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Abstract

Large language models demonstrate reasonable001
multilingual abilities, despite predominantly002
English-centric pretraining. However, the spon-003
taneous multilingual alignment in these models004
is shown to be weak, leading to unsatisfactory005
cross-lingual transfer and knowledge sharing.006
Previous works attempt to address this issue007
by explicitly injecting multilingual alignment008
information during or after pretraining. Thus009
for the early stage in pretraining, the alignment010
is weak for sharing information or knowledge011
across languages. In this paper, we propose012
PREALIGN, a framework that establishes mul-013
tilingual alignment prior to language model pre-014
training. PREALIGN injects multilingual align-015
ment by initializing the model to generate sim-016
ilar representations of aligned words and pre-017
serves this alignment using a code-switching018
strategy during pretraining. Extensive experi-019
ments in a synthetic English to English-Clone020
setting demonstrate that PREALIGN signifi-021
cantly outperforms standard multilingual joint022
training in language modeling, zero-shot cross-023
lingual transfer, and cross-lingual knowledge024
application. Further experiments in real-world025
scenarios further validate PREALIGN’s effec-026
tiveness across various model sizes.027

1 Introduction028

Large language models (Brown et al., 2020; Tou-029

vron et al., 2023a,b) have drastically changed the030

research paradigm of multilingual language pro-031

cessing. Despite being trained on mainly English032

texts, they still exhibit reasonable ability for other033

languages (Touvron et al., 2023a,b; Wang et al.,034

2024), and have established multilingual alignment035

to some extent (Devlin et al., 2019; Conneau and036

Lample, 2019; Lin et al., 2022). However, re-037

searchers (Wang et al., 2024; Gao et al., 2024;038

Zhang et al., 2023; Qi et al., 2023) have found039

the spontaneous alignment between languages in040

these model is still relatively weak, leading to weak041

cross-lingual factual knowledge retrieval (Wang 042

et al., 2024; Gao et al., 2024) and inconsistency 043

behaviors given the same input (Qi et al., 2023; 044

Zhang et al., 2023). 045

A handful of works (Reimers and Gurevych, 046

2020; Cao et al., 2020; Wu and Dredze, 2020; 047

Chaudhary et al., 2020; Yang et al., 2021; Tang 048

et al., 2022; Feng et al., 2022; Gao et al., 2024) 049

try to mitigate the problem by explicitly injecting 050

alignment information using existing supervision 051

data. They either construct cross-lingual predic- 052

tion tasks (Chaudhary et al., 2020; Yang et al., 053

2021) or train models to produce similar repre- 054

sentations of aligned words or sentences (Tang 055

et al., 2022; Wu and Dredze, 2020; Reimers and 056

Gurevych, 2020). Although these methods can 057

bring reasonable improvements, the establishment 058

of multilingual alignment requires a long training 059

process either during or after pretraining (Dufter 060

and Schütze, 2020), which prevents the model from 061

effectively performing cross-lingual transfer at ear- 062

lier stage in pretraining. 063

In this paper, we introduce PREALIGN, a frame- 064

work designed to enhance the alignment of pre- 065

trained language models. PREALIGN differs from 066

prior methods by integrating the multilingual align- 067

ment information before extensive language pre- 068

training and maintaining it throughout the pretrain- 069

ing process. This proactive alignment effectively 070

advances cross-lingual transfer, which enhances 071

the model’s proficiency in target languages early in 072

its training, therefore improving the model’s ability 073

to acquire knowledge at that stage. 074

More specifically, before large-scale language 075

pretraining, PREALIGN first collects multilingual 076

translation pairs between English and languages 077

to be transferred, and inject this information into 078

the model by initializing it to produce similar rep- 079

resentations of aligned words. In order to main- 080

tain the established multilingual alignment across 081

the pretraining phase, we propose an input-only 082
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codeswitching strategy, which only substitutes083

words in the input text to its aligned words, and op-084

timizes model using language modeling objective.085

We firstly conduct experiments on a English to086

English-Clone settings (K et al., 2020; Dufter and087

Schütze, 2020; Schäfer et al., 2024). English-clone088

is a synthetic language that shares identical gram-089

mar and vocabulary distribution with English, but090

no vocab overlap. This allows us to study cross-091

lingual transfer on a more controlled environment.092

Experiments demonstrate that PREALIGN signifi-093

cantly improves models’ ability of languages to be094

transferred, and strengthens cross-lingual transfer095

of downstream task abilities and knowledge. Fur-096

ther analysis shows that the early established mul-097

tilingual alignment can be kept throughout large-098

scale language pretraining and generalize to other099

words. We further experiment with our methods on100

real-world settings, and validates the effectiveness101

of PREALIGN across different model scales.102

2 Related Work103

2.1 Understanding Cross-lingual Ability of104

Pretrained language models105

Many works attempt to analyze the cross-lingual106

ability of LLMs. Dufter and Schütze (2020); Con-107

neau et al. (2020) try to explain factors that con-108

tributes to spontaneous multilingual alignment de-109

veloped in pretrained language models, including110

under-parameterization, shared model architectures111

and pivot words across languages. Other works in-112

vestigate the working mechanism of multilingual113

representations. Wendler et al. (2024) find that114

English-centric models works on a concept space115

that is close to English when processing other lan-116

guages. Recently, Gao et al. (2024); Qi et al. (2023)117

analyze multilingual knowledge alignment in exist-118

ing LLMs, and find that multilingual training and119

instruction tuning can only lead to shallow align-120

ment, i.e. LLMs can achieve similar task perfor-121

mances and consistent responses across languages,122

yet cannot apply knowledge across languages.123

Our paper differs from theirs in that we focus on124

improving models’ cross-lingual ability and suc-125

cessfully unlocks the ability of cross-lingual knowl-126

edge transferring.127

2.2 Enhancing Cross-lingual Ability of128

Pretrained Language Models129

Other studies also seek to enhance the cross-lingual130

capabilities of pretrained language models. These131

typically utilize explicit alignment signals, such as 132

parallel sentences and dictionaries. They can be 133

categorized based on when the alignment occurs: 134

during pretraining or post-pretraining. 135

On the first category, Yang et al. (2020); Chaud- 136

hary et al. (2020) perform codeswitching on the 137

monolingual data to make model better capture 138

cross-lingual relation and dependency. Hu et al. 139

(2021) train the model to produce consistent word 140

alignment matrices between source and target lan- 141

guage and similar representations for parallel sen- 142

tences. Chi et al. (2022) explores multilingual re- 143

placed token detection and translation replaced to- 144

ken detection task. Tang et al. (2022) further maxi- 145

mize the cosine similarity of aligned word embed- 146

dings to explicitly inject multilingual alignment. 147

On the second category, researchers enhance 148

the multilingual alignment after pretraining. Ear- 149

lier works either optimizes pretrained models to 150

produce similar representations for parallel sen- 151

tences (Reimers and Gurevych, 2020; Pan et al., 152

2021; Feng et al., 2022) or parallel words (Cao 153

et al., 2020; Wu and Dredze, 2020). Recent works 154

on large language models typically train the model 155

to produce consistent responses (She et al., 2024) 156

or performing cross-lingual instruction-following 157

tasks (Zhu et al., 2024b,a). 158

PREALIGN differs from all above works in that it 159

establishes multilingual alignment before language 160

pretraining, therefore facilitating the cross-lingual 161

transfer at early pretraining stage. 162

3 Methodology 163

In this section, we present PREALIGN, a simple 164

and effective framework that advances the estab- 165

lishment of multilingual alignment before language 166

pretraining. 167

3.1 Injecting Multilingual Alignment before 168

Language Pretraining 169

PREALIGN aims to inject multilingual alignment 170

information before large-scale language model pre- 171

training, which facilitates cross-lingual transfer as 172

soon as possible. This involves two stages: collec- 173

tion of multilingual alignment table and alignment 174

injection via contrastive learning. 175

Collection of multilingual alignment table 176

Given an English monolingual corpus D, PRE- 177

ALIGN extracts from D the collections of all unique 178

words W = {w}Ni , where N is the number of 179

unique words. For each word w, we translate 180
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it to all considered target languages, and denote181

the translation results as T (w). Since there exist182

complex many-to-many alignment relationships be-183

tween languages, PREALIGN needs to collect all184

possible translations. We rely on GPT-4 to collect185

the corresponding translations in this paper.186

Alignment injection via contrastive learning187

After the multilingual alignment table is collected,188

PREALIGN initializes models’ parameters using a189

contrastive alignment objective, which optimizes190

the model to produce similar representations for191

aligned words. Specifically, given an English word192

wi and its translations across all other languages193

T (wi), PREALIGN firstly obtains representations194

of each layer for each w ∈ Swi :195

hlw = MeanPool(f(w, l)) (1)196

where l = 0, 1, · · · , L, L+ 1. f(w, l), 1 ≤ l ≤ L197

denotes of the l-th Transformer layer representa-198

tions of the model’s encoding of w. f(w, 0) and199

f(w,L+ 1) denotes the word embedding and out-200

put embedding of w, respectively. Note that since201

w could be tokenized to multiple subwords, PRE-202

ALIGN aggregates them into a single representation203

using mean-pooling operator.204

PREALIGN then leverages a contrastive learning205

objective (Khosla et al., 2021) to establish align-206

ments between words in different languages:207

Ll
align =

∑
wj∈W

wi∈T (wj)

log
exp(cos(hlwi

, hlwj
)/τ)∑

wk∈B exp(cos(hlwj
, hlwk

)/τ)

(2)208

where B is the set of all words in current mini-209

batch, τ is the temperature parameter. cos(·, ·) is210

the cosine similarity function. The final learning211

objective is the sum of contrastive loss of all layers:212

Lalign =

L+1∑
l=0

Ll
align (3)213

To prevent the initialization from being trapped214

in a local minima that is not suitable for the subse-215

quent language modeling, we also add an auxiliary216

language modeling loss beside the contrastive ob-217

jective in practice:218

Ljoint = Lalign + LLM (4)219

Note that, the LLM objective in the pre-alignment220

stage only serves to regularize the optimization221

process, rather than performing large-scale pre- 222

training. In practice, this stage only consumes 5% 223

pretraining data. 224

3.2 Maintaining Multilingual Alignment via 225

Input-only Codeswitching 226

The method described previously introduces multi- 227

lingual alignment information before language pre- 228

training. However, this information may be quickly 229

forgotten if not continuously reinforced. Inspired 230

by prior research (Chaudhary et al., 2020; Yang 231

et al., 2021) demonstrating that code-switching ef- 232

fectively promotes multilingual alignment, we pro- 233

pose using the code-switching technique to sustain 234

this alignment throughout the pretraining process. 235

Originally, code-switching was applied to both 236

the input sequence and the target tokens in raw 237

data, posing no issues for pretraining encoder-only 238

models. However, this approach exacerbates the 239

issue of multilingual script mixing in the outputs 240

of decoder-only models. To address this, we pro- 241

pose an input-only codeswitching strategy that 242

affects only the input. The distinction between 243

the traditional codeswitching and our input-only 244

codeswitching is illustrated in Figure 1. 245

Formally, given a subword sequence 246

X<ix
1
i · · ·ximX>i, where X<i and X>i are 247

the subword sequences before and after the i-th 248

word, respectively. x1i · · ·xmi is the subword 249

sequence of the i-th words. Suppose the i-th word 250

is substituted by y1i · · · yni after codeswitching, 251

then the language modeling objective after the 252

original codeswitching is 253

p(X<i) · p(X>i|y1i · · · yni ) 254

· p(y1i |X<i) ·
n∏

j=2

p(yji |X<iy
1
i · · · y

j−1
i )

(5)

255

In Equation 5, the item p(y1i |X<i) requires the 256

model to generate words in another language given 257

prefixes in one language. To mitigate this, input- 258

only codeswitching modifies the objective to be 259

p(X<i) · p(X>i|y1i · · · yni ) · p(x1i |X<i). (6) 260

Equation 6 changes the prediction objective of sub- 261

words in the word after codeswitching (p(y1i |X<i)) 262

to subwords in the word before codeswitching 263

(p(x1i |X<i)), therefore preventing the generation 264

results contain scripts from other languages. In this 265

paper, we use a codeswitching ratio of 5%. 266
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Figure 1: Comparison between vanilla codeswitching
and the proposed input-only codeswitching. The orig-
inal English sentence is He plays the piano well, and
Klavier is the German translation of piano.

4 Experimental Settings267

4.1 Datasets and Models268

Model Configuration We adopt the GPT-2 style269

Transformer architecture for our model. At the de-270

faulting setting, our model contains 12 Transformer271

layers with a hidden dimension of 1024. The num-272

ber of total non-embedding parameters is about273

150 million. We use AdamW (Kingma and Ba,274

2017) optimizer with a global batch size of about 1275

million tokens. The learning rate is decayed from276

3e− 4 to 3e− 5 following a cosine scheduler.277

Pretraining Dataset We adopt Cul-278

turaX (Nguyen et al., 2023) as the pretraining279

dataset. CulturaX is a multilingual pretraining280

corpus that has been rigorously cleaned. Due to the281

non-affordable computational cost to use all data282

for experiments, we only consider English as the283

source language, and Chinese (Zh), German (De),284

Russian (Ru), Arabia (Ar) as the target language.285

For English, we randomly select 10 billion tokens286

from CulturaX as the pretraining data. For each287

language to be transferred to, we randomly select288

100 million tokens.289

4.2 Evaluation Protocol290

Target Language Modeling (LM) The first eval-291

uation metric is the language modeling perfor-292

mance of target language. Given the same amount293

of target language data, this can reflect how well294

cross-lingual transfer is.295

Zero-shot Cross-lingual Transfer (ZS-CLT) 296

Another common way to evaluate model’s cross- 297

lingual ability is zero-shot cross-lingual transfer, 298

where we finetune models on the task data in source 299

languages, and test model’s ability on the same task 300

in target languages. We use the commonly-used 301

XNLI (Conneau et al., 2018) dataset for ZS-CLT 302

evaluation. 303

Cross-lingual Knowledge Application (CLKA) 304

Large language models acquire extensive world 305

knowledge from their pretraining corpora. How- 306

ever, significant portions of knowledge exist exclu- 307

sively in texts of specific languages. It is crucial 308

for LLMs to learn knowledge from texts in one 309

language and apply it across other languages. 310

In order to evaluate models’ ability to perform 311

such cross-lingual knowledge application, we pro- 312

pose a setting where we attach English texts de- 313

scribing synthetic knowledge to the pretraining cor- 314

pus, and test models’ completion accuracy of the 315

injected knowledge in the target language. Each 316

synthetic knowledge is a triplet like (subject, re- 317

lation, object), where relations are extracted from 318

WikiData (Vrandečić and Krötzsch, 2014), and sub- 319

jects and objects are artificial entities. 320

To better monitor the model’s learning dynamics, 321

we segmented the pretraining process into shorter 322

periods, each consisting of 250 training steps. Dur- 323

ing each period, we incorporate various knowl- 324

edge triplets into predefined templates to create sen- 325

tences that encapsulate specific knowledge, which 326

are then added to the pretraining data exclusively 327

during that period. Following each learning pe- 328

riod, we assess the model’s knowledge retention 329

by introducing three distractors—random named 330

entities substituted for the original object in the 331

knowledge statement—and evaluate the model’s 332

ability to correctly assign the highest likelihood 333

to the correct statement. This assessment occurs 334

immediately after each training period using the 335

corresponding model checkpoint. 336

5 Experiments on Synthetic Transferring 337

Settings 338

We start our evaluation on a English to Synthetic 339

language transferring setting, which allows us to 340

better control the relationship between the source 341

language and target language. We first describe the 342

construction of synthetic language and implication 343

of the setting in Section 5.1. We then present ex- 344

perimental results in Section 5.2 and Section 5.3. 345

4



#Tokens LM (ppl. ↓) ZS-CLT (acc. ↑) CLKA (acc. ↑)
En En-Clone En En-Clone En En-Clone En-Clone

Only Tgt - 0.1B - 47.2 - - -
Full Tgt - 10B - 16.2 - - -

Joint Training 10B 0.1B 16.1 21.6 79.8 74.9 27.7
PREALIGN 10B 0.1B 15.9 16.5 80.1 79.3 64.6

Table 1: Performance of PREALIGN and other methods on language modeling, ZS-CLT and CLKA. The performance
of CLKA is averaged over each learning period.

Figure 2: Illustration of the creation of English-Clone.

Finally, in-depth discussions are presented in Sec-346

tion 5.4, 5.5 and 5.6.347

5.1 Investigating Cross-Lingual Transfer348

based on Cloned English349

We construct a synthetic language called En-Clone,350

by cloning all English words by a one-to-one map-351

ping. En-Clone shares the same linguistic proper-352

ties with English, such as vocabulary distribution,353

grammar and syntax, yet they have no word over-354

lapping. See Figure 2 for an illustration of the355

creation of En-Clone.356

This synthetic setting provides many benefits.357

Firstly, the English to En-Clone setting arguably358

forms the easiest setting for testing the cross-359

lingual transferring ability of LLMs, since it does360

not involve the discrepancy of word ordering and361

possibly complex one-to-many/many-to-one align-362

ments between real-world languages. Therefore,363

this setting can serve as a sanity-check for cross364

lingual transferring methods.365

Secondly, since the golden alignment between366

English and En-Clone is trivial to get, we can eas-367

ily achieve perfect alignment at the initialization368

stage by setting the input and output embedding369

of aligned tokens to be identical. In this way, hid-370

den states of all intermediate layers would also be371

identical. This provides us a chance to analyze the372

upper-bound performance of our method.373

5.2 Experimental Results 374

We present the results on LM, ZS-CLT and CLKA 375

in Table 1. Beside Joint Training and PREALIGN, 376

we also list the performance of Only-Tgt, where 377

we only train the model on the same amount of 378

En-clone data, and Full-Tgt, where we train the 379

model on the En-clone data with the same size as 380

full English data. 381

Joint Training achieves spontaneous multilin- 382

gual transfer to some extent. It can be seen 383

from Table 1 that compared to Only Tgt, Joint 384

training achieves notable improvements on LM de- 385

spite there are neither parallel signal or pivot words 386

between English and English-clone. However, this 387

transfer does not work well on CLKA, which is 388

consistent with previous findings (Gao et al., 2024) 389

that CLKA cannot be improved by multilingual 390

pretraining. 391

PREALIGN improves over Joint Training on 392

all evaluation tasks. We can also see that PRE- 393

ALIGN significantly outperforms Joint Training on 394

all three evaluation tasks. On the LM evaluation, 395

PREALIGN even achieves performance comparable 396

to Full Tgt, despite it only uses 1% En-Clone data. 397

This demonstrates the effectiveness of PREALIGN 398

for facilitating cross-lingual transfer. 399

5.3 An in-depth investigation of CLKA 400

In order to better investigate the dynamic of cross- 401

lingual knowledge transfer during pretraining, we 402

plot the accuracy of knowledge completion of dif- 403

ferent training period. Figure 3 presents the results. 404

Language ability affects the rate of knowledge 405

learning. Firstly, we can see from the top-left 406

of Figure 3, where we test English knowledge in 407

English language, models’ knowledge completion 408

accuracy after each learning period rapidly grows 409

as the pretraining goes on. This indicates that the 410

rate of knowledge learning strongly correlates with 411
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Figure 3: Knowledge application accuracy at each training period of different models. f indicates the frequency of
the test knowledge.

Joint Training Multi-Align Init Input-only CS LM (ppl. ↓) ZS-CLT (acc. ↑) CLKA (acc. ↑)

#1 ! 21.6 74.9 27.7
#2 ! ! 19.7 76.1 32.6
#3 ! ! 17.1 77.8 54.5
#4 ! ! ! 16.5 79.3 64.6

Table 2: Ablations of PREALIGN. Multi-Align Init: using multilingual alignment objective to initialize LM.
Input-only CS: the proposed data augmentation method by only codeswitching the input words. All reported
performance are evaluated in English-Clone.

models’ language modeling ability. The final per-412

formance also correlates with the knowledge fre-413

quency in the learning period as expected.414

Early cross-lingual transfer enhance target lan-415

guage ability, facilitating knowledge learning.416

In the top-right of Figure 3 where we test English-417

Clone knowledge in English-clone language, we418

observe a similar trend with the top-left figure.419

However, the growing rate of Joint Training is420

slower compared to PREALIGNespecially when the421

frequency of knowledge is low, indicating the early422

alignment introduced by PREALIGN can boost tar-423

get language modeling ability, therefore improving424

the learning of target language knowledge.425

PREALIGN unlocks cross-lingual knowledge 426

transfer. From the bottom two figures in Fig- 427

ure 3, we can see the CLKA ability of Joint Train- 428

ing is significantly weaker than PREALIGN. This 429

renders PREALIGN a promising method for learn- 430

ing truly multilingual knowledge alignment. 431

5.4 Ablation Study 432

In this section, we present an ablation study of the 433

proposed methods, including the multilingual align- 434

ment initialization and the input-only codeswitch- 435

ing strategy. The results is presented in Table 2. 436

Solely input-only CS helps LM and ZS-CLT, 437

but not CLKA. Comparing Line #1 and Line #2, 438

we can see that adding input-only CS to the pre- 439

training stage can bring improvements to language 440
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LM Codeswitching Ratio

Original CS 17.1 4.17%
Input-only CS 16.5 0.02%

Table 3: Comparison of the original codeswitching strat-
egy and the proposed input-only codeswitching strat-
egy. Not the codeswitching ratio in the table refers to
the portion of random English samples that contains
English-clone scripts during inferencing.

Figure 4: The evolution of word embeddings’ cosine
similarity between aligned words from different models.

modeling and downstream cross-lingual transfer-441

ring performance, which is consistent with findings442

in previous works (Chaudhary et al., 2020; Yang443

et al., 2021). However, the improvement on CLKA444

is much smaller (27.7 → 32.6).445

Multilingual alignment initialization signifi-446

cantly facilitates CLT, especially CLKA. By es-447

tablishing multilingual alignment before language448

model pretraining, all considered metrics that eval-449

uating cross-lingual transfer are significantly im-450

proved (Line #1 vs. Line #3 and Line #2 vs. Line451

#4). Notably, this brings a much better CLKA452

performance, highlighting the importance of early453

multilingual alignment for knowledge transferring.454

Combining Multi-Align Init with input-only455

codeswitching achieves the best performance.456

Finally, by comparing Line #4 vs. Line #2 and457

Line #3, we can see the proposed two strategies458

all contributes to the good performance that PRE-459

ALIGN achieves.460

We also compare the proposed input-only461

codeswitching strategy with the vanilla codeswitch-462

ing strategy in Table 3, in terms of both English463

language modeling performance and the ratio that464

generation results contains En-clone tokens. It can465

LM ZS-CLT CLKA

Joint Training 21.6 74.9 27.7

PREALIGN

β = 25% 17.0 78.2 58.5
β = 50% 16.8 78.6 60.9
β = 75% 16.6 78.8 62.1
β = 100% 16.5 79.3 64.6

Table 4: Performance of PREALIGN when using differ-
ent portion of aligned word pairs. For reference, we also
list the performance of Joint Training.

be seen that when the training time codeswitching 466

ratio is to 5%, adopting vanilla codeswitching strat- 467

egy would result in 4.17% sentences contains En- 468

clone tokens, which would significantly decrease 469

the generation quality in real-world settings. How- 470

ever, the input-only codeswitching strategy pro- 471

posed in this paper effectively decrease the ratio to 472

0.02%, and achieves better English LM perplexity. 473

5.5 Multilingual alignment is maintained 474

across pretraining. 475

In order to understand how the injected multi- 476

lingual alignment information before pretraining 477

evolves, we compute the similarity of aligned word 478

embeddings at different training steps. Figure 4 479

illustrates the results. 480

Firstly, we can see that despite there are no 481

vocabulary overlap between English and English- 482

clone, the embedding similarity of aligned words 483

still grows during pretraining, which is consis- 484

tent with findings in previous works (Dufter and 485

Schütze, 2020). This indicates the ability of spon- 486

taneous establishment of multilingual alignment of 487

language models. Secondly, the aligned similarity 488

score of PREALIGN is near perfect as designed, 489

and despite the score decreases at the beginning of 490

pretraining, it maintains to be significantly higher 491

than Joint Training throughout the pretraining pro- 492

cess. Finally, the codeswitching strategy is helpful 493

for both Joint Training and PREALIGN, as it ac- 494

celerates the increment of Joint Training’s aligning 495

similarity score, and helps slow down the decre- 496

ment of PREALIGN’s aligning similarity score. 497

5.6 Generalization to Unseen Word Pairs 498

In previous experiments, we assumes that we can 499

collect translations for all words in the pretraining 500

corpus. However, in real-world settings, this might 501
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LM(ppl. ↓) ZS-CLT(acc. ↑) CLKA(acc. ↑)

En Zh De Ar Ru En Zh De Ar Ru En Zh De Ar Ru

150M

Joint Training 25.7 99.7 43.5 46.9 49.8 80.6 24.6 63.5 58.3 62.0 - 25.7 25.4 25.8 26.8
PREALIGN 25.4 91.1 39.8 40.7 44.6 80.6 69.2 67.5 60.8 65.1 - 45.7 48.2 43.4 46.0

400M

Joint Training 20.3 79.8 32.5 34.8 39.6 82.3 65.8 65.3 56.9 63.7 - 31.2 30.5 34.1 29.7
PREALIGN 19.9 75.2 28.3 30.7 33.6 82.4 70.0 69.3 65.6 68.2 - 50.2 51.0 49.3 48.9

1.3B

Joint Training 15.8 62.2 24.0 27.7 31.2 84.3 70.8 70.6 63.7 68.6 - 36.7 35.6 36.4 33.0
PREALIGN 16.1 58.0 23.3 25.3 29.4 83.9 74.0 72.9 68.2 71.4 - 54.3 53.1 52.4 50.1

Table 5: Performance on LM, ZS-CLT and CLKA of Joint Training and PREALIGN across different scale of models.

Figure 5: Language modeling perplexity on Seen and
Unseen words categorized according to multilingual
alignment stage.

be impractical. Therefore we present an investi-502

gation on whether we can only collect alignment503

table of high-frequency words, and generalize the504

alignment to words unseen in the alignment table.505

Specifically, we sort words in our unique word506

set according to their frequency, and only train PRE-507

ALIGN model based on the top β word alignment.508

Table 4 shows the results. We can see that when509

using the most frequent 25% words for multilin-510

gual alignment, PREALIGN can already achieve511

significant improvements over Joint Training. This512

indicates the alignment information can be general-513

ize between words.514

To better validate this, we split all words into515

Seen and Unseen according to their appearance516

during the multilingual alignment phase. We then517

compute the test LM perplexity of seen words and518

unseen words, and present the results in Figure 5.519

It can be seen that PREALIGN not only can effec-520

tively leverage seen words to enhance the language521

modeling ability, but only can generalize the align-522

ment information to unseen words.523

6 Experiments on Real-world Settings 524

We have presented experiments on a synthetic En- 525

glish to English-Clone settings. In this section, we 526

aim to validate the effectiveness of PREALIGN un- 527

der real-world settings. Specifically, we consider 528

the transfer from English to Chinese, Russian, Ger- 529

man and Arabia. The target languages spans four 530

different language families and serves as good rep- 531

resentatives of world languages. Performances of 532

LM, ZS-CLT and CLKA is shown in Table 5. 533

PREALIGN are also effective under real-world 534

scenarios. It can be seen from Table 5 that PRE- 535

ALIGN can still achieve substantially better per- 536

formance compared to the original Joint Training 537

method. This improvements is consistent across 538

different model scales, rendering the effectiveness 539

of PREALIGN in real-world scenarios. 540

Enlarging models is beneficial for CLKA. We 541

can also see that although Joint Training gets near- 542

random performance at the small scale, the perfor- 543

mance grows with the scale of model parameters. 544

This indicates that the ability of spontaneous mul- 545

tilingual alignment only appears on larger models, 546

which is consistent with finding in Qi et al. (2023). 547

7 Conclusion 548

We present the PREALIGN framework in this pa- 549

per. It advances the establishment of multilingual 550

alignment prior to language pretraining, and main- 551

tain it throughout pretraining using an input-only 552

codeswitching strategy. Through extensive exper- 553

iments and analysis, both on synthetic and real- 554

world settings, we demonstrate the effectiveness of 555

PREALIGN for facilitating cross-lingual ability and 556

knowledge transfer. 557
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Limitations558

The main limitation of this paper is scale of stud-559

ied models and datasets. Although we proved the560

effectiveness of PREALIGN up to 1.3B models, it561

is still very small compared to LLMs nowadays.562

Whether the findings in the paper holds on larger563

settings still remains to be explored.564

Another limitation is that we only test simple565

factual knowledge in this paper. In real worlds,566

knowledge may take more complex forms, and the567

effectiveness of PREALIGN on these settings need568

to examined.569
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