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Abstract

It is well known that continuous-time recurrent neural nets are universal approximators for
continuous-time dynamical systems. However, existing results provide approximation guarantees
only for finite-time trajectories. In this work, we show that infinite-time trajectories generated by
dynamical systems that are stable in a certain sense can be reproduced arbitrarily accurately by
recurrent neural nets. For a subclass of these stable systems, we provide quantitative estimates on
the sufficient number of neurons needed to achieve a specified error tolerance.
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1. Introduction

We consider the problem of simulating the output trajectories of a given continuous-time dynamical
system by a recurrent neural net. In practice, the parameters of the net can be learned from observed
system behavior. In this work, we are primarily concerned with analyzing the expressivity of recurrent
neural nets in the context of modeling stable systems. This is useful for a number of practical
engineering applications, such as forecasting the behavior of a system with uncertain dynamics using
simulated trajectories, replacing subsystems in a modular design with parametric models, or learning
controllers for nonlinear plants where there may not be an obvious procedure to determine an optimal
controller. Recurrent nets represent a suitable choice for model architecture because the underlying
feedforward nets they are constructed from are universal function approximators (Pinkus, 1999), and
the feedback connections naturally emulate the intrinsic recursive structure of dynamical systems.
Existing results have established that recurrent nets are capable of generating simulated trajec-
tories that approximate true system trajectories within arbitrary error tolerance over a finite time
interval (Sontag, 1992; Funahashi and Nakamura, 1993; Chow and Xiao-Dong Li, 2000; Xiao-Dong
Li et al., 2005). All of these authors apply Gronwall’s inequality to control the difference between the
trajectories of the original system and its approximation, which incurs an exponential degradation of
approximation accuracy over time. Without imposing any additional conditions, simulating a system
over longer time intervals with the same error tolerance requires an exponentially more accurate
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model. This is problematic because the number of computation units in the network and number of
training samples required to achieve the desired error tolerance will depend on the simulation time
scale, which in many applications is unknown a priori.

However, for systems satisfying even modest stability conditions, Gronwall’s inequality is overly
conservative, and one can expect that a more delicate argument can show that approximation error is
generally not compounded over time. One such notion of stability can be quantitatively described
as saying that the initial condition has asymptotically neglible influence on the long-term behavior
of the system trajectory. Many systems of practical interest naturally exhibit this sort of stability
behavior. This property can be utilized to establish strict guarantees that the output of a simulating
model will remain sufficiently close to the output of the true system for infinite time scales, rather
than allowing performance degradation after a fixed time horizon.

In this paper, we consider the problem of universal simulation of dynamical systems that have
the property of uniform asymptotic incremental stability (Pavlov et al., 2006). Our main result shows
that, for any such system, one can find a recurrent neural net, such that the trajectories generated by
this net are arbitrarily close to the trajectories generated by the system it approximates on an infinite
time horizon. This is in contrast to many previous results which only guarantee approximation on
a finite time horizon. For stable systems satisfying an additional regularity assumption, we derive
quantitative bounds for the size of the recurrent net that achieves a desired error tolerance.

2. Dynamical systems and incremental stability
We are interested in controlled dynamical systems of the form

T = f(x,u) xz(t) e R" w(t) e R™

y=hz) () € R? o

where the state transition map f : R x R™ — R and the output map A : R™ — RP are continuously
differentiable. By augmenting the state space to include the equations § = % f(z, u) if necessary, we
may assume without loss of generality that A is given by a linear map x — Hx for some H € RP*™

(Sontag, 1992). We consider uniformly bounded inputs u : Ry — R™ in the set

U:={u:Ry = R™ :sup|u(t)| < R},
>0

where | - | denotes the Euclidean norm. For an input v € U and times 0 < s < ¢, we denote the
state z(t) at time ¢ that results from initial condition x(s) = & at time s by ¢ (), referred to as the
flow or trajectory generated by the system (1). We call a set X C R"™ positively invariant for inputs
in Wif, forall £ € X, allu € U, and all 0 < s < ¢, we have ¢y ;(§) € X. We will now restict our
attention to systems with the following stability property:

Definition 1 A dynamical system is uniformly asympotically incrementally stable for inputs in U
on a positively invariant set X if there exists a function 5 : Ry x Ry — Ry of class KL such that

|050(&) — 5 (€N < BUE = €], = s) ©)
holds forallu € U, all £,&' € X, and all 0 < s < t.

1. A function 8 : Ry xR — Ry is of class KL if 1) for any ¢, the map h — SB(h, t) is continuous and strictly increasing
and 3(0,t) = 0 and 2) for any h, the map ¢ — 3(h,t) is continuous and strictly decreasing and lim; o B(h,t) = 0.
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This property quantitatively captures the idea that perturbations to the initial condition have asymptot-
ically negligible influence on the long-term behavior of the system trajectory. One consequence for
systems satisfying this definition is that imperfect system models may still be capable of generating
outputs that uniformly approximate the outputs of the original system over infinite time intervals.
Using this characterization, we can formulate the necessary assumptions of desired approximation
and simulation results as regularity conditions on the function 5. In constrast, for systems not
satisfying this stability condition, a sharp bound on the approximation error degrades exponentially
with time (Hirsch and Smale, 1974; Sontag, 1998).

3. Approximate simulation

In many practical applications of dynamical systems modeling, the main criterion for an effective
model is that it approximately reproduces both the correct input/output relationships and the internal
state dynamics. There are many different ways of expressing this criterion; in this work, we use the
following formulation (Sontag, 1992):

Consider two systems % and Y described by the following dynamics

&= f(z,u)
SR
S . .f:f(i',U)
2‘@:H@

with inputs u(t) € R™, outputs y(t) € RP, and states x(t) € R™ and #(¢) € R". Suppose we are
given a compact set X C R", a set U of admissible inputs, and a time interval 7" C R,.. We say that
S simulates Y on sets K and U up to accuracy ¢ for times t € T if there exist two continuous maps
o :R" — R" and y : R” — R” such that, when ¥ is initialized at z:(s) = £ € K, 3 is initialized at
#(s) = ~v(€), where s := inf T, and any common input u(-) € U is supplied to both ¥ and ¥, then

[z(t) —a(z(t))| <e and |y(t) —gy(t)| <e
forall ¢ € T'. In this paper, we consider the case when the simulating system ¥ is a (continuous-time)
recurrent neural net, i.e., f has the form
~ 1
f(Z,u) = ——=% + 0 (AZ + Bu),
T

where 7 > 0 is a positive constant, A € R™" and B € R"*™ are time-invariant matrices, and
o7, : R® — R™ is a diagonal map of the form 0 (%) := [0(#1) -+ 0(Z7)]T, where o : R — (0, 1)
is a continuous, strictly increasing function with limy_, o, o(h) = 0 and limy,_, o, o(h) = 1. Such
functions are referred to as sigmoidal in the literature on neural nets (Barron, 1993).

4. Simulating stable systems with recurrent neural nets

Consider system (1) with an open positively invariant set X C R". We impose the following
assumptions:

Assumption 2 There exists a compact subset X C X such that, for any initial condition £ € X,
there exists a compact subset X¢ C X, such that g ,(§) € X¢ for allu € Wand allt > s > 0.
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Assumption 3 System (1) is uniformly asympotically incrementally stable on X for inputs in U, and
the function 3 in equation (2) satisfies the following conditions:

1. Foranyt > 0, the map h — [B(h,t) is differentiable from the right at h = 0.

x 9
2. < ht’ dt = b < co.
0 8h5(’)h:0+ =

Assumption 3 is evidently satisfied by exponentially stable systems with 3(h,t) = che™ " for some

¢, k > 0, but it also holds for systems with much longer transients, e.g., when 3(h,t) = ﬁ

Theorem 4 Consider system (1) and suppose that Assumptions 2 and 3 are satisfied. Then, for any
€ > 0, there exists a recurrent neural net of the form

z

1 ~ -

——Z + 0;(AZ + Bu)
-

Hi

<
Il

for some T > 0, A e RV B c R™M and H € RPX™ that simulates system (1) on sets X and
W up to accuracy € for all t € R,.. Moreover, the mappings o : R™ — R"™ and v : R® — R" that
implement the approximate simulation are linear.

4.1. Technical lemmas

To prove the theorem, we will make use of the following lemmas.

Lemma 5 Let Dy (€) - v denote the directional derivative of ¢ (§) with respect to § in the
direction of v. Suppose that Assumptions 2 and 3 are satisfied. Then for any £ € X, the induced norm

[1DeS+(E)] = sup |Deg,(€) - vl

lvl=1
is integrable with respect to t on [s, 00).

Proof From definitions,

D@5+ (&)l = sup [Dpg,(€) - v

ju=1
1
|i1|1:p1 l%ﬁ)l 7’}“}‘ ’(,037,5(5 + ho) (Ps,t(g)‘

1
< sup lim ——fB(|hv|,t — s)
jo|=1 140 ]

1
= lim Eﬁ(h,t —3)

hl0
0
= —pB(h,t—
s Pt —s)|
and, by Assumption 3, a% B(h,t — s)|p—o+ is integrable with respect to ¢ on [s, 00). [ |
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Lemma 6 Consider two dynamical systems i = f(x,u) and & = f(&,u) with z(t), Z(t) € R",
which generate flows ¢ (§) and ¢ (&), respectively. Then the following inequality holds for all
t>s>0:

!w?,t(i)—sb?,t(f)\ﬁ/ 1Dy (@ (N - 1 (@8 (€)s u(r) = f(@n(€)sulr)|dr. (3)

The proof can be found in van Handel (2007), Chapter 3, Proposition 3.1.3.

Lemma 7 Consider the C* map f : R" x R™ — R™ from system (1) satisfying Assumption 2.
Then, for any € > 0, we can construct:

e compact sets X1 C Xo C X;

e a C* bump function p : R" x R™ — R that satisfies plz, = 1 and p\(ZQ)c = 0 for
Z; = X; x BE(0), i € {1,2}, where B}}(0) := {v € R™ : |v| < R};

o a C' map fthat vanishes outside Zo, such that, for (x,u) € Z1,

N

1
flz,u) = T+ Toy(Ax + Bu+ p) +v
for someT > 0,T € R A € REX", B € RIxm, JTRS R¢, and v € R", and

sup (@, ) f(w,u) = f(z,u)| < e
(z,u)€ER™ xR™

The proof is omitted due to space limitations; see the full version (Hanson and Raginsky, 2020).

Lemma 8 The state-space dynamics

. 1
2=——2+Toy(AZ + Bu+p) +v 4)
T
can be simulated with zero loss in accuracy by a system in the form of a recurrent net

=1z + 071(AZ + Bu) (5)
T

for some 1 € N, A € R B ¢ RYX™M_ That is, there exist matrices F € R™ ™ and G € R ",
such that &(t) = FZ(t) for all t > 0, with initial conditions z(0) = £ and (0) = G&.

Proof Following Sontag (1992), we will construct the recurrent net (5) and the matrices /' and GG in
several steps.
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Step 1 - Eliminating 7': We may assume without loss of generality that the matrix 7T takes the
form [T 0]7 with T} having full row rank. Then the system (4) can be written as

1
T = —;$1+T10‘K(A11‘1+A21‘2—|—Bu+ﬂ)+l/l, 171(0) 251
(6)

. 1
Ty =—_T2 + 1o, x2(0) = &2

where ¢ = [¢] ¢]]T and v = [] v4]T. Since T} is surjective, there exist vectors 71, &; € RY such
that 717 = v and T1&; = £;. Consider the following transformed system:

1 .
21 = ——z1 +0p(Ai1T1 21 + Asxo + Bu + p) + 11, 21(0) =&

r @)
. 1
To = —;$2+V2, x2(0) = &

The trajectory (z1(t), x2(t)) of system (6) can be recovered from the trajectory (z;(t), x2(t)) of
system (7) via the transformation z(¢) := Tj21(t). Let k := o(0); then the equation for the
dynamics of x2 may be rewritten as

. 1
Ty = —;1'2 +0p—r(0z+0u)+ (2o — [k - H]T),
where 7 := rank(77). This permits us to combine the two equations in (7) into

. 1 L
T=—-Z+o0p(AZ + Bu+p)+v
T

for suitable matrices A € R?*™, B € R™ ™ vectors ji, 7 € R™, and the initial condition z(0) = £,
where i := ¢ +n —rand & := [¢] &]]T.

Step 2 - Eliminating 7: Define z := Z — 77 and § := 7 Av + [i. It follows that

1 _ _
& =——x+ on(Az + Bu+0)
-

with 2(0) = £ := £ — 77, and the trajectory Z(¢) from Step 1 is recovered via Z(t) = z(t) + 7.

Step 3 - Eliminating 6: Since o : R — (0, 1) is bounded, positive, and continuous, the fixed-point
equation z = 7o(z) has at least one nonzero solution ¢, by Brouwer’s fixed-point theorem. Consider
the following dynamics for Z(¢) € R"*1:

- 1. - 1 . _ -

T =~ —Tin + on(AZ1.0 + 69$ﬁ+1 + Bu), T1.2(0) =€
- 1. - -
a1 =~ —Tat1+ o (ZTat1), ZTpt1(0) =¢

where evidently z(t) = Z1.7(t) and Zn41(t) = ¢ for all £. With 72 := @2 + 1, this system can be
represented in the desired form 2 = — 1% + 0;(AZ + Bu) by choosing

B
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Altogether, we have showed that the trajectory of the system (4) with 2(0) = £ can be reproduced
with zero loss in accuracy by a recurrent net (5) by expanding the dimension of the state space from
n ton + £ — r and adding one more neuron, for a total of 7 = £ + n — r + 1 neurons. The matrices
Fand G can be constructed by retracing the above steps backwards from & to & and then forwards
from & to € := [¢' ¢]T . (The affine map Z(t) = z(t) + 7 can be implemented as a linear map
Z(t) = Z1.a(t) +7%D§:ﬁ+1, since Z741(t) = ¢ for all ¢.) [

4.2. Proof of Theorem 4

Fix some 1 > 0 to be chosen later. Consider system (1) with an open positively invariant set X C R"
satisfying Assumptions 2 and 3. By Lemma 7 (with ¢ <— ), there exist a map f :R" x R™ — R”
and compact sets 21 C Zo C X x R™, such that f\zl (x,u) = —%x + Toy(Ax + Bu+ p) + v and
Iof = fllso < 1, where p is a C'> bump function satisfying p|z, = 1 and p(z,)c = 0.

Moreover, by Lemma 7, Z; = X; x B (0). Let ¢4 ,(£) denote the flow generated by the system
& = f(&,u). Since f is a C' map that vanishes outside Zy, we clearly have Pe(€) € Xo C X for
all ¢ € K, allu € U, and all £ > s > 0, since if the trajectory reaches the boundary 0Xo, it must
stop and remain there permanently because f |, x BR(0) = 0. Furthermore, since ¢ ;(§) € Xy =
cl(UgexXe¢) for all t > s > 0 by Assumption 2, the flow generated by the system & = (pf)(x, u) is
identically equal to wg"t(f ) because pf|x, « BR(0) = floca x By (0)- Therefore by applying Lemmas 5
and 6, we have

|05.4(8) — @54 ()] < / 1Dy (84 (D)1 (o) (2 (€) s ulr)) — F(@40(€) ulr))| dr

[
< —
=/ 8
b

hﬁ(h7r - S) h=0+ (z,SuL)ngQ \(pf)(x,u) - f($7u)| dr
<b- U]

SalBS

By Lemma 8, the system
: 1
t=——2+Toy(A% + Bu+p) +v
T
can be simulated with zero loss in accuracy by a system in the form of a recurrent net

) 1 . _
Z=——7+ 0s(AZ + Bu)
T

For the above recurrent net, let §(t) := H#(t) with H := HF, where H € RP*™ is the linear
output map of the original system (1) and F' € R™*7 is the linear map given by Lemma 8. Then
Hz(t) = HFz(t) = Hz(t) for all t > 0, and consequently

ly(t) = §(t)] = |Ha(t) — Hi(t)]
= |Hz(t) — H2 ()|
< || H [ (t) — &(t)]
< Hln.
Choosing 7 < min(e, ﬁ) gives |z(t) — Fz(t)| < € and |y(t) — g(t)| < e for all ¢ > 0, with
x(0) = & and £(0) = G¢, which completes the proof.
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5. Quantitative approximation bounds for Barron-class systems

Utilizing quantatitive approximation bounds developed for feedforward nets, we can develop similar
results for recurrent nets. For these bounds to hold, it is necessary for the vector field f(x, u) of the
original system (1) to satisfy certain regularity conditions (Barron, 1993):

Definition 9 We say that a continuous function f : R* — R belongs to the Barron class if
Cpi= [ ol dw < o
Rd

where f : RY — R is the Fourier transform of f.

Proposition 10 Let a continuous function f : R* — R be given, with C ¢ < oo. Then for every
r > 0and every N € N, there exists a feedforward neural net g : R¢ — R of the form

N
g(z) = Z cko(ay - z + by) + co,
k=1

such that
2rCy

sup [f(z) —g(2)| < :
2€B2(0) \/N
The proof can be found in Barron (1993) or in Yukich et al. (1995). Note that the constant Cy
depends implicitly on the input-space dimension d. If each coordinate of the state transistion map
f i R" x R™ — R” from system (1) belongs to the Barron class, then we can bound the number of
computation units (neurons) in a recurrent net that simulates system (1).

Proposition 11 The number of computation units sufficient to guarantee the result of Theorem 4
with accuracy € is
16(CfbHHHA)2n

n>n+1+ 3

5
where Cy and b are defined earlier; and A := sup,cy, |7| + R+ ﬁ

Remark 12 The constant C'y may implicitly depend on the total dimension n + m.

Proof The desired underlying feedforward net is constructed in the proof of Lemma 7, such that

Ui
sup_ (o)) — gla,w)] < o
(z,u)€Z1
where Z; is a compact subset of R” x R™ contained in the ball of radius A. On the other hand,
Proposition 10 gives

QCfA\/ﬁ
sup Pf T,u)—g\r,u Siv
S [(pf) (@, u) = g(z,u)| i

where / is the number of neurons in g. To achieve the desired inequality, it suffices to take ¢ >
16C2b2 A2
fizn. From the proof of Theorem 4, we set n < T ;IH , and from Lemma 8 we know that

7
n > n + ¢ + 1 neurons suffice. ]
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