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ABSTRACT

Equivariant graph neural networks (Equiv-GNNs) have demonstrated effectiveness
in modeling dynamics of multi-object systems by explicitly encoding symmetries.
Among them, scalarization-based methods are widely adopted for their computa-
tional efficiency, particularly in comparison to high-steerable models. However,
most existing scalarization-based approaches rely on empirical design of invari-
ant functions, lacking rigorous theoretical guarantees. Moreover, these methods
typically only consider directional information from object positions, neglecting
that from higher-order differential components. To address these limitations, we
propose a general and efficient SE(3)-equivariant graph framework with Complete
Differential Invariants and Frames (CDIF). Specifically, we show how to con-
struct a set of differential invariants to universally express any invariant functions
through network layers. Additionally, we illustrate the complete recovery of di-
rectional information from the aforementioned invariants via frames that integrate
both positional and differential components. Extensive experiments across diverse
domains, including molecular dynamics, formation control, motion capture and
particle simulation, validate that our method is simple, scalable, and outperforming
state-of-the-art baselines.

1 INTRODUCTION

Multi-object systems are ubiquitous in diverse scientific domains, from multi-body systems (Shabana,
2020) and molecular dynamics (Karplus & McCammon, 2002) to motion planning of robots (Zheng
& Li, 2024; Chen, 2024). Modeling the dynamics of these systems remains a challenging problem.
Specifically, our goal is to predict future states accurately from the observed data. However, the
absence of prior knowledge about system topologies and inter-object interactions leads to an ill-posed
problem, i.e., the set of solutions consistent with observed data is typically non-unique and, in most
cases, infinite. This fundamental challenge renders conventional approaches (Li et al., 2023; 2025;
Prasse & Van Mieghem, 2022) incapable of reconstructing the system or forecasting trajectories
precisely.

Equivariant graph neural networks (Equiv-GNNs) (Han et al., 2024) have emerged as a powerful
paradigm to tackle this challenge by explicitly encoding symmetries for precise dynamics modeling.
Compared with non-equivariant neural networks, Equiv-GNNs narrow the solution space by incorpo-
rating symmetries, such as permutation invariance and tranformation equivariance. This facilitates
models in learning to approximate ground-truth dynamics. Existing Equiv-GNNs can be divided
into two categories, i.e., high-steerable models and scalarizaion models. High-steerable approaches
employ group representation theory to lift geometric vectors into high-dimensional spaces, which
enables symmetry representation. For example, TFN (Thomas et al., 2018) and SE(3)-Transformer
(Fuchs et al., 2020) parameterize such vectors utilizing spherical harmonics, while CEGNN (Ruhe
et al., 2023) employs Clifford algebra. Though these methods ensure strong expressiveness, they incur
substantial computational costs, especially in ltarge-scale scenarios. By contrast, scalarization-based
methods like EGNN (Satorras et al., 2021) and GMN (Huang et al., 2022) construct invariant scalars
and update states directly in the original space, which significantly reduce computational costs while
achieving state-of-the-art performance across diverse tasks.
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However, existing scalarization-based methods rarely explore the relationship between the design of
invariant scalars and model expressiveness. Most approaches rely on experience to design invariant
scalars, such as relative distances (Satorras et al., 2021) and angles (Gasteiger et al., 2021), which
serve as model inputs. Though Villar et al. (2021) demonstrated that any invariant/equivariant
function of input vectors can be represented via scalars, they inherently overlook structural constraints
imposed by group actions. As a result, their estimated number of scalars does not capture the optimal
constraints. Moreover, current methods (Jing et al., 2020) treat differential components of object
states merely as input channels to compute invariant scalars, for instance, computing relative distance
alongside the magnitude of relative velocities. Actually, the combinations of these components are
also critical to object dynamics, e.g., object j’s position and object i’s velocity jointly influence the
evolution of object i. Finally, some models (Du et al., 2023) only recover directional information
from scalars using only object positions, failing to fully leverage all differential components. This
leads to cumulative deviations of state updates from ground-truth data during training, ultimately
degrading model performance.

In this paper, we propose a general and efficient framework dubbed Equivariant Graph Neural Net-
work with Complete Differential Invariants and Frames (CDIF). Different from previous methods,
(1) we demonstrate that the number of invariant scalars (hereafter referred to as invariants) sufficient
to universally approximate all invariant/equivariant functions of the multi-object system can be
determined. These invariants, which incorporate object differential components, are thus termed
complete differential invariants. Compared with Villar et al. (2021), we provide an exact and tighter
upper bound on the number of invariants, along with a systematic method to construct them. Notably,
computing complete differential invariants incurs the same computational complexity as existing
scalarization-based methods (Satorras et al., 2021), i.e., O(m). (2) We construct a set of frames on
each edge by fully leveraging object states, i.e., embedding both positional and differential compo-
nents. These frames are theoretically proven to span the entire state space, covering all directions
for object state updates, and are thus named complete differential frames. We conduct extensive
experiments, benchmarking multiple domains including molecular dynamics, formation control,
motion capture and physical particle simulation. The results demonstrate that CDIF outperforms
state-of-the-art baselines. Moreover, both complete differential invariants and complete differential
frames contribute to learning complex system dynamics, and they can be readily adapted to other
models.

2 PRELIMINARIES

Multi-object System The multi-object system considered here is generalized to any system com-
posed of interacting objects or nodes, such as multi-agent systems (Amirkhani & Barshooi, 2022)
and N-body systems (Kipf et al., 2018). Given an N -object system evolving in the three-dimensional
Euclidean space R3. At time t, the state of each object is formalized as a vector integrating positional
and differential dynamics,

s(t) =
[
q(t)⊤, q̇(t)⊤, q̈(t)⊤, · · ·

]⊤
, (1)

where q(t) ∈ R3 denotes the position vector, with q̇(t) and q̈(t) representing its first and second
time derivatives, respectively. The interaction topology is characterized by the graph G = (V, E),
where V = {1, . . . , n} and E ⊆ V × V define the node and edge sets. In practical applications,
direct observation of second-order and higher-order differential states, e.g., accelerations and jerks, is
often infeasible. Thus we focus on the scenarios where the object state includes only position and
velocity, i.e., s(t) =

[
q(t)⊤, q̇(t)⊤

]⊤
. Notably, our framework naturally generalizes to incorporate

higher-order dynamics, with detailed extensions deferred to the Appendix A.

Functional Dependence Consider a family of smooth R-valued functions F = {f1, f2, . . . , fn}.
Let p0 ∈ M be a point on manifold M with coordinates (x1, x2, . . . , xm). The rank of F at p0 is
defined by the rank of the Jacobian matrix ∂fi/∂x

k. The family F is regular if its rank is constant
across M , ensuring a uniform structure of dependencies throughout the manifold. Building on
the concept of rank, we characterize functional dependence among functions in F . The functions
{fi} ⊂ F are functionally dependent if, for each p0 ∈ M and its neighborhood U , there exists a
non-trivial smooth function H , which is not identically zero on any subset of Rn, such that

H(f1(x), f2(x), . . . , fn(x)) = 0, for all p ∈ U. (2)
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Group Action Consider a Lie group G with identity element e. To describe the left action of a Lie
group G on a manifold M , we introduce the permutation operator Tg : M → M that for each g ∈ G
and p ∈ M , we have Tg(p) ∈ M . The orbit of the point p under this action is the set

Op = {Tg(p) : g ∈ G}, (3)

which captures all points reachable from p via left actions by elements of G. The action is termed
semi-regular if every orbit is a smooth submanifold of M with uniform dimension.

Invariance and Equivariance Let Tg, Sg denote the left group actions of G on manifolds M,N ,
respectively, and consider a smooth map ϕ : M → N . Map ϕ is called G-equivariant if it commutes
with group actions

ϕ(Tg(p)) = Sg(ϕ(p)), for all p ∈ M and g ∈ G. (4)

Intuitively, this property ensures that applying a group action before or after mapping ϕ yields the
same result. Then, we say ϕ is G-invariant if group actions leave its output unchanged.

ϕ(Tg(p)) = ϕ(p), for all p ∈ M and g ∈ G. (5)

Scalarization-Based Equivariant GNNs Let Ii denote the set of invariants only relevant to the
state si of object i, while Iij represents the invariants dependent on the states of both object i and its
neighbor j. Scalarization-based Equiv-GNNs construct messages by

mij = ϕm({hi, Ii}, {hj , Ij}, {aij , Iij}), mij = ϕe(mij)f(si, sj), (6)

where hi, hj and aij denote initial node and edge features, and f(si, sj) outputs a vector. These
messages are then aggregated according to the topology, with object features and states updated as
follows:

h′
i = ϕh(hi, Ii,

∑
j∈Ni

mij), s′i = si + c
∑
j∈Ni

mij . (7)

Here, c serves as a normalization coefficient, ϕm, ϕe, ϕh denote arbitrary mappings, and Ni specifies
the neighbor set of object i.

3 METHODOLOGY

In this section, we introduce the derivation of complete differential invariants and complete differential
frames in the three-dimensional Euclidean space under the action of the special Euclidean group SE(3).
Specifically, we consider global group actions rather than gauge transformations (He et al., 2021),
where the latter apply transformations independently to separated objects. Additional scenarios, such
as those in two-dimensional space, are discussed in Appendix E.

3.1 COMPLETE DIFFERENTIAL INVARIANTS

In modeling dynamics of multi-object systems, messages mij characterize inter-object interactions
and thus motivate the construction of edge-wise invariants rather than node-wise ones. These
invariants depend on the states of two objects connected by an edge, formalized as I(si, sj).
Translational effects can be readily eliminated via centralization, reducing the problem to con-
structing invariants under the SO(3) group. Thus, our goal is to find a set of SO(3)-invariants
I = {I1(si, sj), · · · , Im((si, sj))} such that any other SO(3)-invariant R-valued function is func-
tionally dependent on I. The following proposition specifies the maximal number of non-trivial
functionally independent invariants in this setting.

Proposition 3.1. Under SO(3) group actions on object states si and sj , the maximal number of
non-trivial functionally independent invariants is nine. Specifically, any SO(3)-invariant R-valued
function I ∈ F(R3)SO(3) can be expressed by a function of these invariants, i.e.,I = H(I1, . . . , I9).

A detailed proof is provided in Appendix D.1. This implies that any additional invariant can be
expressed through a function H of these nine invariants, which can be learned and approximated by

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

neural networks. Explicit constructions of these invariants can be directly derived via vector inner
products and cross products.

Ipi = qi(t)
⊤qi(t), Ivi = q̇i(t)

⊤q̇i(t), Ipj = qj(t)
⊤qj(t), Ivj = q̇j(t)

⊤q̇j(t),

Ipivi = qi(t)
⊤q̇i(t), Ipipj

= qi(t)
⊤qj(t), Ipjvj = qj(t)

⊤q̇j(t),

Ivivj = q̇i(t)
⊤q̇j(t), Ivipipj

= q̇i(t)
⊤(qi(t)× qj(t)),

(8)

Note that this set I = {Ipi
, Ivi , · · · , Ivipipj

} is not unique. Any invariant can be replaced by another,
provided that the invariants in the set remain functionally independent.
Lemma 3.2. Vector cross products are SO(3)-equivariant, and vector inner products are SO(3)-
invariant. Specifically,

1) For any u,v ∈ R3 and g ∈ SO(3), (g · u)× (g · v) = g · (u× v).

2) For any u,v ∈ R3 and g ∈ SO(3), (g · u)⊤(g · v) = u⊤v

Thus, the invariants constructed in (8) are readily verified to be SO(3)-invariant functions, i.e.,
∀g ∈ SO(3), I(g · si, g · sj) = I(si, sj). (9)

The following corollary extends this property to arbitrary functions of the SO(3)-invariant functions.
Corollary 3.3. Any function f with SO(3)-invariant functions as inputs is SO(3)-invariant.

Proof. Let f = f(I1, I2, . . . , In) where each Ik is an SO(3)-invariant function. For any g ∈ SO(3),
we have:

f(g · s1, . . . , g · sm) = f
(
I1(g · s1, . . . ), . . . , In(g · s1, . . . )

)
= f

(
I1(s1, . . . ), . . . , In(s1, . . . )

)
= f(s1, . . . , sm)

(10)

Thus, f is SO(3)-invariant.

Building on the Corollary 3.3, we can design SO(3)-invariant layers by taking invariants as inputs.
As shown by Leshno et al. (1993), multi-layer neural networks with an adequate number of neurons
enable universal approximation of any continuous function. Accordingly, by feeding the invariants
I = {Ipi

, Ivi , · · · , Ivipipj
} from (8) into the model, we achieve universal approximation of arbitrary

SO(3)-invariant functions associated with the state vectors si and sj .

3.2 COMPLETE DIFFERENTIAL FRAMES

Utilizing the invariants mentioned above, we can learn SO(3)-invariant messages mij to approximate
the actual interactions between objects. However, these messages can only represent the magnitude of
interactions and lack directional information. Thus, this section focuses on how to endow messages
mij with direction, thereby using message vectors mij to update object states. Specifically, our
goal is to derive a suitable expression for f(si, sj) in (6). Du et al. (2022) proposed complete local
frames to recover directional information. Nevertheless, they overlooked differential components,
rendering these frames unable to directly map to changes in object states. To fully recover directional
information, we thus augment these local frames into complete differential frames. For object i and
and its neighbor j, the positional frame Fp

ij(t) and velocity frame Fv
ij(t) are constructed as

Fp
ij(t) = {epx

ij (t), e
py

ij (t), e
pz

ij (t)}, Fv
ij(t) = {evxij (t), e

vy
ij (t), e

vz
ij (t)}. (11)

The explicit forms are as follows:

epx

ij (t) =
qi(t)− qj(t)

∥qi(t)− qj(t)∥
, e

py

ij (t) =
qi(t)× qj(t)

∥qi(t)× qj(t)∥
, epz

ij (t) = epx

ij (t)× e
py

ij (t),

evxij (t) =
q̇i(t)− q̇j(t)

∥q̇i(t)− q̇j(t)∥
, e

vy
ij (t) =

q̇i(t)× q̇j(t)

∥q̇i(t)× q̇j(t)∥
, evzij (t) = evxij (t)× e

vy

ij (t).

(12)

It is evident that both the positional frame Fp
ij(t) and velocity frame Fv

ij(t) are orthonormal, where
orthogonality arises from the properties of vector cross products. Moreover, by Lemma 3.2, cross
products are SO(3)-equivariant, leading to the following proposition with the detailed proof provided
in the Appendix D.2.
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Figure 1: An overview of CDIF. The centralized object states are derived via the Centralization and
Initialization module to get rid of translational effects. Then, we feed them along with the initial
object features and initial edge attributes into CDIF layers to update the node features, edge messages,
and object states.

Proposition 3.4. Both frames Fp
ij(t) and Fv

ij(t) are equivariant under actions of the SO(3) group.

It is worth noting that the frames defined in (12) may suffer from degeneracy. First, degeneracy
can occur within Fp

ij(t) and Fv
ij(t) when vectors like qi(t) and qj(t) are parallel, which causes the

vector cross product to yield zero and reduces the frame’s dimensionality. Additionally, degeneracy
may arise between Fp

ij(t) and Fv
ij(t) if their basis vectors, e.g., epx

ij (t) and evxij (t), are parallel.
However, in most practical scenarios, the generic non-collinearity inherent in multi-object systems
naturally mitigates such degenerate cases. Furthermore, in applications, a tiny artificial disturbance
is typically introduced to proactively avoid the frame degeneracy. With the degeneracy carefully
mitigated, the following proposition formalizes that the frames span the state space.

Proposition 3.5. Under non-degenerate conditions, Fp
ij(t) and Fv

ij(t) form a complete basis for
the state space. Consequently, any state variation δs can be expressed as

δs = λpx
epx

ij + λpy
e
py

ij + λpz
epz

ij + λvxe
vx
ij + λvye

vy
ij + λvze

vz
ij , (13)

where {λpk
, λvk} are learnable scalars.

Proof. Under non-degenerate conditions, the six basis vectors {epx

ij , e
py

ij , e
pz

ij , e
vx
ij , e

vy
ij , e

vz
ij } from

Fp
ij(t) and Fv

ij(t) are linearly independent. The state space here, incorporating position and velocity
components, is a six-dimensional vector space. By he fundamental theorem of linear algebra, a set of
n linearly independent vectors in an n-dimensional space necessarily spans the space. Thus, Fp

ij(t)

and Fv
ij(t) together span the entire state space, and any vector within this space, including the state

variation δs, can be expressed as a linear combination of their basis vectors.

In summary, under the SO(3) group action in 3D Euclidean space, we construct complete differential
invariants to encode all symmetries in system dynamics. Models taking these invariants as inputs
can learn to approximate any relevant invariant functions. Additionally, complete differential frames
preserve all directional information in the state space. In the following sections, we demonstrate
that the two modules jointly act to guarantee the expressiveness and generalization capability of the
Equiv-GNNs.

4 CDIF FRAMEWORK

In this section, we introduce CDIF, a general and efficient equivariant graph framework. The overall
architecture of CDIF is illustrated in Figure 1. To enforce translation invariance in object states,
we first perform centralization that allows us to focus merely on rotational symmetry, i.e., SO(3)-
invariance/equivariance. Since velocities are inherently translation-invariant, centralization is applied
only to object positions. Then the centralized states and initial features are fed into CDIF layers to

5
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Figure 2: The detailed implementations of the CDIF Layer. The CDIF layer primarily consists of
four modules. First, we construct complete differential invariants and frames, which then serve as
inputs to the edge model for deriving messages. By aggregating these messages, the node model and
update model subsequently update node features and object states,respectively. Variables marked
with a tilde, such as h̃, denote their updated counterparts.

learn to predict system future states. Within each CDIF layer illustrated in Figure 2, we first construct
complete differential invariants and frames using centralized states, as detailed in (8) and (12). The
CDIF layer leverages the message-passing mechanism (Gilmer et al., 2020) to model inter-object
interactions. The edge model and node model follow the design of conventional GNNs (Kipf et al.,
2018), but with a key distinction that the edge model’s input incorporates the constructed complete
differential invariants. Moreover, we replace the activation function with SiLU and introduce layer
normalization to further enhance training stability. Next, with the constructed differential frames and
messages m̃ij updated by the edge model, the CDIF layer harness update model to learn object state
changes. To improve fitting accuracy, the model predicts the state variations δs rather than the direct
future state s̃. Finally, since we initially centralized object positions, we reintroduce the centroid
qc at the output of CDIF to ensure translation equivariance. Details of the CDIF implementation
are provided in the Appendix C. By Corollary 3.3 and Proposition 3.4, we present the following
proposition regarding the CDIF layer, with its proof detailed in the Appendix D.3.
Proposition 4.1. The CDIF layer is equivariant under actions of the SO(3) group. Specifically, for
any g ∈ SO(3), the following holds:

g · CDIFL(s(l)) = CDIFL(g · s(l)). (14)

Compared with other scalarization-based methods (Satorras et al., 2021), CDIF incurs additional
computational overhead in constructing complete differential invariants and frames. Let us consider
a system topology with m edges. Note that the number of these invariants and frames depends
merely on the dimension of space and the orbit regardless of the system topology. This ensures
that the per-edge computational cost for the construction remains constant. Since the invariants and
frames are constructed along each edge, the associated computational complexity scales as O(m). In
message-passing GNNs (Kipf et al., 2018), the computation of edge messages itself already exhibits
a complexity of O(m). Thus, the construction of complete differential invariants and frames does not
introduce an increase in computational complexity.

5 RELATED WORK

Graph neural networks (GNNs) (Wu et al., 2020; Skarding et al., 2021; Kipf et al., 2018) offer
promising solutions for modeling system dynamics. Label permutation invariance in GNNs enables
the learning of interactions between objects regardless of their labeling order. To enhance model
expressiveness and robustness, Equiv-GNNs (Han et al., 2022; 2024) further incorporate geometric
symmetries into GNN frameworks. Recent approaches (Gilmer et al., 2017; Schütt et al., 2017; Finzi
et al., 2020; Liu et al., 2022; Klicpera et al., 2020) have made substantial efforts to encode these
symmetries, ensuring outputs remain invariant under group actions, and thus termed as invariant
graph neural networks. For instance, SchNet (Schütt et al., 2018) constructs convolutional filters
using relative distances, while GemNet (Gasteiger et al., 2021) encodes relative distances, angles,
and dihedral angles to capture structural invariance. Equivariant graph neural networks go further by
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explicitly designing equivariant update processes, making them widely applicable in scenarios such
as modeling system dynamics (Xu et al., 2023) and force field prediction (Xu et al., 2024). Existing
Equiv-GNNs primarily fall into two categories, i.e., scalarization-based models and high-degree
steerable models (Han et al., 2024). High-degree steerable models (Anderson et al., 2019; Fuchs et al.,
2020; Batatia et al., 2022; Yu et al., 2023) treat geometric vectors as steerable tensors, leveraging
high-dimensional tensor operations to ensure equivariance. Among these methods, TFN (Thomas
et al., 2018) and NequIP (Batzner et al., 2022) employs spherical harmonics, while LieTransformer
(Hutchinson et al., 2021) combines Lie convolution with transformers and extends the framework to
Lie groups. CEGNN (Ruhe et al., 2023) utilizes Clifford algebra to handle geometric symmetries.
While these methods achieve strong expressiveness, their intricate tensor manipulations lead to high
computational complexity, limiting scalability to large-scale scenarios (Zitnick et al., 2022; Musaelian
et al., 2023). In contrast, scalarization-based models (Wang et al., 2023; Battiloro et al., 2024; Köhler
et al., 2019; Schütt et al., 2021; Jing et al., 2020; Zhang et al., 2024) map vectors to invariant scalars
directly in the original space and introduce equivariance during object state updating or message
construction. For instance, EGNN (Satorras et al., 2021) and GMN (Huang et al., 2022) use relative
states to derive invariant scalars and update object states along radial directions. Other methods (Du
et al., 2022; Kofinas et al., 2021) construct local frames to represent directional information, with
Du et al. (2023) providing guidelines for efficient frame-based model design. Some approaches
additionally consider object orientations when encoding symmetries, for example, PONITA (Bekkers
et al., 2024) achieves equivariance under group actions on both positions and orientations via group
convolutions. Nevertheless, these methods lack theoretical guarantees in designing invariant scalars,
especially when considering high-order differential components of the system.

In modeling system dynamics, there are also many recent researches devoted to integrating Equiv-
GNNs with ODE-based approaches (Poli et al., 2019; Bishnoi et al., 2022; Jin et al., 2022) or trajectory
prediction methods (Xu et al., 2023; 2024) to capture temporal correlations. For instance, SEGNO
(Liu et al., 2024) improves prediction accuracy by incorporating physical bias, while NCGNN (Guo
et al., 2023) leverages Newton-Cotes formulas to generate high-fidelity trajectories. However, these
approaches do not focus on studying Equiv-GNNs themselves. Instead, they directly employ Equiv-
GNNs like EGNN (Satorras et al., 2021) as the backbone. Since this line does not align with the core
contribution of our work, more discussion about it is left for future work.

6 EXPERIMENTS

To validate the effectiveness of CDIF, we benchmark it on four datasets, MD17 (Chmiela et al.,
2017), CMU Motion (CMU, 2003), Formation Consensus Control, and N-body simulation (Satorras
et al., 2021). Furthermore, we evaluate CDIF against a series of state-of-the-art equivariant models,
including EGNN (Satorras et al., 2021), ClofNet (Du et al., 2022), TFN (Thomas et al., 2018), Radial
Field (Köhler et al., 2019), GMN (Huang et al., 2022), SE(3)-Transformer (Fuchs et al., 2020),
SEGNN (Brandstetter et al., 2021) and PONITA (Bekkers et al., 2024). Ablation studies demonstrate
that complete differential invariants and complete differential frames collectively enhance the model’s
expressiveness. Additionally, experiments on the impact of invariant quantity reveal that model’s
performance tends to be better as the number of invariants increases, but a excessive number of
invariants may even degrade model performance. Detailed results of the ablation studies, experiments
on the impact of invariant quantity, and other experiment details are provided in Appendix G.

6.1 MOLECULAR DYNAMIC

Since complete differential invariants already encode all features related to atomic states, we only
use the atomic index as inputs to obtain initial node features. In this dataset, the system topology
is determined by inter-atomic distances, where atoms with a distance less than 1.6 are treated as
neighbors. Our task is to predict the positions of all atoms after 2000 data frames. As shown in Table
1, the CDIF framework achieves the best performance on 6 out of 10 molecular systems and ranks
top 2 across all tasks. Note that the backbone of our method consists merely of MLPs. Nevertheless,
our method remains competitive with SOTA approaches and even outperforms them on most tasks.
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Table 1: Mean Square Error (×10−2) for position prediction on MD17. The best results are bolded
and the second best are underlined.

Molecule EGNN ClofNet RF. GMN TFN SEGNN PONITA CDIF(ours)

Aspirin 6.71 6.29 12.18 6.29 7.19 5.89 2.92 4.25±0.04
Azobenzene 5.77 4.74 15.36 4.65 5.88 5.19 3.97 3.77±0.06

Benzene 0.17 0.16 0.33 0.17 0.17 0.21 0.61 0.15±0.01

Ethanol 3.95 3.95 4.66 3.96 3.95 3.87 2.95 2.70±0.18

Malonaldehyde 12.23 12.29 21.29 12.13 12.30 12.31 9.18 11.87±0.75
Naphthalene 0.27 0.26 0.90 0.25 0.27 0.26 0.24 0.23±0.00

Paracetamol 16.66 16.18 23.63 16.03 16.88 10.01 6.60 4.61±0.47

Salicylic 0.64 0.63 1.62 0.98 0.68 0.63 0.55 0.53±0.01

Toluene 5.15 4.84 6.20 4.36 4.70 5.31 1.87 1.98±0.10
Uracil 0.44 0.46 1.06 0.43 0.50 0.39 0.27 0.34±0.01

6.2 CMU MOTION CAPTURE

Unlike the other three datasets that require manual construction of system topology, the CMU Motion
Capture dataset (CMU, 2003) provides a predefined topology that forms a human skeleton-like
structure. Our objective is to predict the positions of all nodes after 10, 20, and 30 timesteps. As
shown in Table 2, CDIF achieves the best performance on 2 out of 3 tasks, particularly in long-range
prediction tasks. During experiments, we found that PONITA struggled to converge stably despite
considerable efforts to stabilize the training process. Across these three tasks, the resulting prediction
errors were 71.25, 80.05, and 89.13. This is likely due to misalignment between the orientations
constructed by PONITA and the inherent orientations of human motion. Consequently, we omitted
PONITA from the comparisons in the table.

Table 2: Mean Square Error (×10−2) for position prediction across different motion steps on CMU
Motion. The best results are bolded and the second best are underlined.

Motion EGNN ClofNet RF. SEGNN GMN TFN CDIF(ours)

10 1.495 1.731 8.296 11.017 1.275 1.177 1.247±0.020

20 5.314 5.222 63.267 19.158 4.041 4.681 3.584±0.132

30 9.766 7.636 199.475 26.547 6.523 7.018 5.971±0.216

6.3 FORMATION CONSENSUS CONTROL

Formation consensus control, a fundamental problem in control theory, aims to coordinate a group
of agents to achieve unified states through inter-agent interactions. In this study, we revisit the
conventional formation consensus (FC) framework by adding a velocity cross product term into
the agent control inputs, and further partition the datasets into three levels, ”Easy”, ”Medium”, and
”Difficult”, based on the complexity of the agent interactions. The details for dataset generation are
provided in Appendix F, and each level includes tasks with 5 agents (FC(5)) and 10 agents (FC(10)).
As shown in Table 3, CDIF achieves the best performance on both FC(5) and FC(10) tasks across
three levels. Regarding computational efficiency, CDIF introduces a marginal increase in forward
time compared with other scalarization-based baselines like EGNN (Satorras et al., 2021) and ClofNet
(Du et al., 2022), which is primarily due to the construction of complete differential invariants and
frames. However, it significantly outpaces high-degree steerable models such as TFN (Thomas et al.,
2018) and SE(3)-Transformer (Fuchs et al., 2020), particularly in FC(10) tasks. Moreover, a critical
observation is that the forward time of CDIF remains remarkably close between FC(5) and FC(10)
tasks, demonstrating its potential for applications in large-scale scenarios.

6.4 N-BODY SIMULATION

The n-body simulation Satorras et al. (2021) is widely adopted for evaluating the performance of
models in position prediction tasks. In this experiment, we test model performance at 10, 20, 40
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Table 3: Mean Square Error and forward time (×10−2) for position prediction on FC(5) and FC(10)
tasks across different levels. The best results are bolded and the second best are underlined.

Task FC(5) FC(10)

Level Easy Medium Difficult Easy Medium Difficult

MSE MSE MSE t MSE MSE MSE t

EGNN 0.202 0.458 0.696 0.10 0.178 0.293 4.138 0.11
ClofNet 0.111 0.329 0.496 0.17 0.050 0.180 3.850 0.16
TFN 0.129 0.323 0.514 0.64 0.047 0.163 3.807 1.39
SEGNN 0.134 0.395 0.582 0.48 0.098 0.176 3.742 1.03
Radial Field 0.194 0.460 0.696 0.07 0.187 0.321 5.145 0.07
SE(3)-Tr. 0.138 0.324 0.518 1.38 0.047 0.174 3.689 3.71
GMN 0.161 0.405 0.659 0.14 0.139 0.263 4.376 0.14
PONITA 0.105 0.326 0.475 0.33 0.054 0.138 3.594 0.48
CDIF(ours) 0.094 0.215 0.433 0.32 0.034 0.099 3.571 0.33

timesteps on 5-agent (Charged(5)) and 10-agent (Charged(10)) tasks. To demonstrate that complete
differential invariants can be readily transferred to other models, we conduct additional experiments
where these invariants are fed only as initial inputs to EGNN Satorras et al. (2021), ClofNet Du
et al. (2022), and GMN Huang et al. (2022) (denoted as EGNN+CDIs, ClofNet+CDIs, GMN+CDIs),
without modifying their other original settings. The results presented in Table 4 show that CDIF
achieves top performance on 3 out of 6 tasks and ranks within the top 2 across all evaluations.
Notably, CDIF demonstrates superior performance in longer-term predictions compared with short-
range forecasts, owing to the embedded differential components. Additionally, integrating complete
differential invariants into baseline models improves their prediction accuracy by an average of
6.35%, verifying the critical role of input representation completeness.

Table 4: Mean Square Error for position prediction over Charged(5) and Charged(10) tasks at different
prediction time steps. The best results are bolded and the second best are underlined

Task Charged(5) Charged(10)

Timestep 10 20 40 10 20 40

Model MSE MSE MSE MSE MSE MSE
EGNN 0.0859 0.5739 3.0840 0.1129 0.7893 4.6088
ClofNet 0.1307 0.6727 3.6656 0.1491 0.9180 5.0206
TFN 0.2259 1.2246 5.7761 0.2901 1.5932 7.8833
Radial Field 0.1573 0.9562 5.3055 0.2401 1.4727 7.6604
SE(3)-Tr. 0.2739 1.3820 6.6055 0.3394 1.7705 8.5021
GMN 0.1021 0.5809 3.1795 0.1178 0.7968 4.6437
PONITA 0.0459 0.4757 2.9013 0.0702 0.6635 4.2281

EGNN+CDIs 0.0845 0.5363 2.8754 0.1058 0.7457 4.3436
ClofNet+CDIs 0.1063 0.6561 3.2664 0.1250 0.8578 5.7007
GMN+CDIs 0.0902 0.5424 3.0426 0.1056 0.7712 4.4403
CDIF(ours) 0.0788 0.4947 2.7328 0.0908 0.6416 3.8583

7 CONCLUSION

In this paper, we tackle the limitations of existing scalarization-based Equiv-GNNs, which lack theo-
retical guarantees in designing invariant functions and overlook high-order differential components.
By constructing complete differential invariants and complete differential frames, we propose a gen-
eral and efficient framework called CDIF. Theoretically, we prove that complete differential invariants
enable universal approximation of any invariant functions, while complete differential frames can
represent any vectors in the state space. Extensive experiments across various domains validate the
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effectiveness and scalability of the CDIF. Ablation studies further demonstrate that both the complete
differential invariants modules and the complete differential frames modules enhance the model’s
performance. For future work, we plan to extend the construction of complete differential invariants
and frames beyond the SE(3) group to more general Lie groups. Moreover, a promising direction
is to explore the construction of functionally independent invariants with differential components
for gauge transformations (He et al., 2021). Additionally, since CDIF currently employs MLPs as
the backbone, we will investigate integrating the proposed invariants and frames with advanced
architectures like Neural ODEs (Liu et al., 2024) for more precise modeling of system dynamics, as
well as flow-based models (Hassan et al., 2024; Yim et al., 2023) for generation tasks.

REPRODUCIBILITY STATEMENT

The code of experiments is provided in the Supplementary Material. The main experimental results
can be reproducible by adhering to the guidelines outlined in the README.
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Johannes Klicpera, Janek Groß, Stephan Günnemann, et al. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2020.

Miltiadis Kofinas, Naveen Nagaraja, and Efstratios Gavves. Roto-translated local coordinate frames
for interacting dynamical systems. Advances in Neural Information Processing Systems, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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A MATHEMATICAL SUPPLEMENTS

In Section 2, we discuss the functional dependence. Now we further present a lemma that bridges the
concepts of rank and functional dependence.
Lemma A.1 (Theorem 1.10 Olver (1995)). If F is regular of rank k, then in a neighborhood of
any p0 ∈ M , there exist k functionally independent functions f1, . . . , fk ∈ F such that any other
function f ∈ F can be expressed as f = H(f1, . . . , fk) for some smooth function H .

Lemma A.1 shows that regular families of rank k admit a local basis of k independent functions
generating the entire family. On an m-dimensional manifold M , locally, at most m functions can be
found functionally independent. This implies that for the action of the group G on the manifold M ,
and a point p0 ∈ M , there must exist a finite number (not exceeding m) of functionally independent
invariants. To formalize the group actions on system dynamics with differential components, we
introduce the jet bundle framework. Let u(t) : R → M be a smooth curve on the manifold M , and
u(k)(t) be the k-th order derivative of u(t) with respect to t. Define E = R×M as the total space,
where R is the fiber and M is the base space. The graph of u(t) is γu = {t, u(t)} ⊂ E. To include
the derivatives u(1)(t), . . . , u(k)(t) of u(t), we introduce the jet bundle J (k)E = R×M (k). Here,
M (k) contains all points in M along with their derivatives up to order k. Similar to the graph γu in
the total space E, the prolonged graph of the jet bundle J (k)E is

γ(k)
u = {t, u(t), . . . , u(k)(t)} ⊂ J (k)E. (15)

Group actions typically leave the time variable t unchanged. Thus, the left-action of the group G on
the total space E is restricted to the base space M . For γu = {t, u(t)}, the group action becomes
{t, Tgu(t)}. Extending this, the prolonged group action T

(k)
g on γ

(k)
u is

T (k)
g γ(k)

u = {t, Tgu(t), (Tgu(t))
(1), . . . , (Tgu(t))

(k)}. (16)

For a Lie group G with Lie algebra g, induced vector fields Xi form a basis of g, with Tgp =

(expXg)p. The prolonged vector field X(k) describes actions on derivatives.

For a node i and its neighbors Ni, the prolonged graph of the extended jet bundle J (k)EΛ is

γ
(k)
Λ = {t, ui(t), . . . , u

(k)
i (t), ui1(t), . . . , u

(k)
i1

(t), . . . , uim(t), . . . , u
(k)
im

(t)} ⊂ J (k)EΛ. (17)

where i1, . . . , im ∈ Ni and Λ denotes the set of {i,Ni}. The prolonged group action T
(k)
g on γ

(k)
Λ

acts simultaneously on node and neighbor states,

T (k)
g γ

(k)
Λ = {t, Tgui(t), (Tgui(t))

(1), . . . , (Tgui(t))
(k),

Tgui1(t), (Tgui1(t))
(1), . . . , (Tgui1(t))

(k),

Tgui2(t), (Tgui2(t))
(1), . . . , (Tgui2(t))

(k),

. . . ,

Tguim(t), (Tguim(t))(1), . . . , (Tguim(t))(k)}.

(18)

B ROTATIONS IN EUCLIDEAN SPACE

In this section, we discuss the rotations in Euclidean spaces, specifically in the 2D and 3D Euclidean
spaces R2 and R3. The special orthogonal group SO(n) is defined as:

SO(n) ≜ {R ∈ Rn×n | R⊤R = I, det(R) = 1}, (19)

where I denotes the n-dimensional identity matrix. Geometrically, SO(n) represents the group of
orientation-preserving isometries (i.e., rotations) on the Euclidean space Rn. In 2D Euclidean space
R2, rotations are fully characterized by the special orthogonal group SO(2). Every rotation matrix
R ∈ SO(2) can be parameterized by a unique angle θ, and is explicitly given by

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (20)
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As illustrated in Figure 3, for any vector pi ∈ R2, the action of SO(2) induces an orbit with cardinality
sk = 1, a circle in the 2D plane. Geometrically, this corresponds to rotating pi counterclockwise
around the origin by an angle θ. When considering multiple vectors, e.g., pi and pj , the orbit
cardinality remains sk = 1, as all vectors are rotated by the same angle θ. Certain functions
dependent on pi and pj , such as ∥pi∥, ∥pi − pj∥, and relative angle α, remain invariant under
rotations. Hence, these functions are so-called SO(2)-invariant. In 3D Euclidean space R3, we first

(a) Single vector (b) Multiple vectors

Figure 3: The dashed lines represent the orbits. Both pi and pj are rotated counterclockwise by the
same angle θ, maintaining their relative angle α.

consider a single vector p ∈ R3. As shown in Figure 4, the orbit induced by the action of the SO(3)
group on the single vector p is a sphere, whose cardinality sk = 2. Geometrically, the actions of the
SO(3) group preserve a vector’s norm while altering its orientation to another direction on the sphere,
which can be parameterized by two parameters θ and ϕ. However, unlike the 2D case, the orbit
dimension sk = 3 for multiple vectors, which aligns with the dimension of the SO(3) group itself.

Figure 4: SO(3) action
on a single vector

This stems from the fundamental principle in Lie group actions; namely
the orbit dimension is jointly determined by the geometric constraints of
the acted-upon object and the intrinsic degrees of freedom of the group.
For a single vector p ∈ R3, its orbit under SO(3) is a 2-dimensional
submanifold, which is constrained by the norm and allows only directional
changes parameterized by two angles (θ, ϕ). In contrast, when SO(3) acts
on multiple linearly independent vectors, the group governs their global
orientation, which requires 3 independent parameters, corresponding
to rotations about the three orthogonal axes (e.g., Euler angles α, β, γ).
Since SO(3) is a 3-dimensional Lie group, the orbit dimension here is
fully determined by the group’s dimension, i.e., sk = 3. This aligns
with the intuition that a rigid body’s rotation in 3D space demands three
independent angles to specify its orientation uniquely.

C IMPLEMENTATION DETAILS OF CDIF

Centralization. Let t0 be the initial time. For the positional configura-
tion of the system

q(t0) =
[
q⊤
1 (t0), . . . , q

⊤
n (t0)

]
, (21)

the centroid qc is calculated as

qc =
1

n

n∑
i=1

qi(t0). (22)

By redefining the coordinate system origin to this centroid, each object’s position is centralized via
q̃i(t0) = qi(t0)− qc. (23)

For any time t, the centralized position q̃i(t) remains invariant under translations applied at t0.
Specifically, for an arbitrary translation vector T acting on the centralized position T (q̃i(t)), we have

T (q̃i(t)) = (qi(t) + T )− (qc + T ) = qi(t)− qc = q̃i(t), (24)
which demonstrates that centralized object positions are invariant under global translations.
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Initialization. To encode object-specific attributes unrelated to geometric information, such as
object charges, we employ a linear layer to map these attributes into initial object feature embeddings
h(0) ∈ Rn×nf , where nf denotes the dimension of hidden features. Meanwhile, the initial edge
attributes are denoted as A = (aij), which incorporate topological attributes such as connectivity
and edge weights.

CDIF Layer. Building upon the centralized object states and initial features, we introduce the
implementation details of the CDIF layer:

Fp
ij(l),F

v
ij(l) = CompFrame(si(l), sj(l)) (25)

Ii(l), Ij(l), Iij(l) = CompInvar(si(l), sj(l)) (26)

mij(l) = ϕl
m(hi(l), hj(l), aij(l), Ii(l), Ij(l), Iij(l)) (27)

si(l + 1) = si(l) + C
∑
j∈Ni

Update(mij(l),Fp
ij(l),F

v
ij(l)) (28)

hi(l + 1) = ϕl
h(hi(l), Ii(l),

∑
j∈Ni

mij(l)) (29)

From the input-output perspective, at layer l, the CDIF layer takes as input node feature embeddings
h(l) =

[
h1(l)

⊤; · · · ;hn(l)
⊤] ∈ Rn×nf , object states s(l) ∈ Rn×6, and initial edge attributes A,

outputting updated features and states such that

(h(l + 1), s(l + 1)) = CDIFL(h(l), s(l),A). (30)

Specifically, for each object i and one of its neighbors j, we construct complete differential frames and
invariants via the functions CompFrame(·) and CompInvar(·) in (25) and (26), whose explicit forms
are provide in (8) and (12). Next, inter-object messages mij(l) are generated by an MLP ϕl

m that
integrates object features hi(l), hj(l), edge attributes aij(l), and the extracted invariants in (27). Then,
the state update model in (28) leverages the complete differential frames to fully recover directional
information from invariants. The function Update(·) employs MLPs ϕl

p(mij), ϕ
l
v(mij) : R

nf → R6

to map messages mij(l) to scalars {λl
p1, . . . , λ

l
p6} and {λl

v1, . . . , λ
l
v6}. These scalars serve as weights

for the frame basis vectors {epx

ij , e
py

ij , e
pz

ij , e
vx
ij , e

vy
ij , e

vz
ij }. By linearly combining this basis with the

learnable scalars, the interaction between object i and its neighbor i can be formulated as

δqij = λp1
epx

ij + λp2
e
py

ij + λp3
epz

ij + λp4
evxij + λp5

e
vy
ij + λp6

evzij ,

δq̇ij = λv1e
vx
ij + λv2e

vy
ij + λv3

evzij + λv4e
vx
ij + λv5

e
vy
ij + λv6e

vz
ij .

(31)

The variations δqij and δq̇ij are aggregated across all neighbors of object i, scaled by constants Cp

and Cv to regulate magnitude, yielding the updated states

qi(l + 1) = qi(l) + Cp

∑
j∈Ni

δqij , q̇i(l + 1) = q̇i(l) + Cv

∑
j∈Ni

δq̇ij . (32)

At last, node feature embeddings are updated in (29) by combining the previous embeddings hi(l),
object-specific invariants Ii(l), and aggregated messages from the neighbors.

D PROOFS OF THINGS

D.1 PROOF OF PROPOSITION 3.1

Proof. We first introduce an important lemma before proceeding with the proof.

Lemma D.1 (Theorem 2.4 Andersdotter et al. (2024)). If the prolonged group G(k) of a group G
acts semi-regularly on J (k)E with orbit dimension sk, then there are dim J (k)E − sk functionally
independent local differential invariants of order k.

The notations in this lemma is detailed in Section 2 and Appendix A. Lemma D.1 indicates that the
maximal number of functionally independent invariants is determined by the dimension of the jet
bundle and the prolonged group action orbit. Now let us back to the the proof of the proposition.
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When constructing invariants, we only consider the positions and velocities of objects i and j,
implying that the order k equals one. The corresponding prolonged graph γ

(1)
ij can be formulated as

γ
(1)
ij = {t, xi, yi, zi, xj , yj , zj , ẋi, ẏi, żi, ẋj , ẏj , żj}, (33)

which means the dimension of J (1)Eij is 13. Moreover, the orbit dimension of SO(3) acting on
J (1)Eij is 3. Thus, by Lemma D.1, the number of functionally independent invariants is 13− 3 =
10. Note that t is a trivial invariant, reducing the number of non-trivial functionally independent
differential invariants to 10− 1 = 9. Then, by Lemma A.1, any other function I ∈ F(R3)SO(3) can
be expressed by these invariants.

D.2 PROOF OF PROPOSITION 3.4

Proof. Let R ∈ SO(3) be a rotation matrix, and the transformed positions are denoted as q̃i = Rqi
and q̃j = Rqj . Denote the transformed positional frame as F̃

p

ij(t) = {ẽpx

ij , ẽ
py

ij , ẽ
pz

ij }, by Lemma
3.2, we have

ẽpx

ij =
q̃i − q̃j
∥q̃i − q̃j∥

=
R(qi − qj)

∥qi − qj∥
= Repx

ij ,

ẽ
py

ij =
q̃i × q̃j
∥q̃i × q̃j∥

=
R(qi × qj)

∥qi × qj∥
= Re

py

ij ,

ẽpz

ij = ẽpx

ij × ẽ
py

ij = (Repx

ij )× (Re
py

ij ) = R(epx

ij × e
py

ij ) = Repz

ij ,

(34)

Thus, Fp
ij(t) is SO(3)-equivariant, i.e.,

Fp
ij(Rqi, Rqj) = {Repx

ij , Re
py

ij , Repz

ij } = RFp
ij(qi, qj) (35)

The proof of the SO(3)-equivariance of Fv
ij(t) is similar to that of Fp

ij(t), and it only requires
replacing the superscript p with v. Therefore both Fp

ij(t) and Fv
ij(t) are equivariant under actions of

the SO(3) group.

D.3 PROOF OF PROPOSITION 4.1

Proof. Since hi(l), hj(l), aij(l) are scalars independent of object states and the invariants I are
SO(3)-invariant functions, the construction of messages (27) remains invariant under SO(3) group
actions.

∀g ∈ SO(3), mij(g · s(l)) = ϕl
m(Ii(g · s(l)), Ij(g · s(l)), Iij(g · s(l)))

= ϕl
m(Ii(s(l)), Ij(s(l)), Iij(s(l))) = mij(s(l)).

(36)

Moreover, by Proposition 3.4 the frames {Fp
ij(t),F

v
ij(t)} are SO(3)-equivariant functions. Thus,

the state update process (28) is equivariant with respect to the SO(3) group.

∀g ∈ SO(3), g · s(l + 1) = g · s(l) + C
∑
j∈Ni

Update(mij(s(l)), g ·Fp
ij(s(l)), g ·F

v
ij(s(l)))

= g · s(l) + C
∑
j∈Ni

Update(mij(g · s(l)),Fp
ij(g · s(l)),F

v
ij(g · s(l)))

= g · s(l) + C
∑
j∈Ni

Update(g · s(l))
(37)

Since the node model ϕl
h takes as inputs only SO(3)-invariant functions, by Corollary 3.3, Object

feature embeddings (29) is SO(3)-invariant, i.e.,

∀g ∈ SO(3), g · hi(l + 1) = ϕl
h(g · hi(l), g · Ii(l),

∑
j∈Ni

g ·mij(l)) = hi(l + 1). (38)

Thus, the CDIF layer is SO(3)-equivariant, i.e.,

∀g ∈ SO(3), g · CDIFL(s(l)) = CDIFL(g · s(l)). (39)
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E ANALYSIS ON MORE CASES

In this section, we demonstrate the construction of complete differential invariants and frames for
additional cases. Moreover, we show that these invariants can be systematically derived leveraging
characteristic equations.

Two-dimensional Euclidean space with object positions only First, we construct the complete
invariants. The vector field induced by SO(2) on R2 is as following:

X = −y
∂

∂x
+ x

∂

∂y
, (40)

and the graph of jet bundle JEij can be expressed as

γij = {t, xi(t), yi(t), xj(t), yj(t)}. (41)

By Lemma D.1, the number of functionally independent invariants is dim JEij − sk = 4, where
dim JEij = 5 and sk = 1. A trivial invariant is time t. Thus, our goal is to find other three invariants.
The vector field X can be written as

X = −yi
∂

∂xi
+ xi

∂

∂yi
− yj

∂

∂xj
+ xj

∂

∂yj
, (42)

The invariants should satisfy X(I) = 0. Then, the corresponding characteristic equation can be
expressed as

dxi

−yi
=

dyi
xi

=
dxj

−yj
=

dyj
xj

(43)

From the characteristic equation (43), the object-specific invariants are

dxi

−yi
=

dyi
xi

=⇒ Ipi = r2i = x2
i + y2i

dxj

−yj
=

dyj
xj

=⇒ Ipj
= r2j = x2

j + y2j

(44)

and the edge differential invariants are as following:

dxi

−yi
=

dyj
xj

,
dyi
xi

=
dxj

−yj
=⇒ Ipipj

= xixj + yiyj (45)

Therefore, we have found all 3 non-trivial differential invariants as

I = {Ipi
, Ipj

, Ipipj
}. (46)

It is clear to find that the rank of J(I) is 3, indicating that we have found all functionally independent
non-trivial invariants. Next, we construct complete frames. To construct them, we first extend 2D
object positions to 3D via zero-padding pi(t) = [xi(t), yi(t), 0]

⊤
. Analogous to the construction in

(12), the complete frames are formulated as:

epx

ij (t) =
qi(t)− qj(t)

∥qi(t)− qj(t)∥
, e

py

ij (t) =
qi(t)× qj(t)

∥qi(t)× qj(t)∥
× epx

ij (t). (47)

After constructing these frames, we project them back to the 2D space by discarding the zero-padding
component.

Two-dimensional Euclidean space with object positions and velocities First, we construct
complete differential invariants. The vector field induced by SO(2) on R2 is in (40), and the
prolonged graph of jet bundle J (1)Eij can be expressed as

γ
(1)
ij = {t, xi(t), yi(t), ẋi(t), ẏi(t), xj(t), yj(t), ẋj(t), ẏj(t)}. (48)

According to Lemma D.1, the number of functionally independent local differential invariants is
dim J (1)E − sk = 8, where dim J (1)E = 9 and sk = 1. Obviously, a trivial differential invariant is
time t. Thus, our goal is to find other 7 invariants.The prolonged vector field X(1) can be written as

X(1) = −yi
∂

∂xi
+ xi

∂

∂yi
− yj

∂

∂xj
+ xj

∂

∂yj
− ẏi

∂

∂ẋi
+ ẋi

∂

∂ẏi
− ẏj

∂

∂ẋj
+ ẋj

∂

∂ẏj
, (49)
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Then, the corresponding characteristic equation can be expressed as
dxi

−yi
=

dyi
xi

=
dẋi

−ẏi
=

dẏi
ẋi

=
dxj

−yj
=

dyj
xj

=
dẋj

−ẏj
=

dẏj
ẋj

(50)

From the characteristic equation (50), the object-specific differential invariants are found to be
dxi

−yi
=

dyi
xi

=⇒ Ipi
= r2i = x2

i + y2i

dẋi

−ẏi
=

dẏi
ẋi

=⇒ Ivi = v2i = ẋ2
i + ẏ2i

dxj

−yj
=

dyj
xj

=⇒ Ipj = r2j = x2
j + y2j

dẋj

−ẏj
=

dẏj
ẋj

=⇒ Ivj = v2j = ẋ2
j + ẏ2j

dyi
xi

=
dẋi

−ẏi
,
dxi

−yi
=

dẏi
ẋi

=⇒ Ipivi = xiẋi + yiẏi,

(51)

and the edge differential invariants are as following:
dxi

−yi
=

dyj
xj

,
dyi
xi

=
dxj

−yj
=⇒ Ipipj

= xixj + yiyj

dẋi

−ẏi
=

dẏj
ẋj

,
dẏi
ẋi

=
dẋj

−ẏj
=⇒ Ivivj = ẋiẋj + ẏiẏj .

(52)

Up to this point, we have found all 7 differential invariants as
I = {Ipi

, Ivi , Ipj
, Ivj , Ipivi , Ipipj

, Ivivj}. (53)
It is easy to check the Jacobian matrix J(I) is full rank. Next, we construct complete differential
frames. Similarly, we first extend 2D states to 3D via zero-padding

pi(t) = [xi(t), yi(t), 0]
⊤
, vi(t) = [ẋi(t), ẏi(t), 0]

⊤
. (54)

Analogous to the 3D frame construction in (12), the 2D differential frames are defined as:

epx

ij (t) =
qi(t)− qj(t)

∥qi(t)− qj(t)∥
, e

py

ij (t) =
qi(t)× qj(t)

∥qi(t)× qj(t)∥
× epx

ij (t),

evxij (t) =
q̇i(t)− q̇j(t)

∥q̇i(t)− q̇j(t)∥
, evzij (t) =

q̇i(t)× q̇j(t)

∥q̇i(t)× q̇j(t)∥
× evxij (t).

(55)

After constructing these frames in 3D, we project them back to the 2D space by discarding the
zero-padding component. It is straightforward to verify that the frames defined in (55) are equivariant
under SO(2) group actions.

Three-dimensional Euclidean space with object positions only Compared with the 2D case,
constructing complete invariants in 3D space is more challenging. The vector field induced by SO(2)
is single, while the vector fields induced by SO(3) are multiple, which can be expressed as

X1 = −y
∂

∂z
+ z

∂

∂y
, X2 = −z

∂

∂x
+ x

∂

∂z
, X3 = −x

∂

∂y
+ y

∂

∂x
. (56)

The graph of jet bundle JEij is
γij = {t, xi(t), yi(t), zi(t), xj(t), yj(t), zj(t)}. (57)

By Lemma D.1, the number of functionally independent invariants is dim J (k)E − sk = 4 with
dim J (k)E = 7 and sk = 3. Similarly, t serves as a trivial invariant, leaving us to identify the
remaining 3 functionally independent invariants. For the jet bundle JEij , the vector fields are defined
as

X1 = −yi
∂

∂zi
+ zi

∂

∂yi
− yj

∂

∂zj
+ zj

∂

∂yj
,

X2 = −zi
∂

∂xi
+ xi

∂

∂zi
− zj

∂

∂xj
+ xj

∂

∂zj
,

X3 = −xi
∂

∂yi
+ yi

∂

∂xi
− xj

∂

∂yj
+ yj

∂

∂xj
.

(58)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The invariants I must satisfy
Xi(I) = 0, i = 1, 2, 3. (59)

Leveraging the properties of Lie groups, we can reduce this problem to satisfying just two of these
three equations. For group SO(3), the Lie bracket relations hold:

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2. (60)

With the property (60), we can reduce the problem (59) to satisfying just two of these three equations.
Specifically, if the invariants satisfy X1(I) = 0 and X2(I) = 0, then the third condition X3(I) = 0
follows automatically

X3(I) = [X1, X2](I) = X1(X2(I))−X2(X1(I)) = 0. (61)

Thus, we first compute X1(I) = 0. The corresponding characteristic equation is

dzi
−yi

=
dyi
zi

=
dzj
−yj

=
dyj
zj

(62)

The same as SO(2) acting on 2D plane, there are 3 differential invariants at this stage, as shown in
(63).

dzi
−yi

=
dyi
zi

=⇒ I1 = y2i + z2i

dzj
−yj

=
dyj
zj

=⇒ I2 = y2j + z2j

dzi
−yi

=
dyj
zj

,
dyi
zi

=
dzj
−yj

=⇒ I3 = yiyj + zizj .

(63)

Then, the invariants I can be treated as functions of (xi, xj , I1, I2, I3), i.e., I = F (xi, xj , I1, I2, I3).
Substitute the invariants I to X2I = 0:

X2I = −zi
∂F

∂xi
− zj

∂F

∂xj

+ 2xizi
∂F

∂I1
+ 2xjzj

∂F

∂I2
+ (xizj + xjzi)

∂F

∂I3
= 0,

(64)

whose corresponding characteristic equation can be expressed as

dxi

−zi
=

dxj

−zj
=

dI1
2xizi

=
dI2
2xjzj

=
dI3

xizj + xjzi
(65)

From this, 3 functionally independent invariants are derived as:

dxi

−zi
=

dI1
2xizi

=⇒ Ipi = x2
i + y2i + z2i

dxj

−zj
=

dI2
2xjzj

=⇒ Ipj
= x2

j + y2j + z2j

dxi

−zi
=

dxj

−zj
=

dI3
xizj + xjzi

=⇒ Ipipj
= xixj + yiyj + zizj .

(66)

Up to this point, we have found all 3 functionally nontrivial differential invariants as

I = {Ipi , Ipj , Ipipj}. (67)

It is easy to check the Jacobian matrix J(I) is full rank. Next, we construct complete frames as
follows

epx

ij (t) =
qi(t)− qj(t)

∥qi(t)− qj(t)∥
, e

py

ij (t) =
qi(t)× qj(t)

∥qi(t)× qj(t)∥
, epz

ij (t) = epx

ij (t)× e
py

ij (t). (68)

It is straightforward to verify that the frames defined in (68) are equivariant under SO(3) group
actions.
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Complete differential invariants on more complex cases Complete differential invariants can
be applied to more complex scenarios. For instance, when considering two-hop neighbors, the jet
bundle can be denoted as J (1)Eijk, where j ∈ Ni and k ∈ Nj . The corresponding prolonged graph
γ
(1)
ijk is expressed as

γ
(1)
ijk = {t,xi(t), yi(t), zi(t), ẋi(t), ẏi(t), żi(t),

xj(t), yj(t), zj(t), ẋj(t), ẏj(t), żj(t),

xk(t), yk(t), zk(t), ẋk(t), ẏk(t), żk(t).}
(69)

By Lemma D.1, the number of non-trivial functionally independent invariants is dim J (1)Eijk−sk =
19− 3− 1 = 15. Another scenario arises when higher-order derivatives are incorporated, such as
observable object states including second-order derivatives (i.e., acceleration a(t)). In this case,
the prolonged graph γ

(2)
ij of the jet bundle J (2)Eij can be formulated as (70) and the number of

non-trivial functionally independent invariants is 15.

γ
(2)
ij = {t,xi(t), yi(t), zi(t), xj(t), yj(t), zj(t),

ẋi(t), ẏi(t), żi(t), ẋj(t), ẏj(t), żj(t),

ẍi(t), ÿi(t), z̈i(t), ẍj(t), ÿj(t), z̈j(t), }
(70)

It is evident that the number of non-trivial functionally independent invariants can be readily deter-
mined by Lemma D.1 in such cases. While this count increases as scenarios become more complex,
constructing explicit forms of complete differential invariants remains not difficult but rather tedious,
as it entails a systematic, step-by-step derivation of each invariant to ensure functional independence.

F A NOVEL BENCHMARK: FORMATION CONSENSUS CONTROL

In this section, we introduce the implementation of a novel benchmark, formation consensus control,
designed to evaluate equivariant graph neural networks across hierarchical interaction complexities.
The core task of formation consensus control is coordinating agents to achieve unified states, such as
synchronized positions, velocities, through inter-agent interactions. In this system, the agents follow
double-integrator dynamics, where their accelerations depend on neighbors’ positions and velocities

v̇i = −
∑
j∈Ni

ωij (kp(qi − qj) + kv(q̇i − q̇j) + kd(q̇j × q̇i)) , (71)

with stability ensured by kp > 0 and kv > 0. The dataset is divided into three levels based on the
complexity of interaction coefficients ωij . At the easy level, ωij involves only edge-wise position
and velocity dot products, forming low-complexity interactions with linearity:

ωij = 0.2× ∥qi · qj + q̇i · q̇j∥. (72)

The medium level introduces a velocity-position cross-term (q̇i · (qi × qj)), introducing bilinear
interactions and geometric dependencies:

ωij = 0.2× ∥qi · qj + q̇i · q̇j + q̇i · (qi × qj)∥ (73)

The difficult level further incorporates higher-order cross interactions between positions and velocities,
such as triple products and cross product norms, creating a highly non-linear, multi-modal interaction
structure:

ωij = 0.15× ∥qi · qj + q̇i · q̇j + q̇i · (qi × qj)

+ q̇j · (qi × qj) + qi · (q̇i × q̇j)

+ qj · (q̇i × q̇j) + (qi × qj) · (q̇i × q̇j)∥.
(74)

This hierarchy progressively challenges equivariant graph neural networks to model increasingly
intricate spatial and velocity interactions. Moreover, the agent dynamics in (71) transcend radial
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(a) Easy: 3D Trajectory (b) Medium: 3D Trajectory (c) Difficult: 3D Trajectory

(d) Easy: Velocity Magnitude (e) Medium: Velocity Magnitude (f) Difficult: Velocity Magnitude

Figure 5: Formation dynamics across different difficulty levels, organized by column: First column
(Easy), Second column (Medium), Third column (Difficult). Each column presents a 3D trajectory
(top row) and corresponding velocity magnitude profile (bottom row). Trajectories across all levels
are stable, with velocities reflecting the increasing complexity of inter-agent interactions encoded in
ωij .

interactions (qi − qj) by introducing a velocity cross-term q̇j × q̇i, which drives state updates along
tangential directions in the state space. This term requires equivariant graph neural networks to
handle state update process in entire state space rather than merely relying on a single direction.

Figure 5 visualizes trajectories and velocity magnitudes across levels, illustrating system behaviors
under varying interaction complexities. To ensure data validity, we truncate sequences at the first
1000 timesteps, excluding post-convergence data where agents reach unified states. Importantly, all
trajectories exhibit stable and convergent behavior, confirming that the benchmark provides a rigorous
testbed for evaluating network expressiveness.

G IMPLEMENTATION DETAILS, ABLATION STUDIES, AND ADDITIONAL
EXPERIMENTS

G.1 IMPLEMENTATION DETAILS.

For the molecular dynamics experiment, the dataset is partitioned into 3000 training, 2000 validation,
and 2000 test samples. In the CMU motion capture experiment, the corresponding splits are 2000
training, 600 validation, and 600 test samples. For the formation consensus control experiment, the
dataset is divided into 6000 training samples, 2000 validation samples, and 1000 test samples, with
the objective of predicting object positions after 600 timesteps. The n-body simulation experiments
evaluate models on two scenarios, charged(5) and charged(10). Each scenario employs 3000 training
trajectories, 2000 validation trajectories, and 2000 test trajectories, with each trajectory containing
10,000 timesteps. Across all experiments, the training procedure maintains a batch size of 100 and a
maximum of 500 training epochs. Moreover, Models are optimized using the AdamW optimizer with
mean squared error (MSE) loss. Additionally, models are optimized using the AdamW optimizer
with mean squared error (MSE) loss. To ensure fair comparisons, hyperparameters are individually
tuned for each model and task. All experiments are conducted on a single NVIDIA GeForce RTX
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4090 24GB GPU. Detailed hyperparameters specific to CDIF across different experimental setups are
listed in Table 5.

Table 5: Model and training hyperparameters for our method on different tasks.

Hyperparameter Scenarios

FC MD17 Charged CMU Motion

Number of layers 4 4 4 4
Feature embeddings 64 64 32 64

Epochs 500 500 500 500
Batch size 100 100 100 100

Learning rate 1e-3 1e-3 1e-3 8e-4
Learning rate scheduler steplr steplr steplr steplr

Learning rate decay factor 0.9 0.9 0.9 0.9
Learning rate decay epochs 100 100 100 100

G.2 ANALYSIS OF INVARIANT COMPLEXITY.

This section investigates the impact of varying numbers of invariants on model performance for
the FC(5) task. Frames are constructed using the complete differential frame in (12) to preserve
directional information in the entire state space. For fair comparison, the initialization stage encodes
no agent geometric features, including only intrinsic properties like mass and charge. We design six
models with incremental invariant complexity:

Model 1: the inputs include only pairwise dot products qi · qj .

Model 2: we replace dot products with squared Euclidean distances ∥qi − qj∥2 to compare positional
encoding strategies.

Model 3: we introduce complete positional invariants to capture all geometric symmetries dependent
on agent positions.

{∥qi∥2, ∥qj∥2, ∥qi − qj∥2}, (75)

Model 4: we extend the case 3 with velocity-related invariants

{∥qi∥2, ∥qj∥2, ∥qi − qj∥2}, {∥q̇i∥2, ∥q̇j∥2, ∥q̇i − q̇j∥2}, (76)

Model 5: we employ complete differential invariants in (8) as inputs of the layers.

Model 6: we further augment the complete differential invariants to investigate the impact of incorpo-
rating additional invariants on model performance.

{∥qi∥2, ∥q̇i∥2, qi · q̇i, ∥qi × q̇i∥2}, {∥qj∥2, ∥q̇j∥2, qj · q̇j , ∥qj × q̇j∥2},
{qi · qj , ∥qi − qj∥, q̇i · q̇j , ∥q̇i − q̇j∥}, {(qi × qj) · (q̇i × q̇j)}
{q̇i · (qi × qj), q̇j · (qi × qj), qi · (q̇i × q̇j), qj · (q̇i × q̇j)},
{qj · (qi × q̇i), q̇j · (qi × q̇i), qi · (qj × q̇j), q̇i · (qj × q̇j)},

(77)

Then, we evaluate the six proposed models across the easy, medium, and difficult levels of the FC(5)
task. The results are shown in Figure 6 and Table 6.

Models 1 and 2 exhibit nearly identical performance across all levels, indicating that qi · qj and
∥qi − qj∥2 serve similar roles in encoding the relative angular relationships between agents i and
j. A significant performance jump occurs between model 2 and 3, with average improvements of
18.03%. This highlights the critical role of complete positional invariants, which enable smooth
function approximation of all position-dependent invariants. Incorporating velocity-related invariants
in model 4 yields average improvements of 12.4% over model 3, which demonstrates that invariants
based on velocities enhance model’s expressiveness. Utilizing complete differential invariants in
model 5 achieves an average improvement of 11.57% over model 4. This corroborates the importance
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Table 6: Mean Square Error for position prediction on FC(5) tasks across three different levels. The
best results are bolded and the second best are underlined.

Level Easy Medium Difficult

MSE MSE MSE
Model 1 0.1457 0.3359 0.5308
Model 2 0.1412 0.3604 0.5472
Model 3 0.1138 0.2969 0.5101
Model 4 0.0919 0.2622 0.4778
Model 5 0.0885 0.2085 0.4277
Model 6 0.0937 0.2287 0.4128

(a) Easy Level (b) Medium Level (c) Difficult Level

Figure 6: Mean squared error (MSE) is on the vertical axis against model index on the horizontal
axis. Figures (a), (b), and (c) depict the predictive error as a function of invariant complexity for the
easy, medium, and difficult levels, respectively.

of differential completeness, which significantly boosts modeling of complex dynamics. Despite
including substantial invariants, model 6 performs comparably or sometimes even worse than model
5. This suggests that excessive invariants introduce redundant or irrelevant features, degrading model
expressivity due to increased input dimensionality, especially in simple tasks.

G.3 ABLATION STUDY.

We introduce two core modules to ensure completeness, namely complete differential invariants and
complete differential frames. To demonstrate the importance of each module, we conduct experiments
on FC(5) and FC(10) tasks, with results summarized in Table 7. The results show that introducing
complete differential invariants alone improves the performance of the model lacking both complete
invariants and frames by an average of 35.26%. Furthermore, adding complete positional frames
in (68) and complete differential frames in (12) yields additional average improvements of 14.78%
and 32.99%, respectively. The results highlight the critical role of two modules in enhancing model
performance.

Table 7: Ablation study on FC(5) and FC(10) tasks. Best results are bolded. CDIF(w/o CDIs and
CDFs) corresponds to the EGNN model. CDIF(CDIs only) incorporates complete differential invari-
ants as inputs at each layer while retaining radial direction via relative displacements. CDIF(CDIs +
positional CFs) constructs positional complete frames (68) for update model.

Task FC(5) FC(10)

Level Easy Medium Difficult Easy Medium Difficult

Model MSE MSE MSE MSE MSE MSE
CDIF(w/o CDIs and CDFs) 0.2024 0.4584 0.6956 0.1783 0.2931 4.1375

CDIF(CDIs only) 0.1295 0.2604 0.5135 0.0648 0.1778 4.0012
CDIF(CDIs + positional CFs) 0.1069 0.2557 0.4694 0.0436 0.1346 3.8470

CDIF 0.0944 0.2152 0.4331 0.0346 0.0991 3.5742
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