
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Exposing Attention Glitches with Flip-Flop Language Modeling

Anonymous Authors1

Abstract
Why do large language models hallucinate? This
work identifies and analyzes the phenomenon of
attention glitches, in which the Transformer ar-
chitecture’s inductive biases intermittently fail to
capture robust reasoning. To isolate the issue, we
introduce flip-flop language modeling (FFLM), a
parametric family of synthetic benchmarks de-
signed to probe the extrapolation of language
models. This simple generative task requires a
model to copy binary symbols over long-range de-
pendencies, ignoring the tokens in between. We
find that Transformer FFLMs suffer from a long
tail of sporadic reasoning errors, some of which
we can eliminate using various regularization tech-
niques. Our preliminary mechanistic analyses
show why the remaining errors may be very dif-
ficult to diagnose and resolve. We hypothesize
that attention glitches account for (some of) the
closed-domain hallucinations in natural LLMs.

1. Introduction
Large language models (LLMs) are known to produce in-
correct outputs, often referred to colloquially as “halluci-
nations”, creating challenges of their safe deployment (Ji
et al., 2023). Generally, hallucinations refer to the phe-
nomenon that a model’s outputs are syntactically and gram-
matically accurate but factually incorrect. There are various
types of hallucinations, and the focus of this work is the
“closed-domain” variety (Saparov & He, 2022; OpenAI,
2023), where the model predictions contain factually incor-
rect or made-up information according to a given context,
regardless of their correctness in the real world. Perhaps
surprisingly, such hallucinations can be observed even on
simple algorithmic reasoning tasks. As a warmup, consider
the queries shown in Figure 1 (and Appendix B.1), where we
prompt LLMs to solve addition problems of various lengths.
The responses simultaneously illustrate the following:

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Nontrivial algorithmic generalization: In cases where the
models succeed, it is unlikely that these exact numerical
sequences appeared in the training data. To correctly out-
put the first digit of the answer, the LLM must resolve a
long dependency chain which generally depends on ev-
ery digit in the input. Somewhere within these networks’
internal representations, implementations of addition al-
gorithms have emerged.

2. Sporadic errors (“hallucinations”): These internal al-
gorithms can be brittle and unreliable, especially when
processing long inferential chains. Their failures can be
subtle and unpredictable.

In this work, we consider flip-flop language processing,
a minimal unit of sequential computation which consists
of memory operations on a single bit (see Definition 1)
and underlies virtually all1 syntactic parsing and algo-
rithmic reasoning capabilities. A flip-flop language mod-
eling (FFLM) task is defined on sequences of write,
read, and ignore instructions: write sets the mem-
ory state to a certain value which is later retrieved by read,
while ignoring any contents in between. We find that
when trained to complete flip-flop sequences, the Trans-
former architecture exhibits a long tail of reasoning errors,
unlike previous-generation recurrent models such as the
LSTM (Hochreiter & Schmidhuber, 1997). We coin the
term attention glitch for this phenomenon, and hypothesize
that this captures a systematic failure mode of Transformer-
based LLMs when internally representing long chains of
algorithmic reasoning.

Our contributions are as follows:

• FFLM: a minimalistic long-range dependency bench-
mark. We propose flip-flop language modeling, a para-
metric family of synthetic benchmarks for autoregressive
sequence modeling, designed to isolate and probe reason-
ing errors like those demonstrated in Figure 1.

• An empirical failure of attention to attend. We find that
while Transformer models can appear to learn flip-flop
languages perfectly on held-out samples in distribution,
they make a long tail of unpredictable reasoning errors

1More precisely, whenever the desired algorithm needs to
“store memory” (i.e. contains a non-invertible state transformation);
see Section 2.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Exposing Attention Glitches with Flip-Flop Language Modeling

Figure 1: Cherry-picked integer addition prompts: state-of-
the-art LLMs can generalize non-trivially on algorithmic
sequences, but sporadic reasoning errors persist. This (and
many other algorithmic reasoning capabilities) can be im-
plemented by a Transformer model using internal flip-flops.

(attention glitches) OOD on both long-range and short-
range dependencies. We evaluate various direct and in-
direct mitigations, including commonly-used regulariza-
tion techniques and attention-sharpening regularizers—a
plug-and-play way to sparsify self-attention architectures.
We find that attention-sharpening reduces reasoning er-
rors by an order of magnitude, but none of our attempts
were successful in driving the number of errors to exactly
0. Meanwhile, even tiny recurrent models work perfectly.

• Preliminary mechanistic analyses. We provide some
theoretical and empirical explorations which account for
some of the internal mechanisms for attention glitches,
and why they are so difficult to eliminate completely.

Related work. It has become an important empirical chal-
lenge to eliminate the sporadically erroneous outputs of
LLMs, popularly called “hallucinations” (Saparov & He,
2022; Ji et al., 2023). Our investigation opens the archi-
tectural black-box towards these ends (see the discussion
in Appendix A.5); other approaches include explicitly writ-
ing out the intermediate reasoning steps (Nye et al., 2021;
Wei et al., 2022), and self-consistency (Wang et al., 2022).
There have also been many datasets and tasks designed to
isolate considerations similar to ours (Tay et al., 2020; Wu
et al., 2021; Zhang et al., 2021; 2022; Saparov & He, 2022;
Shi et al., 2023). Aside from being focused on the “small-
est” and “purest” sequential reasoning capability, FFLM is
distinguished by a few factors:

• “L∞” objective: Unlike usual benchmarks, we consider
any model with less than 100% accuracy as exhibiting a
reasoning error. Aside from the motivation of completely
eliminating hallucinations, we argue that this stringent no-
tion of correctness is needed to avoid error amplification
when flip-flops are embedded in more complex networks
(see Appendix A.1).

• Parametric, procedurally generated, and generaliz-
able: Our empirical study precisely quantifies long-tail
errors via a large number of replicates over the random-
ness of both model initialization and data generation. Our

methodology can be adapted and resized to probe lan-
guage models of any size.

Detailed discussions are deferred to Appendix A.2.

2. Flip-flops and FFLM
For any even number T ≥ 4, we define a flip-flop string
as a sequence of symbols {w,r,i, 0, 1}T , which have the
semantics of instructions (write, read, ignore) and
data (one bit). A valid flip-flop string consists of alternating
pairs of instructions and data (e.g. “w 0 i 1 i 0 r
0”), for which every symbol following a r instruction must
be equal to the symbol following the most recent w; thus,
“w 0 i 1 w 1 r 0” is not a legal flip-flop string. These
sequences can be viewed as correct execution transcripts
of a program which can (perhaps occasionally) write to
a single bit of memory, and always correctly reads its
contents. We also require that all sequences begin with w.

We define a canonical family of the distributions of flip-flop
languages: let FFL(T,p) be the distribution over length-
T flip-flop strings, parameterized by p = (pw, pr, pi) ∈
∆({w,r,i}), such that:

(i) The first instruction x1 is always w, and the last
instruction xT−1 is always r.

(ii) The other instructions are drawn i.i.d. according to
(pw, pr, pi) with pi = 1− pw − pr.

(iii) The nondeterministic data symbols (paired with w
or i) are drawn i.i.d. and uniformly.

We are interested in whether language models can learn a
flip-flop language from samples, which we define as process-
ing the read operations perfectly. In this paper, we focus
on the deterministic (“clean”) mode, 2 where the predic-
tions are on deterministic positions only; that is, the model
is only required to correctly output xt+1 for the prefixes
x1:t such that xt = r. At the cost of a slight departure from
vanilla language modeling, this setting isolates the long-
range memory task. It is similar to the non-autoregressive
flip-flop monoid simulation problem (Liu et al., 2023), and it
is easy to see that recurrent networks and 2-layer Transform-
ers (see Proposition 2) can both represent FFLM parsers.
The question of whether they do, especially from less-than-
ideal data, turns out to be extremely subtle, and is the subject
of the remainder of this paper.

Why focus on the flip-flop? There are several perspectives
on why the flip-flop is fundamental: (1) Flip-flop simula-
tion (maintaining memory in a sequence) is a direct neces-
sity in many reasoning settings (Figure 4c). It is a special
(depth-1) case of Dyck language processing (Chomsky &

2We also look at another generative (“noisy”) mode which is
closer to language modeling; see Appendix B.2 for details.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Exposing Attention Glitches with Flip-Flop Language Modeling

0 100 200 300 400 500
training iterations

10 4

10 3

10 2

10 1

100

te
st

 e
rro

r

1-layer LSTM
in-distribution
o.o.d.: FFL(0.98)

10 3

10 1

2L 128-dim 2-head

in-distr
o.o.d.
(LSTM)

2L 256-dim 8-head 4L 256-dim 2-head

0 5K 10K

10 3

10 1

6L 512-dim 2-head

0 5K 10K

6L 512-dim 8-head

0 5K 10K

8L 1024-dim 2-head

Transformers (20× more data & steps)

training iterations

Figure 2: Top: Training curves of recurrent (left) vs. Trans-
former (right) architectures on FFLM, with best-so-far
evaluation errors highlighted for clarity. Transformers
fail to extrapolate robustly on this extremely simple task
(bolded box denotes our choice of canonical baseline).

Schützenberger, 1959; Yao et al., 2021; Zhao et al., 2023),
which is necessary for parsing recursive grammars. (2) Flip-
flops are the computational building blocks of memory: the
flip-flop monoid F (Definition 1), an algebraic encoding of
a flip-flop’s dynamics, plays an essential role in the Krohn-
Rhodes theory of automata and semigroups (Rhodes et al.,
2010). (3) Attention was originally (Bahdanau et al., 2014;
Luong et al., 2015; Vaswani et al., 2017) designed to attend
to (i.e. selectively retrieve and copy) data over long-range
dependencies. Indeed, it is easy to verify a single attention
head can perform this lookup (Proposition 2).

3. Attention glitches: a long tail of errors for
Transformer FFLMs

In our main battery of synthetic experiments, we train neu-
ral language models to generate strings from the flip-flop
language FFL(T = 512,p = (0.1, 0.1, 0.8)) (for short,
FFL(pi = 0.8)), and probe whether the networks robustly
learn the language. Although every valid flip-flop string
is supported in this distribution, some sequences are far
rarer than others; we measure tail behavior via probes of
extrapolation, defined here as out-of-distribution evaluations
which amplify the probabilities of the rare sequences. To
create these “challenging” sequences, we sample > 3× 105

sequences from FFL(0.98) (containing unusually many
“sparse” sequences with mostly ignore instructions), as
well as FFL(0.1) (many “dense” sequences). Training and
evaluating the read accuracies of Transformer models of
various sizes, as well as a recurrent LSTM model, we find
the following results (see Figure 2):

(R1) Transformers exhibit a long, irregular tail of er-
rors. Such errors occur on both sparse and dense
sequences. Further, a model’s out-of-distribution test
error varies significantly between random seeds, and
even between iterates within the same training run.

(R2) 1-layer LSTM extrapolates perfectly. In stark con-
trast, with 20 times fewer training samples and iter-
ations, a small recurrent model achieves 100% accu-
racy, on 100 out of 100 runs.

As a counterpart to these findings, we observe similar
anomalies in real LLMs, when prompted to complete natural
textual embeddings (Figure 4, top right) of flip-flop tasks:

(R3) 10B-scale natural LMs can correctly process flip-
flop languages, but not robustly. Beyond a certain
scale, natural language models can learn to process
(natural embeddings of) flip-flop languages from in-
context demonstrations. However, this emergent ca-
pability is not robust: there exist rare read errors,
whose probabilities amplify as the sequence length T
grows. We provide details for the few-shot evaluation
protocol in Appendix B.2.1.

We discuss potential mechanisms that account for attention
glitches in Appendix A.4.

4. Mitigations for attention glitches
We investigate various approaches towards eliminating the
long tail of reasoning errors exhibited by Transformer
FFLMs. We select the 19M-parameter model (with L = 6
layers, d = 512 embedding dimensions, and H = 8 heads)
from Section 3 as a canonical baseline, and conduct precise
evaluations of various direct and indirect interventions.

4.1. Direct solutions

We begin by examining what is perhaps the most obvious
solution: removing the need for out-of-distribution extrapo-
lation, by training directly with improved data coverage.
Indeed, we verify that this works near-perfectly:

(R4) Training on rare sequences works best, by a wide
margin. By training on a uniform mixture of FFL
distributions with pi = {0.9, 0.98, 0.1}, the baseline
architecture reliably converges to solutions with sig-
nificantly fewer errors on each of these 3 distributions
(teal violins in Figure 3).

This should not be surprising, in light of the realizability
of flip-flops by self-attention (and, more generally, the ex-
istence of shortcuts functionally identical to RNNs (Liu
et al., 2023)), and corroborates similar conclusions from
(Zhang et al., 2021). We also find that weaker improvements
emerge by straightforwardly increasing scale parameters in
the model and training pipelines:

(R5) Resource scaling (in-distribution data, training
steps, network size) helps, but the improvements
are orders of magnitude smaller than those in (R4),
and we observe tradeoffs between sparse- and dense-
sequence extrapolation (blue violins in Figure 3).

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Exposing Attention Glitches with Flip-Flop Language Modeling

0 10 5 10 4 10 3 10 2 10 1 100

o.o.d. test error on FFL(0.1) (dense tail)

0

10 5

10 4

10 3

10 2

10 1
o.

o.
d.

 te
st

 e
rro

r o
n

FF
L(

0.
98

)
(s

pa
rs

e
ta

il)

Extrapolation of models trained on FFL(0.8)

baseline Transformer
other Transformers
1-layer LSTM

10 1

10 2

10 3

10 4

10 5

0

FF
L(

0.
98

) e
rro

r

10 1

10 2

10 3

10 4

10 5

0

FF
L(

0.
1)

 e
rro

r

6L
ba

sel
ineLST

M

+oo
d d

ata

3x
 da

ta

3x
 st

ep
s

10
x d

ata

10
x s

tep
s

2x
 de

pth

2x
 de

pth
 & di

m

wt. d
eca

y 0

wt. d
eca

y 0
.3

att
n d

rop
 0.

2

att
n d

rop
 0.

5

MLP
dro

p 0
.2

MLP
dro

p 0
.5

em
b d

rop
 0.

2

em
b d

rop
 0.

5

sin
uso

id
PE
Ro

PE
T5

 PEALiB
i

GeG
LU

Sw
iGLU

en
t. a

ttn
 sh

arp

L
 at

tn
sha

rp

L 2 a
ttn

 sh
arp

sin
uso

id+
dro

p

T5
+dro

p

T5
+dro

p+
sha

rp

Figure 3: A long tail of flip-flop errors for 10,625 Trans-
former models; some configurations reduce attention glitch
rates by orders of magnitude. Left: Out-of-distribution
evaluations for all models. Right: Effects of individual
architectural and algorithmic choices; dots at the bottom
indicate runs with 0 error.

Another class of direct solutions is to externalize the chain of
thought (CoT), for which we provide additional references
and discussions in Appendix A.2.

4.2. Indirect algorithmic controls: a bag of
regularization tricks

The interventions listed in Section 4.1 are all potentially
practical, and may shed light on how closed-domain LLM
hallucinations will diminish with data quality, scale, and
improved inference strategies. However, it is not always
feasible to implement these fixes under resource constraints
(especially data). We next investigate an orthogonal design
space, of how to robustify the internal memory mechanisms
of neural sequence models. Note that the exceptionally
strong extrapolative performance of the LSTM provides a
“skyline”, showing the possibility of far more robust archi-
tectures than the Transformer (in the flip-flop setting, with
this restricted set of considerations).

We investigate a large array of not-fully-understood algorith-
mic tricks for “smoothing” the behavior of LLMs: weight
decay, dropout, batch sizes, learning rates, optimizer hy-
perparameters, position embeddings, and activation func-
tions. We also train Transformer models with attention-
sharpening regularizers:3 during training, for attention
weights α ∈ ∆([T]), adding differentiable loss terms which
encourage sparsity (e.g. the mixture’s entropy H(α), or
negative p-norms −∥α∥2, −∥α∥∞).

(R6) Many algorithmic choices influence extrapolative
behaviors; see the purple, brown, red, and gold vio-
lins in Figure 3 (right). Our strongest improvements
on sparse sequences are obtained by large (0.5) em-
bedding dropout and attention-sharpening losses; on
dense sequences, non-trainable position embeddings
are the most helpful.

(R7) Despite many partial mitigations, nothing elim-
inates attention glitches entirely. We found it ex-
tremely difficult to find a setting that reliably produces
Transformers with simultaneous improvements over
the baseline on sparse and dense sequences (Figure 3
left), which is trivial to do so with an LSTM.

Additionally, our preliminary mechanistic study shows that
(details deferred to Appendix B.5):

(R8) Attention-sharpening regularizers successfully
promote hard attention, but errors persist.

5. Conclusion and future challenges
We have introduced flip-flop language modeling (FFLM),
a synthetic benchmark for probing the fine-grained extrap-
olative behavior of neural sequence models, based on a
one-bit memory operation which forms a fundamental build-
ing block of algorithmic reasoning. Transformer models,
trained on insufficiently diverse flip-flop sequences, make a
long tail of sporadic reasoning errors, which we call atten-
tion glitches.4 Through extensive controlled experiments,
we find that many algorithmic mitigations can reduce the
frequency of attention glitches, but none can eliminate them
entirely. The strikingly outsized benefit of replacing the
Transformer with an LSTM network suggests that archi-
tectural innovations towards the same ends are well worth
examining.

3While less popular, such losses have been used to sparsify
dependencies in similar contexts (Zhang et al., 2018; Sukhbaatar
et al., 2021).

4In Appendix A.5, we discuss connections to the phenomenon
of “closed-domain hallucinations” in non-synthetic LLMs (e.g.
the errors demonstrated in Figure 1), and ambiguities inherent in
generalizing the definition of attention glitches.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Exposing Attention Glitches with Flip-Flop Language Modeling

References
Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,

V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E.,
and Neyshabur, B. Exploring length generalization in
large language models. arXiv preprint arXiv:2207.04901,
2022.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E.,
and Zhang, C. Hidden progress in deep learning: Sgd
learns parities near the computational limit. Advances
in Neural Information Processing Systems, 35:21750–
21764, 2022.

Barrington, D. A. M. and Thérien, D. Finite monoids and
the fine structure of NC1. Journal of the ACM, 1988.

Bertsch, A., Alon, U., Neubig, G., and Gormley, M. R.
Unlimiformer: Long-range transformers with unlimited
length input. arXiv preprint arXiv:2305.01625, 2023.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the ability
and limitations of transformers to recognize formal lan-
guages. In Conference on Empirical Methods in Natural
Language Processing, 2020.

Bolukbasi, T., Pearce, A., Yuan, A., Coenen, A., Reif, E.,
Vi’egas, F., and Wattenberg, M. An interpretability illu-
sion for bert. ARXIV.ORG, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, S., Zhang, F., Sone, K., and Roth, D. Improving faith-
fulness in abstractive summarization with contrast candi-
date generation and selection. North American Chapter
Of The Association For Computational Linguistics, 2021.
doi: 10.18653/V1/2021.NAACL-MAIN.475.

Chiang, D. and Cholak, P. Overcoming a theoretical limita-
tion of self-attention. arXiv preprint arXiv:2202.12172,
2022.

Chomsky, N. and Schützenberger, M. P. The algebraic
theory of context-free languages. In Studies in Logic and
the Foundations of Mathematics. 1959.

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for in-
terpretable logical reasoning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=3Pf3Wg6o-A4.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. ACL, 2019.

Dhingra, B., Faruqui, M., Parikh, A., Chang, M.-W., Das,
D., and Cohen, W. Handling divergent reference texts
when evaluating table-to-text generation. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4884–4895, Florence,
Italy, jul 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/P19-1483. URL https://
aclanthology.org/P19-1483.

Dziri, N., Madotto, A., Zaiane, O., and Bose, A. Neural
path hunter: Reducing hallucination in dialogue systems
via path grounding. Conference On Empirical Methods
In Natural Language Processing, 2021. doi: 10.18653/
v1/2021.emnlp-main.168.

Dziri, N., Milton, S., Yu, M., Zaiane, O. R., and Reddy, S.
On the origin of hallucinations in conversational models:
Is it the datasets or the models? North American Chapter
Of The Association For Computational Linguistics, 2022.
doi: 10.48550/arXiv.2204.07931.

Eccles, W. and Jordan, F. A trigger relay utilizing three-
electrode thermionic vacuum tubes. The Electrician, 83:
298, 1919.

Eccles, W. H. and Jordan, F. W. Improvements in ionic
relays. British patent number: GB, 148582:704, 1918.

Eilenberg, S. Automata, languages, and machines. Aca-
demic Press, 1974.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association for
Computational Linguistics, 8:156–171, 2020.

He, T., Zhang, J., Zhou, Z., and Glass, J. R. Exposure bias
versus self-recovery: Are distortions really incremental
for autoregressive text generation? Conference On Em-
pirical Methods In Natural Language Processing, 2019.
doi: 10.18653/v1/2021.emnlp-main.415.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jain, S. and Wallace, B. C. Attention is not explanation.
North American Chapter Of The Association For Compu-
tational Linguistics, 2019. doi: 10.18653/v1/N19-1357.

5

https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://aclanthology.org/P19-1483
https://aclanthology.org/P19-1483

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Exposing Attention Glitches with Flip-Flop Language Modeling

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. Survey of halluci-
nation in natural language generation. ACM Computing
Surveys, 55(12):1–38, 2023.

Khandelwal, U., He, H., Qi, P., and Jurafsky, D. Sharp
nearby, fuzzy far away: How neural language models use
context. arXiv preprint arXiv:1805.04623, 2018.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., and
Lewis, M. Generalization through memorization: Nearest
neighbor language models. International Conference On
Learning Representations, 2019.

Krohn, K. and Rhodes, J. Algebraic theory of machines, I:
Prime decomposition theorem for finite semigroups and
machines. Transactions of the American Mathematical
Society, 1965.

Lanchantin, J., Toshniwal, S., Weston, J., Szlam, A., and
Sukhbaatar, S. Learning to reason and memorize with self-
notes. arXiv preprint arXiv: Arxiv-2305.00833, 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and
Zhang, C. Transformers learn shortcuts to automata.
2023. doi: 10.48550/arXiv.2210.10749. URL https:
//openreview.net/forum?id=De4FYqjFueZ.

Longpre, S., Perisetla, K., Chen, A., Ramesh, N., DuBois,
C., and Singh, S. Entity-based knowledge conflicts in
question answering. Conference On Empirical Methods
In Natural Language Processing, 2021. doi: 10.18653/
v1/2021.emnlp-main.565.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Luong, M.-T., Pham, H., and Manning, C. D. Effective
approaches to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025, 2015.

Malkin, N., Wang, Z., and Jojic, N. Coherence boost-
ing: When your pretrained language model is not pay-
ing enough attention. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2022, Dublin, Ire-
land, May 22-27, 2022, pp. 8214–8236. Association for
Computational Linguistics, 2022. doi: 10.18653/v1/2022.
acl-long.565. URL https://doi.org/10.18653/
v1/2022.acl-long.565.

Meister, C., Lazov, S., Augenstein, I., and Cotterell, R. Is
sparse attention more interpretable? Annual Meeting
Of The Association For Computational Linguistics, 2021.
doi: 10.18653/v1/2021.acl-short.17.

Nanda, N. and Lieberum, T. A mechanistic inter-
pretability analysis of grokking. Alignment Forum,
2022. URL https://www.alignmentforum.
org/posts/N6WM6hs7RQMKDhYjB/
a-mechanistic-interpretability-analysis-of-grokking.

Nogueira, R., Jiang, Z., and Lin, J. Investigating the
limitations of transformers with simple arithmetic tasks.
arXiv:2102.13019, 2021.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. ARXIV.ORG, 2023. doi:
10.48550/arXiv.2303.06349.

Parikh, A. P., Wang, X., Gehrmann, S., Faruqui, M., Dhin-
gra, B., Yang, D., and Das, D. Totto: A controlled table-
to-text generation dataset. Conference On Empirical
Methods In Natural Language Processing, 2020. doi:
10.18653/v1/2020.emnlp-main.89.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu,
Y., Miller, A. H., and Riedel, S. Language models as
knowledge bases? Conference On Empirical Methods In
Natural Language Processing, 2019. doi: 10.18653/v1/
D19-1250.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Rhodes, J., Nehaniv, C. L., and Hirsch, M. W. Applications
of automata theory and algebra: via the mathematical
theory of complexity to biology, physics, psychology, phi-
losophy, and games. World Scientific, 2010.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Shao, Z., Gong, Y., Shen, Y., Huang, M., Duan, N.,
and Chen, W. Synthetic prompting: Generating chain-
of-thought demonstrations for large language models.
ARXIV.ORG, 2023. doi: 10.48550/arXiv.2302.00618.

6

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://doi.org/10.18653/v1/2022.acl-long.565
https://doi.org/10.18653/v1/2022.acl-long.565
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Exposing Attention Glitches with Flip-Flop Language Modeling

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi, E.,
Schärli, N., and Zhou, D. Large language models can
be easily distracted by irrelevant context. arXiv preprint
arXiv:2302.00093, 2023.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864, 2021.

Sukhbaatar, S., Ju, D., Poff, S., Roller, S., Szlam, A. D., We-
ston, J., and Fan, A. Not all memories are created equal:
Learning to forget by expiring. International Conference
On Machine Learning, 2021.

Sun, S., Krishna, K., Mattarella-Micke, A., and Iyyer, M.
Do long-range language models actually use long-range
context? In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp.
807–822, Online and Punta Cana, Dominican Republic,
nov 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.emnlp-main.62. URL https:
//aclanthology.org/2021.emnlp-main.62.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006, 2020.

Tian, R., Narayan, S., Sellam, T., and Parikh, A. P. Sticking
to the facts: Confident decoding for faithful data-to-text
generation. arXiv preprint arXiv: 1910.08684, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv: Arxiv-2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Wu, Y., Rabe, M. N., Li, W., Ba, J., Grosse, R. B., and
Szegedy, C. Lime: Learning inductive bias for primitives
of mathematical reasoning. In International Conference
on Machine Learning, pp. 11251–11262. PMLR, 2021.

Wu, Y., Rabe, M. N., Hutchins, D. S., and Szegedy, C.
Memorizing transformers. International Conference On
Learning Representations, 2022. doi: 10.48550/arXiv.
2203.08913.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. arXiv preprint arXiv:2105.11115, 2021.

Zeiger, H. P. Cascade synthesis of finite-state machines.
Information and Control, 1967.

Zhang, C., Raghu, M., Kleinberg, J., and Bengio, S.
Pointer value retrieval: A new benchmark for under-
standing the limits of neural network generalization.
arXiv:2107.12580, 2021.

Zhang, J., Zhao, Y., Li, H., and Zong, C. Attention with spar-
sity regularization for neural machine translation and sum-
marization. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 27(3):507–518, 2018.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. Do trans-
formers parse while predicting the masked word? arXiv
preprint arXiv:2303.08117, 2023.

Zheng, C., Liu, Z., Xie, E., Li, Z., and Li, Y. Progressive-
hint prompting improves reasoning in large language
models. arXiv preprint arXiv.2304.09797, 2023.

Zhou, H., Nova, A., Larochelle, H., Courville, A.,
Neyshabur, B., and Sedghi, H. Teaching algorith-
mic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

7

https://aclanthology.org/2021.emnlp-main.62
https://aclanthology.org/2021.emnlp-main.62

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Exposing Attention Glitches with Flip-Flop Language Modeling

Appendix
A. Deferred background and discussion
A.1. Flip-flop terminology and history

The flip-flop automaton5 is a two-state machine which remembers a single bit of memory, and enables retrieval of this bit.
More precisely, the flip-flop automaton (illustrated in Figure 4(a)) is defined as:

Definition 1 (Flip-flop automaton). A flip-flop automaton A = {Q,Σ, δ} is defined with state space Q = {0, 1}, input
alphabet Σ = {σ0, σ1,⊥}, and transition function δ : Q× Σ → Q where

δ(q, σ0) = 0,

δ(q, σ1) = 1,

δ(q,⊥) = q;

∀q ∈ {0, 1}.

The semantics of the input symbols can be intuitively be identified with “write 0”, “write 1”, and “do nothing”. This
mathematical object is named after a type of electronic circuit which can store a single bit of state information (Eccles &
Jordan, 1918; 1919); such physical constructions appear ubiquitously in electrical engineering as the building blocks of
memory. The task of interest in Appendix B.5 is simulating the flip-flop automaton: the model takes as input a sequence of
x1, x2, · · · , xT ∈ Σ, and learns to output the corresponding states qt ∈ Q for each t ∈ [T] after processing inputs x1:t.

Naturally associated with the flip-flop automaton is its transformation monoid, the closure6 of its state transformations
δ(· , σ) : Q → Q under function composition. Identifying each symbol with its state transformation map, we can compute
the multiplication table of this monoid (f ◦ g for every pair of transformations f, g):

g = σ0 g = σ1 g = ⊥
f = σ0 σ0 σ0 σ0

f = σ1 σ1 σ1 σ1

f = ⊥ σ0 σ1 ⊥

This algebraic object is called the flip-flop monoid F . Its binary operation ◦ is clearly non-invertible (intuitively: the history
of the bit cannot be recovered after a “memory write”) and non-commutative (the order of “write” operations matters); it
also has an identity element ⊥ (which does nothing to the memory bit). By enumeration of smaller objects, it can be seen
that F is the smallest monoid (in terms of order |F|, or fewest number of automaton states |Q|) which has these properties.

The flip-flop monoid plays a special role in the algebraic theory of automata (Rhodes et al., 2010): flip-flops can be cascaded
to represent more complex functions. In particular, the celebrated Krohn-Rhodes theorem (Krohn & Rhodes, 1965) gives a
“prime decomposition” theorem for all finite semigroups (associative binary operations), representing them as alternating
wreath products of flip-flop monoids and finite simple groups. Further developments (Zeiger, 1967; Eilenberg, 1974) have
interpreted this theorem as a structural reparameterization of any finite-state automaton into a feedforward hierarchy of
simple “atomic” machines (namely, flip-flops and permutation semiautomata). Basic quantitative questions (e.g. “which
functions of n variables can L layers of poly(n) flip-flops represent?”) have proven to be extremely opaque for current
mathematical tools; these are studied by the theories of Krohn-Rhodes complexity and circuit complexity.

It was noted by (Barrington & Thérien, 1988) that these reparameterizations of finite-state automata entail the existence
of parallel algorithms (i.e. shallow, polynomial-sized circuits) for sequentially executing finite-state recurrences (thus,
processing formal languages) on sequences of length T . More recently, (Liu et al., 2023) establish implications for
shallow Transformer neural networks: they show that they can size-efficiently (with depth O(log T) and parameter count

5Sometimes, a distinction is made between a semiautomaton (Q,Σ, δ) and an automaton, which is a semiautomaton equipped with a
(not necessarily invertible) mapping from states to output symbols. We do not make such a distinction; we equip a semiautomaton with
the output function which simply emits the state q, and use “automaton” to refer to this dynamical system.

6In this case, the closure is the same as the generator set: no functions distinct from σ0, σ1,⊥ can be obtained by composing these
three functions. This is not true for a general automaton.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Exposing Attention Glitches with Flip-Flop Language Modeling

w 0 i 1 i 0 w 1 i 0 i 1 r

0 i 1 i 0 w 1 i 0 i 1 r 1

0 ⊥ ⊥ 1 ⊥ ⊥ ⊥

0 0 0 1 1 1 1

<!DOCTYPE html>
<h1>
 <p></p>
 <div></div>
</h1>
<h2>
 <div></div>
 <p></p>
</

Q = {0, 1}
Σ = {σ0, σ1, ⊥}

0 1
σ0

σ1

User: What is 44941 + 55852?
 Bot:

w r, i

1

0

0⊥ 1⊥

0 1
w r, i

Q = {0, 1, 0⊥, 1⊥}
Σ = { , , , 0, 1}w r i

Transcript of events:
 Alice turns the light off.
 Then, Bob eats an apple.
 Then, Bob eats a banana.
 Then, Alice turns the light on.
 Then, Bob eats a banana.
 Then, Bob eats an apple.
 Now, the light is

def f():
 x = 0
 ignore = 1
 ignore = 0
 x = 1
 ignore = 0
 ignore = 1
 assert x ==

(a) (b) (c)

w 1 i 0 i 0 i 1 i 0 i 1 i 0 i 1 i 1 i 1 i 1 i 0 i 1 i 0 i 0 i 1 r 1 w 0 i 0 i 1 i 0 i 1 i 0 i 0 i 0 i 0 i 1 i 1 r 0 w 0 i 1 i 0 i 1 i 0 r 0

w 0 i 1 i 0 i 1 i 1 i 0 i 0 i 0 i 0 i 1 i 1 i 1 i 0 i 0 i 1 i 0 i 0 i 1 i 0 i 1 i 0 i 1 i 1 i 0 i 1 i 0 i 0 ... i 0 i 1 i 0 i 0 i 0 i 1 r 1

... r 1 w 0 i 0 w 0 w 0 r 0 w 1 w 1 w 0 w 0 r 0 w 0 r 0 w 1 r 1 r 1 w 0 w 1 w 1 r 1 w 0 w 0 r 0 i 0 r 0 w 1 w 1 w 0 r 0 r 0 r 0 r 0 w 1 r 0

!!"(p# = 0.9) :
!!"(0.98) :

!!"(0.1) :

Figure 4: Elementary objects and examples associated with flip-flop languages. (a) the 2-state flip-flop machine (elided
transitions are self-loops). (2) A 4-state automaton which processes flip-flop languages (implying the existence of a small
RNN). (c) Simple examples of sequential prediction tasks which require processing a flip-flop language. Bottom: Examples
from the sparser FFL(0.98) and denser FFL(0.1) distributions, causing distinct (long-range and short-range) failure modes
for the baseline Transformer model.

Θ(T); sometimes both improvable to O(1)) realize these parallel algorithms, and that standard gradient-based training
can empirically learn ≪ T -layer solutions on a variety of “hard” automata (e.g. composing a sequence of T 5-element
permutations; multiplying T unit quaternions). Here, the role of the flip-flop monoid is essential: it provides a natural way
to think about the role of a single self-attention head in a hierarchy of indirections, in order to learn a depth-constrained
parallel implementation of a sequential algorithm.

A.2. Additional related work

Relevant challenges in NLP: hallucinations and long-range dependencies. The empirical literature is rife with
corroborations that neural language models have trouble with robustly fitting long-range memory and multi-step reason-
ing (Khandelwal et al., 2018; Sun et al., 2021; Sukhbaatar et al., 2021; Malkin et al., 2022; Saparov & He, 2022; Orvieto
et al., 2023; Creswell et al., 2023). Such failures can result in “hallucinations”: incorrect outputs which either directly
contradict factual input in the context, or contain information absent in the context (Ji et al., 2023).

Hallucination can be attributed to various factors, such as the noisiness in data sources (Dhingra et al., 2019; Dziri et al.,
2022), imperfect encoding/decoding (Parikh et al., 2020; Tian et al., 2019), or the discrepancy in training and evaluation
setups (He et al., 2019). In particular, the most related to our paper are the characteristics inherent to the model itself. For
example, prior work has found that Transformers tend to be biased towards information covered during training (Petroni
et al., 2019; Longpre et al., 2021), a potential cause to their poor out-of-distribution performance.

In terms of mitigation, various “external” methods (i.e. ones which do not modify the internal representations of the neural
network) have been proposed to address some of the above factors, or post-processing model generations (Dziri et al., 2021;
Chen et al., 2021), possibly based on several forward passes (Wang et al., 2022; Zheng et al., 2023). Another line of work
that have gained much popularity and success is to incorporate explicit memory mechanisms, which we discuss next.

Explicit memory mechanisms in Transformers. Prior work has shown that augmenting the neural network with memory
modules or knowledge base helps improve the performance on long-range texts (Khandelwal et al., 2019; Wu et al., 2022;
Bertsch et al., 2023). An approach particularly effective for large-scale Transformers is to externalize the chain of thought
(CoT): train (or finetune, or prompt) the model to explicitly output the intermediate reasoning steps to a “scratchpad” which
the model subsequently processes (Nye et al., 2021; Wei et al., 2022; Zhou et al., 2022; Anil et al., 2022; Shao et al., 2023),

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Exposing Attention Glitches with Flip-Flop Language Modeling

similar to writing to and reading from a memory tape. A particular way to interact with the scratchpad is to interlace every
other token with an annotation of “as a reminder, this is the state” (Liu et al., 2023; Lanchantin et al., 2023), so that there are
no more explicit long-range dependencies.

We do not investigate this strategy in this paper, and note that prior work has provided sufficient evidence to affirm its
success in inducing the robust learning of recurrences on long synthetic sequences (Anil et al., 2022; Zhou et al., 2022; Liu
et al., 2023). Moreover, this strategy cannot fully resolve attention glitches. To begin with, it cannot be guaranteed that a
single indivisible reasoning step in a CoT is free of attention glitches; the focus of this work is to isolate and mitigate this
intrinsic architectural issue. Additionally, this strategy is the same as the recurrent solution implementable by RNNs, and it
does not always exist, especially when attention glitches occur in an internal component of the model.

Transformers and algorithmic tasks. Compared to real-world language datasets, synthetic tasks provide a cleaner and
more controlled setup for probing the abilities and limitations of Transformers. Specific to algorithmic reasoning, (Liu et al.,
2023) puts a unifying perspective on the ability of small Transformers to succeed at tasks corresponding to algorithmic
primitives. Specific tasks of interest include hierarchical languages (Yao et al., 2021; Zhao et al., 2023), modular prefix
sums (Anil et al., 2022), adders (Nogueira et al., 2021; Nanda & Lieberum, 2022), regular languages (Bhattamishra et al.,
2020), and following a chain of entailment (Zhang et al., 2022).

Comparison with Transformers Learn Shortcuts to Automata. Liu et al. (2023) study the parallel circuits efficiently
realizable by low-depth Transformers. The authors identify shortcut solutions, which exactly replicate length-T recurrent
computations (“chains of algorithmic reasoning”) in the absence of recurrence, with very few (O(log T); sometimes
O(1)) layers. Their results contain a general structure theorem of representability, and preliminary positive empirics for
generalization and optimization, demonstrating that Transformers can learn these shallow solutions via gradient-based
training on samples. In contrast, the present work is a fine-grained study of the issue of generalization. Our main empirical
contributions are a minimally sufficient setup (FFLM) and a set of large-scale7 controlled experiments, towards providing
reasonable scientific foundations for addressing the unpredictable reasoning errors of LLMs.

A.3. Why this flip-flop language?

(Liu et al., 2023) (as well as our mechanistic interpretability experiments) use a purer instantiation of flip-flop sequence
processing, in which the sequence-to-sequence network is tasked with non-autoregressive transduction: given the sequence
of input symbols σ1, . . . , σT , output the sequence of states q1, . . . , qT . This is most natural when studying the Transformer
architecture’s algebraic representations in their most isolated form.

Our autoregressive sequence modeling setting is a slight departure from this setting; we discuss its properties and rationale
below.

• The autoregressive setting “type-checks” exactly with standard state-of-the-art autoregressive (a.k.a. causal, forward, or
next-token-prediction) language modeling. This makes it more convenient and intuitive as a plug-and-play benchmark.

• The cost is a layer of indirection: the model needs to associate “instruction” tokens with their adjacent “data” tokens.
This is a natural challenge for representation learning, and is certainly a necessary cursor for robust extrapolation on
natural sequences that embed similar tasks (like those considered in Figure 4c). It is straightforward to remove this
challenge: simply tokenize at a coarser granularity (i.e. treat (instruction, data) pair as a distinct vocabulary item).

• The multi-symbol (and variable-length-symbol, etc.) generalizations of the binary flip-flop language are more parsimo-
nious. If there are n instead of 2 tokens, this language can be encoded with = n+ 3 commands. Without the decoupling
of “instruction” tokens from “data”, the vocabulary size would scale suboptimally with n.

• The conclusions do not change: in smaller-scale experiments, we observe the same extrapolation failures between the
autoregressive and non-autoregressive task formulations.

A.4. Multiplicity of mechanisms for attention glitches

In this section, we discuss how Transformer self-attention modules, when tasked with representing flip-flops, can exhibit
multiple (perhaps mutually entangled) failure mechanisms. The accompanying propositions are proven in Appendices C.2

7∼104 19M-parameter Transformers were trained in the making of this paper; see Appendix B.6.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Exposing Attention Glitches with Flip-Flop Language Modeling

and C.3.

An insufficient explanation: n-gram models. As a warmup, consider a language model P̂r[xt+1|x≤t] which only
depends on the n most recent tokens in the context. Then, if n ≪ 1

1−p , the bulk of P̂r’s predictions on FFL(pi = p) can
be no more accurate than random guessing. This recovers one qualitative trend (degradation of accuracy with dependency
length) observed in the experiments. However, this cannot fully explain our findings: it fails to account for the incorrect
predictions on dense sequences. Furthermore, the Transformers’ outputs on FFL(0.98) are mostly correct; their accuracies
on very long-range dependencies are nontrivial, despite not being perfect. There must therefore be subtler explanations for
these errors.

Lipschitz limitations of soft attention. Moving to finer-grained failure mechanisms, a known (Hahn, 2020; Chiang &
Cholak, 2022) drawback of soft attention is that its softmax operation is “too soft”– for any weight matrices with fixed
norms, the attention gets “diluted” across positions as the sequence length T increases, and can fail to perform an intended
“selection” operation. We provide a formal statement and proof (Proposition 3) in Appendix C.2.

Difficulty of non-commutative tiebreaking. Can we simply robustify soft attention by replacing it with hard attention?
We present a brief analysis which suggests that even hard attention can be brittle. In a stylized setting (one-layer models with
linear position encodings), we show that self-attention can confidently attend to the wrong index, unless the weight matrices
precisely satisfy an orthogonality condition (Proposition 4). This suggests the existence of spurious local optima, which we
do not attempt to prove end-to-end; however, we provide supporting empirical evidence in the experiments in Appendix C.3.

A.5. Attention glitches in natural LLMs

In this section, we expand on the brief discussion from Section 5. At a high level, we hypothesize that attention glitches
cause (some) closed-domain hallucinations in Transformer models of more complex languages. However, due to the fact
that neural networks’ internal representations evade simplistic mechanistic characterization, it is a significant challenge to
formulate a rigorous, testable version of this hypothesis. We discuss the subtleties below.

First, we discuss a more general notion of attention glitches, of which the flip-flop errors considered in this papers are a
special case. We define attention glitches as failures of trained attention-based networks to implement a hard retrieval
functionality perfectly. To formalize this notion, there are several inherent ambiguities– namely, the notions of “hard retrieval”
and “perfectly”, as well as the granularity of “subnetwork” at which an attention glitch can be defined non-vacuously. The
FFLM reasoning errors considered in this work provide a minimal and concrete resolution of these ambiguities. We discuss
each of these points below:

• Hard retrieval: To succeed at FFLM, a network’s internal representations must correctly implement the functionality
of retrieving a single bit (from a sequence of bits, encoded unambiguously by the network), selected via the criterion
of “most recent write position”. This can be expanded into a richer functional formulation of hard attention, by
generalizing the set of possible retrieved contents (a discrete set of larger cardinality, or, even more generally, a
continuous set), as well as more complex selection criteria (e.g. “least recent position”).

• Ground truth: Of course, to define “errors” or “hallucinations” in reasoning, there must be a well-defined ideal
functionality. For FFLM, the notion of “closed-domain” reasoning and hallucinations is evident: the ideal behavior is for
a model’s outputs to coincide with that of the flip-flop machine on all input sequences. This straightforwardly generalizes
to all formal languages, where the model is expected to correctly produce the deterministic outputs of automata which
parse these languages. By considering expanded notions of “ground truth”, it is possible to capture other notions of
model hallucinations (such as incorrectly memorized facts). Our work does not address open-domain hallucinations,
which may be unrelated to attention glitches.

• Submodules: Towards attributing implementations and errors to localized components of a network, it is impossible
to provide a single all-encompassing notion of “localized component”. This is a perennial challenge faced in the
mechanistic interpretability literature. Our work considers two extremes: the entire network (in the main experiments,
where we probe end-to-end behavior), and a single self-attention head (in Appendix A.4 and Appendix B.5, in which
we probe whether a single attention head can learn multiplication in the flip-flop monoid). Even when considering the

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Exposing Attention Glitches with Flip-Flop Language Modeling

Input GPT-3.5 GPT-4 Answer

8493
+ 2357

10850 ✓ 10850 ✓ 10850

84935834
+ 23572898

108008732 ✗ 108508732 ✓ 108508732

9991999919909993
+ 6109199190990097 16111199100810090 ✗ 16101199100890090 ✗ 16101199110900090

Table 1: Examples (in Figure 1) of GPT variants on addition: While models tend to succeed at additions with a small number
of digits, they (nondeterministically) fail at longer additions.

Input GPT-3.5 GPT-4 Answer

4491
+ 8759

13250 ✓ 13250 ✓ 13250

80087394
+ 63457948

143045342 ✗ 143545342 ✓ 143545342

5101611078665398
+ 8969499832688802 1.4071110911354202e+16 ✗ 14071110911354196 ✗ 14071110911354200

Table 2: More examples of GPT variants on addition: While models tend to succeed at additions with a small number of
digits, they (nondeterministically) fail at longer additions.

same functionality, attention glitches can be considered for different choices of “submodule”.8 Our results reveal a
key subtlety: in the presence of overparameterization (more layers and parallel heads than necessary according to the
theoretical constructions), Transformers learn to process flip-flop languages via soft attention.

We expect that to effectively debug the full scope of LLM hallucinations, all of the above choices will need to be revisited,
perhaps in tandem.

We hypothesize that the algorithmic reasoning capabilities of real LLMs (i.e. their ability to recognize, parse, and
transduce formal symbolic languages) are implemented by internal subnetworks whose functionalities can be identified
with generalizations of the flip-flop machine. To the extent that such modules exist, attention glitches (the failure of these
modules to represent the flip-flop operations perfectly, due to insufficient training data coverage) cause sporadic end-to-end
errors (“closed-domain hallucinations”). In this work, we have treated the external case (where the task is to learn the
flip-flop directly).

B. Full experimental results
B.1. Details for LLM addition prompts (Figure 1)

These addition problem queries serve as a quick demonstration of (1) non-trivial algorithmic generalization capabilities of
Transformer-based LLMs; (2) the brittleness of such capabilities: we directly address this type of reasoning error in this
work. Table 1,2 show these queries and results in detail.

We emphasize that these examples were selected in an adversarial, ad-hoc manner; we do not attempt to formalize or
investigate any claim that the errors made by larger models are at longer sequence lengths. We also cannot rule out the
possibility that some choice of prompt elicits robust algorithmic reasoning (e.g. the prompting strategies explored in
(Zhou et al., 2022)). The only rigorous conclusion to draw from Figure 1 is that of non-robustness: even LLMs exhibiting
state-of-the-art reasoning continue to make these elementary errors for some unambiguous queries with deterministic
answers. It was last verified on May 8, 2023 that GPT-4 (in its ChatGPT Plus manifestation) demonstrates the claimed
failure mode.

8Beyond the two extremes considered in this work, some examples include “a subset of attention heads”, “a subset of layers”, and “a
subspace of the entire network’s embedding space”.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Exposing Attention Glitches with Flip-Flop Language Modeling

B.2. Extrapolation failures of standard Transformers (Section 3)

This section provides full details for our empirical findings (R1) through (R3).

Architecture size sweep. We consider a sweep over Transformer architecture dimensionalities, varying the three main size
parameters. We emphasize that these are somewhat larger than “toy” models: the parameters go up to ranges encountered in
natural sequence modeling (though, of course, far short of state-of-the-art LLMs).

• The number of layers (depth) L ∈ {2, 4, 6, 8}.

• The embedding dimension d ∈ {128, 256, 512, 1024}.

• The number of parallel attention heads per layer H ∈ {2, 4, 8, 16}. In accordance with standard scaling rules-of-
thumb, each head’s dimension is selected to be d/H .

Other hyperparameter choices. We use a sequence length of T = 512, again to reflect a typical length of dependencies
considered by nontrivial Transformer models. We use a canonical set of training hyperparameters for this sweep: the
AdamW (Loshchilov & Hutter, 2017) optimizer, with (β1, β2) = (0.9, 0.999), learning rate 3× 10−4, weight decay 0.1, 50
steps of linear learning rate warmup, and linear learning rate decay (setting the would-be 10001th step to 0). We train for
10000 steps on freshly sampled data, and choose a minibatch size of 16; consequently, the models in this setup train on
81,920,000 tokens.

Training and evaluation data. We probe the extrapolative behavior of Transformers on the flip-flop language, training
on online samples containing mostly moderate-length dependencies (pi = 0.8, pw = pr = 0.1), and evaluating on a
distribution containing longer-range dependencies (pi = 0.98, pw = pr = 0.01). Every 100 training steps, we evaluate
out-of-distribution test errors achieved by these models, on an online evaluation set of 103 sequences (which is identical
between and within runs; training curves show these errors), containing 3567 occurrences of the r instruction. For offline
evaluation, we expand this test set to 105 sequences, containing 353875 r commands, to obtain more precise measurements
of o.o.d. error. Training curves are shown with the smaller test set; all other results are reported using the larger one.

(R1) Transformers exhibit a long, irregular tail of errors. Figure 5 shows training curves for 3 replicates (random seeds)
in each setting, while the scatter plot in the main paper shows variability of out-of-distribution accuracy across random
seeds for the baseline setup. We find that Transformers sometimes succeed at extrapolation, but erratically.

(R2) 1-layer LSTM extrapolates perfectly. We train a 1-layer LSTM (Hochreiter & Schmidhuber, 1997) network, with
hidden state dimension 128 (for a total of 133K parameters), for 500 steps with the same optimizer hyperparameters
as above. The LSTM model achieves exactly 0 final-iterate o.o.d. error, over 100 out of 100 replicates.

Canonical baseline. We select the 6-layer, 512-dimensional, 8-head architecture (with 19M trainable parameters) as our
canonical baseline model: it is large in relevant dimensions9 to real Transformers, while being small enough to allow for
thousands of training runs at a reasonable cost. To fully understand the variability of this single architectural and algorithmic
setup, we train and evaluate 500 replicates in this setting.

Random data vs. random initialization. Recent synthetic probes on the surprising behavior of deep neural nets on
hard synthetic tasks (Barak et al., 2022; Garg et al., 2022) obtain additional insights by disentangling the effects of data
randomness (i.e. the precise sequence of minibatches) vs. model randomness (e.g. random initialization and dropout). We
provide a quick demonstration in Figure 6 (left) that both sources of stochasticity matter. We do not perform a more detailed
investigation of their precise influence and roles.

Fully generative setting: similar negative results. As mentioned in Section 2, in addition to the deterministic setup
where the model is only required to predict for positions where the next token is deterministic, we also consider a generative
(“noisy”) mode where the model estimates the conditional next-token distribution Pr[xt+1|x1:t], for each t = 1, . . . , T − 1.
10 In this mode, the sequences can be treated as drop-in replacements for natural text in GPT-style training. Generative

9Except the vocabulary size. In preliminary experiments, we obtained similar findings in the case of token spaces larger than {0, 1}.
10The generative mode is of less interest to this work since predicting the non-deterministic tokens is irrelevant to the memory task at

hand.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Exposing Attention Glitches with Flip-Flop Language Modeling

10 4

10 3

10 2

10 1

100
2L 128-dim 2-head

in-distr
o.o.d.

2L 128-dim 4-head 2L 128-dim 8-head 2L 128-dim 16-head 2L 256-dim 2-head 2L 256-dim 4-head 2L 256-dim 8-head 2L 256-dim 16-head

10 4

10 3

10 2

10 1

100
2L 512-dim 2-head 2L 512-dim 4-head 2L 512-dim 8-head 2L 512-dim 16-head 2L 1024-dim 2-head 2L 1024-dim 4-head 2L 1024-dim 8-head 2L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
4L 128-dim 2-head 4L 128-dim 4-head 4L 128-dim 8-head 4L 128-dim 16-head 4L 256-dim 2-head 4L 256-dim 4-head 4L 256-dim 8-head 4L 256-dim 16-head

10 4

10 3

10 2

10 1

100
4L 512-dim 2-head 4L 512-dim 4-head 4L 512-dim 8-head 4L 512-dim 16-head 4L 1024-dim 2-head 4L 1024-dim 4-head 4L 1024-dim 8-head 4L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
6L 128-dim 2-head 6L 128-dim 4-head 6L 128-dim 8-head 6L 128-dim 16-head 6L 256-dim 2-head 6L 256-dim 4-head 6L 256-dim 8-head 6L 256-dim 16-head

10 4

10 3

10 2

10 1

100
6L 512-dim 2-head 6L 512-dim 4-head 6L 512-dim 8-head 6L 512-dim 16-head 6L 1024-dim 2-head 6L 1024-dim 4-head 6L 1024-dim 8-head 6L 1024-dim 16-head

10 4

10 3

10 2

10 1

100
8L 128-dim 2-head 8L 128-dim 4-head 8L 128-dim 8-head 8L 128-dim 16-head 8L 256-dim 2-head 8L 256-dim 4-head 8L 256-dim 8-head 8L 256-dim 16-head

0.0 0.5 1.0
1e4

10 4

10 3

10 2

10 1

100
8L 512-dim 2-head

0.0 0.5 1.0
1e4

8L 512-dim 4-head

0.0 0.5 1.0
1e4

8L 512-dim 8-head

0.0 0.5 1.0
1e4

8L 512-dim 16-head

0.0 0.5 1.0
1e4

8L 1024-dim 2-head

0.0 0.5 1.0
1e4

8L 1024-dim 4-head

0.0 0.5 1.0
1e4

8L 1024-dim 8-head

0.0 0.5 1.0
1e4

8L 1024-dim 16-head

Transformer training curves: train on FFL(pi = 0.8), test o.o.d. on FFL(pi = 0.98)

training iterations

te
st

 e
rro

r

Figure 5: Examples of training curves over various Transformer architectures, ranging from 46K to 101M trainable
parameters. We exhibit 3 (randomly selected) random seeds for each architecture. Lighter curves show raw error percentages,
while solid curves denote the lowest error so far in each run. Notice the following: (1) non-convergence of shallow
models (despite representability) (2) failure of most runs to extrapolate (i.e. reach 0% out-of-distribution error); (3) high
variability between runs; (4) erratic, non-monotonic progress on out-of-distribution data, even when the in-distribution
training curves appear flat; (5) a small LSTM outperforms all of these Transformers (see Figure 2). The bolded box
represents our 19M-parameter baseline model.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Exposing Attention Glitches with Flip-Flop Language Modeling

10 4

10 3

10 2

10 1

100 data 0, model 0

in-distr
ood

data 0, model 1 data 0, model 2 data 0, model 3 data 0, model 4

10 4

10 3

10 2

10 1

100 data 1, model 0 data 1, model 1 data 1, model 2 data 1, model 3 data 1, model 4

10 4

10 3

10 2

10 1

100 data 2, model 0 data 2, model 1 data 2, model 2 data 2, model 3 data 2, model 4

10 4

10 3

10 2

10 1

100 data 3, model 0 data 3, model 1 data 3, model 2 data 3, model 3 data 3, model 4

0.0 0.5 1.0
1e4

10 4

10 3

10 2

10 1

100 data 4, model 0

0.0 0.5 1.0
1e4

data 4, model 1

0.0 0.5 1.0
1e4

data 4, model 2

0.0 0.5 1.0
1e4

data 4, model 3

0.0 0.5 1.0
1e4

data 4, model 4

Transformer training curves: 5 data RNG seeds × 5 model RNG seeds

training iterations

te
st

 e
rro

r

10 4

10 2

100 2L 128-dim 2-head

in-distr
o.o.d.

2L 256-dim 8-head 2L 1024-dim 16-head

10 4

10 2

100 4L 128-dim 2-head 4L 256-dim 4-head 4L 512-dim 2-head

10 4

10 2

100 6L 128-dim 4-head 6L 512-dim 8-head 6L 1024-dim 8-head

10 4

10 2

100 8L 128-dim 2-head 8L 128-dim 4-head 8L 128-dim 8-head

0.0 0.5 1.0
1e4

10 4

10 2

100 8L 256-dim 4-head

0.0 0.5 1.0
1e4

8L 256-dim 16-head

0.0 0.5 1.0
1e4

8L 1024-dim 8-head

Generative Transformer FFLMs

training iterations

te
st

 e
rro

r

Figure 6: Additional training curves. Left: Identical baseline architecture, varying the 5 data seeds and 5 model seeds:
models in the same row encounter the same sequence of data, while models in the same column start from identical
initializations. Both sources of randomness affect training dynamics and extrapolation, and it is not clear which is
more important. Right: Similar findings for models trained in “fully generative” mode (scoring on all tokens); baseline
architecture is in the bolded box .

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Exposing Attention Glitches with Flip-Flop Language Modeling

10 50 100 150 200
sequence length T

10 3

10 2

10 1

100

te
st

 e
rro

r

Natural LM evaluations on FFL(0.6)

GPT-NeoX 20B
Pythia 12B
GPT-2 1.5B
GPT-2 774M
GPT-2 117M

Figure 7: Natural language models fail to extrapolate robustly on FFLM.

FFLMs can be evaluated by checking their completions on prefix “prompts” (e.g. “... w 0 i 1 i 1 r [?]”).

We observe similar extrapolation failures in this setting. Figure 6 (right) exhibits some training curves for this setting,
showing non-extrapolation, variability, and instability. We observe that training (to in-distribution convergence) takes
slightly longer in this setting, and usually succeeds with the baseline architecture. We do not perform further controlled
experiments in this setting.

B.2.1. EVALUATING REAL LLMS ON FLIP-FLOPS

We provide a quick corroboration that while LLMs in practice can perform in-context reasoning when the sequences are
unambiguously isomorphic to a flip-flop language. We use the natural language example from Figure 4 (top right), and
evaluate the capability of popular pretrained LLMs to correctly remember the state of a light switch. Specifically, write
instructions in the FFLM task are either “Alice turns the light off” or “Alice turns the light on”. The ignore instructions
are either “Bob eats a banana” or “Bob eats an apple”. All models are prompted with a translated, length-16 FFLM task
that’s been translated to English in this way before evaluation.

We measure this accuracy as a function of the sequence length for several well-known LLMs, including GPT-2, GPT-2-large,
GPT-2-xl, Pythia-12C, and GPT-NeoX-20B. Figure 7 shows how well these models perform on this task (i.e. the correctness
of the model when prompted with “The light is turned ”) as the sequence length is varied. Consistent with the findings of
this paper, larger models tend to perform best at this task, and the quality of all models deteriorates with increased sequence
length. Each point on the plot considers 500 sequences of the indicated length. All models were prompted with a randomly
generated, length 16 flip flop sequence to allow the model to learn the task in context. Accuracy is measured according to
the frequency with which the model correctly predicts the current state of the light switch, as described in Section B.2.1.

(R3) 10B-scale natural LMs can correctly process flip-flop languages, but not robustly.

Note that it is impossible to quantify the degree to which these sequences are “in-distribution” (it is unlikely that any
sequences of this form occur in the training distributions for these LLMs). Much like linguistic reasoning evaluations in the
style of BIG-bench (Srivastava et al., 2022), we rely on the emergent capability of in-context inference (Brown et al., 2020)
of the task’s syntax and semantics. As discussed in Appendix A.5, this layer of indirection, which is impossible to avoid in
the finetuning-free regime, can cause additional (and unrelated) failure modes to those studied in our synthetic experiments.
Fully reconciling our findings between the synthetic and non-synthetic settings (e.g. by training or finetuning on sequences
of this form, or via mechanistic interpretation of non-synthetic language models) is outside the scope of this paper, and
yields an interesting direction for future work.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Exposing Attention Glitches with Flip-Flop Language Modeling

10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
98

) e
rro

r

10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
1)

 e
rro

r

6L
8H

 51
2d

 (b
ase

)

+oo
d d

ata

3x
 oo

d d
ata

3x
 oo

d s
tep

s

10
x o

od
 da

ta

10
x o

od
 st

ep
s

3x
 da

ta

3x
 st

ep
s

10
x d

ata

10
x s

tep
s

2L
4H

 12
8d

2L
8H

 51
2d

4L
4H

 12
8d

4L
8H

 51
2d

6L
4H

 51
2d

6L
16

H 51
2d

6L
8H

 25
6d

6L
8H

 10
24

d

8L
8H

 51
2d

8L
16

H 10
24

d

12
L 8

H 51
2d

12
L 8

H 10
24

d

16
L 8

H 51
2d

16
L 8

H 10
24

d

Scaling (data/compute/model) effects on o.o.d. performance

Figure 8: Full comparisons of various scaling axes.

B.3. Benefits of scale (Section 4.1)

In Section 4.1, we discussed mitigations that directly modify the training distributions and resources:

(R4) Training on rare sequences works best, by a wide margin.

(R5) Resource scaling (in-distribution data, training steps, network size) helps.

We provide more results specifically related to scaling along various axes. As shown in Figure 8, scaling helps improve the
OOD performance, especially when more OOD data are introduced. However, the benefit is not clear, especially on dense
sequences.

B.4. Indirect algorithmic controls for extrapolation (Section 4.2)

As shown in Figure 3, various architectural, algorithmic and regularization choices can help improve over the baseline
Transformer. We recall the main findings:

(R6) Many algorithmic choices influence extrapolative behavior.

(R7) Despite many partial mitigations, nothing eliminates attention glitches entirely.

There is no clear consensus on the advantages and drawbacks of various positional encodings, but it has been known (Dai
et al., 2019) that the choice of positional symmetry-breaking scheme modulates long-sequence performance on natural
tasks. We evaluate various choices which appear in high-profile LLMs: sinusoidal, learned, ALiBi (Press et al., 2021), and
RoPE (Su et al., 2021). We find that non-trainable position encodings help on dense sequences (FFL(0.1)), but have no clear
benefit on sparse ones (FFL(0.98)) which require more handling of long-term dependency.

B.5. Preliminary mechanistic study and challenges

In this section, we move to a simpler setting to gain finer-grained understanding of how sparsity regularization affects the
learned solutions. Specifically, we look at the task of simulating the flip-flip automaton (Definition 1), whose inputs consist
of {σ0, σ1,⊥} as two types of write and 1 no-op. This task (elaborated in Appendix A.1) can be solved by a 1-layer
Transformer with a single attention head which attends sparsely on the most recent write position. It also serves as a
building block for more complex tasks (Liu et al., 2023), hence observations from this simple setup can potentially be useful
in broader contexts.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Exposing Attention Glitches with Flip-Flop Language Modeling

10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
98

) e
rro

r

10 1

10 2

10 3

10 4

10 5

10 6
0

FF
L(

0.
1)

 e
rro

r

6L
8H

 51
2d

 (b
ase

)

wt. d
eca

y 0

wt. d
eca

y 0
.01

wt. d
eca

y 0
.03

wt. d
eca

y 0
.1

wt. d
eca

y 0
.3

att
n d

rop
ou

t 0
.05

att
n d

rop
ou

t 0
.1

att
n d

rop
ou

t 0
.15

att
n d

rop
ou

t 0
.2

att
n d

rop
ou

t 0
.3

att
n d

rop
ou

t 0
.4

mlp
dro

po
ut

0.0
5

mlp
dro

po
ut

0.1

mlp
dro

po
ut

0.1
5

mlp
dro

po
ut

0.2

mlp
dro

po
ut

0.3

mlp
dro

po
ut

0.4

em
b d

rop
ou

t 0
.05

em
b d

rop
ou

t 0
.1

em
b d

rop
ou

t 0
.15

em
b d

rop
ou

t 0
.2

em
b d

rop
ou

t 0
.3

em
b d

rop
ou

t 0
.4

em
b d

rop
ou

t 0
.45

em
b d

rop
ou

t 0
.5

em
b d

rop
ou

t 0
.55

em
b d

rop
ou

t 0
.6

em
b d

rop
ou

t 0
.65

em
b d

rop
ou

t 0
.7

em
b d

rop
ou

t 0
.75

Regularizer effects on o.o.d. performance

Figure 9: Full comparisons of regularizers.

Figure 10 shows examples of attention patterns on the flip-flop simulation task, subselected from 6-layer 8-head models
trained with and without attention-sharpening regularization. It is evident that the attention patterns of the sparse model
are less complex and easier to interpret compared to those of the un-regularized model. For example, we can identify one
head in the sparse model that exactly coincide with the attention pattern 11 that an “ideal” 1-layer 1-head model implements
(Figure 10c).

(R8) Attention-sharpening regularizers successfully promote hard attention, but errors persist. As mentioned in
(R7), attention-sharpening regularization cannot fully eliminate the sporadic errors, which are partially induced by
the complexity and redundancy of attention patterns. Moreover, sharpened attention can induce additional failure
modes, such as confidently attending to incorrect write positions. An example is demonstrated in Figure 10d, where
the attention focuses on an initial write, likely caused by the fact that earlier positions are overemphasized due to
the use of causal attention masks. Another example occurs in length generalization, where the attention is correct at
positions earlier in the sequence, but starts to confidently focus on wrong positions as it moves towards later positions
(Proposition 4). Details and more discussions are provided in Appendix B.5.

Sparsity regularization helps sharpen the attention Figure 13a,13b compare the attention patterns of 1-layer 1-head
models with or without attention-sharpening regularization. While both types of models give correct results, the attention-
sharpened model puts all attention weights to the most recently write position, which is the solution given according to
the definition of the task, whereas the attention patterns of the non-regularized model (Figure 13a) are much less clean.

Are there solutions other than the “ideal” solution? There is a solution naturally associated with the definition of the
flip-flop automaton (i.e. the sparse pattern shown in Figure 13b), but it is not necessarily the only solution. For example,
an equally valid (dense) solution is for the model to attend to every write token of the correct type. This is what the
non-regularized (dense) models seems to be implementing, as seen in Figure 13a, except for the final row where the model
puts non-negligible amount of weight on a write of a different type.

Are attention patterns reliable for interpretability? Prior work has pointed out the limitations of interpretations based solely

11While it is well-known that attention patterns can be misleading (Jain & Wallace, 2019; Bolukbasi et al., 2021; Meister et al., 2021) at
times, they do provide upper bounds on the magnitude of the dependency among tokens. These upper bounds are particularly useful in the
case of (1-)sparse attentions: a (near) zero attention weight signifies the absence of dependency, which greatly reduces the set of possible
solutions implemented.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Exposing Attention Glitches with Flip-Flop Language Modeling

(a) (b)

(c)

(d)

Figure 10: Causal attention patterns for flip-flop simulation (Definition 1); orange dots / blue diamonds mark the positions
of write tokens σ0 / σ1. (a),(b) are subselected respectively from a regular (non-sparse) and a sparse multi-layer model
(details in Appendix B.5). (c), (d) are from two 1-layer 1-head models. The attention pattern highlighted by the purple
box in (b) coincides with the “ideal” attention pattern in (c). However, sparse models can be wrong, as shown in (d) (error
marked in red).

on attention patterns (Jain & Wallace, 2019; Bolukbasi et al., 2021). The intuition is that attention patterns can interact with
other components of the network in various ways; for example, WV can project out certain dimensions even though they
may have contributed to a large attention score. Hence, for multi-layer multi-head non-sparse models, the magnitude of
attention weights may not have an intuitive interpretation of “importance” (Meister et al., 2021). For example, Figure 14
shows examples where the attention on an incorrect token may be higher than that of the correct token. 12 However, in a
1-layer 1-head model, 1-sparse attention as shown in Figure 13b indeed offers interpretability, since if zero attention weight
13 necessarily means the absence of dependency, which greatly reduces the set of possible solutions implemented. As shown
in Figure 13c, a write may not attend to itself due to the presence of residual link, but the attentions for read always
focus on the closest write as intended.

Sporadic errors persist Section Section 4.1 (R5) showed that none of the mitigations was successful at making Trans-
formers reach 100% accuracy. One common failure mode is long-range dependency, where the input sequences contain very
few writes. The failure could be attributed to multiple factors; we will explore one aspect related to attention patterns,
demonstrated with a 1-layer 1-head Transformers with linear position encoding, on a length-834 sequence with 2 writes.
As shown in Figure 11, the attentions for positions early in the sequence correctly attend to the most recent write. However,
attention starts to “drift” as we move to later positions, and the positions at the end of the sequence attend entirely 14 to the
recent read tokens, which contains no information for solving the task. This may be because the attention weights are
affected too much by the position encodings, as discussed in Proposition 4.

Optimization hurdles While sparse solutions may preferred for various reasons, sparsity itself is not sufficient to guarantee
good performance: As shown in Figure 13d, sparsity regularization can lead to bad local minima, where the model tends to
(incorrectly) rely on earlier positions. This is observed across different types of sparsity regularization. While we do not
yet have a full explanation of the phenomenon, a possible explanation for this bias is that earlier positions show up more
often during training, due to the use of the causal attention: a valid flip-flop solution is for the model to attend to every
write token of the correct type; positions earlier in the sequence get included in more subsequences because of the causal
mask, and are hence more likely to be attended to. We also observe that the phenomenon seems to be closely related to
the training distribution. For example, the model is much more likely to get stuck at a bad local minima when p(⊥) = 0.5
(denser sequences) compared to p(⊥) = 0.9 (sparse sequences).

12However, if we consider the “importance / influence” as measured by the norms of the attetnion-weighted value vectors, then the max
norm still corresponds to the correct token, which helps explain why the final output is correct.

13By “zero” we mean an attention score on the magnitude of 1e-8 in the experiments.
14The attention weights that are not on the most recent write sum up to around 1e-7.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Exposing Attention Glitches with Flip-Flop Language Modeling

Figure 11: Attention drifts as the length increases. The model is trained on length-500 sequences with p(σ ̸= ⊥) = 0.5.
The testing sequences are (a) [2, 0 · · · , 0︸ ︷︷ ︸

800

], and (b) [1, 0 · · · , 0︸ ︷︷ ︸
32

, 2, 0 · · · , 0︸ ︷︷ ︸
800

]. We sample every 32 positions for visualization.

Effect of sparsity regularization on training dynamics An interesting future direction is to understand the learning
dynamics of flip-flop tasks with attention-sharpening regularization, as suggested by the (quantitively and qualitatively)
different results and optimization challenges. As some initial empirical evidence that the regularization indeed have a large
impact on the dynamics, we found that sharpened attention seems to have a regularization effect on the weight norms
(Figure 12), and also lead to different behaviors of the attention heads (Figure 15).

More examples of attention patterns Figure 16 shows the full set of attention patterns of two 6-layer 8-head models
trained with and without attention-sharpening regularization, corresponding to Figure 10 (a,b). Attention-sharpening
regularization can be applied in different ways; for example, Figure 17 shows results of a model for which only the first layer
is regularized. The attention patterns of subsequent layers remain sharpen, even though there is no explicit regularization.

B.6. Software, compute infrastructure, and resource costs

GPU-accelerated training and evaluation pipelines were implemented in PyTorch (Paszke et al., 2017). For the FFLM
experiments, we used the x-transformers15 implementations of the Transformer architecture and variants. For the
fine-grained mechanistic interpretability experiments on the pure flip-flops, we used the “vanilla, GPT-2”-like Transformer
implementation published by HuggingFace (Wolf et al., 2019). We plan to make our benchmarks and training code publicly
available.

Each training run was performed on one GPU in an internal cluster, with NVIDIA P40, P100, V100, and RTX A6000 GPUs,
with at least 16GB of VRAM. Each (6-layer, 512-dimensional, 8-head) baseline model took ∼10 minutes to train (and
evaluate online) for 104 steps. A nontrivial fraction of the compute time (∼ 20%) was spent on fine-grained evaluation
through the coarse of training. The vast majority of training runs are close to these specifications; consequently, one set of
replicates under identical conditions (i.e. each violin plot in each figure) is the product of ∼4 GPU-hours of training time.

We hope that this computational investment will aid in understanding how to build robust Transformer models and training
pipelines at much larger scales.

15https://github.com/lucidrains/x-transformers

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Exposing Attention Glitches with Flip-Flop Language Modeling

Figure 12: Frobenius norms of weight matrices in 1-layer 1-head models, trained without regularization (blue), with
attention-sharpening regularization (yellow), or first without regularization and then adding regularization from epoch 30
(red; epoch 30 marked by the dashed lines). The solid curve and the shadow shows the median and the standard deviation
calculated on 8 models.

(a) (b) (c) (d)

Figure 13: Attention-sharpening regularization on 1-layer 1-head models. Compared to a non-regularized model (13a), the
sparsity-regularized model (13b) shows clear attention at the last write position. However, sparse attention does not have to
align with the “ideal” pattern (13c), and can even be wrong (13d). Positions with yellow borders are where the max attention
in each row occur; errors are marked in red.

Figure 14: Non-sparse attention pat-
tern can be misleading: a non-sparse
model may put more attention on an
incorrect token (i.e. a token that is
not the write with the right type),
while making the correct predictions.
Yellow boxes mark the position of the
max attention of each row.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Exposing Attention Glitches with Flip-Flop Language Modeling

(a) Model trained without sparsity regularization.

(b) Model trained with entropy sparsity regularization with λ = 0.01.

Figure 15: Examples of the ℓ2 difference in attention patterns from two 6-layer 8-head 512-dimension models. Differences
are calculated between all pairs of heads in the same layer.

(a) Without regularization. (b) With attention-sharpening regularization.

Figure 16: Attention patterns for 6-layer 8-head 512-dimension models on the input sequence [σ1,⊥, σ0,⊥, ⊥, σ0, σ1,⊥]:
attention-sharpening regularization lead to cleaner attention patterns. 1 attention head in the first layer of the regularized
model (marked by the purple box) matches the “ideal” attention pattern Figure 10c.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Exposing Attention Glitches with Flip-Flop Language Modeling

(a) ℓ2 differences between pairs of attention heads in the same layer,
throughout training (x-axis).

(b) Attention patterns on the input sequence
[σ1,⊥, σ0,⊥,⊥, σ0, σ1,⊥].

Figure 17: Attention heads and attention patterns for a 6-layer 8-head 512-dimension model, trained with attention-
sharpening regularization (entropy regularization with strength 0.01) on the first layer only. 1 attention head in the first layer
(marked by the purple box) matches the “ideal” attention pattern Figure 10c.

C. Proofs for Appendix A.4
Transformer recap. A Transformer (Vaswani et al., 2017) consists of multiple self-attention layers. Given d-dimensional
embeddings of a length-T sequence, denoted as X ∈ RT×d, a self-attention layer f computes

f(X) = ϕ(WV softmax(XWQW
⊤
KX⊤)XWV WC). (C.1)

where WQ,WK ∈ Rd×k for k ≤ d are the query and key matrix; WV ,W
⊤
C ∈ Rd×k project the representations from and

back to Rd. softmax calculates row-wise softmax. ϕ : Rd → Rd is a 2-layer fully-connected network. Residual links and
layer norm can be optionally included at different places of a self-attention layer.

C.1. Realizability of FFL by small Transformers

Proposition 2. A 2-layer 1-head Transformer with residual connections can represent ”deterministic” FFL.

Proof. Let us consider predicting in the deterministic mode (Section 2). Then we need to predict xt+1 given x1:t with
xt = r. In order to do this, we need to find the largest τ < t such that xτ = w and output xτ+1. There are multiple ways to
implement this, we will consider the following: (1) layer 1 converts FFL to the flip-flop automaton (Definition 1), (2) layer
2 implements the flip-flop construction. For layer 2, we can use the construction described in (Liu et al., 2023). Here we
present the full construction for completeness.

We will consider a two-layer Transformer with one head in each layer followed by a 2-layer MLP and a residual connection.
In particular, for x ∈ {w,r,i, 0, 1}T :

f(x) = ϕ2(W
(2)
V softmax(f1(x)W

(2)
Q W

(2)
K

⊤
f1(x)

⊤)f1(x)W
(2)
V W

(2)
C)

where f1(x) = E(x) + ϕ1(W
(1)
V softmax(E(x)W

(1)
Q W

(1)
K

⊤
E(x)⊤)E(x)W

(1)
V W

(1)
C)

where E(x) ∈ RT×d is the encoding for the input sequence x given some encoding function E.

Our construction is as follows:

• Select d = 7, k = 2, H = 1 (recall from Equation C.1that d, k are the dimensions of WQ,WK). Among the d = 7
embedding dimension, two dimensions are for the operations (w versus r,i), two for the two write values, one for
the positional embedding, one for padding, and the final dimension is for storing whether the previous position is the
most recent write, as calculated by the first layer.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Exposing Attention Glitches with Flip-Flop Language Modeling

• Select input symbol encodings such that for the token at position t, denoted as xt,

E(xt) := 1[xt = w]e1 + 1[xt = r ∨ xt = i]e2 + 1[xt = 0]e3 + 1[xt = 1]e4 + e5 + Pt ∈ R7,

where Pt is the positional encoding. We use the linear positional encoding Pt := (t/C) · e6, for some (large) constant
C. For a fixed sequence length T , we can set C = T .

• W
(1)
Q :=

[
e5 e5

]
∈ R7×2, W (1)

K :=

[
3c e1

2T ce6

]
∈ R7×2 for c = O(T log(T)), W (1)

V :=

[
e1 0

]
∈ R7×2, and

W
(1)
C

⊤
:=

[
e7 0

]
∈ R7×2.

• W
(2)
Q :=

[
e5 e5

]
∈ R7×2, W (2)

K :=

[
ce7 ce6

]
∈ R7×2 for c = O(T log(T)), W (2)

V :=

[
e4 0

]
∈ R7×2, and

W
(2
C

⊤
:=

[
e1 0

]
∈ R7×2.

In layer 1, the unnormalized attention score for query position i to key position j is〈
W

(1)
Q

⊤
xi,W

(1)
K

⊤
xj

〉
=

〈
c

T
·
[
3

2
· 1[xj = w], j

]
, [1, 1]

〉
=

c

T
·
(
3

2
1[xj = w] + j

)
.

Note that the max attention value for position i is achieved at i if xi−1 ̸= w, else the max is achieved at position i− 1.

In the setting of hard attention, the output for the ith token after the attention module is 1[xi−1 = w∨xi = w]e7. Now similar
to the constructions in (Liu et al., 2023) (Lemma 6), with a appropriate choice of c = O(T log T), we can approximate hard
attention by soft attention, and subsequently use the MLP to round the coordinate corresponding to e7. The MLP otherwise
serves as the identity function. Together with the residual link, the first layer output (i.e. the second layer input) at position i
takes the form

f1(xi) = E(xi) + 1[xi−1 = w ∨ xi = w]e7.

In layer 2, the unnormalized attention score computed for position i attending to j is〈
W

(2)
Q

⊤
f1(xi),W

(2)
K

⊤
f1(xj)

〉
=

c

T

〈
[1, 1],

[
1[xj−1 = w ∨ xj = w],

j

T

]〉
=c ·

(
1[xj−1 = w ∨ xj = w] +

j

T

)
.

Note that the max attention value is achieved at the position right after the closest w to xi. Let us denote this position by
τ ≤ i, then with hard attention, the output at the ith position is xτe1, as desired. Now similar to before, we can approximate
this with soft attention and use the MLP to do the appropriate rounding to get our final construction.

Remark: The construction in Proposition 2 is a construction, but it is not the only construction. For example, for the second
layer implementation for the flip-flop automaton, there could be an equally valid dense solution, where the model uniformly
attends to all write tokens of the correct type.

C.2. Failure of soft attention: attention dilution with bounded Lipschitzness

Consider any attention layer with weight matrices WQ,WK ∈ Rk×d. If ∥W⊤
KWQ∥2 is bounded, then the attention cannot

be sparse as the sequence length increases:

Proposition 3 (Leaky soft attention). Assume the latent variables have bounded norm, i.e. ∥v∥2 ≤ 1 for any latent vector
v ∈ Rd, and let σmax denote the max singular value of W⊤

KWQ. Then for T = Ω(exp(2σmax)), any sequences of latent
vectors {vτ}τ∈[T], ∥softmax({vτ}τ∈[T])∥∞ = 1− Ω(1).

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Exposing Attention Glitches with Flip-Flop Language Modeling

Proof. The proof follows directly from a simple rewriting.

For any u,v with ∥u∥2, ∥v∥2 ≤ 1, the pre-softmax attention score is bounded by u⊤W⊤
KWQv ∈ [−σmax, σmax].

exp(v⊤
t W

⊤
KWQvT)∑

τ∈[T] exp(v
⊤
τ W

⊤
KWQvT)

≤ exp(σmax)

exp(σmax) + (T − 1) exp(−σmax)
= 1− T − 1

T − 1 + exp(2σmax)
,

where the last term is Ω(1) when T = Ω(exp(2σ)).

Attention dilution and failure on dense sequences Strictly speaking, attention dilution caused by an increased sequence
length does not necessarily affect the output of the layer. For example, if ignore gets mapped to a subspace orthogonal
to that of write, then WV can project out the ignore subspace, making the weighted averaged depending only on the
number of writes. Hence with the presence of layer norm, attention dilution won’t be a problem for the final prediction if
the number of write is upper bounded regardless of the sequence length.

Moreover, for the experiments in Section 4.1, denser sequences (i.e. larger p(write)) does increase the number of write
compared to the training distribution, hence attention dilution can be a potential cause for the decrease in performance.

C.3. Failure of hard attention: bad margin for positional embeddings

In this section, we look at a failure mode that a 1-layer 1-head Transformer has on the flip-flop automaton simulation task.
Why do we care about this setup? Simulating the automaton is in fact a sub-task of FFLM. For example, the second layer of
the construction in Proposition 2 reduces to the simulation task.

Consider a 1-layer 1-head Transformer with parameters WQ,WK ∈ Rk×d. Write the attention query matrix WQ as
WQ = [WQe,WQp], where WQe ∈ Rk×(d−1) corresponds to the embedding dimensions, and WQpRk corresponds to the
dimension for the linear positional encoding. Write WK = [WKe,WKp] similarly.

Then, we claim that the following must be true, regardless of the choice of the token embedding:

Proposition 4. Consider linear positional encoding, i.e. pi = i/C for some (large) constant C. Then, perfect length
generalization to arbitrary length requires W⊤

QpWKp = 0.

Proof. Let e(i) ∈ Rd−1 denote the embedding vector (without the position encoding) for token i ∈ {0, 1, 2}. Let
vt = [et, pt]

⊤ ∈ Rd denote the embedding for the tth token, where et ∈ {e(0), e(1), e(2)}Rd is the embedding of the token
itself, and pt := i/C is the linear positional encoding.

Let si→j denote the pre-softmax attention score that the ith token puts on the jth token, which is given by

si→j = ⟨WQvi,WKvj⟩ (C.2)

=e⊤i WQeWKeej + e⊤i W
⊤
QeWKp · pj + (ej)

⊤WKeWQp · pi +W⊤
QpWKp · pipj (C.3)

=e⊤i WQeWKeej +
e⊤i W

⊤
QeWKp

C
· j + (ej)

⊤WKeWQp

C
· i+

W⊤
QpWKp

C2
· ij. (C.4)

We will prove the proposition in two cases, which respectively require W⊤
QpWKp ≤ 0 and W⊤

QpWKp ≥ 0.

Case 1: W⊤
QpWKp ≤ 0 required Consider the case of long-term dependency, where the input sequence consists of an

initial write and a series of reads, i.e. σ1 = 1 and σt = 0 for t > 1. Then for the Tth position, the score for the first write
token is

sT→1 = ⟨WQvT ,WKv1⟩ (C.5)

=e(0)
⊤
WQeWKee

(1) +
e(0)

⊤
W⊤

QeWKp

C
+

(e(1))⊤WKeWQp

C
· T +

W⊤
QpWKp

C2
· T (C.6)

=

(
(e(1))⊤WKeWQp

C
+

W⊤
QpWKp

C2

)
· T +O(1) = O(T), (C.7)

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Exposing Attention Glitches with Flip-Flop Language Modeling

and the score for the last write token is

sT→T = ⟨WQvT ,WKvT ⟩ (C.8)

=e(0)
⊤
WQeWKee

(0) +
e(0)

⊤
W⊤

QeWKp

C
T +

e(0)
⊤
WKeWQp

C
· T +

W⊤
QpWKp

C2
· T 2 (C.9)

=
W⊤

QpWKp

C2
· T 2 +O(T). (C.10)

Think of C as going to infinity. If W⊤
QpWKp > 0, then there exists a sufficiently large T such that sT→T > sT→1. Hence

we need W⊤
QpWKp ≤ 0.

Case 2: W⊤
QpWKp ≥ 0 required Consider the input sequence where σ1 = 1, σT−1 = 2, and σt = 0 for t ∈

[T] \ {1, T − 1}. Similar to the above, calculate the pre-softmax attention scores for σ1, σT−1 as

sT→1 = O(T) (C.11)

sT→T−1 =
W⊤

QpWKp

C2
· T 2 +O(T). (C.12)

Since we need sT→T−1 > sT→1, it must be that W⊤
QpWKp ≥ 0.

26

