
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ERROR NOTEBOOK-GUIDED, TRAINING-FREE
PART RETRIEVAL IN 3D CAD ASSEMBLIES VIA
VISION-LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

Figure 1: Scope of work. The goal is to retrieve symbolic 3D part identifiers from long, non-
natural-language STEP assembly metadata using a natural-language specification. Our two-stage
VLM pipeline first converts STEP-derived part information into geometric descriptions (1st VLM),
then performs specification-aware reasoning (2nd VLM) assisted by Error Notebook + RAG.

ABSTRACT

Effective specification-aware part retrieval within complex CAD assemblies is es-
sential for automated engineering tasks. However, using LLMs/VLMs for this
task is challenging: the metadata sequences often exceed token budgets, and
fine-tuning high-performing proprietary models (e.g., GPT, Gemini) is unavail-
able. Therefore, we need a framework that delivers engineering value by handling
long, non-natural-language metadata associated with real 3D assemblies. We pro-
pose an inference-time adaptation framework that combines corrected Error Note-
books with RAG to substantially improve VLM-based part retrieval. Each Error
Notebook is built by correcting initial CoTs through reflective refinement, and
then filtering each trajectory using a grammar-constraint (GC) verifier to ensure
structural well-formedness. The resulting notebook forms a high-quality reposi-
tory of specification-CoT-answer triplets, from which RAG retrieves specification-
relevant exemplars to condition the model’s inference. We additionally contribute
a CAD dataset with preference annotations. Experiments with proprietary mod-
els (GPT-4o, Gemini, etc) show large gains, with GPT-4o (Omni) achieving up
to +23.4 absolute accuracy points on the human-preference benchmark. The
proposed GC verifier can further produce +4.5 accuracy points. Our ap-
proach also surpasses other training-free baselines (standard few-shot learn-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ing, self-consistency) and yields substantial improvements for open-source
VLMs (Qwen2-VL-2B-Instruct, Aya-Vision-8B). Under the cross-model GC
setting, where the Error Notebook is constructed using GPT-4o (Omni), the
2B model inference achieves performance that comes within roughly 4 points
of GPT-4o mini.

1 INTRODUCTION

Recent efforts demonstrate the promise of LLMs/VLMs in the engineering design and manufac-
turing domain. For instance, Alrashedy et al. (2025) applied LLMs to generate Computer-Aided
Design (CAD) code from natural language descriptions, which can then be executed to render 3D
objects. Such approaches show that general-purpose models can automate the CAD modeling pro-
cess. Additionally, Wu et al. (2021) developed deep generative models to create 3D CAD structures
directly (e.g., by modeling sequences of CAD operations), hinting at the potential of combining lan-
guage and vision for CAD design tasks. Recent work has also shown that LLMs can assist in design
ideation and automation, such as guiding parametric modeling, generating shape grammars, and
integrating CAD workflows with natural language instructions (Vardhan (2025); Li et al. (2025);
Akhtar et al. (2025)). These studies further highlight the versatility of LLMs in supporting cre-
ative and engineering tasks within CAD environments. Despite this progress, a critical task remains
challenging for LLMs/VLMs: specification-driven part retrieval within complex CAD assemblies.
Each CAD assembly (often stored as a STEP file) can contain dozens of parts described by lengthy,
non-natural language metadata. Retrieving specific parts that match a given design specification
or relational description is essential for automated design verification and other downstream tasks,
yet directly prompting LLMs or VLMs for this often yields poor results. A primary obstacle is the
extreme sequence length of assembly data, which can exceed current model token limits. Even if
the STEP data is processed, for example, into images, we found that off-the-shelf models still fre-
quently misidentify parts because the task requires fine-grained reasoning about part relationships
and attributes.

Fine-tuning a model on this task could improve performance, but it is sometimes impractical: many
models (e.g., GPT or Gemini) are proprietary or lack fine-tuning access, and training a custom
model would demand significant computational resources. However, certain training techniques for
LLMs and VLMs may serve as inspiration for enhancing the performance of methods that do not
require training. For example, in the mathematical domain, Pan et al. (2025) fine-tuned a model
on a special dataset of erroneous reasoning chains paired with corrected solutions. This taught the
model to reflect on and fix its own errors during generation. More broadly, research on reflection and
self-correction in LLMs highlights several strategies that could inspire our training-free framework.
One line of work leverages external critics or verifier models to provide feedback on intermediate
reasoning steps, guiding the model away from incorrect trajectories (An et al. (2023); Li et al.
(2023); Tong et al. (2024); Shinn et al. (2023); Renze (2024)). Another line explores intrinsic
self-correction, where models are fine-tuned on specially constructed datasets that pair erroneous
reasoning trajectories with their corrections (Weng et al. (2023); Yang et al. (2025); Zhang et al.
(2024); Han et al. (2024); Yan et al. (2024)). To collect such data, prior studies often introduce
errors by raising the decoding temperature or by sampling across multiple models, ensuring that the
training set contains both flawed and corrected reasoning paths (Xi et al. (2024)). These approaches
enable models to revise their reasoning, and prevent error accumulation. Although our method
does not involve weight updates, we draw inspiration from these techniques. In particular, the idea
of coupling flawed reasoning with explicit reflection and correction motivates our Error Notebook
design. Instead of using fine-tuning to encode these revision patterns into the model parameters, we
operationalize them at inference time: by retrieving analogous past samples and their corrections, we
provide the model with direct exemplars of reflection, thereby encouraging more reliable reasoning
without any additional training cost.

As shown in Figure 1, we introduce a novel inference-phase strategy for vision-language part re-
trieval in 3D CAD assemblies. Rather than training or fine-tuning a new model, our approach en-
hances reasoning on-the-fly through retrospective error analysis and retrieval-augmented guidance.
Central to our method is the Error Notebook, a mechanism that refines model reasoning at inference
time by recording and organizing corrected reasoning trajectories. For each new assembly query,
we retrieve analogous cases from the Error Notebook and provide them as few-shot exemplars to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

guide the model’s chain-of-thought (CoT) using a retrieval-augmented generation (RAG) strategy.
The grammar-constraint (GC) verifier leads to further performance gains on the part retrieval task.
We evaluate several state-of-the-art VLMs (including GPT-4 variants and Gemini models) and open-
source small VLMs on our benchmark. In summary, our contributions are as follows:

(1) We propose a training-free reasoning framework that combines the Error Notebook and RAG
for VLM inference. Importantly, our method surpasses traditional training-free inference-time ap-
proaches (standard few-shot, self-consistency) and further demonstrates strong improvements even
on open-source models (e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

(2) We introduce a grammar-constraint (GC) verifier to ensure the structural validity of cor-
rected CoTs used in the Error Notebook. This consistently improves the quality of retrieved
exemplars, yielding further gains across all evaluated VLMs.

(3) We reconstruct a multimodal CAD assembly dataset with relational specifications and human-
preference annotations, consisting of 752 assemblies with part counts ranging from 2 to 249.

(4) From the perspective of the engineering value, we design an effective two-stage VLM strategy
that first generates part descriptions and then uses these descriptions for retrieval, thereby overcom-
ing the challenge of processing extremely long STEP file inputs.

2 METHODOLOGY

2.1 DATASET CONSTRUCTION

Our study is based on the Fusion 360 Gallery Dataset (Willis et al., 2021b;a; Lambourne et al.,
2021). Specifically, we utilize the Assembly Dataset, a subset of the Fusion 360 Gallery Dataset,
which comprises multi-part CAD assemblies enriched with detailed information regarding joints,
contact surfaces, and holes. For this work, we focus on the first archive (a1.0.0_00), which contains
752 assemblies (the Fusion 360 Assembly Dataset is divided into multiple sets whose assembly
counts, and file types are highly consistent). Each assembly project within this archive includes
a single assembly and the corresponding part information (such as PNG images, STEP files, and
additional metadata). The PNG files provide 2D image representations of the 3D models. STEP
files (Standard for the Exchange of Product model data), as defined by ISO 10303, are neutral file
formats that facilitate the exchange of 3D model data across different CAD software platforms,
preserving geometry, structure, and other essential attributes. Figure A.8 shows the overview of the
dataset construction pipeline.

To begin, we catalog all part names and count the number of parts per assembly. Next, we utilize the
GPT-4o (Omni) to generate concise and descriptive noun phrases for each individual part. For each
part, we provide both the overall assembly image and the part image as input, so that the model can
generate the part description with full awareness of the assembly context. Each phrase is intended
to succinctly describe the part’s primary shape and distinguishing features, thereby allowing it to be
differentiated from other parts within the same assembly. We provide several few-shot examples to
guide the model toward generating higher-quality descriptions. Figure A.2 presents the prompt for
this process.

Subsequently, we leverage the same model to further generate high-level specifications for the 3D
assemblies. Each specification is focused on relationships between selected parts within the assem-
bly. The process is as follows: First, the model reviews the assembly image and the corresponding
list of part descriptions. It then selects two part descriptions that are most likely to exhibit a direct
physical, spatial, or functional relationship (e.g., fit, mounting, alignment, or coupling). For each
pair, the model generates a specification sentence that articulates the relationship, fit, or assembly
condition between the two parts. The resulting set of filenames, fi, is subsequently adopted as the
ground truth for downstream part retrieval tasks. Figure A.3 presents the prompt for this process.

Finally, to facilitate the construction of a human preference database, we incorporate a human anno-
tation stage. Each annotation bundle includes the merged part image, the original assembly image,
and the relevant specification sentence. Professional annotators review and filter items according to
the following procedure:

(1) Examine the assembly image to gain a comprehensive understanding of the overall structure.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the Error Notebook + RAG-based inference process. Given the assembly
specification, the system retrieves the most relevant examples from the Error Notebook according
to the assembly specification, incorporates these as few-shot exemplars, and then performs step-by-
step reasoning to generate the final answer.

(2) Items with overly similar part descriptions are discarded, as such cases can lead to ambiguity
and multiple possible answers during part retrieval.

(3) Assemblies in which the overall structure is nearly indistinguishable from one or more of its
constituent parts are also filtered out.

(4) Any other scenarios that may introduce ambiguity or permit multiple correct answers in part
retrieval are excluded.

2.2 PART RETRIEVAL FRAMEWORK

Given a 3D assembly A consisting of n parts {P1, P2, . . . , Pn}, and a natural language assembly
specification S, our goal is to retrieve the subset of parts P∗ ⊆ {P1, . . . , Pn} that satisfy the spec-
ified relation described in S. The retrieval process is formulated as a two-stage VLM reasoning
pipeline:

Stage 1: Part Description Generation. For each part Pi, we provide both the image of the com-
plete assembly Iassembly and the image of the individual part IPi as input to a model fdesc(·). The
model is prompted to generate a concise and discriminative noun phrase di describing Pi with ex-
plicit reference to the assembly context:

di = fdesc(Iassembly, IPi
, promptdesc), (1)

where promptdesc is a designed instruction that encourages the model to focus on salient geometric
and functional features.

Stage 2: Specification-Aware Part Retrieval via CoT Reasoning. Given the assembly image
Iassembly, the mapping (JSON) from part filenames (IDs) to their descriptions D = {filenamei :
di}ni=1, and the specification S, we prompt the model fretr(·) to identify the relevant parts:

P̂∗ = fretr(Iassembly,D, S, promptretr), (2)

where promptretr requires the model to reason step-by-step (CoT) and produce both an interpretable
rationale and the final answer in the form of a subset of part filenames.

2.3 ERROR NOTEBOOK CONSTRUCTION

To further improve model reasoning, we construct an Error Notebook that leverages the ability of
VLMs to self-reflect and correct mistakes within their step-by-step reasoning process. Figure 3
shows this process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Given, for each assembly, the assembly image Iassembly, the mapping from part filenames to their
descriptions D, a specification S, the previous CoT reasoning Rprev, and the ground-truth filenames
P∗(gt). The goal is to generate a corrected reasoning trajectory Rcorr that leads to the correct
solution in a human-like manner.

In theory, we formalize the step-by-step reasoning process as a trajectory R = (s1, s2, . . . , sn, â),
where si are intermediate reasoning steps and â is the predicted answer. A suboptimal trajec-
tory, Rprev, may contain both correct steps and erroneous steps, ultimately leading to an incor-
rect prediction. Models are expected to identify and revise the first erroneous step in Rprev.
We define a corrected reasoning trajectory Rcorr as the concatenation of: 1) all steps up to the
first error, 2) a natural language reflection that pinpoints and transitions from the error, and 3)
the corrected reasoning steps that ultimately yield the ground-truth answer P∗(gt). Formally, if
Rprev = (sg1, . . . , s

g
k, s

b
1, . . . , s

b
m, ab), where sgi are correct steps and sbj are erroneous, we extract

the subsequence ending at the first error, Rprev
sub = (sg1, . . . , s

g
k, s

b
1). The corrected trajectory is then

constructed as:
Rcorr = Rprev

sub ⊕ TR⊕Rg, (3)

where TR is a transition phrase, and Rg is the correct trajectory from the correction point to the
ground-truth answer P∗(gt).

In our approach,
Rcorr = fcorr

(
Iassembly,D, S,Rprev,P∗(gt), promptcorr

)
. (4)

The promptcorr instructs the model to:

(1) Read and follow the previous reasoning Rprev step by step.

(2) Upon encountering the first logical or factual error, stop and explicitly articulate the transition,
pointing out the mistake in a natural, self-reflective manner.

(3) From that point onward, independently correct the error, reasoning step by step until reaching
P∗(gt).

(4) If no errors are detected, simply reproduce the previous correct reasoning and answer.

2.4 VERIFYING CORRECTED REASONING: GRAMMAR-CONSTRAINT FILTERING

To ensure that the corrected trajectories included in the Error Notebook are logically well-
formed, we introduce a grammar-constraint filtering mechanism. This procedure serves as a
deterministic verifier that inspects each corrected reasoning trace and determines whether it
satisfies a set of structural and semantic validity conditions.

Given a corrected reasoning trajectory Rcorr and the set of allowable part filenames P , we check
whether the final segment of Rcorr contains a well-defined and valid answer. Concretely, the verifier
searches for a line beginning with the phrase “Final Answer:” and extracts the predicted filenames.
A reasoning trace is accepted if and only if (1) such a line exists, (2) at least one filename is provided,
and (3) every predicted filename appears in the allowed set P . In practice, we evaluate two variants
of this filtering rule:

Strict grammar constraint (sGC). This variant requires the explicit presence of a Final Answer:
line and accepts a corrected trajectory only if it satisfies all structural validity rules.

Relaxed grammar constraint (rGC). To accommodate models whose corrected reasoning is log-
ically sound but omits the explicit Final Answer: marker, we introduce a relaxed variant that addi-
tionally accepts trajectories that are identical to sGC except for missing this indicator.

2.5 ERROR NOTEBOOK + RAG-BASED INFERENCE

In the inference stage, we adopt a RAG strategy that leverages examples from the Error Notebook as
few-shot exemplars. Specifically, it retrieves the top-n most relevant samples from the Error Note-
book based on their similarity to the current assembly specification, using the corrected CoT trajec-
tories from these entries to inform and guide the model’s reasoning. Figure 2 shows the overview of
the overall inference process based on VLMs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Error Notebook construction process. We define a corrected reasoning trajectory as the
concatenation of: 1) all steps up to the first error, 2) a natural language reflection that pinpoints and
transitions from the error, and 3) the corrected reasoning steps that ultimately yield the ground-truth
answer. We also introduce a grammar-constraint filtering mechanism.

Given an instance defined by the assembly image Iassembly, the mapping from part filenames to
descriptions D, and a specification S, the RAG-based inference proceeds as follows:

(1) Sample Retrieval: Let E = {e1, . . . , eM} denote the set of entries in the Error Notebook, each
comprising a specification Sj , part descriptions Dj , and a corrected CoT trajectory Rcorr

j . For the
current query, compute the similarity sim(S, Sj) between S and each Sj in E . To avoid data leak-
age, the current query instance ecur is excluded from retrieval and will never appear among its
own few-shot exemplars. The top-n most similar samples are selected:

{ek1
, . . . , ekn

} = arg max
ej∈E\{ecur}

sim(S, Sj), (5)

where ecur denotes the current query instance.

(2) Few-Shot Prompt Construction: For each retrieved sample eki
, construct a prompt block con-

taining the assembly context, part descriptions, specification, the corrected CoT Rcorr
ki

, and the cor-
responding final answer. These prompt blocks are concatenated to serve as few-shot exemplars for
the current query.

(3) Main Query Prompt: The final model input consists of (i) the few-shot exemplars constructed
above and (ii) the current query context, which includes the assembly image Iassembly, part descrip-
tions D, and specification S. The model is prompted to perform step-by-step reasoning, leveraging
the retrieved exemplars as references.

Formally, let F denote the few-shot prompt constructed from the top-n retrieved entries. The
model’s output is given by:

RRAG = frag
(
F, Iassembly,D, S, promptmain

)
, (6)

where RRAG is the model’s answer, and promptmain provides the instructions for the inference task.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Our pipeline interacts with VLMs (e.g., GPT-4o, Gemini) via API endpoints. For each inference
call, images are encoded as base64 data URLs. We implement error handling with exponential
backoff and up to 3 retries in the event of API errors. To process the dataset efficiently, all major

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

computation steps are parallelized for asynchronously executing functions using multiple threads.
Each assembly is processed as an independent unit. The generated part descriptions, which serve as
intermediate outputs, are stored in JSON format. For fair comparison, both/all experiments on the
same model/group employ identical description JSON files. Unless otherwise specified, the value
of k for RAG’s top-k retrieval is equal to the number of exemplars in the part retrieval stage, which
defaults to 2.

3.2 MAIN RESULT

(1) Our experimental results demonstrate that the proposed Error Notebooks with RAG frame-
work enhances retrieval accuracy across all evaluated models and assembly complexities, as
summarized in Table 1. The performance gains are particularly pronounced on the human
preference dataset. For example, GPT-4o (Omni) improves from 41.7% to 65.1% overall on the
Human preference dataset, marking an absolute gain of 23.4%, while its performance on the self-
generated dataset also rises from 28.5% to 48.3% (+19.8%). Similar trends are observed for other
models: GPT-4o mini increases from 19.3% to 35.4% (+16.1%), Gemini 2.0 Flash Non-streaming
from 44.2% to 56.8% (+12.6%), and Gemini 1.5 Pro Non-streaming from 43.0% to 46.7% (+3.7%).
Another clear trend is that improvements are not limited to small assemblies: while the largest abso-
lute gains often appear in cases with fewer parts (e.g., < 10 parts, GPT-4o Omni rises from 47.9% to
75.5%), consistent accuracy improvements are observed across all part-count intervals, including the
more challenging > 50 parts group. These results highlight the effectiveness and generality of the
proposed Error Notebooks + RAG strategy, which enhances inference across different proprietary
(GPT, Gemini) models, without requiring additional training.

While Table 1 demonstrates the performance gap between models with and without Error Note-
books, Table 2 further shows that once Error Notebooks are incorporated, the number of exemplars
retrieved by RAG has only a minor effect on final accuracy. For instance, on the self-generated
dataset, the overall accuracy of the Non-CoT group varies only slightly between 49.4% (1 exemplar)
and 52.7% (50 exemplars). A similar trend holds for the CoT group, where performance remains
stable in the narrow range of 49.4% to 51.7%. Consistent patterns are observed on the human prefer-
ence dataset. These results indicate that the key factor driving improvements is the presence of Error
Notebooks themselves, and the effect of the specific number of exemplars sampled is negligible.

Further discussion on Table 1. We then rebuilt the Error Notebook using entries that passed this
strict grammar constraints (sGC) check, and re-ran inference with the same RAG pipeline. And this
trick further produces up to 4.5 points of improvement on the human preference dataset.

(2) The results in Table 2 and Figure A.6 show that incorporating CoT reasoning from the Er-
ror Notebook is particularly valuable for challenging cases with higher part counts (> 10). For
assemblies with fewer parts (< 10), the Non-CoT group, where only final answers are given, often
performs comparably or even slightly better, suggesting that in simple scenarios, direct access to the
final correct solution is sufficient. By contrast, for complex assemblies with 10–50 parts, the CoT
group consistently outperforms the Non-CoT group across nearly all exemplar sizes, confirming that
step-by-step reasoning provides crucial guidance for harder queries. This trend is observed across all
exemplar group sizes, with one notable exception: when using 50 exemplars, the CoT group shows
a drop in accuracy. We attribute this to excessively long prompts caused by concatenating many
CoTs, which may interfere with the model’s judgment. A second important observation is that for
simple assemblies, increasing the number of exemplars has little effect, regardless of whether CoT
is used. In contrast, for complex assemblies, accuracy steadily improves as the number of exemplars
increases, up to around 20 exemplars.

(3) The ablation experiments show that our method outperforms two traditional training-free,
inference-time approaches. We conducted ablation experiments to compare our Error Notebook
method with two representative training-free, inference-time approaches. The experimental settings
are as follows. For standard few-shot learning, we use GPT-4o (Omni) with 2 API endpoints, and
adopt two GPT-generated exemplars as few-shot examples (aligned with the 2-exemplar setting in
Table 1). We keep the full two-stage pipeline: the 1st VLM generates part descriptions from the
assembly and part images; the second VLM performs reasoning. Standard few-shot is applied to
the 2nd VLM (reasoning stage). For self-consistency, we keep the same two-stage VLM pipeline.
The 1st VLM generates part-level descriptions exactly as in our main method. For the 2nd VLM,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison of general models with and without Error Notebook-RAG integration
on self-generated and human preference datasets. The best result is highlighted in bold. We divided
the data from both datasets into 4 groups based on the number of parts in each assembly, reflecting
the varying difficulty levels.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10− 20 20− 50 > 50 Overall < 10 10− 20 20− 50 > 50

GPT-4o (Omni)
w/o E-Notebook 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
w/ E-Notebook 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4
w/ E-Notebook+sGC 48.5 67.0 36.5 32.2 12.5 66.8 75.5 48.5 50.0 21.4

GPT-4o mini
w/o E-Notebook 13.6 20.5 10.9 4.2 1.3 19.3 24.8 10.3 0.0 0.0
w/ E-Notebook 24.9 34.9 25.0 5.9 7.5 35.4 41.5 29.4 8.8 7.1
w/ E-Notebook+sGC 25.9 37.7 20.5 11.0 5.0 36.4 42.6 29.4 11.8 7.1

Gemini 2.5 Pro Non-streaming
w/o E-Notebook 36.5 55.1 25.6 14.4 6.2 54.0 65.2 35.3 20.6 0.0
w/ E-Notebook 42.2 60.9 30.8 21.2 11.3 59.5 69.5 42.6 29.4 14.3
w/ E-Notebook+sGC 42.9 64.8 28.8 20.3 5.0 62.1 74.1 38.2 32.4 7.1

Gemini 2.0 Flash Non-streaming
w/o E-Notebook 30.9 46.8 21.2 12.7 5.0 44.2 53.5 23.5 20.6 14.3
w/ E-Notebook 40.4 58.2 31.4 19.5 8.7 56.8 67.0 39.7 23.5 14.3
w/ E-Notebook+sGC 40.3 57.3 30.1 19.5 13.8 57.0 66.3 39.7 29.4 21.4

Gemini 1.5 Pro Non-streaming
w/o E-Notebook 29.9 44.3 21.2 13.6 6.2 43.0 52.1 23.5 17.6 14.3
w/ E-Notebook 32.4 49.3 22.4 11.9 6.2 46.7 57.1 25.0 17.6 14.3
w/ E-Notebook+sGC 36.2 51.8 26.3 17.8 12.5 50.3 60.6 30.9 14.7 21.4

Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming
w/o E-Notebook 35.0 51.8 25.0 14.4 8.7 50.0 58.9 38.2 17.6 7.1
w/ E-Notebook 40.4 59.3 30.1 16.1 11.3 57.8 66.3 47.1 29.4 7.1
w/ E-Notebook+sGC 43.2 63.2 32.7 17.8 11.3 62.3 73.0 48.5 20.6 14.3

we replace the Error Notebook with a self-consistency strategy: GPT-4o (Omni), temperature 0.7, 5
independent samples, followed by majority voting. Across both datasets, our method consistently
outperforms those baselines.

(4) Our method also demonstrates strong performance on open-source models. We further
evaluated our approach on two open-source VLMs, Qwen2-VL-2B-Instruct and Aya-Vision-8B.
All experimental settings (prompting format, RAG retrieval, and evaluation protocol) were kept
identical to those used in Table 1. For Qwen2-VL-2B-Instruct, experiments were conducted on
8×A40 GPUs for approximately 3 days. A detailed breakdown of its performance is reported in
Table 4, and the results for Aya-Vision-8B appear in Section A.5.

During the grammar-check filtering evaluation, we compared three variants. The E-
Notebook+sGC configuration applies the same strict rule used for proprietary models. How-
ever, we found that the 2B model frequently produced otherwise valid reasoning traces that
lacked the explicit Final Answer: marker, causing many acceptable traces to be discarded.
This substantially reduced the size of the Error Notebook and degraded performance. The
E-Notebook+rGC variant therefore relaxes this requirement, leading to improved accuracy
compared to the basic E-Notebook setup. Finally, the gE-Notebook+sGC variant uses an Error
Notebook constructed entirely from GPT-4o (Omni) while still performing inference with the
2B model, reinstating the strict grammar rule under this cross-model setting. Strikingly, the
cross-model variant (gE-Notebook+sGC) achieves the strongest performance across all config-
urations. On the human-preference dataset, the 2B model equipped with gE-Notebook+sGC
performs only 4.2 points below GPT-4o mini in the <10 group. These results indicate that a
lightweight open-source model, when paired with a high-quality Error Notebook and appropri-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the number of exemplars retrieved from the Error Notebook. We also
analyze the effect of excluding explicit CoT reasoning in each exemplar. CoT Group indicates that
each retrieved exemplar includes explicit step-by-step reasoning, while Non-CoT Group omits such
reasoning in the exemplars and includes ground truth only. The data from both datasets are divided
into four groups based on the number of parts in each assembly, reflecting varying difficulty levels.

Number of Exemplars Self-generated dataset Human preference dataset

Overall < 10 10− 20 20− 50 > 50 Overall < 10 10− 20 20− 50 > 50

Non-CoT Group
1 49.4 69.5 37.8 27.1 13.8 69.3 80.5 50.0 38.2 14.3
5 50.1 70.4 38.5 29.7 11.3 69.1 79.8 51.5 41.2 7.1

10 50.6 69.8 37.8 32.2 16.3 70.4 79.4 55.9 44.1 21.4
20 50.8 69.3 42.3 32.2 11.3 69.1 77.7 60.3 38.2 14.3
50 52.7 72.0 42.3 32.2 16.3 72.9 83.0 57.4 41.2 21.4

CoT Group
1 49.7 68.4 39.7 30.5 12.5 67.8 77.7 54.4 38.2 7.1
5 49.4 67.0 38.5 32.2 16.3 67.8 75.5 52.9 50.0 28.6

10 49.4 66.5 42.3 29.7 15.0 68.8 76.2 61.8 44.1 14.3
20 51.7 69.0 42.3 35.6 16.3 71.1 79.8 57.4 52.9 7.1
50 49.5 67.9 37.8 33.1 13.8 68.1 77.0 51.5 52.9 7.1

Table 3: Ablation comparison between training-free baselines and our proposed method.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10–20 20–50 > 50 Overall < 10 10–20 20–50 > 50

Standard few-shot 26.6 37.4 19.2 16.9 6.2 37.7 42.9 29.4 17.6 21.4
w/o E-Notebook 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
Self-consistency 38.9 54.6 30.1 21.2 11.3 54.8 61.7 42.6 29.4 35.7
w/ E-Notebook (ours) 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4

ate grammar-check strategies, can closely approach the performance of substantially stronger
proprietary VLMs.

Overall, these findings confirm that the Error Notebook framework provides substantial and
meaningful gains for open-source VLMs. Moreover, the improvements achieved through cross-
model distillation show that the Error Notebook can serve as an effective mechanism for transferring
high-quality reasoning traces from powerful proprietary models to compact open-source ones with-
out any finetuning or additional training.

3.3 EFFICIENCY ANALYSIS

Token Usage and Latency. We conducted a runtime and token-cost evaluation on 100 samples
under: GPT-4o (Omni), a single API endpoint, one worker, and no batching. Table 5 summarizes the
results. Although using the Error Notebook increases prompt tokens, inference does not become
slower (8.04s vs 6.50s). Corrected exemplars may improve reasoning coherence and reduce internal
search depth. The one-time correction step is lightweight (7.39 s per sample). Also, 1st VLM latency
is high since it depends on the number of STEP parts. Overall, the Error Notebook introduces no
prohibitive overhead, and RAG-enhanced inference remains efficient.

API Call Cost. The total number of VLM calls required to construct the Error Notebook over n
samples is:

n∑
i=1

(part counti + 1) + n× 1. (7)

For each sample i, part counti VLM calls are used to generate part-level descriptions, plus one call
for the initial retrieval result. Then, new CoTs must be generated for correction, adding one more
call per sample.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Results of Qwen2-VL-2B-Instruct. We report both accuracy and the number of correctly
solved cases (in parentheses) under identical settings as Table 1.

Strategy Self-generated dataset Human preference dataset

Overall < 10 (361) 10–20 (156) Overall < 10 (282)

w/o E-Notebook 0.8 (6) 1.7 (6) 0.0 (0) 1.5 (6) 2.1 (6)
w/ E-Notebook 6.4 (46) 12.5 (45) 0.6 (1) 10.8 (43) 15.2 (43)

Improvement +5.6 (+40) +10.8 (+39) +0.6 (+1) +9.3 (+37) +13.1 (+37)

w/ E-Notebook+sGC 3.6 (26) 7.2 (26) 0.0 (0) 6.0 (24) 8.5 (24)
w/ E-Notebook+rGC 6.6 (47) 12.7 (46) 0.6 (1) 10.8 (43) 15.2 (43)
w/ gE-Notebook+sGC* 8.4 (60) 16.6 (60) 0.0 (0) 14.6 (58) 20.6 (58)

Improvement (* - w/o) +7.6 (+54) +14.9 (+54) +0.0 (+0) +13.1 (+52) +18.5 (+52)

Table 5: Latency and token usage for Error Notebook construction and inference.

Setting Avg time (s) Prompt tokens Completion tokens

1st VLM (part description) 78.32 - -
2nd VLM (w/o E-Notebook) 8.04 967.7 235.4
2nd VLM (w/ E-Notebook) 6.50 1815.3 278.7
CoT Correction Step 7.39 1328.7 377.5

4 CONCLUSION

In this work, we introduced a novel Error Notebook-guided, training-free part retrieval approach for
complex 3D CAD assemblies. Our framework leverages retrospective error analysis and RAG to en-
hance VLM reasoning without additional training or fine-tuning. By systematically constructing Er-
ror Notebooks that capture and correct flawed reasoning trajectories, and by retrieving specification-
similar exemplars at inference time, our method consistently improves accuracy across multiple
proprietary VLMs, with gains of up to 23.4% absolute accuracy on human-preference benchmarks.
Importantly, our method surpasses traditional training-free inference-time approaches (standard few-
shot, self-consistency) and further demonstrates strong improvements even on open-source models
(e.g., Qwen2-VL-2B-Instruct and Aya-Vision-8B).

Future work will explore open-source VLM integration, larger-scale datasets, and cross-domain
applications of Error Notebooks, aiming to establish a more general paradigm for training-free re-
flective reasoning in multimodal AI.

5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as the experiment subject to study the improvement of our method on existing LLMs.
We also used LLMs to polish writing.

6 ETHICS STATEMENT

Our dataset construction process relies on professional human annotators, who were compensated
fairly and provided clear annotation guidelines. Care was taken to exclude ambiguous or misleading
cases to avoid introducing bias into the dataset. No personally identifiable information or sensitive
data is involved. The proposed methods are intended for engineering and design applications, such
as automated verification in CAD workflows, and do not pose foreseeable risks of misuse.

7 REPRODUCIBILITY STATEMENT

All code for dataset preprocessing, part description generation,Error Notebook construction, and
inference experiments will be released . Detailed descriptions of dataset construction (including

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

filtering and annotation protocols) are provided in Section 2.1. Experimental settings, including
API interaction details, hyperparameters, and error-handling mechanisms, are documented in Sec-
tion 3.1. Reproduction of our results only requires access to the Fusion 360 Gallery Assembly
dataset and VLM APIs (e.g., GPT-4o, Gemini).

REFERENCES

Naveed Akhtar et al. Large language models for computer-aided design: A survey. arXiv preprint
arXiv:2505.08137, 2025.

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and
Matthew Gombolay. Generating cad code with vision-language models for 3d designs. In In-
ternational conference on learning representations (ICLR), 2025.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes llm better reasoner, 2023.

Haixia Han, Jiaqing Liang, Jie Shi, Qianyu He, and Yanghua Xiao. Small language model can
self-correct. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18162–18170, 2024.

Joseph G. Lambourne, Karl D.D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer,
and Hooman Shayani. Brepnet: A topological message passing system for solid models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 12773–12782, June 2021.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
llama: Leveraging large language models for computer-aided design parametric 3d model gener-
ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18563–18573, 2025.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, and Tianyi Zhou. Reflection-tuning: Recycling data
for better instruction-tuning. In NeurIPS 2023 Workshop on Instruction Tuning and Instruction
Following, 2023.

Zhuoshi Pan, Yu Li, Honglin Lin, Qizhi Pei, Zinan Tang, Wei Wu, Chenlin Ming, H. Vicky Zhao,
Conghui He, and Lijun Wu. Lemma: Learning from errors for mathematical advancement in llms.
arXiv preprint arXiv:2503.17439, 2025.

Matthew Renze. The effect of sampling temperature on problem solving in large language models.
In Findings of the Association for Computational Linguistics: EMNLP, pp. 7346–7356, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can llms learn from
previous mistakes? investigating llms’ errors to boost for reasoning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 3065–3080, 2024.

Harsh Vardhan. Generative ai for cad automation: Leveraging large language models for 3d mod-
elling. In arXiv preprint arXiv:2508.00843, 2025.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Findings of the
Association for Computational Linguistics: EMNLP, pp. 2550–2575, 2023.

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando
Solar-Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for pro-
grammatic cad construction from human design sequences. ACM Transactions on Graphics
(TOG), 40(4), 2021a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi,
Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, and Wojciech Ma-
tusik. Joinable: Learning bottom-up assembly of parametric cad joints. arXiv preprint
arXiv:2111.12772, 2021b.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6772–6782, October 2021.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang
Hong, Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time
and training-time supervision. arXiv preprint arXiv:2411.16579, 2024.

Yuchen Yan, Jin Jiang, Yang Liu, Yixin Cao, Xin Xu, Xunliang Cai, Jian Shao, et al. S3c-math:
Spontaneous step-level self-correction makes large language models better mathematical reason-
ers. arXiv preprint arXiv:2409.01524, 2024.

Zhe Yang, Yichang Zhang, Yudong Wang, Ziyao Xu, Junyang Lin, and Zhifang Sui. Confidence
v.s. critique: A decomposition of self-correction capability for llms. In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (ACL), 2025.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
soning. In Findings of the Association for Computational Linguistics: ACL, pp. 15637–15653,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ABBREVIATIONS

VLM Vision-Language Model

LLM Large Language Model

CAD Computer-Aided Design

STEP Standard for the Exchange of Product Model Data (ISO 10303)

CoT Chain-of-Thought

RAG Retrieval-Augmented Generation

API Application Programming Interface

GT Ground Truth

GPT Generative Pre-trained Transformer

A.2 FULL ENGINEERING PIPELINE ILLUSTRATION

To clarify the broader engineering context of our method and help better understand the meaning of
part retrieval in practical CAD assembly analysis, we provide in Figure A.1 a complete overview of
our proposed pipeline in an engineering setting. This illustration highlights the processing and vi-
sualization stages that do not require large model participation. Specifically, the left side depicts the
STEP processing stage: an input assembly (in STEP format) is decomposed into its constituent parts
using freecad, and subsequently rendered into 2D images using the pythonocc library. This gener-
ates intermediate representations (part-level STEP files and rendered images) that provide concrete
references for the VLM-based retrieval process. On the right side, a textual specification is provided,
and the VLMs enhanced withError Notebook + RAG reasoning produce candidate part identifiers.
These are then fused back into the assembly using freecad, and the resulting structure can be visual-
ized with pythonocc.

Figure A.1: Full engineering pipeline for specification-driven part retrieval. The assembly STEP
file is first decomposed into part-level STEP files using freecad, and both the assembly and part
images are generated via pythonocc. Given a textual specification, VLMs enhanced with Error
Notebook + RAG output candidate part identifiers, which are then fused back into the assembly with
freecad for visualization.

A.3 CASE STUDIES

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table A.1: Case studies of assembly-level part retrieval by GPT 4o (Omni) withError Notebook.
Each row shows the assembly image, the part count, the specification, and the retrieved results in
image format.

ID Assembly Image Part
Count Specification Retrieval Results

1 16

The cylindrical protrusion on the
vertical plate must align and se-
curely fit into the curved channel
of the rectangular housing.

2 10

The concave plate with a central
circular hole on a short cylindri-
cal base must be securely seated
on the cylindrical base with ra-
dial grooves, ensuring proper
alignment and fit.

3 5

The curved tapered arm with de-
tailed thumb and fingers must
fit snugly within the arm-shaped
cavity of the curved block, ensur-
ing full contact and proper align-
ment.

4 10

The semi-cylindrical block must
fit securely onto the circular
grid’s central hub without ob-
structing the radial struts.

5 8

The cylindrical cap with inte-
grated spout and loop handle
must be securely screwed onto
the threaded top collar of the
cylindrical bottle body, ensuring
a leak-proof seal.

6 8

The curved cylindrical shackle
must be securely fitted into one
of the lateral round holes on the
cylindrical body.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ID Assembly Image Part
Count Specification Retrieval Results

7 10

A flat rectangular plate with di-
agonal cutouts and rounded cor-
ners;A rectangular plate with a
larger cut-out featuring a stylized
raspberry design

8 6

The helical coil must be securely
seated and centered on the cylin-
drical rod with a flat circular base
to ensure stable alignment.

9 5

The threaded shaft of the knurled
cylindrical knob must be se-
curely fastened into the threaded
hole of the curved lever arm to
ensure proper functionality and
alignment of the assembly.

10 9

The long, curved cylindrical tube
must be snugly inserted into the
perforated cylindrical opening of
the elbow-shaped casing for a se-
cure fit without gaps.

11 4

The cylindrical rod with a flat
end must be fully inserted into
the internal square socket of the
cylindrical housing, ensuring se-
cure attachment.

12 4

The hollow cylindrical cap must
be securely fitted over the central
circular protrusion of the curved
base block, ensuring no gaps be-
tween the mating surfaces.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 PROMPTS

You are an expert mechanical engineer. Given Image 1 (the assembly) and Image
2 (an individual part from the assembly), please generate a concise and descriptive
noun phrase (not a full sentence). The phrase should briefly describe the part’s main
shape and any key features, in a way that clearly distinguishes it from the other parts
in the assembly. Avoid generic names like ’part’ or ’component’. Be specific about the
shape and any holes, slots, or functional features. Your output should be a single noun
phrase.
. .
For example:
- A conical mount with a forked top;
- A cylindrical pin;
- Two plates with each having holes;
- A flat round disk with three small holes;
- A rectangular bracket with two mounting slots.

Figure A.2: Prompt used to generate part-level descriptions in the dataset construction
pipeline.

You are an expert mechanical engineer. Given an image of an assembled product
(assembly) and a list of its part descriptions below:
Part descriptions:
{desc_list_str}
. .
Your task:
1. Review the assembly image and the list of part descriptions.
2. Choose any two part descriptions that are most likely to have a direct physical,
spatial, or functional relationship in the assembly (such as fit, mounting, alignment, or
coupling).
3. Generate one specification sentence (inspection/check item) that describes the
required relationship, fit, or assembly condition between these two parts, as would
appear in a manufacturing or assembly checklist.
4. Your specification should be clear, specific, and professional, mentioning both se-
lected part descriptions explicitly.
5. Output only one specification sentence. Do not explain your reasoning.
6. Output format: The selected two part descriptions (exactly as shown above, sepa-
rated by a semicolon), then a line break, then the specification sentence.
. .
For example, given descriptions like:
1. A cylindrical pin
2. A flat plate with holes
Output:
A cylindrical pin;A flat plate with holes
The cylindrical pin must be fully inserted into one of the holes on the flat plate.

Figure A.3: Prompt used to generate specification for each assembly in the dataset construction
pipeline.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an expert mechanical engineer with a sharp analytical mind. You are given
the assembly image, the descriptions of all parts (each as ’filename: description’), the
inspection specification, and a previous reasoning process (including its step-by-step
thoughts and its Final Answer).
. .
Your job:
1. Carefully read the previous reasoning step-by-step. Follow along and reproduce
the steps until you encounter the first error or mistake.
2. Once you spot the first mistake, stop following the previous reasoning and use
a natural transition phrase (such as: “But, wait, let’s pause and examine this more
carefully.” or “Wait, something seems off. Let’s pause and consider what we know so
far.”) to point out the error and correct it.
3. From that point on, continue the reasoning process in your own words, step-by-
step, until you reach the correct answer (i.e., the filenames consistent with the correct
ground-truth solution).
4. Do not mention “previous attempt” or “ground-truth solution” explicitly. Make your
reasoning sound like a student discovering and correcting their own mistake in real
time.
5. If the previous reasoning is already correct, simply reproduce the previous reason-
ing and the final answer as is.
6. End your output with a “Final Answer:” line followed by the filenames (from the keys
above), separated by semicolons (;), with no extra words or punctuation.

Figure A.4: Prompt used to revise CoTs.

Now, for the following question, use the above reasoning as reference and answer
step-by-step:
Assembly image:
[image attached]
Part descriptions:{desc_lines}
Specification:{spec}
. .
Your task:
1. Think step by step (Chain-of-Thought) and explain how you identify the required
part(s).
2. In the last line, write ’Final Answer:’ followed by only the selected part filenames
(from the keys above), separated by semicolons (;), with no extra words or punctuation.
Example output:
Chain-of-Thought:
First, I check the descriptions of all parts. Only part1.png and part2.png are described
as cylindrical pins. Therefore, the required parts are part1.png and part2.png.
Final Answer:
part1.png;part2.png

Figure A.5: Prompt used to generate the part retrieval results.

A.5 SUPPLEMENTARY RESULTS

(1) Retrieval relevance to Table 1. We report the retrieval relevance results as shown in Table A.2.
Define TP = |GT∩Pred|, FP = |Pred−GT|, FN = |GT−Pred|, Then Recall and F1 are computed
as:

Recall =
TP

TP + FN
, (8)

F1 =
2PR

P +R
. (9)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We report both global averaged Recall/F1 and per-group Recall/F1 based on the number of parts
(< 10, 10–20, 20–50, > 50), evaluated on the self-generated dataset. We can see that the pro-
posedError Notebook consistently yields clear and meaningful improvements in retrieval rele-
vance.

Table A.2: Retrieval relevance evaluation.

Strategy Global Recall Global F1 Per-group Recall / F1

< 10 10–20 20–50 > 50

GPT-4o (Omni)
w/o E-Notebook 0.406 0.532 0.520 / 0.664 0.362 / 0.481 0.277 / 0.370 0.171 / 0.239
w/ E-Notebook 0.692 0.686 0.828 / 0.837 0.644 / 0.629 0.557 / 0.534 0.367 / 0.364

GPT-4o mini
w/o E-Notebook 0.261 0.385 0.344 / 0.494 0.218 / 0.325 0.179 / 0.269 0.089 / 0.144
w/ E-Notebook 0.500 0.523 0.619 / 0.675 0.500 / 0.504 0.289 / 0.288 0.272 / 0.275

Gemini 2.5 Pro Non-streaming
w/o E-Notebook 0.627 0.607 0.778 / 0.781 0.571 / 0.532 0.451 / 0.416 0.316 / 0.304
w/ E-Notebook 0.662 0.595 0.815 / 0.796 0.590 / 0.569 0.472 / 0.444 0.392 / 0.225

Gemini 2.0 Flash Non-streaming
w/o E-Notebook 0.552 0.573 0.681 / 0.728 0.529 / 0.531 0.400 / 0.392 0.241 / 0.254
w/ E-Notebook 0.630 0.628 0.777 / 0.784 0.583 / 0.584 0.468 / 0.446 0.297 / 0.296

Gemini 1.5 Pro Non-streaming
w/o E-Notebook 0.565 0.554 0.717 / 0.727 0.522 / 0.497 0.366 / 0.340 0.253 / 0.247
w/ E-Notebook 0.575 0.557 0.745 / 0.738 0.474 / 0.456 0.396 / 0.362 0.272 / 0.261

Cloud Vision (Image) + Gemini 2.0 Flash Non-streaming
w/o E-Notebook 0.617 0.604 0.750 / 0.776 0.583 / 0.553 0.438 / 0.398 0.342 / 0.318
w/ E-Notebook 0.636 0.622 0.788 / 0.794 0.577 / 0.562 0.447 / 0.412 0.342 / 0.326

(2) Our method is not highly sensitive to the specific retrieval scoring function. In Table 1,
the Error Notebook relies on a character-level similarity retriever, which computes a normalized
character-level matching score between textual specifications. To further examine whether our
method is sensitive to the retrieval scoring function, we additionally implemented a new retriever
based on token-level Jaccard similarity as shown in Table A.3. This new version tokenizes each
specification and measures the overlap between the resulting token sets. Overall, the token-level
Jaccard retriever yields slightly higher accuracy (approximately +2% on the self-generated dataset).
Importantly, across all retriever variants, the Error Notebook consistently provides large and ro-
bust gains over the baseline.

Table A.3: Comparison between character-level and token-level retrieval scoring functions.

Strategy Self-generated dataset Human preference dataset

Overall < 10 10–20 20–50 > 50 Overall < 10 10–20 20–50 > 50

w/o E-Notebook (Table 1) 28.5 40.7 22.4 15.3 5.0 41.7 47.9 32.4 26.5 0.0
w/ E-Notebook (Table 1, character-level) 48.3 66.8 35.9 29.7 16.3 65.1 75.5 42.6 41.2 21.4
w/ E-Notebook (New, token-level) 50.2 68.4 39.7 31.4 16.3 68.1 77.3 50.0 47.1 21.4

(3) The results in Figure A.6 show that incorporating CoT reasoning from the Error Notebook
is particularly valuable for challenging cases with higher part counts (> 10).

(4) We demonstrate the effectiveness of the proposed two-stage pipeline. As shown in Fig-
ure A.7, the proposed two-stage pipeline for part retrieval in 3D CAD assemblies achieves signif-
icantly higher accuracy compared to the image-only reasoning baseline. In the image-only setup,
both the assembly image and individual part images are directly fed to the VLM in a single infer-
ence step, relying solely on visual input. In contrast, our proposed method first utilizes the VLM

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure A.6: Effect of CoT reasoning and exemplar number on retrieval accuracy across differ-
ent assembly complexities and datasets. Top row: results on the self-generated dataset; bottom
row: results on the human preference dataset. (a) For simple assemblies (< 10 parts). (b) For
more complex assemblies (10–50 parts). The x-axis indicates the number of exemplars retrieved
from the Error Notebook, where each exemplar consists of either (i) the final corrected answer only
(Non-CoT group) or (ii) the corrected CoT reasoning steps plus the final answer (CoT group).

to generate concise part descriptions within the assembly context, and then performs part retrieval
as a second reasoning step with the assistance of these textual descriptions. This design introduces
an additional layer of interpretability and context-awareness, leading to consistent performance im-
provements across all part count groups. Quantitatively, the image-only baseline yields an over-
all accuracy of 15.0% (107/715). The proposed pipeline achieves an overall accuracy of 33.6%
(240/715), with 51.2% (185/361) for < 10 parts, 23.7% (37/156) for 10–20 parts, 11.9% (14/118)
for 20–50 parts, and 5.0% (4/80) for > 50 parts. These results demonstrate the effectiveness of
incorporating part descriptions as intermediate representations.

Figure A.7: Accuracy comparison between proposed pipeline and image-only reasoning. Per-
formance is shown for the proposed pipeline, which leverages part descriptions as intermediate
references, versus the one that directly reasons over images.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table A.4: Results of Aya-Vision-8B.

Strategy Self-generated dataset (666 cases) Human preference dataset (370 cases)

Overall < 10 10–20 Overall < 10 10–20

w/o E-Notebook 16 16 0 14 14 0
w/ E-Notebook (ours) 54 53 1 51 50 1

Improvement +38 (3.4×) +37 +1 +37 (3.6×) +36 +1

(5) Our method can demonstrate strong performance on open-source models. The results of
Aya-Vision-8B is shown in Table A.4. For efficiency, we used 7× A40 GPUs for around 36 hours,
and an additional run on 3× H20 GPUs for around 12 hours. All experimental settings (except the
model itself) remained identical to those in Table 1. Therefore, for open-source VLMs, ourError
Notebook method still brings substantial and meaningful gains.

A.6 VISUALIZATION

Figure A.8: Overview of the dataset construction pipeline. For each assembly, a vision-language
model is used to generate concise and discriminative natural language descriptions for every part.
Subsequently, the model generates assembly-level specification sentences describing the required
relationship or fit between selected parts. To support human annotation, the specified parts are
merged and visualized as a single 3D model image.

Figure A.9: Supplementary overview of the verification of the corrected reasoning trajectories.

20

	Introduction
	Methodology
	Dataset Construction
	Part Retrieval Framework
	Error Notebook Construction
	Verifying Corrected Reasoning: Grammar-Constraint Filtering
	Error Notebook + RAG-Based Inference

	Experiments
	Implementation Details
	Main Result
	Efficiency Analysis

	Conclusion
	The use of large language models (LLMs)
	Ethics statement
	Reproducibility statement
	Appendix
	Abbreviations
	Full engineering pipeline illustration
	Case studies
	Prompts
	Supplementary results
	Visualization

