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Exposing Attention Glitches with Flip-Flop Language Modeling
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Abstract
Why do large language models hallucinate? This
work identifies and analyzes the phenomenon of
attention glitches, in which the Transformer ar-
chitecture’s inductive biases intermittently fail to
capture robust reasoning. To isolate the issue, we
introduce flip-flop language modeling (FFLM), a
parametric family of synthetic benchmarks de-
signed to probe the extrapolation of language
models. This simple generative task requires a
model to copy binary symbols over long-range de-
pendencies, ignoring the tokens in between. We
find that Transformer FFLMs suffer from a long
tail of sporadic reasoning errors, some of which
we can eliminate using various regularization tech-
niques. Our preliminary mechanistic analyses
show why the remaining errors may be very dif-
ficult to diagnose and resolve. We hypothesize
that attention glitches account for (some of) the
closed-domain hallucinations in natural LLMs.

1. Introduction
Large language models (LLMs) are known to produce in-
correct outputs, often referred to colloquially as “halluci-
nations”, creating challenges of their safe deployment (Ji
et al., 2023). Generally, hallucinations refer to the phe-
nomenon that a model’s outputs are syntactically and gram-
matically accurate but factually incorrect. There are various
types of hallucinations, and the focus of this work is the
“closed-domain” variety (Saparov & He, 2022; OpenAI,
2023), where the model predictions contain factually incor-
rect or made-up information according to a given context,
regardless of their correctness in the real world. Perhaps
surprisingly, such hallucinations can be observed even on
simple algorithmic reasoning tasks. As a warmup, consider
the queries shown in Figure 1 (and Appendix B.1), where we
prompt LLMs to solve addition problems of various lengths.
The responses simultaneously illustrate the following:
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1. Nontrivial algorithmic generalization: In cases where the
models succeed, it is unlikely that these exact numerical
sequences appeared in the training data. To correctly out-
put the first digit of the answer, the LLM must resolve a
long dependency chain which generally depends on ev-
ery digit in the input. Somewhere within these networks’
internal representations, implementations of addition al-
gorithms have emerged.

2. Sporadic errors (“hallucinations”): These internal al-
gorithms can be brittle and unreliable, especially when
processing long inferential chains. Their failures can be
subtle and unpredictable.

In this work, we consider flip-flop language processing,
a minimal unit of sequential computation which consists
of memory operations on a single bit (see Definition 1)
and underlies virtually all1 syntactic parsing and algo-
rithmic reasoning capabilities. A flip-flop language mod-
eling (FFLM) task is defined on sequences of write,
read, and ignore instructions: write sets the mem-
ory state to a certain value which is later retrieved by read,
while ignoring any contents in between. We find that
when trained to complete flip-flop sequences, the Trans-
former architecture exhibits a long tail of reasoning errors,
unlike previous-generation recurrent models such as the
LSTM (Hochreiter & Schmidhuber, 1997). We coin the
term attention glitch for this phenomenon, and hypothesize
that this captures a systematic failure mode of Transformer-
based LLMs when internally representing long chains of
algorithmic reasoning.

Our contributions are as follows:

• FFLM: a minimalistic long-range dependency bench-
mark. We propose flip-flop language modeling, a para-
metric family of synthetic benchmarks for autoregressive
sequence modeling, designed to isolate and probe reason-
ing errors like those demonstrated in Figure 1.

• An empirical failure of attention to attend. We find that
while Transformer models can appear to learn flip-flop
languages perfectly on held-out samples in distribution,
they make a long tail of unpredictable reasoning errors

1More precisely, whenever the desired algorithm needs to
“store memory” (i.e. contains a non-invertible state transformation);
see Section 2.
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Figure 1: Cherry-picked integer addition prompts: state-of-
the-art LLMs can generalize non-trivially on algorithmic
sequences, but sporadic reasoning errors persist. This (and
many other algorithmic reasoning capabilities) can be im-
plemented by a Transformer model using internal flip-flops.

(attention glitches) OOD on both long-range and short-
range dependencies. We evaluate various direct and in-
direct mitigations, including commonly-used regulariza-
tion techniques and attention-sharpening regularizers—a
plug-and-play way to sparsify self-attention architectures.
We find that attention-sharpening reduces reasoning er-
rors by an order of magnitude, but none of our attempts
were successful in driving the number of errors to exactly
0. Meanwhile, even tiny recurrent models work perfectly.

• Preliminary mechanistic analyses. We provide some
theoretical and empirical explorations which account for
some of the internal mechanisms for attention glitches,
and why they are so difficult to eliminate completely.

Related work. It has become an important empirical chal-
lenge to eliminate the sporadically erroneous outputs of
LLMs, popularly called “hallucinations” (Saparov & He,
2022; Ji et al., 2023). Our investigation opens the archi-
tectural black-box towards these ends (see the discussion
in Appendix A.5); other approaches include explicitly writ-
ing out the intermediate reasoning steps (Nye et al., 2021;
Wei et al., 2022), and self-consistency (Wang et al., 2022).
There have also been many datasets and tasks designed to
isolate considerations similar to ours (Tay et al., 2020; Wu
et al., 2021; Zhang et al., 2021; 2022; Saparov & He, 2022;
Shi et al., 2023). Aside from being focused on the “small-
est” and “purest” sequential reasoning capability, FFLM is
distinguished by a few factors:

• “L∞” objective: Unlike usual benchmarks, we consider
any model with less than 100% accuracy as exhibiting a
reasoning error. Aside from the motivation of completely
eliminating hallucinations, we argue that this stringent no-
tion of correctness is needed to avoid error amplification
when flip-flops are embedded in more complex networks
(see Appendix A.1).

• Parametric, procedurally generated, and generaliz-
able: Our empirical study precisely quantifies long-tail
errors via a large number of replicates over the random-
ness of both model initialization and data generation. Our

methodology can be adapted and resized to probe lan-
guage models of any size.

Detailed discussions are deferred to Appendix A.2.

2. Flip-flops and FFLM
For any even number T ≥ 4, we define a flip-flop string
as a sequence of symbols {w,r,i, 0, 1}T , which have the
semantics of instructions (write, read, ignore) and
data (one bit). A valid flip-flop string consists of alternating
pairs of instructions and data (e.g. “w 0 i 1 i 0 r
0”), for which every symbol following a r instruction must
be equal to the symbol following the most recent w; thus,
“w 0 i 1 w 1 r 0” is not a legal flip-flop string. These
sequences can be viewed as correct execution transcripts
of a program which can (perhaps occasionally) write to
a single bit of memory, and always correctly reads its
contents. We also require that all sequences begin with w.

We define a canonical family of the distributions of flip-flop
languages: let FFL(T,p) be the distribution over length-
T flip-flop strings, parameterized by p = (pw, pr, pi) ∈
∆({w,r,i}), such that:

(i) The first instruction x1 is always w, and the last
instruction xT−1 is always r.

(ii) The other instructions are drawn i.i.d. according to
(pw, pr, pi) with pi = 1− pw − pr.

(iii) The nondeterministic data symbols (paired with w
or i) are drawn i.i.d. and uniformly.

We are interested in whether language models can learn a
flip-flop language from samples, which we define as process-
ing the read operations perfectly. In this paper, we focus
on the deterministic (“clean”) mode, 2 where the predic-
tions are on deterministic positions only; that is, the model
is only required to correctly output xt+1 for the prefixes
x1:t such that xt = r. At the cost of a slight departure from
vanilla language modeling, this setting isolates the long-
range memory task. It is similar to the non-autoregressive
flip-flop monoid simulation problem (Liu et al., 2023), and it
is easy to see that recurrent networks and 2-layer Transform-
ers (see Proposition 2) can both represent FFLM parsers.
The question of whether they do, especially from less-than-
ideal data, turns out to be extremely subtle, and is the subject
of the remainder of this paper.

Why focus on the flip-flop? There are several perspectives
on why the flip-flop is fundamental: (1) Flip-flop simula-
tion (maintaining memory in a sequence) is a direct neces-
sity in many reasoning settings (Figure 4c). It is a special
(depth-1) case of Dyck language processing (Chomsky &

2We also look at another generative (“noisy”) mode which is
closer to language modeling; see Appendix B.2 for details.
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Figure 2: Top: Training curves of recurrent (left) vs. Trans-
former (right) architectures on FFLM, with best-so-far
evaluation errors highlighted for clarity. Transformers
fail to extrapolate robustly on this extremely simple task
( bolded box denotes our choice of canonical baseline).

Schützenberger, 1959; Yao et al., 2021; Zhao et al., 2023),
which is necessary for parsing recursive grammars. (2) Flip-
flops are the computational building blocks of memory: the
flip-flop monoid F (Definition 1), an algebraic encoding of
a flip-flop’s dynamics, plays an essential role in the Krohn-
Rhodes theory of automata and semigroups (Rhodes et al.,
2010). (3) Attention was originally (Bahdanau et al., 2014;
Luong et al., 2015; Vaswani et al., 2017) designed to attend
to (i.e. selectively retrieve and copy) data over long-range
dependencies. Indeed, it is easy to verify a single attention
head can perform this lookup (Proposition 2).

3. Attention glitches: a long tail of errors for
Transformer FFLMs

In our main battery of synthetic experiments, we train neu-
ral language models to generate strings from the flip-flop
language FFL(T = 512,p = (0.1, 0.1, 0.8)) (for short,
FFL(pi = 0.8)), and probe whether the networks robustly
learn the language. Although every valid flip-flop string
is supported in this distribution, some sequences are far
rarer than others; we measure tail behavior via probes of
extrapolation, defined here as out-of-distribution evaluations
which amplify the probabilities of the rare sequences. To
create these “challenging” sequences, we sample > 3× 105

sequences from FFL(0.98) (containing unusually many
“sparse” sequences with mostly ignore instructions), as
well as FFL(0.1) (many “dense” sequences). Training and
evaluating the read accuracies of Transformer models of
various sizes, as well as a recurrent LSTM model, we find
the following results (see Figure 2):

(R1) Transformers exhibit a long, irregular tail of er-
rors. Such errors occur on both sparse and dense
sequences. Further, a model’s out-of-distribution test
error varies significantly between random seeds, and
even between iterates within the same training run.

(R2) 1-layer LSTM extrapolates perfectly. In stark con-
trast, with 20 times fewer training samples and iter-
ations, a small recurrent model achieves 100% accu-
racy, on 100 out of 100 runs.

As a counterpart to these findings, we observe similar
anomalies in real LLMs, when prompted to complete natural
textual embeddings (Figure 4, top right) of flip-flop tasks:

(R3) 10B-scale natural LMs can correctly process flip-
flop languages, but not robustly. Beyond a certain
scale, natural language models can learn to process
(natural embeddings of) flip-flop languages from in-
context demonstrations. However, this emergent ca-
pability is not robust: there exist rare read errors,
whose probabilities amplify as the sequence length T
grows. We provide details for the few-shot evaluation
protocol in Appendix B.2.1.

We discuss potential mechanisms that account for attention
glitches in Appendix A.4.

4. Mitigations for attention glitches
We investigate various approaches towards eliminating the
long tail of reasoning errors exhibited by Transformer
FFLMs. We select the 19M-parameter model (with L = 6
layers, d = 512 embedding dimensions, and H = 8 heads)
from Section 3 as a canonical baseline, and conduct precise
evaluations of various direct and indirect interventions.

4.1. Direct solutions

We begin by examining what is perhaps the most obvious
solution: removing the need for out-of-distribution extrapo-
lation, by training directly with improved data coverage.
Indeed, we verify that this works near-perfectly:

(R4) Training on rare sequences works best, by a wide
margin. By training on a uniform mixture of FFL
distributions with pi = {0.9, 0.98, 0.1}, the baseline
architecture reliably converges to solutions with sig-
nificantly fewer errors on each of these 3 distributions
(teal violins in Figure 3).

This should not be surprising, in light of the realizability
of flip-flops by self-attention (and, more generally, the ex-
istence of shortcuts functionally identical to RNNs (Liu
et al., 2023)), and corroborates similar conclusions from
(Zhang et al., 2021). We also find that weaker improvements
emerge by straightforwardly increasing scale parameters in
the model and training pipelines:

(R5) Resource scaling (in-distribution data, training
steps, network size) helps, but the improvements
are orders of magnitude smaller than those in (R4),
and we observe tradeoffs between sparse- and dense-
sequence extrapolation (blue violins in Figure 3).
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Figure 3: A long tail of flip-flop errors for 10,625 Trans-
former models; some configurations reduce attention glitch
rates by orders of magnitude. Left: Out-of-distribution
evaluations for all models. Right: Effects of individual
architectural and algorithmic choices; dots at the bottom
indicate runs with 0 error.

Another class of direct solutions is to externalize the chain of
thought (CoT), for which we provide additional references
and discussions in Appendix A.2.

4.2. Indirect algorithmic controls: a bag of
regularization tricks

The interventions listed in Section 4.1 are all potentially
practical, and may shed light on how closed-domain LLM
hallucinations will diminish with data quality, scale, and
improved inference strategies. However, it is not always
feasible to implement these fixes under resource constraints
(especially data). We next investigate an orthogonal design
space, of how to robustify the internal memory mechanisms
of neural sequence models. Note that the exceptionally
strong extrapolative performance of the LSTM provides a
“skyline”, showing the possibility of far more robust archi-
tectures than the Transformer (in the flip-flop setting, with
this restricted set of considerations).

We investigate a large array of not-fully-understood algorith-
mic tricks for “smoothing” the behavior of LLMs: weight
decay, dropout, batch sizes, learning rates, optimizer hy-
perparameters, position embeddings, and activation func-
tions. We also train Transformer models with attention-
sharpening regularizers:3 during training, for attention
weights α ∈ ∆([T ]), adding differentiable loss terms which
encourage sparsity (e.g. the mixture’s entropy H(α), or
negative p-norms −∥α∥2, −∥α∥∞).

(R6) Many algorithmic choices influence extrapolative
behaviors; see the purple, brown, red, and gold vio-
lins in Figure 3 (right). Our strongest improvements
on sparse sequences are obtained by large (0.5) em-
bedding dropout and attention-sharpening losses; on
dense sequences, non-trainable position embeddings
are the most helpful.

(R7) Despite many partial mitigations, nothing elim-
inates attention glitches entirely. We found it ex-
tremely difficult to find a setting that reliably produces
Transformers with simultaneous improvements over
the baseline on sparse and dense sequences (Figure 3
left), which is trivial to do so with an LSTM.

Additionally, our preliminary mechanistic study shows that
(details deferred to Appendix B.5):

(R8) Attention-sharpening regularizers successfully
promote hard attention, but errors persist.

5. Conclusion and future challenges
We have introduced flip-flop language modeling (FFLM),
a synthetic benchmark for probing the fine-grained extrap-
olative behavior of neural sequence models, based on a
one-bit memory operation which forms a fundamental build-
ing block of algorithmic reasoning. Transformer models,
trained on insufficiently diverse flip-flop sequences, make a
long tail of sporadic reasoning errors, which we call atten-
tion glitches.4 Through extensive controlled experiments,
we find that many algorithmic mitigations can reduce the
frequency of attention glitches, but none can eliminate them
entirely. The strikingly outsized benefit of replacing the
Transformer with an LSTM network suggests that archi-
tectural innovations towards the same ends are well worth
examining.

3While less popular, such losses have been used to sparsify
dependencies in similar contexts (Zhang et al., 2018; Sukhbaatar
et al., 2021).

4In Appendix A.5, we discuss connections to the phenomenon
of “closed-domain hallucinations” in non-synthetic LLMs (e.g.
the errors demonstrated in Figure 1), and ambiguities inherent in
generalizing the definition of attention glitches.
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Appendix
A. Deferred background and discussion
A.1. Flip-flop terminology and history

The flip-flop automaton5 is a two-state machine which remembers a single bit of memory, and enables retrieval of this bit.
More precisely, the flip-flop automaton (illustrated in Figure 4(a)) is defined as:

Definition 1 (Flip-flop automaton). A flip-flop automaton A = {Q,Σ, δ} is defined with state space Q = {0, 1}, input
alphabet Σ = {σ0, σ1,⊥}, and transition function δ : Q× Σ → Q where

δ(q, σ0) = 0,

δ(q, σ1) = 1,

δ(q,⊥) = q;

∀q ∈ {0, 1}.

The semantics of the input symbols can be intuitively be identified with “write 0”, “write 1”, and “do nothing”. This
mathematical object is named after a type of electronic circuit which can store a single bit of state information (Eccles &
Jordan, 1918; 1919); such physical constructions appear ubiquitously in electrical engineering as the building blocks of
memory. The task of interest in Appendix B.5 is simulating the flip-flop automaton: the model takes as input a sequence of
x1, x2, · · · , xT ∈ Σ, and learns to output the corresponding states qt ∈ Q for each t ∈ [T ] after processing inputs x1:t.

Naturally associated with the flip-flop automaton is its transformation monoid, the closure6 of its state transformations
δ( · , σ) : Q → Q under function composition. Identifying each symbol with its state transformation map, we can compute
the multiplication table of this monoid (f ◦ g for every pair of transformations f, g):

g = σ0 g = σ1 g = ⊥
f = σ0 σ0 σ0 σ0

f = σ1 σ1 σ1 σ1

f = ⊥ σ0 σ1 ⊥

This algebraic object is called the flip-flop monoid F . Its binary operation ◦ is clearly non-invertible (intuitively: the history
of the bit cannot be recovered after a “memory write”) and non-commutative (the order of “write” operations matters); it
also has an identity element ⊥ (which does nothing to the memory bit). By enumeration of smaller objects, it can be seen
that F is the smallest monoid (in terms of order |F|, or fewest number of automaton states |Q|) which has these properties.

The flip-flop monoid plays a special role in the algebraic theory of automata (Rhodes et al., 2010): flip-flops can be cascaded
to represent more complex functions. In particular, the celebrated Krohn-Rhodes theorem (Krohn & Rhodes, 1965) gives a
“prime decomposition” theorem for all finite semigroups (associative binary operations), representing them as alternating
wreath products of flip-flop monoids and finite simple groups. Further developments (Zeiger, 1967; Eilenberg, 1974) have
interpreted this theorem as a structural reparameterization of any finite-state automaton into a feedforward hierarchy of
simple “atomic” machines (namely, flip-flops and permutation semiautomata). Basic quantitative questions (e.g. “which
functions of n variables can L layers of poly(n) flip-flops represent?”) have proven to be extremely opaque for current
mathematical tools; these are studied by the theories of Krohn-Rhodes complexity and circuit complexity.

It was noted by (Barrington & Thérien, 1988) that these reparameterizations of finite-state automata entail the existence
of parallel algorithms (i.e. shallow, polynomial-sized circuits) for sequentially executing finite-state recurrences (thus,
processing formal languages) on sequences of length T . More recently, (Liu et al., 2023) establish implications for
shallow Transformer neural networks: they show that they can size-efficiently (with depth O(log T ) and parameter count

5Sometimes, a distinction is made between a semiautomaton (Q,Σ, δ) and an automaton, which is a semiautomaton equipped with a
(not necessarily invertible) mapping from states to output symbols. We do not make such a distinction; we equip a semiautomaton with
the output function which simply emits the state q, and use “automaton” to refer to this dynamical system.

6In this case, the closure is the same as the generator set: no functions distinct from σ0, σ1,⊥ can be obtained by composing these
three functions. This is not true for a general automaton.
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Transcript of events: 
  Alice turns the light off. 
  Then, Bob eats an apple. 
  Then, Bob eats a banana. 
  Then, Alice turns the light on. 
  Then, Bob eats a banana. 
  Then, Bob eats an apple. 
  Now, the light is

def f(): 
  x = 0 
  ignore = 1 
  ignore = 0 
  x = 1 
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  ignore = 1 
  assert x ==

(a) (b) (c)

w 1 i 0 i 0 i 1 i 0 i 1 i 0 i 1 i 1 i 1 i 1 i 0 i 1 i 0 i 0 i 1 r 1 w 0 i 0 i 1 i 0 i 1 i 0 i 0 i 0 i 0 i 1 i 1 r 0 w 0 i 1 i 0 i 1 i 0 r 0

w 0 i 1 i 0 i 1 i 1 i 0 i 0 i 0 i 0 i 1 i 1 i 1 i 0 i 0 i 1 i 0 i 0 i 1 i 0 i 1 i 0 i 1 i 1 i 0 i 1 i 0 i 0 ... i 0 i 1 i 0 i 0 i 0 i 1 r 1

... r 1 w 0 i 0 w 0 w 0 r 0 w 1 w 1 w 0 w 0 r 0 w 0 r 0 w 1 r 1 r 1 w 0 w 1 w 1 r 1 w 0 w 0 r 0 i 0 r 0 w 1 w 1 w 0 r 0 r 0 r 0 r 0 w 1 r 0
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Figure 4: Elementary objects and examples associated with flip-flop languages. (a) the 2-state flip-flop machine (elided
transitions are self-loops). (2) A 4-state automaton which processes flip-flop languages (implying the existence of a small
RNN). (c) Simple examples of sequential prediction tasks which require processing a flip-flop language. Bottom: Examples
from the sparser FFL(0.98) and denser FFL(0.1) distributions, causing distinct (long-range and short-range) failure modes
for the baseline Transformer model.

Θ(T ); sometimes both improvable to O(1)) realize these parallel algorithms, and that standard gradient-based training
can empirically learn ≪ T -layer solutions on a variety of “hard” automata (e.g. composing a sequence of T 5-element
permutations; multiplying T unit quaternions). Here, the role of the flip-flop monoid is essential: it provides a natural way
to think about the role of a single self-attention head in a hierarchy of indirections, in order to learn a depth-constrained
parallel implementation of a sequential algorithm.

A.2. Additional related work

Relevant challenges in NLP: hallucinations and long-range dependencies. The empirical literature is rife with
corroborations that neural language models have trouble with robustly fitting long-range memory and multi-step reason-
ing (Khandelwal et al., 2018; Sun et al., 2021; Sukhbaatar et al., 2021; Malkin et al., 2022; Saparov & He, 2022; Orvieto
et al., 2023; Creswell et al., 2023). Such failures can result in “hallucinations”: incorrect outputs which either directly
contradict factual input in the context, or contain information absent in the context (Ji et al., 2023).

Hallucination can be attributed to various factors, such as the noisiness in data sources (Dhingra et al., 2019; Dziri et al.,
2022), imperfect encoding/decoding (Parikh et al., 2020; Tian et al., 2019), or the discrepancy in training and evaluation
setups (He et al., 2019). In particular, the most related to our paper are the characteristics inherent to the model itself. For
example, prior work has found that Transformers tend to be biased towards information covered during training (Petroni
et al., 2019; Longpre et al., 2021), a potential cause to their poor out-of-distribution performance.

In terms of mitigation, various “external” methods (i.e. ones which do not modify the internal representations of the neural
network) have been proposed to address some of the above factors, or post-processing model generations (Dziri et al., 2021;
Chen et al., 2021), possibly based on several forward passes (Wang et al., 2022; Zheng et al., 2023). Another line of work
that have gained much popularity and success is to incorporate explicit memory mechanisms, which we discuss next.

Explicit memory mechanisms in Transformers. Prior work has shown that augmenting the neural network with memory
modules or knowledge base helps improve the performance on long-range texts (Khandelwal et al., 2019; Wu et al., 2022;
Bertsch et al., 2023). An approach particularly effective for large-scale Transformers is to externalize the chain of thought
(CoT): train (or finetune, or prompt) the model to explicitly output the intermediate reasoning steps to a “scratchpad” which
the model subsequently processes (Nye et al., 2021; Wei et al., 2022; Zhou et al., 2022; Anil et al., 2022; Shao et al., 2023),
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similar to writing to and reading from a memory tape. A particular way to interact with the scratchpad is to interlace every
other token with an annotation of “as a reminder, this is the state” (Liu et al., 2023; Lanchantin et al., 2023), so that there are
no more explicit long-range dependencies.

We do not investigate this strategy in this paper, and note that prior work has provided sufficient evidence to affirm its
success in inducing the robust learning of recurrences on long synthetic sequences (Anil et al., 2022; Zhou et al., 2022; Liu
et al., 2023). Moreover, this strategy cannot fully resolve attention glitches. To begin with, it cannot be guaranteed that a
single indivisible reasoning step in a CoT is free of attention glitches; the focus of this work is to isolate and mitigate this
intrinsic architectural issue. Additionally, this strategy is the same as the recurrent solution implementable by RNNs, and it
does not always exist, especially when attention glitches occur in an internal component of the model.

Transformers and algorithmic tasks. Compared to real-world language datasets, synthetic tasks provide a cleaner and
more controlled setup for probing the abilities and limitations of Transformers. Specific to algorithmic reasoning, (Liu et al.,
2023) puts a unifying perspective on the ability of small Transformers to succeed at tasks corresponding to algorithmic
primitives. Specific tasks of interest include hierarchical languages (Yao et al., 2021; Zhao et al., 2023), modular prefix
sums (Anil et al., 2022), adders (Nogueira et al., 2021; Nanda & Lieberum, 2022), regular languages (Bhattamishra et al.,
2020), and following a chain of entailment (Zhang et al., 2022).

Comparison with Transformers Learn Shortcuts to Automata. Liu et al. (2023) study the parallel circuits efficiently
realizable by low-depth Transformers. The authors identify shortcut solutions, which exactly replicate length-T recurrent
computations (“chains of algorithmic reasoning”) in the absence of recurrence, with very few (O(log T ); sometimes
O(1)) layers. Their results contain a general structure theorem of representability, and preliminary positive empirics for
generalization and optimization, demonstrating that Transformers can learn these shallow solutions via gradient-based
training on samples. In contrast, the present work is a fine-grained study of the issue of generalization. Our main empirical
contributions are a minimally sufficient setup (FFLM) and a set of large-scale7 controlled experiments, towards providing
reasonable scientific foundations for addressing the unpredictable reasoning errors of LLMs.

A.3. Why this flip-flop language?

(Liu et al., 2023) (as well as our mechanistic interpretability experiments) use a purer instantiation of flip-flop sequence
processing, in which the sequence-to-sequence network is tasked with non-autoregressive transduction: given the sequence
of input symbols σ1, . . . , σT , output the sequence of states q1, . . . , qT . This is most natural when studying the Transformer
architecture’s algebraic representations in their most isolated form.

Our autoregressive sequence modeling setting is a slight departure from this setting; we discuss its properties and rationale
below.

• The autoregressive setting “type-checks” exactly with standard state-of-the-art autoregressive (a.k.a. causal, forward, or
next-token-prediction) language modeling. This makes it more convenient and intuitive as a plug-and-play benchmark.

• The cost is a layer of indirection: the model needs to associate “instruction” tokens with their adjacent “data” tokens.
This is a natural challenge for representation learning, and is certainly a necessary cursor for robust extrapolation on
natural sequences that embed similar tasks (like those considered in Figure 4c). It is straightforward to remove this
challenge: simply tokenize at a coarser granularity (i.e. treat (instruction, data) pair as a distinct vocabulary item).

• The multi-symbol (and variable-length-symbol, etc.) generalizations of the binary flip-flop language are more parsimo-
nious. If there are n instead of 2 tokens, this language can be encoded with = n+ 3 commands. Without the decoupling
of “instruction” tokens from “data”, the vocabulary size would scale suboptimally with n.

• The conclusions do not change: in smaller-scale experiments, we observe the same extrapolation failures between the
autoregressive and non-autoregressive task formulations.

A.4. Multiplicity of mechanisms for attention glitches

In this section, we discuss how Transformer self-attention modules, when tasked with representing flip-flops, can exhibit
multiple (perhaps mutually entangled) failure mechanisms. The accompanying propositions are proven in Appendices C.2

7∼104 19M-parameter Transformers were trained in the making of this paper; see Appendix B.6.
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and C.3.

An insufficient explanation: n-gram models. As a warmup, consider a language model P̂r[xt+1|x≤t] which only
depends on the n most recent tokens in the context. Then, if n ≪ 1

1−p , the bulk of P̂r’s predictions on FFL(pi = p) can
be no more accurate than random guessing. This recovers one qualitative trend (degradation of accuracy with dependency
length) observed in the experiments. However, this cannot fully explain our findings: it fails to account for the incorrect
predictions on dense sequences. Furthermore, the Transformers’ outputs on FFL(0.98) are mostly correct; their accuracies
on very long-range dependencies are nontrivial, despite not being perfect. There must therefore be subtler explanations for
these errors.

Lipschitz limitations of soft attention. Moving to finer-grained failure mechanisms, a known (Hahn, 2020; Chiang &
Cholak, 2022) drawback of soft attention is that its softmax operation is “too soft”– for any weight matrices with fixed
norms, the attention gets “diluted” across positions as the sequence length T increases, and can fail to perform an intended
“selection” operation. We provide a formal statement and proof (Proposition 3) in Appendix C.2.

Difficulty of non-commutative tiebreaking. Can we simply robustify soft attention by replacing it with hard attention?
We present a brief analysis which suggests that even hard attention can be brittle. In a stylized setting (one-layer models with
linear position encodings), we show that self-attention can confidently attend to the wrong index, unless the weight matrices
precisely satisfy an orthogonality condition (Proposition 4). This suggests the existence of spurious local optima, which we
do not attempt to prove end-to-end; however, we provide supporting empirical evidence in the experiments in Appendix C.3.

A.5. Attention glitches in natural LLMs

In this section, we expand on the brief discussion from Section 5. At a high level, we hypothesize that attention glitches
cause (some) closed-domain hallucinations in Transformer models of more complex languages. However, due to the fact
that neural networks’ internal representations evade simplistic mechanistic characterization, it is a significant challenge to
formulate a rigorous, testable version of this hypothesis. We discuss the subtleties below.

First, we discuss a more general notion of attention glitches, of which the flip-flop errors considered in this papers are a
special case. We define attention glitches as failures of trained attention-based networks to implement a hard retrieval
functionality perfectly. To formalize this notion, there are several inherent ambiguities– namely, the notions of “hard retrieval”
and “perfectly”, as well as the granularity of “subnetwork” at which an attention glitch can be defined non-vacuously. The
FFLM reasoning errors considered in this work provide a minimal and concrete resolution of these ambiguities. We discuss
each of these points below:

• Hard retrieval: To succeed at FFLM, a network’s internal representations must correctly implement the functionality
of retrieving a single bit (from a sequence of bits, encoded unambiguously by the network), selected via the criterion
of “most recent write position”. This can be expanded into a richer functional formulation of hard attention, by
generalizing the set of possible retrieved contents (a discrete set of larger cardinality, or, even more generally, a
continuous set), as well as more complex selection criteria (e.g. “least recent position”).

• Ground truth: Of course, to define “errors” or “hallucinations” in reasoning, there must be a well-defined ideal
functionality. For FFLM, the notion of “closed-domain” reasoning and hallucinations is evident: the ideal behavior is for
a model’s outputs to coincide with that of the flip-flop machine on all input sequences. This straightforwardly generalizes
to all formal languages, where the model is expected to correctly produce the deterministic outputs of automata which
parse these languages. By considering expanded notions of “ground truth”, it is possible to capture other notions of
model hallucinations (such as incorrectly memorized facts). Our work does not address open-domain hallucinations,
which may be unrelated to attention glitches.

• Submodules: Towards attributing implementations and errors to localized components of a network, it is impossible
to provide a single all-encompassing notion of “localized component”. This is a perennial challenge faced in the
mechanistic interpretability literature. Our work considers two extremes: the entire network (in the main experiments,
where we probe end-to-end behavior), and a single self-attention head (in Appendix A.4 and Appendix B.5, in which
we probe whether a single attention head can learn multiplication in the flip-flop monoid). Even when considering the
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Input GPT-3.5 GPT-4 Answer

8493
+ 2357

10850 ✓ 10850 ✓ 10850

84935834
+ 23572898

108008732 ✗ 108508732 ✓ 108508732

9991999919909993
+ 6109199190990097 16111199100810090 ✗ 16101199100890090 ✗ 16101199110900090

Table 1: Examples (in Figure 1) of GPT variants on addition: While models tend to succeed at additions with a small number
of digits, they (nondeterministically) fail at longer additions.

Input GPT-3.5 GPT-4 Answer

4491
+ 8759

13250 ✓ 13250 ✓ 13250

80087394
+ 63457948

143045342 ✗ 143545342 ✓ 143545342

5101611078665398
+ 8969499832688802 1.4071110911354202e+16 ✗ 14071110911354196 ✗ 14071110911354200

Table 2: More examples of GPT variants on addition: While models tend to succeed at additions with a small number of
digits, they (nondeterministically) fail at longer additions.

same functionality, attention glitches can be considered for different choices of “submodule”.8 Our results reveal a
key subtlety: in the presence of overparameterization (more layers and parallel heads than necessary according to the
theoretical constructions), Transformers learn to process flip-flop languages via soft attention.

We expect that to effectively debug the full scope of LLM hallucinations, all of the above choices will need to be revisited,
perhaps in tandem.

We hypothesize that the algorithmic reasoning capabilities of real LLMs (i.e. their ability to recognize, parse, and
transduce formal symbolic languages) are implemented by internal subnetworks whose functionalities can be identified
with generalizations of the flip-flop machine. To the extent that such modules exist, attention glitches (the failure of these
modules to represent the flip-flop operations perfectly, due to insufficient training data coverage) cause sporadic end-to-end
errors (“closed-domain hallucinations”). In this work, we have treated the external case (where the task is to learn the
flip-flop directly).

B. Full experimental results
B.1. Details for LLM addition prompts (Figure 1)

These addition problem queries serve as a quick demonstration of (1) non-trivial algorithmic generalization capabilities of
Transformer-based LLMs; (2) the brittleness of such capabilities: we directly address this type of reasoning error in this
work. Table 1,2 show these queries and results in detail.

We emphasize that these examples were selected in an adversarial, ad-hoc manner; we do not attempt to formalize or
investigate any claim that the errors made by larger models are at longer sequence lengths. We also cannot rule out the
possibility that some choice of prompt elicits robust algorithmic reasoning (e.g. the prompting strategies explored in
(Zhou et al., 2022)). The only rigorous conclusion to draw from Figure 1 is that of non-robustness: even LLMs exhibiting
state-of-the-art reasoning continue to make these elementary errors for some unambiguous queries with deterministic
answers. It was last verified on May 8, 2023 that GPT-4 (in its ChatGPT Plus manifestation) demonstrates the claimed
failure mode.

8Beyond the two extremes considered in this work, some examples include “a subset of attention heads”, “a subset of layers”, and “a
subspace of the entire network’s embedding space”.
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B.2. Extrapolation failures of standard Transformers (Section 3)

This section provides full details for our empirical findings (R1) through (R3).

Architecture size sweep. We consider a sweep over Transformer architecture dimensionalities, varying the three main size
parameters. We emphasize that these are somewhat larger than “toy” models: the parameters go up to ranges encountered in
natural sequence modeling (though, of course, far short of state-of-the-art LLMs).

• The number of layers (depth) L ∈ {2, 4, 6, 8}.

• The embedding dimension d ∈ {128, 256, 512, 1024}.

• The number of parallel attention heads per layer H ∈ {2, 4, 8, 16}. In accordance with standard scaling rules-of-
thumb, each head’s dimension is selected to be d/H .

Other hyperparameter choices. We use a sequence length of T = 512, again to reflect a typical length of dependencies
considered by nontrivial Transformer models. We use a canonical set of training hyperparameters for this sweep: the
AdamW (Loshchilov & Hutter, 2017) optimizer, with (β1, β2) = (0.9, 0.999), learning rate 3× 10−4, weight decay 0.1, 50
steps of linear learning rate warmup, and linear learning rate decay (setting the would-be 10001th step to 0). We train for
10000 steps on freshly sampled data, and choose a minibatch size of 16; consequently, the models in this setup train on
81,920,000 tokens.

Training and evaluation data. We probe the extrapolative behavior of Transformers on the flip-flop language, training
on online samples containing mostly moderate-length dependencies (pi = 0.8, pw = pr = 0.1), and evaluating on a
distribution containing longer-range dependencies (pi = 0.98, pw = pr = 0.01). Every 100 training steps, we evaluate
out-of-distribution test errors achieved by these models, on an online evaluation set of 103 sequences (which is identical
between and within runs; training curves show these errors), containing 3567 occurrences of the r instruction. For offline
evaluation, we expand this test set to 105 sequences, containing 353875 r commands, to obtain more precise measurements
of o.o.d. error. Training curves are shown with the smaller test set; all other results are reported using the larger one.

(R1) Transformers exhibit a long, irregular tail of errors. Figure 5 shows training curves for 3 replicates (random seeds)
in each setting, while the scatter plot in the main paper shows variability of out-of-distribution accuracy across random
seeds for the baseline setup. We find that Transformers sometimes succeed at extrapolation, but erratically.

(R2) 1-layer LSTM extrapolates perfectly. We train a 1-layer LSTM (Hochreiter & Schmidhuber, 1997) network, with
hidden state dimension 128 (for a total of 133K parameters), for 500 steps with the same optimizer hyperparameters
as above. The LSTM model achieves exactly 0 final-iterate o.o.d. error, over 100 out of 100 replicates.

Canonical baseline. We select the 6-layer, 512-dimensional, 8-head architecture (with 19M trainable parameters) as our
canonical baseline model: it is large in relevant dimensions9 to real Transformers, while being small enough to allow for
thousands of training runs at a reasonable cost. To fully understand the variability of this single architectural and algorithmic
setup, we train and evaluate 500 replicates in this setting.

Random data vs. random initialization. Recent synthetic probes on the surprising behavior of deep neural nets on
hard synthetic tasks (Barak et al., 2022; Garg et al., 2022) obtain additional insights by disentangling the effects of data
randomness (i.e. the precise sequence of minibatches) vs. model randomness (e.g. random initialization and dropout). We
provide a quick demonstration in Figure 6 (left) that both sources of stochasticity matter. We do not perform a more detailed
investigation of their precise influence and roles.

Fully generative setting: similar negative results. As mentioned in Section 2, in addition to the deterministic setup
where the model is only required to predict for positions where the next token is deterministic, we also consider a generative
(“noisy”) mode where the model estimates the conditional next-token distribution Pr[xt+1|x1:t], for each t = 1, . . . , T − 1.
10 In this mode, the sequences can be treated as drop-in replacements for natural text in GPT-style training. Generative

9Except the vocabulary size. In preliminary experiments, we obtained similar findings in the case of token spaces larger than {0, 1}.
10The generative mode is of less interest to this work since predicting the non-deterministic tokens is irrelevant to the memory task at

hand.
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Figure 5: Examples of training curves over various Transformer architectures, ranging from 46K to 101M trainable
parameters. We exhibit 3 (randomly selected) random seeds for each architecture. Lighter curves show raw error percentages,
while solid curves denote the lowest error so far in each run. Notice the following: (1) non-convergence of shallow
models (despite representability) (2) failure of most runs to extrapolate (i.e. reach 0% out-of-distribution error); (3) high
variability between runs; (4) erratic, non-monotonic progress on out-of-distribution data, even when the in-distribution
training curves appear flat; (5) a small LSTM outperforms all of these Transformers (see Figure 2). The bolded box
represents our 19M-parameter baseline model.
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Figure 6: Additional training curves. Left: Identical baseline architecture, varying the 5 data seeds and 5 model seeds:
models in the same row encounter the same sequence of data, while models in the same column start from identical
initializations. Both sources of randomness affect training dynamics and extrapolation, and it is not clear which is
more important. Right: Similar findings for models trained in “fully generative” mode (scoring on all tokens); baseline
architecture is in the bolded box .

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Exposing Attention Glitches with Flip-Flop Language Modeling

10 50 100 150 200
sequence length T

10 3

10 2

10 1

100

te
st

 e
rro

r

Natural LM evaluations on FFL(0.6)

GPT-NeoX 20B
Pythia 12B
GPT-2 1.5B
GPT-2 774M
GPT-2 117M

Figure 7: Natural language models fail to extrapolate robustly on FFLM.

FFLMs can be evaluated by checking their completions on prefix “prompts” (e.g. “... w 0 i 1 i 1 r [?]”).

We observe similar extrapolation failures in this setting. Figure 6 (right) exhibits some training curves for this setting,
showing non-extrapolation, variability, and instability. We observe that training (to in-distribution convergence) takes
slightly longer in this setting, and usually succeeds with the baseline architecture. We do not perform further controlled
experiments in this setting.

B.2.1. EVALUATING REAL LLMS ON FLIP-FLOPS

We provide a quick corroboration that while LLMs in practice can perform in-context reasoning when the sequences are
unambiguously isomorphic to a flip-flop language. We use the natural language example from Figure 4 (top right), and
evaluate the capability of popular pretrained LLMs to correctly remember the state of a light switch. Specifically, write
instructions in the FFLM task are either “Alice turns the light off” or “Alice turns the light on”. The ignore instructions
are either “Bob eats a banana” or “Bob eats an apple”. All models are prompted with a translated, length-16 FFLM task
that’s been translated to English in this way before evaluation.

We measure this accuracy as a function of the sequence length for several well-known LLMs, including GPT-2, GPT-2-large,
GPT-2-xl, Pythia-12C, and GPT-NeoX-20B. Figure 7 shows how well these models perform on this task (i.e. the correctness
of the model when prompted with “The light is turned ”) as the sequence length is varied. Consistent with the findings of
this paper, larger models tend to perform best at this task, and the quality of all models deteriorates with increased sequence
length. Each point on the plot considers 500 sequences of the indicated length. All models were prompted with a randomly
generated, length 16 flip flop sequence to allow the model to learn the task in context. Accuracy is measured according to
the frequency with which the model correctly predicts the current state of the light switch, as described in Section B.2.1.

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly.

Note that it is impossible to quantify the degree to which these sequences are “in-distribution” (it is unlikely that any
sequences of this form occur in the training distributions for these LLMs). Much like linguistic reasoning evaluations in the
style of BIG-bench (Srivastava et al., 2022), we rely on the emergent capability of in-context inference (Brown et al., 2020)
of the task’s syntax and semantics. As discussed in Appendix A.5, this layer of indirection, which is impossible to avoid in
the finetuning-free regime, can cause additional (and unrelated) failure modes to those studied in our synthetic experiments.
Fully reconciling our findings between the synthetic and non-synthetic settings (e.g. by training or finetuning on sequences
of this form, or via mechanistic interpretation of non-synthetic language models) is outside the scope of this paper, and
yields an interesting direction for future work.
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Figure 8: Full comparisons of various scaling axes.

B.3. Benefits of scale (Section 4.1)

In Section 4.1, we discussed mitigations that directly modify the training distributions and resources:

(R4) Training on rare sequences works best, by a wide margin.

(R5) Resource scaling (in-distribution data, training steps, network size) helps.

We provide more results specifically related to scaling along various axes. As shown in Figure 8, scaling helps improve the
OOD performance, especially when more OOD data are introduced. However, the benefit is not clear, especially on dense
sequences.

B.4. Indirect algorithmic controls for extrapolation (Section 4.2)

As shown in Figure 3, various architectural, algorithmic and regularization choices can help improve over the baseline
Transformer. We recall the main findings:

(R6) Many algorithmic choices influence extrapolative behavior.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely.

There is no clear consensus on the advantages and drawbacks of various positional encodings, but it has been known (Dai
et al., 2019) that the choice of positional symmetry-breaking scheme modulates long-sequence performance on natural
tasks. We evaluate various choices which appear in high-profile LLMs: sinusoidal, learned, ALiBi (Press et al., 2021), and
RoPE (Su et al., 2021). We find that non-trainable position encodings help on dense sequences (FFL(0.1)), but have no clear
benefit on sparse ones (FFL(0.98)) which require more handling of long-term dependency.

B.5. Preliminary mechanistic study and challenges

In this section, we move to a simpler setting to gain finer-grained understanding of how sparsity regularization affects the
learned solutions. Specifically, we look at the task of simulating the flip-flip automaton (Definition 1), whose inputs consist
of {σ0, σ1,⊥} as two types of write and 1 no-op. This task (elaborated in Appendix A.1) can be solved by a 1-layer
Transformer with a single attention head which attends sparsely on the most recent write position. It also serves as a
building block for more complex tasks (Liu et al., 2023), hence observations from this simple setup can potentially be useful
in broader contexts.
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Figure 9: Full comparisons of regularizers.

Figure 10 shows examples of attention patterns on the flip-flop simulation task, subselected from 6-layer 8-head models
trained with and without attention-sharpening regularization. It is evident that the attention patterns of the sparse model
are less complex and easier to interpret compared to those of the un-regularized model. For example, we can identify one
head in the sparse model that exactly coincide with the attention pattern 11 that an “ideal” 1-layer 1-head model implements
(Figure 10c).

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist. As mentioned in
(R7), attention-sharpening regularization cannot fully eliminate the sporadic errors, which are partially induced by
the complexity and redundancy of attention patterns. Moreover, sharpened attention can induce additional failure
modes, such as confidently attending to incorrect write positions. An example is demonstrated in Figure 10d, where
the attention focuses on an initial write, likely caused by the fact that earlier positions are overemphasized due to
the use of causal attention masks. Another example occurs in length generalization, where the attention is correct at
positions earlier in the sequence, but starts to confidently focus on wrong positions as it moves towards later positions
(Proposition 4). Details and more discussions are provided in Appendix B.5.

Sparsity regularization helps sharpen the attention Figure 13a,13b compare the attention patterns of 1-layer 1-head
models with or without attention-sharpening regularization. While both types of models give correct results, the attention-
sharpened model puts all attention weights to the most recently write position, which is the solution given according to
the definition of the task, whereas the attention patterns of the non-regularized model (Figure 13a) are much less clean.

Are there solutions other than the “ideal” solution? There is a solution naturally associated with the definition of the
flip-flop automaton (i.e. the sparse pattern shown in Figure 13b), but it is not necessarily the only solution. For example,
an equally valid (dense) solution is for the model to attend to every write token of the correct type. This is what the
non-regularized (dense) models seems to be implementing, as seen in Figure 13a, except for the final row where the model
puts non-negligible amount of weight on a write of a different type.

Are attention patterns reliable for interpretability? Prior work has pointed out the limitations of interpretations based solely

11While it is well-known that attention patterns can be misleading (Jain & Wallace, 2019; Bolukbasi et al., 2021; Meister et al., 2021) at
times, they do provide upper bounds on the magnitude of the dependency among tokens. These upper bounds are particularly useful in the
case of (1-)sparse attentions: a (near) zero attention weight signifies the absence of dependency, which greatly reduces the set of possible
solutions implemented.
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(a) (b)

(c)

(d)

Figure 10: Causal attention patterns for flip-flop simulation (Definition 1); orange dots / blue diamonds mark the positions
of write tokens σ0 / σ1. (a),(b) are subselected respectively from a regular (non-sparse) and a sparse multi-layer model
(details in Appendix B.5). (c), (d) are from two 1-layer 1-head models. The attention pattern highlighted by the purple
box in (b) coincides with the “ideal” attention pattern in (c). However, sparse models can be wrong, as shown in (d) (error
marked in red).

on attention patterns (Jain & Wallace, 2019; Bolukbasi et al., 2021). The intuition is that attention patterns can interact with
other components of the network in various ways; for example, WV can project out certain dimensions even though they
may have contributed to a large attention score. Hence, for multi-layer multi-head non-sparse models, the magnitude of
attention weights may not have an intuitive interpretation of “importance” (Meister et al., 2021). For example, Figure 14
shows examples where the attention on an incorrect token may be higher than that of the correct token. 12 However, in a
1-layer 1-head model, 1-sparse attention as shown in Figure 13b indeed offers interpretability, since if zero attention weight
13 necessarily means the absence of dependency, which greatly reduces the set of possible solutions implemented. As shown
in Figure 13c, a write may not attend to itself due to the presence of residual link, but the attentions for read always
focus on the closest write as intended.

Sporadic errors persist Section Section 4.1 (R5) showed that none of the mitigations was successful at making Trans-
formers reach 100% accuracy. One common failure mode is long-range dependency, where the input sequences contain very
few writes. The failure could be attributed to multiple factors; we will explore one aspect related to attention patterns,
demonstrated with a 1-layer 1-head Transformers with linear position encoding, on a length-834 sequence with 2 writes.
As shown in Figure 11, the attentions for positions early in the sequence correctly attend to the most recent write. However,
attention starts to “drift” as we move to later positions, and the positions at the end of the sequence attend entirely 14 to the
recent read tokens, which contains no information for solving the task. This may be because the attention weights are
affected too much by the position encodings, as discussed in Proposition 4.

Optimization hurdles While sparse solutions may preferred for various reasons, sparsity itself is not sufficient to guarantee
good performance: As shown in Figure 13d, sparsity regularization can lead to bad local minima, where the model tends to
(incorrectly) rely on earlier positions. This is observed across different types of sparsity regularization. While we do not
yet have a full explanation of the phenomenon, a possible explanation for this bias is that earlier positions show up more
often during training, due to the use of the causal attention: a valid flip-flop solution is for the model to attend to every
write token of the correct type; positions earlier in the sequence get included in more subsequences because of the causal
mask, and are hence more likely to be attended to. We also observe that the phenomenon seems to be closely related to
the training distribution. For example, the model is much more likely to get stuck at a bad local minima when p(⊥) = 0.5
(denser sequences) compared to p(⊥) = 0.9 (sparse sequences).

12However, if we consider the “importance / influence” as measured by the norms of the attetnion-weighted value vectors, then the max
norm still corresponds to the correct token, which helps explain why the final output is correct.

13By “zero” we mean an attention score on the magnitude of 1e-8 in the experiments.
14The attention weights that are not on the most recent write sum up to around 1e-7.
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Figure 11: Attention drifts as the length increases. The model is trained on length-500 sequences with p(σ ̸= ⊥) = 0.5.
The testing sequences are (a) [2, 0 · · · , 0︸ ︷︷ ︸

800

], and (b) [1, 0 · · · , 0︸ ︷︷ ︸
32

, 2, 0 · · · , 0︸ ︷︷ ︸
800

]. We sample every 32 positions for visualization.

Effect of sparsity regularization on training dynamics An interesting future direction is to understand the learning
dynamics of flip-flop tasks with attention-sharpening regularization, as suggested by the (quantitively and qualitatively)
different results and optimization challenges. As some initial empirical evidence that the regularization indeed have a large
impact on the dynamics, we found that sharpened attention seems to have a regularization effect on the weight norms
(Figure 12), and also lead to different behaviors of the attention heads (Figure 15).

More examples of attention patterns Figure 16 shows the full set of attention patterns of two 6-layer 8-head models
trained with and without attention-sharpening regularization, corresponding to Figure 10 (a,b). Attention-sharpening
regularization can be applied in different ways; for example, Figure 17 shows results of a model for which only the first layer
is regularized. The attention patterns of subsequent layers remain sharpen, even though there is no explicit regularization.

B.6. Software, compute infrastructure, and resource costs

GPU-accelerated training and evaluation pipelines were implemented in PyTorch (Paszke et al., 2017). For the FFLM
experiments, we used the x-transformers15 implementations of the Transformer architecture and variants. For the
fine-grained mechanistic interpretability experiments on the pure flip-flops, we used the “vanilla, GPT-2”-like Transformer
implementation published by HuggingFace (Wolf et al., 2019). We plan to make our benchmarks and training code publicly
available.

Each training run was performed on one GPU in an internal cluster, with NVIDIA P40, P100, V100, and RTX A6000 GPUs,
with at least 16GB of VRAM. Each (6-layer, 512-dimensional, 8-head) baseline model took ∼10 minutes to train (and
evaluate online) for 104 steps. A nontrivial fraction of the compute time (∼ 20%) was spent on fine-grained evaluation
through the coarse of training. The vast majority of training runs are close to these specifications; consequently, one set of
replicates under identical conditions (i.e. each violin plot in each figure) is the product of ∼4 GPU-hours of training time.

We hope that this computational investment will aid in understanding how to build robust Transformer models and training
pipelines at much larger scales.

15https://github.com/lucidrains/x-transformers
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Figure 12: Frobenius norms of weight matrices in 1-layer 1-head models, trained without regularization (blue), with
attention-sharpening regularization (yellow), or first without regularization and then adding regularization from epoch 30
(red; epoch 30 marked by the dashed lines). The solid curve and the shadow shows the median and the standard deviation
calculated on 8 models.

(a) (b) (c) (d)

Figure 13: Attention-sharpening regularization on 1-layer 1-head models. Compared to a non-regularized model (13a), the
sparsity-regularized model (13b) shows clear attention at the last write position. However, sparse attention does not have to
align with the “ideal” pattern (13c), and can even be wrong (13d). Positions with yellow borders are where the max attention
in each row occur; errors are marked in red.

Figure 14: Non-sparse attention pat-
tern can be misleading: a non-sparse
model may put more attention on an
incorrect token (i.e. a token that is
not the write with the right type),
while making the correct predictions.
Yellow boxes mark the position of the
max attention of each row.
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(a) Model trained without sparsity regularization.

(b) Model trained with entropy sparsity regularization with λ = 0.01.

Figure 15: Examples of the ℓ2 difference in attention patterns from two 6-layer 8-head 512-dimension models. Differences
are calculated between all pairs of heads in the same layer.

(a) Without regularization. (b) With attention-sharpening regularization.

Figure 16: Attention patterns for 6-layer 8-head 512-dimension models on the input sequence [σ1,⊥, σ0,⊥, ⊥, σ0, σ1,⊥]:
attention-sharpening regularization lead to cleaner attention patterns. 1 attention head in the first layer of the regularized
model (marked by the purple box) matches the “ideal” attention pattern Figure 10c.
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(a) ℓ2 differences between pairs of attention heads in the same layer,
throughout training (x-axis).

(b) Attention patterns on the input sequence
[σ1,⊥, σ0,⊥,⊥, σ0, σ1,⊥].

Figure 17: Attention heads and attention patterns for a 6-layer 8-head 512-dimension model, trained with attention-
sharpening regularization (entropy regularization with strength 0.01) on the first layer only. 1 attention head in the first layer
(marked by the purple box) matches the “ideal” attention pattern Figure 10c.

C. Proofs for Appendix A.4
Transformer recap. A Transformer (Vaswani et al., 2017) consists of multiple self-attention layers. Given d-dimensional
embeddings of a length-T sequence, denoted as X ∈ RT×d, a self-attention layer f computes

f(X) = ϕ(WV softmax(XWQW
⊤
KX⊤)XWV WC). (C.1)

where WQ,WK ∈ Rd×k for k ≤ d are the query and key matrix; WV ,W
⊤
C ∈ Rd×k project the representations from and

back to Rd. softmax calculates row-wise softmax. ϕ : Rd → Rd is a 2-layer fully-connected network. Residual links and
layer norm can be optionally included at different places of a self-attention layer.

C.1. Realizability of FFL by small Transformers

Proposition 2. A 2-layer 1-head Transformer with residual connections can represent ”deterministic” FFL.

Proof. Let us consider predicting in the deterministic mode (Section 2). Then we need to predict xt+1 given x1:t with
xt = r. In order to do this, we need to find the largest τ < t such that xτ = w and output xτ+1. There are multiple ways to
implement this, we will consider the following: (1) layer 1 converts FFL to the flip-flop automaton (Definition 1), (2) layer
2 implements the flip-flop construction. For layer 2, we can use the construction described in (Liu et al., 2023). Here we
present the full construction for completeness.

We will consider a two-layer Transformer with one head in each layer followed by a 2-layer MLP and a residual connection.
In particular, for x ∈ {w,r,i, 0, 1}T :

f(x) = ϕ2(W
(2)
V softmax(f1(x)W

(2)
Q W

(2)
K

⊤
f1(x)

⊤)f1(x)W
(2)
V W

(2)
C )

where f1(x) = E(x) + ϕ1(W
(1)
V softmax(E(x)W

(1)
Q W

(1)
K

⊤
E(x)⊤)E(x)W

(1)
V W

(1)
C )

where E(x) ∈ RT×d is the encoding for the input sequence x given some encoding function E.

Our construction is as follows:

• Select d = 7, k = 2, H = 1 (recall from Equation C.1that d, k are the dimensions of WQ,WK). Among the d = 7
embedding dimension, two dimensions are for the operations (w versus r,i), two for the two write values, one for
the positional embedding, one for padding, and the final dimension is for storing whether the previous position is the
most recent write, as calculated by the first layer.
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• Select input symbol encodings such that for the token at position t, denoted as xt,

E(xt) := 1[xt = w]e1 + 1[xt = r ∨ xt = i]e2 + 1[xt = 0]e3 + 1[xt = 1]e4 + e5 + Pt ∈ R7,

where Pt is the positional encoding. We use the linear positional encoding Pt := (t/C) · e6, for some (large) constant
C. For a fixed sequence length T , we can set C = T .

• W
(1)
Q :=

[
e5 e5

]
∈ R7×2, W (1)

K :=

[
3c e1

2T ce6

]
∈ R7×2 for c = O(T log(T )), W (1)

V :=

[
e1 0

]
∈ R7×2, and

W
(1)
C

⊤
:=

[
e7 0

]
∈ R7×2.

• W
(2)
Q :=

[
e5 e5

]
∈ R7×2, W (2)

K :=

[
ce7 ce6

]
∈ R7×2 for c = O(T log(T )), W (2)

V :=

[
e4 0

]
∈ R7×2, and

W
(2
C

⊤
:=

[
e1 0

]
∈ R7×2.

In layer 1, the unnormalized attention score for query position i to key position j is〈
W

(1)
Q

⊤
xi,W

(1)
K

⊤
xj

〉
=

〈
c

T
·
[
3

2
· 1[xj = w], j

]
, [1, 1]

〉
=

c

T
·
(
3

2
1[xj = w] + j

)
.

Note that the max attention value for position i is achieved at i if xi−1 ̸= w, else the max is achieved at position i− 1.

In the setting of hard attention, the output for the ith token after the attention module is 1[xi−1 = w∨xi = w]e7. Now similar
to the constructions in (Liu et al., 2023) (Lemma 6), with a appropriate choice of c = O(T log T ), we can approximate hard
attention by soft attention, and subsequently use the MLP to round the coordinate corresponding to e7. The MLP otherwise
serves as the identity function. Together with the residual link, the first layer output (i.e. the second layer input) at position i
takes the form

f1(xi) = E(xi) + 1[xi−1 = w ∨ xi = w]e7.

In layer 2, the unnormalized attention score computed for position i attending to j is〈
W

(2)
Q

⊤
f1(xi),W

(2)
K

⊤
f1(xj)

〉
=

c

T

〈
[1, 1],

[
1[xj−1 = w ∨ xj = w],

j

T

]〉
=c ·

(
1[xj−1 = w ∨ xj = w] +

j

T

)
.

Note that the max attention value is achieved at the position right after the closest w to xi. Let us denote this position by
τ ≤ i, then with hard attention, the output at the ith position is xτe1, as desired. Now similar to before, we can approximate
this with soft attention and use the MLP to do the appropriate rounding to get our final construction.

Remark: The construction in Proposition 2 is a construction, but it is not the only construction. For example, for the second
layer implementation for the flip-flop automaton, there could be an equally valid dense solution, where the model uniformly
attends to all write tokens of the correct type.

C.2. Failure of soft attention: attention dilution with bounded Lipschitzness

Consider any attention layer with weight matrices WQ,WK ∈ Rk×d. If ∥W⊤
KWQ∥2 is bounded, then the attention cannot

be sparse as the sequence length increases:

Proposition 3 (Leaky soft attention). Assume the latent variables have bounded norm, i.e. ∥v∥2 ≤ 1 for any latent vector
v ∈ Rd, and let σmax denote the max singular value of W⊤

KWQ. Then for T = Ω(exp(2σmax)), any sequences of latent
vectors {vτ}τ∈[T ], ∥softmax({vτ}τ∈[T ])∥∞ = 1− Ω(1).
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Proof. The proof follows directly from a simple rewriting.

For any u,v with ∥u∥2, ∥v∥2 ≤ 1, the pre-softmax attention score is bounded by u⊤W⊤
KWQv ∈ [−σmax, σmax].

exp(v⊤
t W

⊤
KWQvT )∑

τ∈[T ] exp(v
⊤
τ W

⊤
KWQvT )

≤ exp(σmax)

exp(σmax) + (T − 1) exp(−σmax)
= 1− T − 1

T − 1 + exp(2σmax)
,

where the last term is Ω(1) when T = Ω(exp(2σ)).

Attention dilution and failure on dense sequences Strictly speaking, attention dilution caused by an increased sequence
length does not necessarily affect the output of the layer. For example, if ignore gets mapped to a subspace orthogonal
to that of write, then WV can project out the ignore subspace, making the weighted averaged depending only on the
number of writes. Hence with the presence of layer norm, attention dilution won’t be a problem for the final prediction if
the number of write is upper bounded regardless of the sequence length.

Moreover, for the experiments in Section 4.1, denser sequences (i.e. larger p(write)) does increase the number of write
compared to the training distribution, hence attention dilution can be a potential cause for the decrease in performance.

C.3. Failure of hard attention: bad margin for positional embeddings

In this section, we look at a failure mode that a 1-layer 1-head Transformer has on the flip-flop automaton simulation task.
Why do we care about this setup? Simulating the automaton is in fact a sub-task of FFLM. For example, the second layer of
the construction in Proposition 2 reduces to the simulation task.

Consider a 1-layer 1-head Transformer with parameters WQ,WK ∈ Rk×d. Write the attention query matrix WQ as
WQ = [WQe,WQp], where WQe ∈ Rk×(d−1) corresponds to the embedding dimensions, and WQpRk corresponds to the
dimension for the linear positional encoding. Write WK = [WKe,WKp] similarly.

Then, we claim that the following must be true, regardless of the choice of the token embedding:

Proposition 4. Consider linear positional encoding, i.e. pi = i/C for some (large) constant C. Then, perfect length
generalization to arbitrary length requires W⊤

QpWKp = 0.

Proof. Let e(i) ∈ Rd−1 denote the embedding vector (without the position encoding) for token i ∈ {0, 1, 2}. Let
vt = [et, pt]

⊤ ∈ Rd denote the embedding for the tth token, where et ∈ {e(0), e(1), e(2)}Rd is the embedding of the token
itself, and pt := i/C is the linear positional encoding.

Let si→j denote the pre-softmax attention score that the ith token puts on the jth token, which is given by

si→j = ⟨WQvi,WKvj⟩ (C.2)

=e⊤i WQeWKeej + e⊤i W
⊤
QeWKp · pj + (ej)

⊤WKeWQp · pi +W⊤
QpWKp · pipj (C.3)

=e⊤i WQeWKeej +
e⊤i W

⊤
QeWKp

C
· j + (ej)

⊤WKeWQp

C
· i+

W⊤
QpWKp

C2
· ij. (C.4)

We will prove the proposition in two cases, which respectively require W⊤
QpWKp ≤ 0 and W⊤

QpWKp ≥ 0.

Case 1: W⊤
QpWKp ≤ 0 required Consider the case of long-term dependency, where the input sequence consists of an

initial write and a series of reads, i.e. σ1 = 1 and σt = 0 for t > 1. Then for the Tth position, the score for the first write
token is

sT→1 = ⟨WQvT ,WKv1⟩ (C.5)

=e(0)
⊤
WQeWKee

(1) +
e(0)

⊤
W⊤

QeWKp

C
+

(e(1))⊤WKeWQp

C
· T +

W⊤
QpWKp

C2
· T (C.6)

=

(
(e(1))⊤WKeWQp

C
+

W⊤
QpWKp

C2

)
· T +O(1) = O(T ), (C.7)
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and the score for the last write token is

sT→T = ⟨WQvT ,WKvT ⟩ (C.8)

=e(0)
⊤
WQeWKee

(0) +
e(0)

⊤
W⊤

QeWKp

C
T +

e(0)
⊤
WKeWQp

C
· T +

W⊤
QpWKp

C2
· T 2 (C.9)

=
W⊤

QpWKp

C2
· T 2 +O(T ). (C.10)

Think of C as going to infinity. If W⊤
QpWKp > 0, then there exists a sufficiently large T such that sT→T > sT→1. Hence

we need W⊤
QpWKp ≤ 0.

Case 2: W⊤
QpWKp ≥ 0 required Consider the input sequence where σ1 = 1, σT−1 = 2, and σt = 0 for t ∈

[T ] \ {1, T − 1}. Similar to the above, calculate the pre-softmax attention scores for σ1, σT−1 as

sT→1 = O(T ) (C.11)

sT→T−1 =
W⊤

QpWKp

C2
· T 2 +O(T ). (C.12)

Since we need sT→T−1 > sT→1, it must be that W⊤
QpWKp ≥ 0.
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