengthy,
non-natural language metadata. Retrieving specific parts that match a given design specification
or relational description is essential for automated design verification and other downstream tasks,
yet directly prompting LLMs or VLMs for this often yields poor results. A primary obstacle is the
extreme sequence length of assembly data, which can exceed current model token limits. Even if
the STEP data is processed, for example, into images, we found that off-the-shelf models still fre-
quently misidentify parts because the task requires fine-grained reasoning about part relationships
and attributes.

Fine-tuning a model on this task could improve performance, but it is sometimes impractical: many
models (e.g., GPT or Gemini) are proprietary or lack fine-tuning access, and training a custom
model would demand significant computational resources. However, certain training techniques for
LLMs and VLMs may serve as inspiration for enhancing the performance of methods that do not
require training. For example, in the mathematical domain, Pan et al. (2025) fine-tuned a model
on a special dataset of erroneous reasoning chains paired with corrected solutions. This taught the
model to reflect on and fix its own errors during generation. More broadly, research on reflection and
self-correction in LLMs highlights several strategies that could inspire our training-free framework.
One line of work leverages external critics or verifier models to provide feedback on intermediate
reasoning steps, guiding the model away from incorrect trajectories ( An et al. (2023); Li et al.
(2023); Tong et al. (2024); Shinn et al. (2023); Renze (2024)). Another line explores intrinsic
self-correction, where models are fine-tuned on specially constructed datasets that pair erroneous
reasoning trajectories with their corrections ( Weng et al. (2023); Yang et al. (2025); Zhang et al.
(2024); Han et al. (2024); Yan et al. (2024)). To collect such data, prior studies often introduce
errors by raising the decoding temperature or by sampling across multiple models, ensuring that the
training set contains both flawed and corrected reasoning paths ( Xi et al. (2024)). These approaches
enable models to revise their reasoning, and prevent error accumulation. Although our method
does not involve weight updates, we draw inspiration from these techniques. In particular, the idea
of coupling flawed reasoning with explicit reflection and correction motivates our Error Notebook
design. Instead of using fine-tuning to encode these revision patterns into the model parameters, we
operationalize them at inference time: by retrieving analogous past samples and their corrections, we
provide the model with direct exemplars of reflection, thereby encouraging more reliable reasoning
without any additional training cost.

As shown in Figure 1, we introduce a novel inference-phase strategy for vision-language part re-
trieval in 3D CAD assemblies. Rather than training or fine-tuning a new model, our approach en-
hances reasoning on-the-fly through retrospective error analysis and retrieval-augmented guidance.
Central to our method is the Error Notebook, a mechanism that refines model reasoning at inference
time by recording and organizing corrected reasoning trajectories. For each new assembly query,
we retrieve analogous cases from the Error Notebook and provide them as few-shot exemplars to
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guide the model’s chain-of-thought (CoT) using a retrieval-augmented generation (RAG) strategy.
The grammar-constraint (GC) verifier leads to further performance gains on the part retrieval task.
We evaluate several state-of-the-art VLMs (including GPT-4 variants and Gemini models) and open-
source small VLMs on our benchmark. In summary, our contributions are as follows:

(1) We propose a training-free reasoning framework that combines the Error Notebook and RAG
for VLM inference. Importantly, our method surpasses traditional training-free inference-time ap-
proaches (standard few-shot, self-consistency) and further demonstrates strong improvements even
on open-source models (e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

(2) We introduce a grammar-constraint (GC) verifier to ensure the structural validity of cor-
rected CoTs used in the Error Notebook. This consistently improves the quality of retrieved
exemplars, yielding further gains across all evaluated VLMs.

(3) We reconstruct a multimodal CAD assembly dataset with relational specifications and human-
preference annotations, consisting of 752 assemblies with part counts ranging from 2 to 249.

(4) From the perspective of the engineering value, we design an effective two-stage VLM strategy
that first generates part descriptions and then uses these descriptions for retrieval, thereby overcom-
ing the challenge of processing extremely long STEP file inputs.

2 METHODOLOGY

2.1 DATASET CONSTRUCTION

Our study is based on the Fusion 360 Gallery Dataset (Willis et al., 2021b;a; Lambourne et al.,
2021). Specifically, we utilize the Assembly Dataset, a subset of the Fusion 360 Gallery Dataset,
which comprises multi-part CAD assemblies enriched with detailed information regarding joints,
contact surfaces, and holes. For this work, we focus on the first archive (a1.0.0_00), which contains
752 assemblies (the Fusion 360 Assembly Dataset is divided into multiple sets whose assembly
counts, and file types are highly consistent). Each assembly project within this archive includes
a single assembly and the corresponding part information (such as PNG images, STEP files, and
additional metadata). The PNG files provide 2D image representations of the 3D models. STEP
files (Standard for the Exchange of Product model data), as defined by ISO 10303, are neutral file
formats that facilitate the exchange of 3D model data across different CAD software platforms,
preserving geometry, structure, and other essential attributes. Figure A.8 shows the overview of the
dataset construction pipeline.

To begin, we catalog all part names and count the number of parts per assembly. Next, we utilize the
GPT-4o (Omni) to generate concise and descriptive noun phrases for each individual part. For each
part, we provide both the overall assembly image and the part image as input, so that the model can
generate the part description with full awareness of the assembly context. Each phrase is intended
to succinctly describe the part’s primary shape and distinguishing features, thereby allowing it to be
differentiated from other parts within the same assembly. We provide several few-shot examples to
guide the model toward generating higher-quality descriptions. Figure A.2 presents the prompt for
this process.

Subsequently, we leverage the same model to further generate high-level specifications for the 3D
assemblies. Each specification is focused on relationships between selected parts within the assem-
bly. The process is as follows: First, the model reviews the assembly image and the corresponding
list of part descriptions. It then selects two part descriptions that are most likely to exhibit a direct
physical, spatial, or functional relationship (e.g., fit, mounting, alignment, or coupling). For each
pair, the model generates a specification sentence that articulates the relationship, fit, or assembly
condition between the two parts. The resulting set of filenames, fi, is subsequently adopted as the
ground truth for downstream part retrieval tasks. Figure A.3 presents the prompt for this process.

Finally, to facilitate the construction of a human preference database, we incorporate a human anno-
tation stage. Each annotation bundle includes the merged part image, the original assembly image,
and the relevant specification sentence. Professional annotators review and filter items according to
the following procedure:

(1) Examine the assembly image to gain a comprehensive understanding of the overall structure.
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Figure 2: Overview of the Error Notebook + RAG-based inference process. Given the assembly
specification, the system retrieves the most relevant examples from the Error Notebook according
to the assembly specification, incorporates these as few-shot exemplars, and then performs step-by-
step reasoning to generate the final answer.

(2) Items with overly similar part descriptions are discarded, as such cases can lead to ambiguity
and multiple possible answers during part retrieval.

(3) Assemblies in which the overall structure is nearly indistinguishable from one or more of its
constituent parts are also filtered out.

(4) Any other scenarios that may introduce ambiguity or permit multiple correct answers in part
retrieval are excluded.

2.2 PART RETRIEVAL FRAMEWORK

Given a 3D assembly A consisting of n parts {P1, P2, . . . , Pn}, and a natural language assembly
specification S, our goal is to retrieve the subset of parts P∗ ⊆ {P1, . . . , Pn} that satisfy the spec-
ified relation described in S. The retrieval process is formulated as a two-stage VLM reasoning
pipeline:

Stage 1: Part Description Generation. For each part Pi, we provide both the image of the com-
plete assembly Iassembly and the image of the individual part IPi as input to a model fdesc(·). The
model is prompted to generate a concise and discriminative noun phrase di describing Pi with ex-
plicit reference to the assembly context:

di = fdesc(Iassembly, IPi
, promptdesc), (1)

where promptdesc is a designed instruction that encourages the model to focus on salient geometric
and functional features.

Stage 2: Specification-Aware Part Retrieval via CoT Reasoning. Given the assembly image
Iassembly, the mapping (JSON) from part filenames (IDs) to their descriptions D = {filenamei :
di}ni=1, and the specification S, we prompt the model fretr(·) to identify the relevant parts:

P̂∗ = fretr(Iassembly,D, S, promptretr), (2)

where promptretr requires the model to reason step-by-step (CoT) and produce both an interpretable
rationale and the final answer in the form of a subset of part filenames.

2.3 ERROR NOTEBOOK CONSTRUCTION

To further improve model reasoning, we construct an Error Notebook that leverages the ability of
VLMs to self-reflect and correct mistakes within their step-by-step reasoning process. Figure 3
shows this process.
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Given, for each assembly, the assembly image Iassembly, the mapping from part filenames to their
descriptions D, a specification S, the previous CoT reasoning Rprev, and the ground-truth filenames
P∗(gt). The goal is to generate a corrected reasoning trajectory Rcorr that leads to the correct
solution in a human-like manner.

In theory, we formalize the step-by-step reasoning process as a trajectory R = (s1, s2, . . . , sn, â),
where si are intermediate reasoning steps and â is the predicted answer. A suboptimal trajec-
tory, Rprev, may contain both correct steps and erroneous steps, ultimately leading to an incor-
rect prediction. Models are expected to identify and revise the first erroneous step in Rprev.
We define a corrected reasoning trajectory Rcorr as the concatenation of: 1) all steps up to the
first error, 2) a natural language reflection that pinpoints and transitions from the error, and 3)
the corrected reasoning steps that ultimately yield the ground-truth answer P∗(gt). Formally, if
Rprev = (sg1, . . . , s

g
k, s

b
1, . . . , s

b
m, ab), where sgi are correct steps and sbj are erroneous, we extract

the subsequence ending at the first error, Rprev
sub = (sg1, . . . , s

g
k, s

b
1). The corrected trajectory is then

constructed as:
Rcorr = Rprev

sub ⊕ TR⊕Rg, (3)

where TR is a transition phrase, and Rg is the correct trajectory from the correction point to the
ground-truth answer P∗(gt).

In our approach,
Rcorr = fcorr

(
Iassembly,D, S,Rprev,P∗(gt), promptcorr

)
. (4)

The promptcorr instructs the model to:

(1) Read and follow the previous reasoning Rprev step by step.

(2) Upon encountering the first logical or factual error, stop and explicitly articulate the transition,
pointing out the mistake in a natural, self-reflective manner.

(3) From that point onward, independently correct the error, reasoning step by step until reaching
P∗(gt).

(4) If no errors are detected, simply reproduce the previous correct reasoning and answer.

2.4 VERIFYING CORRECTED REASONING: GRAMMAR-CONSTRAINT FILTERING

To ensure that the corrected trajectories included in the Error Notebook are logically well-
formed, we introduce a grammar-constraint filtering mechanism. This procedure serves as a
deterministic verifier that inspects each corrected reasoning trace and determines whether it
satisfies a set of structural and semantic validity conditions.

Given a corrected reasoning trajectory Rcorr and the set of allowable part filenames P , we check
whether the final segment of Rcorr contains a well-defined and valid answer. Concretely, the verifier
searches for a line beginning with the phrase “Final Answer:” and extracts the predicted filenames.
A reasoning trace is accepted if and only if (1) such a line exists, (2) at least one filename is provided,
and (3) every predicted filename appears in the allowed set P . In practice, we evaluate two variants
of this filtering rule:

Strict grammar constraint (sGC). This variant requires the explicit presence of a Final Answer:
line and accepts a corrected trajectory only if it satisfies all structural validity rules.

Relaxed grammar constraint (rGC). To accommodate models whose corrected reasoning is log-
ically sound but omits the explicit Final Answer: marker, we introduce a relaxed variant that addi-
tionally accepts trajectories that are identical to sGC except for missing this indicator.

2.5 ERROR NOTEBOOK + RAG-BASED INFERENCE

In the inference stage, we adopt a RAG strategy that leverages examples from the Error Notebook as
few-shot exemplars. Specifically, it retrieves the top-n most relevant samples from the Error Note-
book based on their similarity to the current assembly specification, using the corrected CoT trajec-
tories from these entries to inform and guide the model’s reasoning. Figure 2 shows the overview of
the overall inference process based on VLMs.
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Figure 3: Error Notebook construction process. We define a corrected reasoning trajectory as the
concatenation of: 1) all steps up to the first error, 2) a natural language reflection that pinpoints and
transitions from the error, and 3) the corrected reasoning steps that ultimately yield the ground-truth
answer. We also introduce a grammar-constraint filtering mechanism.

Given an instance defined by the assembly image Iassembly, the mapping from part filenames to
descriptions D, and a specification S, the RAG-based inference proceeds as follows:

(1) Sample Retrieval: Let E = {e1, . . . , eM} denote the set of entries in the Error Notebook, each
comprising a specification Sj , part descriptions Dj , and a corrected CoT trajectory Rcorr

j . For the
current query, compute the similarity sim(S, Sj) between S and each Sj in E . To avoid data leak-
age, the current query instance ecur is excluded from retrieval and will never appear among its
own few-shot exemplars. The top-n most similar samples are selected:

{ek1
, . . . , ekn

} = arg max
ej∈E\{ecur}

sim(S, Sj), (5)

where ecur denotes the current query instance.

(2) Few-Shot Prompt Construction: For each retrieved sample eki
, construct a prompt block con-

taining the assembly context, part descriptions, specification, the corrected CoT Rcorr
ki

, and the cor-
responding final answer. These prompt blocks are concatenated to serve as few-shot exemplars for
the current query.

(3) Main Query Prompt: The final model input consists of (i) the few-shot exemplars constructed
above and (ii) the current query context, which includes the assembly image Iassembly, part descrip-
tions D, and specification S. The model is prompted to perform step-by-step reasoning, leveraging
the retrieved exemplars as references.

Formally, let F denote the few-shot prompt constructed from the top-n retrieved entries. The
model’s output is given by:

RRAG = frag
(
F, Iassembly,D, S, promptmain

)
, (6)

where RRAG is the model’s answer, and promptmain provides the instructions for the inference task.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Our pipeline interacts with VLMs (e.g., GPT-4o, Gemini) via API endpoints. For each inference
call, images are encoded as base64 data URLs. We implement error handling with exponential
backoff and up to 3 retries in the event of API errors. To process the dataset efficiently, all major
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computation steps are parallelized for asynchronously executing functions using multiple threads.
Each assembly is processed as an independent unit. The generated part descriptions, which serve as
intermediate outputs, are stored in JSON format. For fair comparison, both/all experiments on the
same model/group employ identical description JSON files. Unless otherwise specified, the value
of k for RAG’s top-k retrieval is equal to the number of exemplars in the part retrieval stage, which
defaults to 2.

3.2 MAIN RESULT

(1) Our experimental results demonstrate that the proposed Error Notebooks with RAG frame-
work enhances retrieval accuracy across all evaluated models and assembly complexities, as
summarized in Table 1. The performance gains are particularly pronounced on the human
preference dataset. For example, GPT-4o (Omni) improves from 41.7% to 65.1% overall on the
Human preference dataset, marking an absolute gain of 23.4%, while its performance on the self-
generated dataset also rises from 28.5% to 48.3% (+19.8%). Similar trends are observed for other
models: GPT-4o mini increases from 19.3% to 35.4% (+16.1%), Gemini 2.0 Flash Non-streaming
from 44.2% to 56.8% (+12.6%), and Gemini 1.5 Pro Non-streaming from 43.0% to 46.7% (+3.7%).
Another clear trend is that improvements are not limited to small assemblies: while the largest abso-
lute gains often appear in cases with fewer parts (e.g., < 10 parts, GPT-4o Omni rises from 47.9% to
75.5%), consistent accuracy improvements are observed across all part-count intervals, including the
more challenging > 50 parts group. These results highlight the effectiveness and generality of the
proposed Error Notebooks + RAG strategy, which enhances inference across different proprietary
(GPT, Gemini) models, without requiring additional training.

While Table 1 demonstrates the performance gap between models with and without Error Note-
books, Table 2 further shows that once Error Notebooks are incorporated, the number of exemplars
retrieved by RAG has only a minor effect on final accuracy. For instance, on the self-generated
dataset, the overall accuracy of the Non-CoT group varies only slightly between 49.4% (1 exemplar)
and 52.7% (50 exemplars). A similar trend holds for the CoT group, where performance remains
stable in the narrow range of 49.4% to 51.7%. Consistent patterns are observed on the human prefer-
ence dataset. These results indicate that the key factor driving improvements is the presence of Error
Notebooks themselves, and the effect of the specific number of exemplars sampled is negligible.

Further discussion on Table 1. We then rebuilt the Error Notebook using entries that passed this
strict grammar constraints (sGC) check, and re-ran inference with the same RAG pipeline. And this
trick further produces up to 4.5 points of improvement on the human preference dataset.

(2) The results in Table 2 and Figure A.6 show that incorporating CoT reasoning from the Er-
ror Notebook is particularly valuable for challenging cases with higher part counts (> 10). For
assemblies with fewer parts (< 10), the Non-CoT group, where only final answers are given, often
performs comparably or even slightly better, suggesting that in simple scenarios, direct access to the
final correct solution is sufficient. By contrast, for complex assemblies with 10–50 parts, the CoT
group consistently outperforms the Non-CoT group across nearly all exemplar sizes, confirming that
step-by-step reasoning provides crucial guidance for harder queries. This trend is observed across all
exemplar group sizes, with one notable exception: when using 50 exemplars, the CoT group shows
a drop in accuracy. We attribute this to excessively long prompts caused by concatenating many
CoTs, which may interfere with the model’s judgment. A second important observation is that for
simple assemblies, increasing the number of exemplars has little effect, regardless of whether CoT
is used. In contrast, for complex assemblies, accuracy steadily improves as the number of exemplars
increases, up to around 20 exemplars.

(3) The ablation experiments show that our method outperforms two traditional training-free,
inference-time approaches. We conducted ablation experiments to compare our Error Notebook
method with two representative training-free, inference-time approaches. The experimental settings
are as follows. For standard few-shot learning, we use GPT-4o (Omni) with 2 API endpoints, and
adopt two GPT-generated exemplars as few-shot examples (aligned with the 2-exemplar setting in
Table 1). We keep the full two-stage pipeline: the 1st VLM generates part descriptions from the
assembly and part images; the second VLM performs reasoning. Standard few-shot is applied to
the 2nd VLM (reasoning stage). For self-consistency, we keep the same two-stage VLM pipeline.
The 1st VLM generates part-level descriptions exactly as in our main method. For the 2nd VLM,
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Table 1: Accuracy comparison of general models with and without Error Notebook-RAG integration
on self-generated and human preference datasets. The best result is highlighted in bold. We divided
the data from both datasets into 4 groups based on the number of parts in each assembly, reflecting
the varying difficulty levels.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10− 20 20− 50 > 50 Overall < 10 10− 20 20− 50 > 50

GPT-4o (Omni)
w/o E-Notebook 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
w/ E-Notebook 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4
w/ E-Notebook+sGC 48.5 67.0 36.5 32.2 12.5 66.8 75.5 48.5 50.0 21.4

GPT-4o mini
w/o E-Notebook 13.6 20.5 10.9 4.2 1.3 19.3 24.8 10.3 0.0 0.0
w/ E-Notebook 24.9 34.9 25.0 5.9 7.5 35.4 41.5 29.4 8.8 7.1
w/ E-Notebook+sGC 25.9 37.7 20.5 11.0 5.0 36.4 42.6 29.4 11.8 7.1

Gemini 2.5 Pro Non-streaming
w/o E-Notebook 36.5 55.1 25.6 14.4 6.2 54.0 65.2 35.3 20.6 0.0
w/ E-Notebook 42.2 60.9 30.8 21.2 11.3 59.5 69.5 42.6 29.4 14.3
w/ E-Notebook+sGC 42.9 64.8 28.8 20.3 5.0 62.1 74.1 38.2 32.4 7.1

Gemini 2.0 Flash Non-streaming
w/o E-Notebook 30.9 46.8 21.2 12.7 5.0 44.2 53.5 23.5 20.6 14.3
w/ E-Notebook 40.4 58.2 31.4 19.5 8.7 56.8 67.0 39.7 23.5 14.3
w/ E-Notebook+sGC 40.3 57.3 30.1 19.5 13.8 57.0 66.3 39.7 29.4 21.4

Gemini 1.5 Pro Non-streaming
w/o E-Notebook 29.9 44.3 21.2 13.6 6.2 43.0 52.1 23.5 17.6 14.3
w/ E-Notebook 32.4 49.3 22.4 11.9 6.2 46.7 57.1 25.0 17.6 14.3
w/ E-Notebook+sGC 36.2 51.8 26.3 17.8 12.5 50.3 60.6 30.9 14.7 21.4

Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming
w/o E-Notebook 35.0 51.8 25.0 14.4 8.7 50.0 58.9 38.2 17.6 7.1
w/ E-Notebook 40.4 59.3 30.1 16.1 11.3 57.8 66.3 47.1 29.4 7.1
w/ E-Notebook+sGC 43.2 63.2 32.7 17.8 11.3 62.3 73.0 48.5 20.6 14.3

we replace the Error Notebook with a self-consistency strategy: GPT-4o (Omni), temperature 0.7, 5
independent samples, followed by majority voting. Across both datasets, our method consistently
outperforms those baselines.

(4) Our method also demonstrates strong performance on open-source models. We further
evaluated our approach on two open-source VLMs, Qwen2-VL-2B-Instruct and Aya-Vision-8B.
All experimental settings (prompting format, RAG retrieval, and evaluation protocol) were kept
identical to those used in Table 1. For Qwen2-VL-2B-Instruct, experiments were conducted on
8×A40 GPUs for approximately 3 days. A detailed breakdown of its performance is reported in
Table 4, and the results for Aya-Vision-8B appear in Section A.5.

During the grammar-check filtering evaluation, we compared three variants. The E-
Notebook+sGC configuration applies the same strict rule used for proprietary models. How-
ever, we found that the 2B model frequently produced otherwise valid reasoning traces that
lacked the explicit Final Answer: marker, causing many acceptable traces to be discarded.
This substantially reduced the size of the Error Notebook and degraded performance. The
E-Notebook+rGC variant therefore relaxes this requirement, leading to improved accuracy
compared to the basic E-Notebook setup. Finally, the gE-Notebook+sGC variant uses an Error
Notebook constructed entirely from GPT-4o (Omni) while still performing inference with the
2B model, reinstating the strict grammar rule under this cross-model setting. Strikingly, the
cross-model variant (gE-Notebook+sGC) achieves the strongest performance across all config-
urations. On the human-preference dataset, the 2B model equipped with gE-Notebook+sGC
performs only 4.2 points below GPT-4o mini in the <10 group. These results indicate that a
lightweight open-source model, when paired with a high-quality Error Notebook and appropri-
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Table 2: Ablation study on the number of exemplars retrieved from the Error Notebook. We also
analyze the effect of excluding explicit CoT reasoning in each exemplar. CoT Group indicates that
each retrieved exemplar includes explicit step-by-step reasoning, while Non-CoT Group omits such
reasoning in the exemplars and includes ground truth only. The data from both datasets are divided
into four groups based on the number of parts in each assembly, reflecting varying difficulty levels.

Number of Exemplars Self-generated dataset Human preference dataset

Overall < 10 10− 20 20− 50 > 50 Overall < 10 10− 20 20− 50 > 50

Non-CoT Group
1 49.4 69.5 37.8 27.1 13.8 69.3 80.5 50.0 38.2 14.3
5 50.1 70.4 38.5 29.7 11.3 69.1 79.8 51.5 41.2 7.1

10 50.6 69.8 37.8 32.2 16.3 70.4 79.4 55.9 44.1 21.4
20 50.8 69.3 42.3 32.2 11.3 69.1 77.7 60.3 38.2 14.3
50 52.7 72.0 42.3 32.2 16.3 72.9 83.0 57.4 41.2 21.4

CoT Group
1 49.7 68.4 39.7 30.5 12.5 67.8 77.7 54.4 38.2 7.1
5 49.4 67.0 38.5 32.2 16.3 67.8 75.5 52.9 50.0 28.6

10 49.4 66.5 42.3 29.7 15.0 68.8 76.2 61.8 44.1 14.3
20 51.7 69.0 42.3 35.6 16.3 71.1 79.8 57.4 52.9 7.1
50 49.5 67.9 37.8 33.1 13.8 68.1 77.0 51.5 52.9 7.1

Table 3: Ablation comparison between training-free baselines and our proposed method.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10–20 20–50 > 50 Overall < 10 10–20 20–50 > 50

Standard few-shot 26.6 37.4 19.2 16.9 6.2 37.7 42.9 29.4 17.6 21.4
w/o E-Notebook 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
Self-consistency 38.9 54.6 30.1 21.2 11.3 54.8 61.7 42.6 29.4 35.7
w/ E-Notebook (ours) 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4

ate grammar-check strategies, can closely approach the performance of substantially stronger
proprietary VLMs.

Overall, these findings confirm that the Error Notebook framework provides substantial and
meaningful gains for open-source VLMs. Moreover, the improvements achieved through cross-
model distillation show that the Error Notebook can serve as an effective mechanism for transferring
high-quality reasoning traces from powerful proprietary models to compact open-source ones with-
out any finetuning or additional training.

3.3 EFFICIENCY ANALYSIS

Token Usage and Latency. We conducted a runtime and token-cost evaluation on 100 samples
under: GPT-4o (Omni), a single API endpoint, one worker, and no batching. Table 5 summarizes the
results. Although using the Error Notebook increases prompt tokens, inference does not become
slower (8.04s vs 6.50s). Corrected exemplars may improve reasoning coherence and reduce internal
search depth. The one-time correction step is lightweight (7.39 s per sample). Also, 1st VLM latency
is high since it depends on the number of STEP parts. Overall, the Error Notebook introduces no
prohibitive overhead, and RAG-enhanced inference remains efficient.

API Call Cost. The total number of VLM calls required to construct the Error Notebook over n
samples is:

n∑
i=1

(part counti + 1) + n× 1. (7)

For each sample i, part counti VLM calls are used to generate part-level descriptions, plus one call
for the initial retrieval result. Then, new CoTs must be generated for correction, adding one more
call per sample.

9
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Table 4: Results of Qwen2-VL-2B-Instruct. We report both accuracy and the number of correctly
solved cases (in parentheses) under identical settings as Table 1.

Strategy Self-generated dataset Human preference dataset

Overall < 10 (361) 10–20 (156) Overall < 10 (282)

w/o E-Notebook 0.8 (6) 1.7 (6) 0.0 (0) 1.5 (6) 2.1 (6)
w/ E-Notebook 6.4 (46) 12.5 (45) 0.6 (1) 10.8 (43) 15.2 (43)

Improvement +5.6 (+40) +10.8 (+39) +0.6 (+1) +9.3 (+37) +13.1 (+37)

w/ E-Notebook+sGC 3.6 (26) 7.2 (26) 0.0 (0) 6.0 (24) 8.5 (24)
w/ E-Notebook+rGC 6.6 (47) 12.7 (46) 0.6 (1) 10.8 (43) 15.2 (43)
w/ gE-Notebook+sGC* 8.4 (60) 16.6 (60) 0.0 (0) 14.6 (58) 20.6 (58)

Improvement (* - w/o) +7.6 (+54) +14.9 (+54) +0.0 (+0) +13.1 (+52) +18.5 (+52)

Table 5: Latency and token usage for Error Notebook construction and inference.

Setting Avg time (s) Prompt tokens Completion tokens

1st VLM (part description) 78.32 - -
2nd VLM (w/o E-Notebook) 8.04 967.7 235.4
2nd VLM (w/ E-Notebook) 6.50 1815.3 278.7
CoT Correction Step 7.39 1328.7 377.5

4 CONCLUSION

In this work, we introduced a novel Error Notebook-guided, training-free part retrieval approach for
complex 3D CAD assemblies. Our framework leverages retrospective error analysis and RAG to en-
hance VLM reasoning without additional training or fine-tuning. By systematically constructing Er-
ror Notebooks that capture and correct flawed reasoning trajectories, and by retrieving specification-
similar exemplars at inference time, our method consistently improves accuracy across multiple
proprietary VLMs, with gains of up to 23.4% absolute accuracy on human-preference benchmarks.
Importantly, our method surpasses traditional training-free inference-time approaches (standard few-
shot, self-consistency) and further demonstrates strong improvements even on open-source models
(e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

Future work will explore open-source VLM integration, larger-scale datasets, and cross-domain
applications of Error Notebooks, aiming to establish a more general paradigm for training-free re-
flective reasoning in multimodal AI.

5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as the experiment subject to study the improvement of our method on existing LLMs.
We also used LLMs to polish writing.

6 ETHICS STATEMENT

Our dataset construction process relies on professional human annotators, who were compensated
fairly and provided clear annotation guidelines. Care was taken to exclude ambiguous or misleading
cases to avoid introducing bias into the dataset. No personally identifiable information or sensitive
data is involved. The proposed methods are intended for engineering and design applications, such
as automated verification in CAD workflows, and do not pose foreseeable risks of misuse.

7 REPRODUCIBILITY STATEMENT

All code for dataset preprocessing, part description generation,Error Notebook construction, and
inference experiments will be released . Detailed descriptions of dataset construction (including
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filtering and annotation protocols) are provided in Section 2.1. Experimental settings, including
API interaction details, hyperparameters, and error-handling mechanisms, are documented in Sec-
tion 3.1. Reproduction of our results only requires access to the Fusion 360 Gallery Assembly
dataset and VLM APIs (e.g., GPT-4o, Gemini).
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A APPENDIX

A.1 ABBREVIATIONS

VLM Vision-Language Model

LLM Large Language Model

CAD Computer-Aided Design

STEP Standard for the Exchange of Product Model Data (ISO 10303)

CoT Chain-of-Thought

RAG Retrieval-Augmented Generation

API Application Programming Interface

GT Ground Truth

GPT Generative Pre-trained Transformer

A.2 FULL ENGINEERING PIPELINE ILLUSTRATION

To clarify the broader engineering context of our method and help better understand the meaning of
part retrieval in practical CAD assembly analysis, we provide in Figure A.1 a complete overview of
our proposed pipeline in an engineering setting. This illustration highlights the processing and vi-
sualization stages that do not require large model participation. Specifically, the left side depicts the
STEP processing stage: an input assembly (in STEP format) is decomposed into its constituent parts
using freecad, and subsequently rendered into 2D images using the pythonocc library. This gener-
ates intermediate representations (part-level STEP files and rendered images) that provide concrete
references for the VLM-based retrieval process. On the right side, a textual specification is provided,
and the VLMs enhanced withError Notebook + RAG reasoning produce candidate part identifiers.
These are then fused back into the assembly using freecad, and the resulting structure can be visual-
ized with pythonocc.

Figure A.1: Full engineering pipeline for specification-driven part retrieval. The assembly STEP
file is first decomposed into part-level STEP files using freecad, and both the assembly and part
images are generated via pythonocc. Given a textual specification, VLMs enhanced with Error
Notebook + RAG output candidate part identifiers, which are then fused back into the assembly with
freecad for visualization.

A.3 CASE STUDIES
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Table A.1: Case studies of assembly-level part retrieval by GPT 4o (Omni) withError Notebook.
Each row shows the assembly image, the part count, the specification, and the retrieved results in
image format.

ID Assembly Image Part
Count Specification Retrieval Results

1 16

The cylindrical protrusion on the
vertical plate must align and se-
curely fit into the curved channel
of the rectangular housing.

2 10

The concave plate with a central
circular hole on a short cylindri-
cal base must be securely seated
on the cylindrical base with ra-
dial grooves, ensuring proper
alignment and fit.

3 5

The curved tapered arm with de-
tailed thumb and fingers must
fit snugly within the arm-shaped
cavity of the curved block, ensur-
ing full contact and proper align-
ment.

4 10

The semi-cylindrical block must
fit securely onto the circular
grid’s central hub without ob-
structing the radial struts.

5 8

The cylindrical cap with inte-
grated spout and loop handle
must be securely screwed onto
the threaded top collar of the
cylindrical bottle body, ensuring
a leak-proof seal.

6 8

The curved cylindrical shackle
must be securely fitted into one
of the lateral round holes on the
cylindrical body.
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ID Assembly Image Part
Count Specification Retrieval Results

7 10

A flat rectangular plate with di-
agonal cutouts and rounded cor-
ners;A rectangular plate with a
larger cut-out featuring a stylized
raspberry design

8 6

The helical coil must be securely
seated and centered on the cylin-
drical rod with a flat circular base
to ensure stable alignment.

9 5

The threaded shaft of the knurled
cylindrical knob must be se-
curely fastened into the threaded
hole of the curved lever arm to
ensure proper functionality and
alignment of the assembly.

10 9

The long, curved cylindrical tube
must be snugly inserted into the
perforated cylindrical opening of
the elbow-shaped casing for a se-
cure fit without gaps.

11 4

The cylindrical rod with a flat
end must be fully inserted into
the internal square socket of the
cylindrical housing, ensuring se-
cure attachment.

12 4

The hollow cylindrical cap must
be securely fitted over the central
circular protrusion of the curved
base block, ensuring no gaps be-
tween the mating surfaces.
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A.4 PROMPTS

You are an expert mechanical engineer. Given Image 1 (the assembly) and Image
2 (an individual part from the assembly), please generate a concise and descriptive
noun phrase (not a full sentence). The phrase should briefly describe the part’s main
shape and any key features, in a way that clearly distinguishes it from the other parts
in the assembly. Avoid generic names like ’part’ or ’component’. Be specific about the
shape and any holes, slots, or functional features. Your output should be a single noun
phrase.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For example:
- A conical mount with a forked top;
- A cylindrical pin;
- Two plates with each having holes;
- A flat round disk with three small holes;
- A rectangular bracket with two mounting slots.

Figure A.2: Prompt used to generate part-level descriptions in the dataset construction
pipeline.

You are an expert mechanical engineer. Given an image of an assembled product
(assembly) and a list of its part descriptions below:
Part descriptions:
{desc_list_str}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Your task:
1. Review the assembly image and the list of part descriptions.
2. Choose any two part descriptions that are most likely to have a direct physical,
spatial, or functional relationship in the assembly (such as fit, mounting, alignment, or
coupling).
3. Generate one specification sentence (inspection/check item) that describes the
required relationship, fit, or assembly condition between these two parts, as would
appear in a manufacturing or assembly checklist.
4. Your specification should be clear, specific, and professional, mentioning both se-
lected part descriptions explicitly.
5. Output only one specification sentence. Do not explain your reasoning.
6. Output format: The selected two part descriptions (exactly as shown above, sepa-
rated by a semicolon), then a line break, then the specification sentence.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For example, given descriptions like:
1. A cylindrical pin
2. A flat plate with holes
Output:
A cylindrical pin;A flat plate with holes
The cylindrical pin must be fully inserted into one of the holes on the flat plate.

Figure A.3: Prompt used to generate specification for each assembly in the dataset construction
pipeline.
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You are an expert mechanical engineer with a sharp analytical mind. You are given
the assembly image, the descriptions of all parts (each as ’filename: description’), the
inspection specification, and a previous reasoning process (including its step-by-step
thoughts and its Final Answer).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Your job:
1. Carefully read the previous reasoning step-by-step. Follow along and reproduce
the steps until you encounter the first error or mistake.
2. Once you spot the first mistake, stop following the previous reasoning and use
a natural transition phrase (such as: “But, wait, let’s pause and examine this more
carefully.” or “Wait, something seems off. Let’s pause and consider what we know so
far.”) to point out the error and correct it.
3. From that point on, continue the reasoning process in your own words, step-by-
step, until you reach the correct answer (i.e., the filenames consistent with the correct
ground-truth solution).
4. Do not mention “previous attempt” or “ground-truth solution” explicitly. Make your
reasoning sound like a student discovering and correcting their own mistake in real
time.
5. If the previous reasoning is already correct, simply reproduce the previous reason-
ing and the final answer as is.
6. End your output with a “Final Answer:” line followed by the filenames (from the keys
above), separated by semicolons (;), with no extra words or punctuation.

Figure A.4: Prompt used to revise CoTs.

Now, for the following question, use the above reasoning as reference and answer
step-by-step:
Assembly image:
[image attached]
Part descriptions:{desc_lines}
Specification:{spec}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Your task:
1. Think step by step (Chain-of-Thought) and explain how you identify the required
part(s).
2. In the last line, write ’Final Answer:’ followed by only the selected part filenames
(from the keys above), separated by semicolons (;), with no extra words or punctuation.
Example output:
Chain-of-Thought:
First, I check the descriptions of all parts. Only part1.png and part2.png are described
as cylindrical pins. Therefore, the required parts are part1.png and part2.png.
Final Answer:
part1.png;part2.png

Figure A.5: Prompt used to generate the part retrieval results.

A.5 SUPPLEMENTARY RESULTS

(1) Retrieval relevance to Table 1. We report the retrieval relevance results as shown in Table A.2.
Define TP = |GT∩Pred|, FP = |Pred−GT|, FN = |GT−Pred|, Then Recall and F1 are computed
as:

Recall =
TP

TP + FN
, (8)

F1 =
2PR

P +R
. (9)
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We report both global averaged Recall/F1 and per-group Recall/F1 based on the number of parts
(< 10, 10–20, 20–50, > 50), evaluated on the self-generated dataset. We can see that the pro-
posedError Notebook consistently yields clear and meaningful improvements in retrieval rele-
vance.

Table A.2: Retrieval relevance evaluation.

Strategy Global Recall Global F1 Per-group Recall / F1

< 10 10–20 20–50 > 50

GPT-4o (Omni)
w/o E-Notebook 0.406 0.532 0.520 / 0.664 0.362 / 0.481 0.277 / 0.370 0.171 / 0.239
w/ E-Notebook 0.692 0.686 0.828 / 0.837 0.644 / 0.629 0.557 / 0.534 0.367 / 0.364

GPT-4o mini
w/o E-Notebook 0.261 0.385 0.344 / 0.494 0.218 / 0.325 0.179 / 0.269 0.089 / 0.144
w/ E-Notebook 0.500 0.523 0.619 / 0.675 0.500 / 0.504 0.289 / 0.288 0.272 / 0.275

Gemini 2.5 Pro Non-streaming
w/o E-Notebook 0.627 0.607 0.778 / 0.781 0.571 / 0.532 0.451 / 0.416 0.316 / 0.304
w/ E-Notebook 0.662 0.595 0.815 / 0.796 0.590 / 0.569 0.472 / 0.444 0.392 / 0.225

Gemini 2.0 Flash Non-streaming
w/o E-Notebook 0.552 0.573 0.681 / 0.728 0.529 / 0.531 0.400 / 0.392 0.241 / 0.254
w/ E-Notebook 0.630 0.628 0.777 / 0.784 0.583 / 0.584 0.468 / 0.446 0.297 / 0.296

Gemini 1.5 Pro Non-streaming
w/o E-Notebook 0.565 0.554 0.717 / 0.727 0.522 / 0.497 0.366 / 0.340 0.253 / 0.247
w/ E-Notebook 0.575 0.557 0.745 / 0.738 0.474 / 0.456 0.396 / 0.362 0.272 / 0.261

Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming
w/o E-Notebook 0.617 0.604 0.750 / 0.776 0.583 / 0.553 0.438 / 0.398 0.342 / 0.318
w/ E-Notebook 0.636 0.622 0.788 / 0.794 0.577 / 0.562 0.447 / 0.412 0.342 / 0.326

(2) Our method is not highly sensitive to the specific retrieval scoring function. In Table 1,
the Error Notebook relies on a character-level similarity retriever, which computes a normalized
character-level matching score between textual specifications. To further examine whether our
method is sensitive to the retrieval scoring function, we additionally implemented a new retriever
based on token-level Jaccard similarity as shown in Table A.3. This new version tokenizes each
specification and measures the overlap between the resulting token sets. Overall, the token-level
Jaccard retriever yields slightly higher accuracy (approximately +2% on the self-generated dataset).
Importantly, across all retriever variants, the Error Notebook consistently provides large and ro-
bust gains over the baseline.

Table A.3: Comparison between character-level and token-level retrieval scoring functions.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10–20 20–50 > 50 Overall < 10 10–20 20–50 > 50

w/o E-Notebook (Table 1) 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
w/ E-Notebook (Table 1, character-level) 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4
w/ E-Notebook (New, token-level) 50.2 68.4 39.7 31.4 16.3 68.1 77.3 50.0 47.1 21.4

(3) The results in Figure A.6 show that incorporating CoT reasoning from the Error Notebook
is particularly valuable for challenging cases with higher part counts (> 10).

(4) We demonstrate the effectiveness of the proposed two-stage pipeline. As shown in Fig-
ure A.7, the proposed two-stage pipeline for part retrieval in 3D CAD assemblies achieves signif-
icantly higher accuracy compared to the image-only reasoning baseline. In the image-only setup,
both the assembly image and individual part images are directly fed to the VLM in a single infer-
ence step, relying solely on visual input. In contrast, our proposed method first utilizes the VLM
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Figure A.6: Effect of CoT reasoning and exemplar number on retrieval accuracy across differ-
ent assembly complexities and datasets. Top row: results on the self-generated dataset; bottom
row: results on the human preference dataset. (a) For simple assemblies (< 10 parts). (b) For
more complex assemblies (10–50 parts). The x-axis indicates the number of exemplars retrieved
from the Error Notebook, where each exemplar consists of either (i) the final corrected answer only
(Non-CoT group) or (ii) the corrected CoT reasoning steps plus the final answer (CoT group).

to generate concise part descriptions within the assembly context, and then performs part retrieval
as a second reasoning step with the assistance of these textual descriptions. This design introduces
an additional layer of interpretability and context-awareness, leading to consistent performance im-
provements across all part count groups. Quantitatively, the image-only baseline yields an over-
all accuracy of 15.0% (107/715). The proposed pipeline achieves an overall accuracy of 33.6%
(240/715), with 51.2% (185/361) for < 10 parts, 23.7% (37/156) for 10–20 parts, 11.9% (14/118)
for 20–50 parts, and 5.0% (4/80) for > 50 parts. These results demonstrate the effectiveness of
incorporating part descriptions as intermediate representations.

Figure A.7: Accuracy comparison between proposed pipeline and image-only reasoning. Per-
formance is shown for the proposed pipeline, which leverages part descriptions as intermediate
references, versus the one that directly reasons over images.
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Table A.4: Results of Aya-Vision-8B.

Strategy Self-generated dataset (666 cases) Human preference dataset (370 cases)

Overall < 10 10–20 Overall < 10 10–20

w/o E-Notebook 16 16 0 14 14 0
w/ E-Notebook (ours) 54 53 1 51 50 1

Improvement +38 (3.4×) +37 +1 +37 (3.6×) +36 +1

(5) Our method can demonstrate strong performance on open-source models. The results of
Aya-Vision-8B is shown in Table A.4. For efficiency, we used 7× A40 GPUs for around 36 hours,
and an additional run on 3× H20 GPUs for around 12 hours. All experimental settings (except the
model itself) remained identical to those in Table 1. Therefore, for open-source VLMs, ourError
Notebook method still brings substantial and meaningful gains.

A.6 VISUALIZATION

Figure A.8: Overview of the dataset construction pipeline. For each assembly, a vision-language
model is used to generate concise and discriminative natural language descriptions for every part.
Subsequently, the model generates assembly-level specification sentences describing the required
relationship or fit between selected parts. To support human annotation, the specified parts are
merged and visualized as a single 3D model image.

Figure A.9: Supplementary overview of the verification of the corrected reasoning trajectories.
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