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ABSTRACT

We propose a new bound for generalization of neural networks using Koopman
operators. Whereas most of existing works focus on low-rank weight matrices, we
focus on full-rank weight matrices. Our bound is tighter than existing norm-based
bounds when the condition numbers of weight matrices are small. Especially,
it is completely independent of the width of the network if the weight matrices
are orthogonal. Our bound does not contradict to the existing bounds but is a
complement to the existing bounds. As supported by several existing empirical
results, low-rankness is not the only reason for generalization. Furthermore, our
bound can be combined with the existing bounds to obtain a tighter bound. Our
result sheds new light on understanding generalization of neural networks with
full-rank weight matrices, and it provides a connection between operator-theoretic
analysis and generalization of neural networks.

1 INTRODUCTION

Understanding the generalization property has been one of the biggest topics for analyzing neural
networks. A major approach for theoretical investigation of this topic is bounding some complex-
ity of networks (Bartlett & Mendelson, 2002; Mohri et al., 2018). Intuitively, a large number of
parameters makes the complexity and generalization error large. This intuition has been studied,
for example, based on a classical VC-dimension theory (Harvey et al., 2017; Anthony & Bartlett,
2009). However, for neural networks, small generalization error can be achieved even in over-
parameterized regimes (Novak et al., 2018; Neyshabur et al., 2019). To explain this behavior, norm-
based bounds have been investigated (Neyshabur et al., 2015; Bartlett et al., 2017; Golowich et al.,
2018; Neyshabur et al., 2018; Wei & Ma, 2019; 2020; Li et al., 2021; Ju et al., 2022; Weinan E et al.,
2022). These bounds do not depend on the number of parameters explicitly. However, they are typ-
ically described by the (p, q) norms of the weight matrices, and if the norms are large, these bounds
grow exponentially with respect to the depth of the network. Another approach to tackle over-
parameterized networks is a compression-based approach (Arora et al., 2018; Suzuki et al., 2020).
These bounds explain the generalization of networks by investigating how much the networks can be
compressed. The bounds get smaller as the ranks of the weight matrices become smaller. However,
low-rankness is not the only reason for generalization. Goldblum et al. (2020) empirically showed
that even with high-rank weight matrices, networks generalize well. This implies that if the ranks of
the weight matrices are large, the existing compression-based bounds are not always tight.

In this paper, we derive a completely different type of uniform bounds of complexity using Koopman
operators, which sheds light on why networks generalize well even when their weights are high- or
full-rank matrices. More precisely, let L be the depth, dj be the width of the jth layer, g be the final
nonlinear transformation, and n be the number of samples. For j = 1, . . . , L, let Wj ∈ Rdj×dj−1 be
an injective weight matrix, sj > dj/2 describes the smoothness of a function space Hj where the
Koopman operator is defined. Our results are summarized as follows, where ∥·∥ is the operator norm,
Ej and Gj are factors determined by the activation functions and the range of Wj , respectively:

Rademacher complexity≤ O

(
∥g∥HL√

n

L∏
j=1

GjEj∥Wj∥sj−1

det(W ∗
j Wj)1/4

)
. (1)

Surprisingly, the determinant factor tells us that if the singular values of Wj are large, the bound
gets small. It is tight when the condition number of Wj , i.e., the ratio of the largest and the
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smallest singular values, is small. Especially, when Wj is orthogonal, Gj = 1 and the factor
∥Wj∥sj−1/det(W ∗

j Wj)
1/4 reduces to 1. We can interpret that Wj transforms signals in certain di-

rections, which makes it easy for the network to extract features of data. Networks with orthogonal
weight matrices have been proposed (Maduranga et al., 2019; Wang et al., 2020; Li et al., 2021).
Our bound also justifies the generalization property of these networks.

In addition to providing the new perspective, we can combine our bound with existing bounds. In
other words, our bound can be a complement to existing bounds. Goldblum et al. (2020) pointed
out that the rank of the weight matrix tends to be large near the input layer, but be small near the
output layer. By adopting our bound for lower layers and existing bounds for higher layers, we ob-
tain a tight bound that takes the role of each layer into account. The determinant factors come from
Koopman operators. Koopman operator is a linear operator defined by the composition of functions.
It has been investigated for analyzing dynamical systems and time-series data generated from dy-
namical systems (Koopman, 1931; Budišić et al., 2012; Kawahara, 2016; Ishikawa et al., 2018; Klus
et al., 2020; Hashimoto et al., 2020; Giannakis & Das, 2020; Brunton et al., 2022). Its theoretical
aspects also have been studied (Das et al., 2021; Ikeda et al., 2022a;b; Ishikawa, 2023). Connections
between Koopman operators and neural networks have also been discussed. For example, efficient
learning algorithms are proposed by describing the learning dynamics of the parameters of neural
networks by Koopman operators (Redman et al., 2022; Dogra & Redman, 2020). Lusch et al. (2017)
applied neural networks to identifying eigenfunctions of Koopman operators to extract features of
dynamical systems. Konishi & Kawahara (2023) applied Koopman operators to analyze equilibrium
models. On the other hand, in this paper, we represent the composition structure of neural networks
using Koopman operators, and apply them to analyzing the complexity of neural networks from an
operator-theoretic perspective.

Our main contributions are as follows:
• We show a new complexity bound, which involves both the norm and determinant of the weight

matrices. By virtue of the determinant term, our bound gets small if the condition numbers of the
weight matrices get small. Especially, it justifies the generalization property of existing networks
with orthogonal weight matrices. It also provides a new perspective about why the networks with
high-rank weights generalize well (Section 2, the paragraph after Proposition 4, and Remark 3).

• We can combine our bound with existing bounds to obtain a bound which describes the role of
each layer (Subsection 4.4).

• We provide an operator-theoretic approach to analyzing networks. We use Koopman operators to
derive the determinant term in our bound (Subsection 3.4 and Subsection 4.1).

We emphasize that our operator-theoretic approach reveals a new aspect of neural networks.

2 RELATED WORKS

Norm-based bounds Generalization bounds based on the norm of Wj have been investigated in
previous studies. These bounds are described typically by the (p, q) matrix norm ∥Wj∥p,q of Wj

(see the upper part of Table 1). Thus, although these bounds do not explicitly depend on the width
of the layers, they tend to be large as the width of the layers becomes large. For example, the
(p, q) matrix norm of the d by d identity matrix is d1/p. This situation is totally different from our
case, where the factor related to the weight matrix is reduced to 1 if it is orthogonal. We can see
our bound is described by the spectral property of the weight matrices and tight when the condition
number ofWj is small. Bartlett et al. (2017); Wei & Ma (2020); Ju et al. (2022) showed bounds with
reference matricesAj andBj . These bounds allow us to explain generalization property through the
discrepancy between the weight matrices and fixed reference matrices. A main difference of these
bounds from ours is that the existing bounds only focus on the discrepancy from fixed reference
matrices whereas our bound is based on the discrepancy of the spectral property from a certain
class of matrices, which is much broader than fixed matrices. Li et al. (2021) showed a bound
described by |

∏L
j=1 ∥Wj∥ − 1|, the discrepancy between the product of largest singular values of

W1, . . . ,WL and 1. It is motivated by the covering number cX of the input space X and a diameter
γx of the covering set, which depends on the input samples x = (x1, . . . , xn). This bound somewhat
describes the spectral properties of Wj . However, they only focus on the largest singular values of
Wj and do not take the other singular values into account. On the other hand, our bound is described
by how much the whole singular values of Wj differ from its largest singular value.
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Table 1: Comparison of our bound to existing bounds.
Authors Rate Type

Neyshabur et al. (2015)
2L

∏L
j=1 ∥Wj∥2,2√

n

Norm-based
Neyshabur et al. (2018)

Lmaxj dj
∏L

j=1 ∥Wj∥√
n

(∑L
j=1

∥Wj∥2
2,2

∥Wj∥2

)1/2

Golowich et al. (2018)
(∏L

j=1 ∥Wj∥2,2
)
min

{
1

n1/4 ,
√

L
n

}
Bartlett et al. (2017)

∏L
j=1 ∥Wj∥√

n

(∑L
j=1

∥WT
j −AT

j ∥2/3
2,1

∥Wj∥2/3

)3/2

Wei & Ma (2020)
(
∑L

j=1 κ
2/3
j min{L1/2∥Wj−Aj∥2,2,∥Wj−Bj∥1,1}2/3)3/2

√
n

Ju et al. (2022)
∑L

j=1 θj∥Wj−Aj∥2,2√
n

Li et al. (2021) ∥x∥|
∏L

j=1 ∥Wj∥ − 1|+ γx +
√

cX
n

Arora et al. (2018) r̂ + Lmaxi ∥f(xi)∥
r̂
√
n

(∑L
j=1

1
µ2
jµ

2
j→

)1/2

Compression

Suzuki et al. (2020) r̂√
n
+

√
L
n

(∑L
j=1 r̃j(d̃j−1 + d̃j)

)1/2
Ours ∥g∥HL√

n

∏L
j=1

GjEj∥Wj∥sj−1

det(W∗
j Wj)1/4

Operator-theoretic

κj and θj are determined by the Jacobian and Hessian of the network f with respect to the jth layer and Wj ,
respectively. r̃j and d̃j are the rank and dimension of the jth weight matrices for the compressed network.

Compression-based bounds Arora et al. (2018) and Suzuki et al. (2020) focused on compression
of the network and showed bounds that also get small as the rank of the weight matrices decreases,
with the bias r̂ induced by compression (see the middle part of Table 1). Arora et al. (2018) intro-
duced layer cushion µj and interlayer cushion µj→ for layer j, which tends to be small if the rank of
Wj is small. They also observed that noise is filtered by the weight matrices whose stable ranks are
small. Suzuki et al. (2020) showed the dependency on the rank more directly. The bounds describe
why networks with low-rank matrices generalize well. However, networks with high-rank matrices
can also generalize well (Goldblum et al., 2020), and the bounds cannot describe this phenomenon.
Arora et al. (2018, Figure 1) also empirically show that noise rapidly decreases on higher layers.
Since the noise stability is related to the rank of the weight matrices, the result supports the tightness
of their bound on higher layers. However, the result also implies that noise does not really decrease
on lower layers, and we need an additional theory that describes what happens on lower layers.

3 PRELIMINARIES

3.1 NOTATION

For a linear operator W on a Hilbert space, its range and kernel are denoted by R(W ) and ker(W ),
respectively. Its operator norm is denoted by ∥W∥. For a function p ∈ L∞(Rd), its L∞-norm is
denoted by ∥p∥∞. For a function h on Rd and a subset S of Rd, the restriction of h on S is denoted
by h|S . For f ∈ L2(Rd), we denote the Fourier transform of f as f̂(ω) =

∫
Rd f(x)e

−ix·ωdx. We
denote the adjoint of a matrix W by W ∗.

3.2 KOOPMAN OPERATOR

Let F1 and F2 be function spaces on Rd1 and Rd2 . For a function f : Rd1 → Rd2 , we define the
Koopman operator from F2 to F1 by the composition as follows. Let Df = {g ∈ F2 | g◦f ∈ F1}.
The Koopman operator Kf from F2 to F1 with respect to f is defined as Kfg = g ◦ f for g ∈ Df .

3.3 REPRODUCING KERNEL HILBERT SPACE (RKHS)

As function spaces, we consider RKHSs. Let p be a non-negative function such that p ∈ L1(Rd).
Let Hp(Rd) = {f ∈ L2(Rd) | f̂/√p ∈ L2(Rd)} be the Hilbert space equipped with the inner
product ⟨f, g⟩Hp(Rd) =

∫
Rd f̂(ω)ĝ(ω)/p(ω)dω. We can see that kp(x, y) :=

∫
Rd e

i(x−y)·ωp(ω)dω
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is the reproducing kernel of Hp(Rd), i.e., ⟨kp(·, x), f⟩Hp(Rd) = f(x) for f ∈ Hp(Rd). Note that
since Hp(Rd) ⊆ L2(Rd), the value of functions in Hp(Rd) vanishes at infinity.

One advantage of focusing on RKHSs is that they have well-defined evaluation operators induced
by the reproducing property. This property makes deriving an upper bound of the Rademacher
complexity easier (see, for example, Mohri et al. (2018, Theorem 6.12)).

Example 1 Set p(ω) = 1/(1 + ∥ω∥2)s for s > d/2. Then, Hp(Rd) is the Sobolev space W s,2(Rd)
of order s. Here, ∥ω∥ is the Euclidean norm of ω ∈ Rd. Note that if s ∈ N, then ∥f∥2Hp(Rd) =∑

|α|≤s cα,s,d∥∂αf∥2L2(Rd), where cα,s,d = (2π)ds!/α!/(s − |α|)! and α is a multi index. See
Appendix K for more details.

3.4 PROBLEM SETTING

In this paper, we consider an L-layer deep neural network. Let d0 be the dimension of the input
space. For j = 1, . . . , L, we set the width as dj , let Wj : Rdj−1 → Rdj be a linear operator,
let bj : Rdj → Rdj be a shift operator defined as x 7→ x + aj with a bias aj ∈ Rdj , and let
σj : Rdj → Rdj be a nonlinear activation function. In addition, let g : RdL → C be a nonlinear
transformation in the final layer. We consider a network f defined as

f = g ◦ bL ◦WL ◦ σL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦ b1 ◦W1. (2)

Typically, we regard that W1 is composed by b1, σ1 to construct the first layer. We sequentially
construct the second and third layers, and so on. Then we get the whole network f . On the other
hand, from operator-theoretic perspective, we analyze f in the opposite direction. For j = 0, . . . , L,
let pj be a density function of a finite positive measure on Rdj . The network f is described by the
Koopman operators KWj

: Hpj
(Rdj ) → Hpj−1

(Rdj−1), Kbj ,Kσj
: Hpj

(Rdj ) → Hpj
(Rdj ) as

f = KW1
Kb1Kσ1

· · ·KWL−1
KbL−1

KσL−1
KWL

KbLg.

The final nonlinear transformation g is first provided. Then, g is composed by bL and WL, i.e.,
the corresponding Koopman operator acts on g. We sequentially apply the Koopman operators
corresponding to the (L−1)th layer, (L−2)th layer, and so on. Finally, we get the whole network f .
By representing the network using the product of Koopman operators, we can bound the Rademacher
complexity with the product of the norms of the Koopman operators.

To simplify the notation, we denote Hpj
(Rdj ) by Hj . We impose the following assumptions.

Assumption 1 The function g is contained in HL, and Kσj is bounded for j = 1, . . . , L.

Assumption 2 There exists B > 0 such that for any x ∈ Rd, |kp0(x, x)| ≤ B2.

We denote by F the set of all functions in the form of (2) with Assumption 1. As a typical example,
if we set pj(ω) = 1/(1 + ∥ω∥2)sj for sj > dj/2 and g(x) = e−∥x∥2

, then Assumption 1 holds if
Kσj is bounded, and kp0 satisfies Assumption 2.

Remark 1 Let g be a smooth function which does not decay at infinity, (e.g., sigmoid). Although
Hp(Rd) does not contain g, we can construct a function g̃ ∈ Hp(Rd) such that g̃(x) = g(x) for x in
a sufficiently large compact region and replace g by g̃ in practical cases. See Remark 6 for details.

For the activation function, we have the following proposition (c.f. Sawano (2018, Theorem 4.46)).

Proposition 1 Let p(ω) = 1/(1+∥ω∥2)s for ω ∈ Rd s ∈ N, and s > d/2. If the activation function
σ has the following properties, then Kσ : Hp(Rd) → Hp(Rd) is bounded.

• σ is s-times differentiable and its derivative ∂ασ is bounded for any multi-index α ∈
{(α1, . . . , αd) |

∑d
j=1 αj ≤ s}.

• σ is bi-Lipschitz, i.e., σ is bijective and both σ and σ−1 are Lipschitz continuous.

Example 2 We can choose σ as a smooth version of Leaky ReLU (Biswas et al., 2022). We will see
how we can deal with other activation functions, such as the sigmoid and the hyperbolic tangent in
Remark 8.
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Remark 2 We have ∥Kσ∥ ≤ ∥det(Jσ−1)∥∞ max{1, ∥∂1σ∥∞, . . . , ∥∂dσ∥∞} if s = 1 and σ is
elementwise, where Jσ−1 is the Jacobian of σ−1. As we will discuss in Appendix B, deriving a tight
bound for a larger s is challenging and future work.

4 KOOPMAN-BASED BOUND OF RADEMACHER COMPLEXITY

We derive an upper bound of the Rademacher complexity. We first focus on the case where the
weight matrices are invertible or injective. Then, we generalize the results to the non-injective case.

Let Ω be a probability space equipped with a probability measure P . We denote the integral∫
Ω
s(ω)dP (ω) of a measurable function s on Ω by E[s]. Let s1, . . . , sn be i.i.d. Rademacher

variables. For a function class G and x1, . . . , xn ∈ Rd, we denote the empirical Rademacher com-
plexity by R̂n(x, G), where x = (x1, . . . , xn). We will provide an upper bound of R̂n(x, G) using
Koopman operators in the following subsections.

4.1 BOUND FOR INVERTIBLE WEIGHT MATRICES (dj = d)

In this subsection, we focus on the case dj = d (j = 0, . . . , L) for some d ∈ N and Wj is invertible
for j = 1, . . . , L. This is the most fundamental case. For C,D > 0, set a class of weight matrices
W(C,D) = {W ∈ Rd×d | ∥W∥ ≤ C, |det(W )| ≥ D} and a function class Finv(C,D) = {f ∈
F | Wj ∈ W(C,D)}. We have the following theorem for a bound of Rademacher complexity.

Theorem 2 (First Main Theorem) The Rademacher complexity R̂n(x, Finv(C,D)) is bounded as

R̂n(x, Finv(C,D)) ≤ B∥g∥HL√
n

sup
Wj∈W(C,D)

( L∏
j=1

∥pj/(pj−1 ◦W ∗
j )∥

1/2
∞

|det(Wj)|1/2

)( L−1∏
j=1

∥Kσj
∥
)
. (3)

By representing the network using the product of Koopman operators, we can get the whole bound
by bounding the norm of each Koopman operator. A main difference of our bound from existing
bounds, such as the ones by Neyshabur et al. (2015); Golowich et al. (2018) is that our bound has
the determinant factors in the denominator in Eq. (3). They come from a change of variable when
we bound the norm of the Koopman operators, described by the following inequality:

∥KWj
∥ ≤

(∥∥pj/pj−1 ◦W ∗
j

∥∥
∞/|det(Wj)|

)1/2
, ∥Kbj∥ = 1

for j = 1, . . . , L. Since the network f in Eq. (2) satisfies f ∈ H0, using the reproducing property
of H0, we derive an upper bound of R̂n(x, F (C,D)) in a similar manner to that for kernel methods
(see, Mohri et al. (2018, Theorem 6.12)).

Regarding the factor ∥pj/(pj−1◦W ∗
j )∥∞ in Eq. (3), we obtain the following lemma and proposition,

which show it is bounded by ∥Wj∥ and induces the factor ∥Wj∥sj−1/ det(W ∗
j Wj)

1/4 in Eq. (1).

Lemma 3 Let p(ω) = 1/(1 + ∥ω∥2)s for s > d/2 and pj = p for j = 0, . . . , L. Then, we have
∥p/(p ◦W ∗

j )∥∞ ≤ max{1, ∥Wj∥2s}.

As a result, the following proposition is obtained by applying Lemma 3 to Theorem 2.

Proposition 4 Let p(ω) = 1/(1 + ∥ω∥2)s for s > d/2 and pj = p for j = 0, . . . , L. We have

R̂n(x, Finv(C,D)) ≤ B∥g∥HL√
n

(
max{1, Cs}√

D

)L( L−1∏
j=1

∥Kσj∥
)
.

Comparison to existing bounds We investigate the bound (1) in terms of the singular values of
Wj . Let η1,j ≥ . . . ≥ ηd,j be the singular values of Wj and let α = s − d/2. Then, the term de-
pending on the weight matrices in bound (1) is described as ηα1,j

∏d
i=1 r

1/2
i,j , where ri,j = η1,j/ηi,j .

On the other hand, the existing bound by Golowich et al. (2018) is described as η1,j(
∑d

i=1 r
−2
i,j )

1/2.
Since they are just upper bounds, our bound does not contradict the existing bound. Our bound is
tight when the condition number rd,j of Wj is small. The existing bound is tight when rd,j is large.
Note that the factors in our bound (1) are bounded below by 1.
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Remark 3 If a weight matrix Wj is orthogonal, then the factor ∥Wj∥sj−1/det(Wj)
1/2 in the

bound (1) is reduced to 1. On the other hand, existing norm-based bounds are described by the
(p.q) matrix norm. The (p, q) matrix norm of the d by d identity matrix is d1/p, which is larger
than 1. Indeed, limiting the weight matrices to orthogonal matrices has been proposed (Maduranga
et al., 2019; Wang et al., 2020; Li et al., 2021). The tightness of our bound in the case of orthogonal
matrices implies the advantage of these methods from the perspective of generalization.

Remark 4 There is a tradeoff between s andB. We focus on the case where pj(ω) = 1/(1+∥ω∥2)s.
According to Lemma 3, the factor ∥pj/(pj−1 ◦ W ∗

j )∥∞ becomes small as s approaches to d/2.
However, the factor B goes to infinity as s goes to d/2. Indeed, we have kp(x, x) =

∫
Rd p(ω)dω =

C
∫∞
0

rd−1

(1+r2)s dr ≥ C
∫∞
1

(r−1)d/2−1

2rs dr > C
4

∫∞
2
rd/2−1−sdr = C

4
2d/2−s

s−d/2 for some constant C > 0.
This behavior corresponds to the fact that if s = d/2, the Sobolev space is not an RKHS, and the
evaluation operator becomes unbounded.

4.2 BOUND FOR INJECTIVE WEIGHT MATRICES (dj ≥ dj−1)

We generalize Theorem 2 to that for injective weight matrices. If dj > dj−1, then Wj is not
surjective. However, it can be injective, and we first focus on the injective case. Let Wj(C,D) =

{W ∈ Rdj−1×dj | dj ≥ dj−1, ∥W∥ ≤ C,
√
det(W ∗W ) ≥ D} and Finj(C,D) = {f ∈ F |

Wj ∈ Wj(C,D)}. Let fj = g ◦ bL ◦ WL ◦ σL−1 ◦ bL−1 ◦ WL−1 ◦ · · · ◦ σj ◦ bj and Gj =
∥fj |R(Wj)∥Hpj−1

(R(Wj))/∥fj∥Hj
. We have the following theorem for injective weight matrices.

Theorem 5 (Second Main Theorem) The Rademacher complexity R̂n(x, Finj(C,D)) is bounded
as

R̂n(x, Finj(C,D))) ≤ B∥g∥HL√
n

sup
Wj∈Wj(C,D)

( L∏
j=1

∥pj−1/(pj−1 ◦W ∗
j )∥

1/2
R(Wj),∞Gj

det(W ∗
j Wj)

1/4

)( L−1∏
j=1

∥Kσj
∥
)
.

(4)

Since Wj is not always square, we do not have det(Wj) in Theorem 2. However, we can re-
place det(Wj) with det(W ∗

j Wj)
1/2. As Lemma A, we have the following lemma about the factor

∥pj/(pj−1 ◦W ∗
j )∥R(Wj),∞ in Eq. (4).

Lemma 6 Let pj(ω) = 1/(1 + ∥ω∥2)sj for sj > dj/2 and for j = 0, . . . , L. Then, we have
∥pj−1/(pj−1 ◦W ∗

j )∥R(Wj),∞ ≤ max{1, ∥Wj∥2sj−1}.

Applying Lemma 6 to Theorem 5, we finally obtain the bound (1). Regarding the factor Gj , the
following lemma shows that Gj is determined by the isotropy of fj .

Lemma 7 Let pj(ω) = 1/(1+∥ω∥2)sj for sj > dj/2 and for j = 0, . . . , L. Let sj ≥ sj−1 and H̃j

be the Sobolev space on R(Wj)
⊥ with p(ω) = 1/(1 + ∥ω∥2)sj−sj−1 . Then, Gj ≤ Gj,0∥fj |R(Wj) ·

fj |R(Wj)⊥∥Hj/∥fj∥Hj , where Gj,0 = ∥fj∥−1

H̃j
.

Remark 5 The factor Gj is expected to be small. Indeed, if fj(x) = e−c∥x∥2

(It is true if g is
Gaussian and j = L.), Gj gets small as sj and dj gets large. Moreover, Gj can alleviate the
dependency of ∥Kσj

∥ on dj and sj . See Appendix C for more details.

4.3 BOUNDS FOR NON-INJECTIVE WEIGHT MATRICES

The bounds in Theorems 2 and 5 are only valid for injective weight matrices, and the bound goes to
infinity if they become singular. This is because if Wj : Rdj−1 → Rdj has singularity, h ◦W for
h ∈ Hj becomes constant along the direction of ker(Wj). As a result, h ◦Wj is not contained in
Hj−1 and KWj

becomes unbounded. To deal with this situation, we propose two approaches that
are valid for non-injective weight matrices, graph-based and weighted Koopman-based ones.
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4.3.1 GRAPH-BASED BOUND

The first approach to deal with this situation is constructing an injective operator related to the
graph of Wj . For j = 1, . . . , L, let rj = dim(ker(Wj)), δj =

∑j
k=0 rk, and W̃j be defined as

W̃j(x1, x2) = (Wjx1, Pjx1, x2) for x1 ∈ Rdj−1 and x2 ∈ Rδj−2 for j ≥ 2 and W̃jx = (Wjx, Pjx)

for j = 1. Here, Pj is the projection onto ker(Wj). Then, W̃j is injective (See Appendix I). Let
σ̃j : Rδj → Rδj and b̃j : Rδj → Rδj be defined respectively as σ̃j(x1, x2) = (σj(x1), x2) and
b̃j(x1, x2) = (bj(x1), x2) for x1 ∈ Rdj and x2 ∈ Rδj−1 . In addition, let g̃ ∈ HpL

(RδL) be defined
as g̃(x1, x2) = g(x1)ψ(x2) for x1 ∈ RdL and x2 ∈ RδL−1 , where ψ is a rapidly decaying function
on RδL−1 so that g̃ ∈ HpL

(RδL−1+dL). Consider the following network:

f̃(x) = g̃ ◦ b̃L ◦ W̃L ◦ · · · ◦ σ̃1 ◦ b̃1 ◦ W̃1(x)

= ψ(PLσL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦ b1 ◦W1(x), . . . , P2σ1 ◦ b1 ◦W1(x), P1x)

· g(bL ◦WL ◦ · · · ◦ σ1 ◦ b1 ◦W1(x)). (5)

Since det(W̃ ∗
j W̃j) = det(W ∗

j Wj + I) and ∥W̃j∥ =
√
∥I +W ∗

j Wj∥, we set W̃j(C,D) = {W ∈

Rdj−1×dj |
√

∥I +W ∗W∥ ≤ C,
√
det(W ∗W + I) ≥ D} and F̃ (C,D) = {f̃ | f ∈ F, Wj ∈

W̃j(C,D)}. Moreover, put H̃L = HpL
(RδL). By Theorem 5, we obtain the following bound,

where the determinant factor does not go to infinity by virtue of the identity I appearing in W̃j .

Proposition 8 The Rademacher complexity R̂n(x, F̃ (C,D)) is bounded as

R̂n(x, F̃ (C,D))) ≤
B∥g̃∥H̃L√

n
sup

Wj∈Wj(C,D)

( L∏
j=1

∥pj/(pj−1 ◦ W̃ ∗
j )∥

1/2

R(W̃j),∞
G̃j

det(W ∗
j Wj + I)

1/4

)( L−1∏
j=1

∥Kσj
∥
)
.

Remark 6 The difference between the networks (5) and (2) is the factor ψ. If we set ψ as ψ(x) = 1

for x in a sufficiently large region Ω, then f̃(x) = f(x) for x ∈ Ω. We can set ψ, for example,
as a smooth bump function (Tu, 2011, Chapter 13). See Appendix D for the definition. If the data
is in a compact region, then the output of each layer is also in a compact region since ∥Wj∥ ≤√
∥I +W ∗

j Wj∥ ≤ C. Thus, it is natural to assume that f can be replaced by f̃ in practical cases.

Remark 7 The factor ∥g̃∥H̃L
grows as Ω becomes large. This is because ∥ψ∥2

L2(RδL−1 )
becomes

large as the volume of Ω gets large. This fact does not contradict the fact that the bound in Theorem 2
goes to infinity if Wj is singular. More details are explained in Appendix E.

4.3.2 WEIGHTED KOOPMAN-BASED BOUND

Instead of constructing the injective operators in Subsection 4.3.1, we can also use weighted Koop-
man operators. For ψj : Rdj → C, define K̃Wj

h = ψj · h ◦ Wj , which is called the weighted
Koopman operator. We construct the same network as f̃ in Eq. (5) using K̃Wj .

f̃(x) = K̃W1
Kb1Kσ1

· · · K̃WL
KbLg(x)

= ψ1(x)ψ2(σ1 ◦ b1 ◦W1(x)) · · ·ψL(σL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦ b1 ◦W1(x))

· g(bL ◦WL ◦ · · · ◦ σ1 ◦ b1 ◦W1(x))

= ψ(σL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦ b1 ◦W1(x), . . . , σ1 ◦ b1 ◦W1(x), x)

· g(bL ◦WL ◦ · · · ◦ σ1 ◦ b1 ◦W1(x)),

where ψ(x1, . . . , xL) = ψ1(x1) · · ·ψL(xL) for xj ∈ Rdj−1 . Let Wr,j = Wj |ker(Wj)⊥ be
the restricted operator of Wj to ker(Wj)

⊥. Set Wr,j(C,D) = {W ∈ Rdj−1×dj | ∥W∥ ≤
C, |det(Wr)| ≥ D} and Fr(C,D) = {f ∈ F | Wj ∈ Wr,j(C,D)}. By letting ψj decay in
the direction of ker(Wj), e.g., the smooth bump function, K̃Wj

h for h ∈ Hj decays in all the di-
rections. We only need to care about Wr,j , not the whole of Wj . Note that ψj has the same role as
ψ in Eq. (5). If the data is in a compact region, we replace f by f̃ , which coincides with f on the
compact region. By virtue of the decay property of ψj , we can bound K̃Wj even if Wj is singular.
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Proposition 9 Let pj(ω) = 1/(1 + ∥ω∥2)sj with sj ∈ N, sj ≥ sj−1, and sj > dj/2.
Let H̃j−1 = Hpj−1

(ker(Wj)) and ψj be a function satisfying ψj(x) = ψj,1(x1) for some
ψj,1 ∈ H̃j−1, where x = x1 + x2 for x1 ∈ ker(Wj) and x2 ∈ ker(Wj)

⊥. Moreover, let
Gj = ∥fj∥Hj−1(ker(Wj)⊥)/∥fj∥Hj

. Then, we have

R̂n(x, Fr(C,D))) ≤ B∥g∥HL√
n

sup
Wj∈Wr,j(C,D)

( L∏
j=1

∥ψj,1∥H̃j−1
Gj max{1, ∥Wj∥sj−1}

|det(Wr,j)|1/2

)( L−1∏
j=1

∥Kσj
∥
)
.

Remark 8 Although we focus on the singularity of KWj and use the weighted Koopman operator
with respect to Wj , we can deal with the singularity of Kσj

in the same manner as KWj
, i.e., by

constructing the weighted Koopman operator K̃σj
with respect to σj . For example, the sigmoid and

hyperbolic tangent do not satisfy the assumption for σj stated in Proposition 1. This is because the
Jacobian of σ−1 is not bounded. However, K̃σj

is bounded by virtue of ψj .

Remark 9 The norm of ψj can be canceled by the factor Gj . See Appendix F for more details.

4.4 COMBINING THE KOOPMAN-BASED BOUND WITH OTHER BOUNDS

In this subsection, we show that our Koopman-based bound is flexible enough to be combined with
another bound. As stated in Subsection 4.1, the case where our bound is tight differs from the case
where existing bounds such as the one by Golowich et al. (2018) are tight. We can combine these
bounds to obtain a tighter bound. For 1 ≤ l ≤ L, let F1:l be the set of all functions in the form

σl ◦ bl ◦Wl ◦ σl−1 ◦ bl−1 ◦Wl−1 ◦ · · · ◦ σ1 ◦ b1 ◦W1 (6)
with Assumption 1, and let F1:l,inj(C,D) = {f ∈ F1:l | Wj ∈ Wj(C,D)}. For l ≤ L − 1,
consider the set of all functions in Hl which have the form

g ◦ bL ◦WL ◦ σL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦ σl+1 ◦ bl+1 ◦Wl+1

and consider any nonempty subset Fl+1:L of it. For l = L, we set FL+1:L = {g}. Let
Fl,comb(C,D) = {f1 ◦ f2 | f1 ∈ Fl+1,L, f2 ∈ F1:l,inj(C,D)}. The following proposition shows
the connection between the Rademacher complexity of Fl,comb(C,D) and that of Fl+1:L.

Proposition 10 Let x̃ = (x̃1, . . . , x̃n) ∈ (Rdl)n. Let vn(ω) =
∑n

i=1 si(ω)kp0
(·, xi), ṽn(ω) =∑n

i=1 si(ω)kpl
(·, x̃i), W = {(W1, . . . ,Wl) |Wj ∈ Wj(C,D)}, and γn = ∥vn∥H0/∥ṽn∥Hl

. Then,

R̂n(x, Fl,comb(C,D)) ≤ sup(W1,...,Wl)∈W
∏l

j=1

∥∥ pj−1

pj−1◦W∗
j

∥∥1/2
R(Wj),∞

Gj∥Kσj
∥

det(W∗
j Wj)

1/4

·
(
R̂n(x̃, Fl+1:L) +

B√
n
infh1∈Fl+1:L

E
1
2

[
suph2∈Fl+1:L

∥∥h1 − ∥h2∥Hl
γn

∥ṽn∥Hl
ṽn

∥∥2
Hl

])
.

The complexity of the whole network is decomposed into the Koopman-based bound for the first l
layers and the complexity of the remaining L− l layers, together with a term describing the approx-
imation power of the function class corresponding to L − l layers. Note that Proposition 10 gener-
alizes Theorem 5 up to the multiplication of a constant. Indeed, if l = L, we have R̂n(x, Fl+1,L) =

0. In addition, we have infh1∈Fl+1:L
E

1
2 [suph2∈Fl+1:L

∥h1 − ∥h2∥γnṽn/∥ṽn∥∥2] = E
1
2 [∥g −

∥g∥γnṽn/∥ṽn∥∥2] ≤ ∥g∥E 1
2 [(1 + γn)

2].

Remark 10 We can also combine our Koopman-based approach with the existing “peeling” ap-
proach, e.g., by Neyshabur et al. (2015); Golowich et al. (2018) (see Appendix G). Then, for
1 ≤ l ≤ L, we obtain a bound such as O

(
(
∏L

j=l+1 ∥Wj∥2,2)(
∏l

j=1 ∥Wj∥sj/det(W ∗
j Wj)

1/4)
)
.

Typically, in many networks, the width grows sequentially near the input layer, i.e., dj−1 ≤ dj
for small j and decays near the output layer, i.e., dj−1 ≥ dj for large j. Therefore, this type of
combination is suitable for many practical cases for deriving a tighter bound than existing bounds.

Proposition 10 and Remark 10 theoretically implies that our Koopman-based bound is suitable for
lower layers. Practically, we can interpret that signals are transformed on the lower layers so that its
essential information is extracted on the higher layers. This interpretation also supports the result in
Figure 1 by Arora et al. (2018). Noise is removed (i.e., signals are extracted) by the higher layers,
but it is not completely removed by lower layers. We will investigate the behavior of each layer
numerically in Section 5 and Appendix J.2.1.
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(a) (b) (c)

Figure 1: (a) Scatter plot of the generalization error versus our bound (for 5 independent runs). The color is
set to get dark as the epoch proceeds. (b) Test accuracy with and without the regularization based on our bound.
(c) The condition number rd,j = η1,j/ηd,j of the weight matrix for layer j = 2, . . . , 4.

5 NUMERICAL RESULTS

Validity of the bound To investigate our bound numerically, we consider a regression problem
on R3, where the target function t is t(x) = e−∥2x−1∥2

. We constructed a simple network f(x) =
g(W2σ(W1x+b1)+b2), whereW1 ∈ R3×3, W2 ∈ R6×3, b1 ∈ R3, b2 ∈ R6, g(x) = e−∥x∥2

, and σ
is a smooth version of Leaky ReLU proposed by Biswas et al. (2022). We created a training dataset
from samples randomly drawn from the standard normal distribution. Figure 1 (a) illustrates the
relationship between the generalization error and our bound O(

∏L
j=1 ∥Wj∥sj/(det(W ∗

j Wj)
1/4)).

Here, we set sj = (dj+0.1)/2. In Figure 1 (a), we can see that our bound gets smaller in proportion
to the generalization error. In addition, we investigated the generalization property of a network
with a regularization based on our bound. We considered the classification task with MNIST. For
training the network, we used only n = 1000 samples to create a situation where the model is hard
to generalize. We constructed a network with four dense layers and trained it with and without a
regularization term ∥Wj∥+1/det(I+W ∗

j Wj), which makes both the norm and determinant ofWj

small. Figure 1 (b) shows the test accuracy. We can see that the regularization based on our bound
leads to better generalization property, which implies the validity of our bound.

Singular values of the weight matrices We investigated the difference in the behavior of singular
values of the weight matrix for each layer. We considered the classification task with CIFAR-10 and
AlexNet (Krizhevsky et al., 2012). AlexNet has five convolutional layers followed by dense layers.
For each j = 2, . . . , 5, we computed the condition number rd,j of the weight matrix. The results
are illustrated in Figure 1 (c). We scaled the values for j = 4, 5 for readability. Since the weight
matrix of the first layer (j = 1) is huge and the computational cost of computing its singular values
is expensive, we focus on j = 2, . . . , 5. We can see that for the second layer (j = 2), rd,j tends to
be small as the learning process proceeds (as the test accuracy grows). On the other hand, for the
third and fourth layers (j = 3, 4), the rd,j tends to be large. This means that the behavior of the
singular values is different depending on the layers. According to the paragraph after Proposition 4,
our bound becomes smaller as rd,j becomes smaller, but the existing bound becomes smaller as rd,j
becomes larger. In this case, our bound describes the behavior of the second layer, and the existing
bound describes that of the third and fourth layers. See Appendix J for more details and results.

6 CONCLUSION AND DISCUSSION

In this paper, we proposed a new uniform complexity bound of neural networks using Koopman
operators. Our bound describes why networks with full-rank weight matrices generalize well and
justifies the generalization property of networks with orthogonal matrices. In addition, we provided
an operator-theoretic approach to analyzing generalization property of neural networks. There are
several possible limitations. First, our setting excludes non-smooth activation functions. Generaliz-
ing our framework to other function spaces may help us understand these final nonlinear transfor-
mations and activation functions. Moreover, although the factor ∥Kσj

∥ is bounded if we set certain
activation functions, how this factor changes depending on the choice of the activation function has
not been clarified yet. Further investigation of this factor is required. Furthermore, we assume a
modification of the structure of the neural network for deriving a bound for non-injective matrices.
Thus, we still have room for improvement about this bound. We simply decomposed the product of
Koopman operators into every single Koopman operator. For more refined analysis, they should be
tied together to investigate the connection between layers. Considering a function space on a mani-
fold that contains the range of the transformation corresponding to each layer may also be effective
for resolving this issue. These challenging topics are left to future work.
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APPENDIX

A PROOFS

We provide the proofs of the theorems, propositions, and lemmas in the main text.

Proposition 1 Let p(ω) = 1/(1 + ∥ω∥2)s for ω ∈ Rd s ∈ N, and s > d/2. If the activation
function σ has the following properties, then Kσ : Hp(Rd) → Hp(Rd) is bounded.

• σ is s-times differentiable and its derivative ∂ασ is bounded for any multi-index α ∈
{(α1, . . . , αd) |

∑d
j=1 αj ≤ s}.

• σ is bi-Lipschitz, i.e., σ is bijective and both σ and σ−1 are Lipschitz continuous.

Proof For h ∈ H(Rd), we have ∥Kσh∥2Hp(Rd) =
∑

|α|≤s ∥∂α(h ◦ σ)∥2L2(Rd). We denote σ(x) =
(σ1(x), . . . , σd(x)) and Dγσ(x) = (∂γσ1(x), . . . , ∂

γσd(x)) for γ ∈ Nd. By the Faà di Bruno
formula, we have

∂α(h ◦ σ)(x) =
∑

|β|≤|α|

∂βh(σ(x))

|α|∑
i=1

∑
γ∈p(α,β)

α!

i∏
j=1

(∂ljσ(x))kj

kj !(lj !)|kj |
,

where p(α, β) = {γ = (k1, . . . , ks, l1, . . . , ls) | 0 ≤ l1 ≤ · · · ≤ ls,
∑s

j=1 kj = α,
∑s

j=1 |kj |lj =
β}. Thus, ∂α(h ◦ σ)(x) is written as the finite weighted sum of ∂βh(σ(x))

∏m
i=1(Dγi

σ(x))δi for
some m ≤ |α| and β, γi, δi ∈ Nd, |β| ≤ |α|, |γi| ≤ |α|, |δi| ≤ |α|. By the boundedness of the
derivatives of σ, there exists Cβ,γ,δ > 0 such that∫

Rd

∣∣∣∣∂βh(σ(x)) m∏
i=1

(Dγiσ(x))
δi

∣∣∣∣2dx ≤ Cβ,γ,δ

∫
Rd

|∂βh(σ(x))|2dx.

Moreover, by the Lipschitzness of σ−1, there exists C̃ > 0 such that∫
Rd

|∂βh(σ(x))|2dx ≤ ∥det(Jσ−1)∥∞
∫
Rd

|∂βh(x)|2dx ≤ C̃

∫
Rd

|∂βh(x)|2dx,

where Jσ−1 is the Jacobian of σ−1, which shows the boundedness of Kσ . □

Theorem 2 The Rademacher complexity R̂n(x, Finv(C,D)) is bounded as

R̂n(x, Finv(C,D)) ≤ B∥g∥HL√
n

sup
Wj∈W(C,D)

( L∏
j=1

∥pj/(pj−1 ◦W ∗
j )∥

1/2
∞

|det(Wj)|1/2

)( L−1∏
j=1

∥Kσj
∥
)
.

We use the following lemma to show Theorem 2.

Lemma A Assume Wj : Rd → Rd is invertible for j = 1, . . . , L. Then, for j = 1, . . . , L, we have

∥KWj
∥ ≤

(∥∥∥∥ pj
pj−1 ◦W ∗

j

∥∥∥∥
∞

1

|det(Wj)|

)1/2

, ∥Kbj∥ = 1.

Proof For h ∈ Hj , we have ̂(h ◦Wj)(ω) =
∫
Rd h(Wjx)e

−ix·ωdx = ĥ(W−∗
j ω)/|det(Wj)|. Thus,

the norm of the Koopman operator is bounded as

∥KWj
h∥2Hj−1

=

∫
Rd

|ĥ(W−∗
j ω)|2

|det(Wj)|2pj−1(ω)
dω ≤ ∥h∥2Hj

sup
ω∈Rd

∣∣∣∣ pj(ω)

pj−1(W ∗
j ω)

∣∣∣∣ 1

|det(Wj)|
.

13
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In addition, for h ∈ Hj , we have ̂(h ◦ bj)(ω) = e−iaj ·ωĥ(ω). Thus, we obtain ∥Kbjh∥2 = ∥h∥2. □

Proof of Theorem 2 Let x1, . . . , xn ∈ Rd0 and s1, . . . , sn be i.i.d. Rademacher variables (random
variables following the uniform distribution on {−1, 1}. By the reproducing property of H0 and the
Cauchy–Schwartz inequality, we have

1

n
E

[
sup

f∈Finv(C,D)

n∑
i=1

sif(xi)

]
=

1

n
E

[
sup

f∈Finv(C,D)

n∑
i=1

⟨sikp0(·, xi), f⟩H0

]

≤ 1

n
E

[
sup

f∈Finv(C,D)

( n∑
i,j=1

sisjkp0
(xi, xj)

)1/2

∥f∥H0

]

≤ 1

n
sup

f∈Finv(C,D)

∥f∥H0
E

1
2

[ n∑
i,j=1

sisjkp0
(xi, xj)

]

≤ 1

n
sup

f∈Finv(C,D)

∥f∥H0

( n∑
i=1

kp0
(xi, xi)

)1/2

≤ B√
n

sup
Wj∈W(C,D)

∥KW1
Kb1Kσ1

· · ·KWL
KbLg∥H0

≤ B√
n

sup
Wj∈W(C,D)

( L∏
j=1

∥KWj
∥∥Kbj∥∥Kσj

∥
)
∥g∥HL

, (7)

where the third inequality is derived by the Jensen’s inequality. By Lemma A, we obtain the final
result. □

Lemma 3 Let p(ω) = 1/(1 + ∥ω∥2)s for s > d/2 and pj = p for j = 0, . . . , L. Then, we have
∥p/(p ◦W ∗

j )∥∞ ≤ max{1, ∥Wj∥2s}.

Proof By the definition of p, we have∥∥∥∥ p

p ◦W ∗
j

∥∥∥∥
∞

= sup
ω∈Rd

∣∣∣∣ p(ω)

p(W ∗
j ω)

∣∣∣∣ = sup
ω∈Rd

∣∣∣∣(1 + ∥W ∗
j ω∥2

1 + ∥ω∥2

)s∣∣∣∣ ≤ max{1, ∥Wj∥2s}.

□

Theorem 5 Let Wj(C,D) = {W ∈ Rdj−1×dj | dj ≥ dj−1, ∥W∥ ≤ C,
√
det(W ∗W ) ≥ D}

and Finj(C,D) = {f ∈ F | Wj ∈ Wj(C,D)}. The Rademacher complexity R̂n(x, Finj(C,D)) is
bounded as

R̂n(x, Finj(C,D))) ≤ B∥g∥HL√
n

sup
Wj∈Wj(C,D)

( L∏
j=1

∥pj−1/(pj−1 ◦W ∗
j )∥

1/2
R(Wj),∞Gj

det(W ∗
j Wj)

1/4

)( L−1∏
j=1

∥Kσj
∥
)
,

where Gj = ∥fj |R(Wj)∥Hpj−1
(R(Wj))/∥fj∥Hj

and fj = g ◦ bL ◦WL ◦σL−1 ◦ bL−1 ◦WL−1 ◦ · · · ◦
σj ◦ bj .

Proof For h ∈ Hj , we have

̂(h ◦Wj)(ω) =

∫
Rdj−1

h(Wjx)e
−ix·ωdx =

∫
R(Wj)

h(x)e−ix·W−∗
j ωdx

1

|det(Rj)|
=
ĥ(W−∗

j ω)

|det(Rj)|
,

14
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where Wj = QjRj is the QR decomposition of Wj and R(Wj) is the range of Wj . In addition, we
regard Wj : Rdj−1 → R(Wj). Since |det(Rj)| = (det(R∗

jRj))
1/2 = (det(W ∗

j Wj))
1/2, the norm

of the Koopman operator is bounded as

∥KWj
h∥2Hj−1

=

∫
Rdj−1

|ĥ(W−∗
j ω)|2

det(W ∗
j Wj)pj−1(ω)

dω =

∫
R(Wj)

|ĥ(ω)|2

det(W ∗
j Wj)1/2pj−1(W ∗

j ω)
dω

≤ ∥h|R(Wj)∥
2
Hpj−1

(R(Wj))
sup

ω∈R(Wj)

∣∣∣∣ pj−1(ω)

pj−1(W ∗
j ω)

∣∣∣∣ 1

det(W ∗
j Wj)1/2

. (8)

Thus, we have

∥f∥H0
= ∥KW1

f1∥H0
≤ ∥f1|R(W1)∥Hp0

(R(W1)) sup
ω∈R(W1)

∣∣∣∣ p0(ω)

p0(W ∗
1 ω)

∣∣∣∣1/2 1

det(W ∗
1W1)1/4

= G1∥f1∥H1 sup
ω∈R(W1)

∣∣∣∣ p0(ω)

p0(W ∗
1 ω)

∣∣∣∣1/2 1

det(W ∗
1W1)1/4

≤ G1∥Kσ1∥H1∥KW2f2∥H1 sup
ω∈R(W1)

∣∣∣∣ p0(ω)

p0(W ∗
1 ω)

∣∣∣∣1/2 1

det(W ∗
1W1)1/4

.

Applying the inequality (8) iteratively, we obtain

∥f∥H0
≤

L∏
j=1

∥∥∥∥ pj−1

pj−1 ◦W ∗
j

∥∥∥∥1/2
R(Wj),∞

Gj∥Kσj∥
det(W ∗

j Wj)
1/4

. (9)

Applying the inequality (9) to ∥f∥H0 in the inequality (7) completes the proof. □

Lemma 6 Let pj(ω) = 1/(1 + ∥ω∥2)sj for sj > dj/2 and for j = 0, . . . , L. Then, we have
∥pj−1/(pj−1 ◦W ∗

j )∥R(Wj),∞ ≤ max{1, ∥Wj∥2sj−1}.

Proof By the definition of pj and the assumption of sj ≥ sj−1, we have∥∥∥∥ pj−1

pj−1 ◦W ∗
j

∥∥∥∥
R(Wj),∞

= sup
ω∈R(Wj)

∣∣∣∣ pj−1(ω)

pj−1(W ∗
j ω)

∣∣∣∣
≤ sup

ω∈R(Wj)

∣∣∣∣ (1 + ∥W ∗
j ω∥2)sj−1

(1 + ∥ω∥2)sj−1

∣∣∣∣
≤ max{1, ∥Wj∥2sj−1} sup

ω∈R(Wj)

∣∣∣∣(1 + ∥ω∥2

1 + ∥ω∥2

)sj−1
∣∣∣∣

= max{1, ∥Wj∥2sj−1}.

□

Lemma 7 Let pj(ω) = 1/(1+∥ω∥2)sj for sj > dj/2 and for j = 0, . . . , L. Let sj ≥ sj−1 and H̃j

be the Sobolev space on R(Wj)
⊥ with p(ω) = 1/(1 + ∥ω∥2)sj−sj−1 . Then, Gj ≤ Gj,0∥fj |R(Wj) ·

fj |R(Wj)⊥∥Hj/∥fj∥Hj , where Gj,0 = ∥fj∥−1

H̃j
.

Remark 11 Since Wj is injective, dim(R(Wj)
⊥) = dj − dj−1. Thus, we have sj − sj−1 >

dim(R(Wj)
⊥)/2.
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Proof By the definition of Gj,0, and since R(Wj) and R(Wj)
⊥ are orthogonal, we have

∥fj∥2Hpj−1
(R(Wj))

=

∫
R(Wj)

|f̂j(ω)|2
1

pj−1(ω)
dω

= G2
j,0

∫
R(Wj)

|f̂j(ω1)|2(1 + ∥ω1∥2)sj−1dω1

∫
R(Wj)⊥

|f̂j(ω2)|2(1 + ∥ω2∥2)sj−sj−1dω2

= G2
j,0

∫
R(Wj)

∫
R(Wj)⊥

|f̂j(ω1)|2|f̂j(ω2)|2
1

pj(ω1 + ω2)

(1 + ∥ω1∥2)sj−1(1 + ∥ω2∥2)sj−sj−1

(1 + ∥ω1 + ω2∥2)sj
dω2dω1

= G2
j,0

∫
R(Wj)

∫
R(Wj)⊥

|f̂j(ω1)|2|f̂j(ω2)|2
1

pj(ω1 + ω2)

· (1 + ∥ω1∥2)sj−1(1 + ∥ω2∥2)sj−sj−1

(1 + ∥ω1∥2 + ∥ω2∥2)sj−1(1 + ∥ω1∥2 + ∥ω2∥2)sj−sj−1
dω2dω1

≤ G2
j,0

∫
R(Wj)

∫
R(Wj)⊥

|f̂j(ω1)f̂j(ω2)|2
1

pj(ω1 + ω2)
dω2dω1

= G2
j,0

∫
Rdj

| ̂̃fj(ω)|2 1

pj(ω)
dω = G2

j,0∥f̃j∥2Hj
= G2

j,0∥fj∥2Hj

∥f̃j∥2Hj

∥fj∥2Hj

,

where h̃(x) = h(x1)h(x2) for x = x1 + x2, x1 ∈ R(Wj), and x2 ∈ R(Wj)
⊥. Note that since

R(Wj) and R(Wj)
⊥ are orthogonal, we have ĥ(ω1)ĥ(ω2) =

̂̃
h(ω). □

Proposition 9 Let pj(ω) = 1/(1 + ∥ω∥2)sj with sj ∈ N, sj ≥ sj−1, and sj > dj/2. Let ψj be
a function satisfying ψj(x) = ψj,1(x1) for some ψj,1 ∈ Hpj−1

(ker(Wj)), where x = x1 + x2 for
x1 ∈ ker(Wj) and x2 ∈ ker(Wj)

⊥ and ker(Wj) is the kernel of Wj . Let Wr,j(C,D) = {W ∈
Rdj−1×dj | ∥W∥ ≤ C, |det(Wr)| ≥ D} and Fr(C,D) = {f ∈ F | Wj ∈ Wr,j(C,D)}.
Moreover, let Gj = ∥fj∥Hj−1(ker(Wj)⊥)/∥fj∥Hj . Then, we have

R̂n(x, Fr(C,D))) ≤ B∥g∥HL√
n

sup
Wj∈Wr,j(C,D)

( L∏
j=1

∥ψj,1∥H̃j−1
Gj max{1, ∥Wj∥sj−1}

|det(Wr,j)|1/2

)( L−1∏
j=1

∥Kσj
∥
)
.

Proof For h ∈ Hj , we have ∥K̃Wj
h∥2Hj−1

=
∑

|α|≤sj−1
∥∂α(ψj · h ◦Wj)∥2L2(Rdj−1 )

, where the

directions of the derivatives are along the directions of ker(Wj)
⊥ and ker(Wj). We have∫

Rdj−1

|∂βψj(x)∂
γ(h ◦Wj)(x)|2dx ≤ ∥Wj∥2|γ|

∫
Rdj−1

|∂βψj(x)(∂
γh)(Wjx)|2dx. (10)

In addition, let ϕ be a function satisfying ϕ(x) = ϕ1(x1) for some ϕ1 ∈ Hpj−1
(ker(Wj)), where

x = x1 + x2 for x1 ∈ ker(Wj) and x2 ∈ ker(Wj)
⊥. Let u ∈ Hpj−1(Rdj−1). Then, we have∫

Rdj−1

|ϕ(x)u(Wjx)|2dx =

∫
ker(Wj)

∫
ker(Wj)⊥

|ϕ1(x1)u(Wjx2)|2dx2dx1

=

∫
ker(Wj)

|ϕ1(x1)|2dx1
∫
ker(Wj)⊥

|u(Wjx2)|2dx2

= ∥ϕ1∥2L2(ker(Wj))

∫
ker(Wj)⊥

|u(Wjx2)|2dx2. (11)

Combining Eqs. (10) and (11), we obtain∫
Rdj−1

|∂βψj(x)(∂
γh ◦Wj)(x)|2dx ≤ ∥Wj∥2|γ| ∥∂βψj∥2L2(ker(Wj))

∫
ker(Wj)⊥

|(∂γh)(Wjx)|2dx

≤ ∥Wj∥2|γ| ∥∂βψj∥2L2(ker(Wj))

1

|det(Wr,j)|

∫
ker(Wj)⊥

|∂γh(x)|2dx.
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As a result, we have

∥K̃Wj
h∥2Hj−1

=
∑

|α|≤sj−1

cα,sj−1,dj−1
∥∂α(ψj · h ◦Wj)∥2L2(Rdj−1 )

=
∑

|α|≤sj−1

cα,sj−1,dj−1

∫
ker(Wj)

∫
ker(Wj)⊥

|∂βψj,1(x1)∂
α−β(h ◦Wj)(x2)|2dx2dx1

=
∑

|β|≤sj−1

∑
|γ|≤sj−1−|β|

cβ,sj−1,rjcγ,sj−1−|β|,dj−1−rj

∫
ker(Wj)

∫
ker(Wj)⊥

|∂βψj,1(x1)∂
γ(h ◦Wj)(x2)|2dx2dx1

≤
∑

|β|≤sj−1

∑
|γ|≤sj−1−|β|

cβ,sj−1,rjcγ,sj−1−|β|,dj−1−rj ∥∂
βψj,1∥2L2(ker(Wj))

∥Wj∥2|γ|

|det(Wr,j)|
∥∂γh∥2L2(ker(Wj)⊥)

≤ max{1, ∥Wj∥2sj−1}
det(Wr,j)

∑
|β|≤sj−1

cβ,sj−1,rj∥∂βψj,1∥2L2(ker(Wj))

∑
|γ|≤sj−1

cγ,sj−1,dj−1−rj∥∂γh∥2L2(ker(Wj)⊥)

≤ max{1, ∥Wj∥2sj−1}
det(Wr,j)

∥ψj,1∥2Hj−1(ker(Wj))
∥h∥2Hj−1(ker(Wj)⊥),

where β in the second line of the above formula is the multi index whose elements corresponding
to ker(Wj) equal to those of α and other elements are zero. In addition, rj = dim(ker(Wj)) and
cα,s,d = (2π)ds!/α!/(s− |α|)!. Therefore, setting h = fj , we have

∥K̃Wjfj∥Hj−1 ≤ ∥ψj,1∥Hj−1(ker(Wj))
Gj

|det(Wr,j)|1/2
max{1, ∥Wj∥sj−1}∥fj∥Hj

,

which completes the proof of the proposition. □

Proposition 10 Let x̃ = (x̃1, . . . , x̃n) ∈ (Rdl)n. Let vn(ω) =
∑n

i=1 si(ω)kp0(·, xi), ṽn(ω) =∑n
i=1 si(ω)kpl

(·, x̃i), and γn = ∥vn∥H0
/∥ṽn∥Hl

. Then, we have

R̂n(x, Fl,comb(C,D)) ≤ sup
Wj∈Wj(C,D)

(j=1,...,l)

l∏
j=1

∥∥∥∥ pj−1

pj−1 ◦W ∗
j

∥∥∥∥1/2
R(Wj),∞

Gj∥Kσj
∥

det(W ∗
j Wj)

1/4

·
(
R̂n(x̃, Fl+1:L) +

B√
n

inf
h1∈Fl+1:L

E
1
2

[
sup

h2∈Fl+1:L

∥∥∥∥h1 − ∥h2∥Hl
γn

∥ṽn∥Hl

ṽn

∥∥∥∥2
Hl

])
.

Proof To simplify the notation, let

βj =

∥∥∥∥ pj−1

pj−1 ◦W ∗
j

∥∥∥∥1/2
R(Wj),∞

Gj∥Kσj
∥

det(W ∗
j Wj)

1/4
.
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By the reproducing property of H0 and the Cauchy–Shwartz inequality, we have

R̂n(x, Fl,comb(C,D)) =
1

n
E

[
sup

f∈Fl,comb(C,D)

n∑
i=1

sif(xi)

]
=

1

n
E

[
sup

f∈Fl,comb(C,D)

⟨vn, f⟩H0

]
≤ 1

n
E

[
sup

f∈Fl,comb(C,D)

∥vn∥H0∥KW1Kb1Kσ1 · · ·KWl
KblKσl

KWl+1
Kbl+1

Kσl+1
· · ·KWL

KbLg∥H0

]

≤ 1

n
E

[
sup

f∈Fl,comb(C,D)

∥vn∥H0

l∏
j=1

∥∥∥∥ pj−1

pj−1 ◦W ∗
j

∥∥∥∥1/2
R(Wj),∞

Gj∥Kσj∥
det(W ∗

j Wj)
1/4

· ∥KWl+1
Kbl+1

Kσl+1
· · ·KWL

KbLg∥Hl

]
≤ 1

n
E

[
sup

Wj∈Wj(C,D)
(j=1,...,l)

l∏
j=1

βj sup
h2∈Fl+1:L

〈
ṽn,

∥h2∥Hl
∥vn∥H0

∥ṽn∥2Hl

ṽn

〉
Hl

]

=
1

n
sup

Wj∈Wj(C,D)
(j=1,...,l)

l∏
j=1

βjE

[
sup

h2∈Fl+1:L

(
⟨ṽn, h⟩Hl

+

〈
ṽn,

∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

〉
Hl

)]

≤ 1

n
sup

Wj∈Wj(C,D)
(j=1,...,l)

L∏
j=1

βjE

[
sup

h1∈Fl+1:L

⟨ṽn, h1⟩Hl
+ sup

h2∈Fl+1:L

〈
ṽn,

∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

〉
Hl

]

≤ sup
Wj∈Wj(C,D)

(j=1,...,l)

L∏
j=1

βj

(
R̂n(x, Fl+1:L) +

1

n
E

[
∥ṽn∥Hl

sup
h2∈Fl+1:L

∥∥∥∥∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

∥∥∥∥
Hl

])

for any h ∈ Fl+1:L. Moreover, again by the Cauchy–Schwartz inequality, we have

E

[
∥ṽn∥Hl

sup
h2∈Fl+1:L

∥∥∥∥∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

∥∥∥∥
Hl

]
≤ E

1
2 [∥vn∥2Hl

]E
1
2

[
sup

h2∈Fl+1:L

∥∥∥∥∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

∥∥∥∥2
Hl

]
≤ B

√
nE

1
2

[
sup

h2∈Fl+1:L

∥∥∥∥∥h2∥Hl
γn

∥ṽn∥Hl

ṽn − h

∥∥∥∥2
Hl

]
,

where the second inequality is derived in the same manner as the proof of Theorem 2. Since h ∈
Fl+1:L is arbitrary, we obtain the final result. □

B DETAILS OF REMARK 2

To derive a bound ∥Kσ∥, we bound
∑

|α|≤s cα,s,d∥∂α(h ◦ σ)∥2 by
∑

|α|≤s cα,s,d∥∂αh∥2. As the
proof of the boundedness of ∥Kσ∥, one strategy is using the Faà di Bruno formula.

By the Faà di Bruno formula, we have

∂α(h ◦ σ)(x) =
∑

|β|≤|α|

∂βh(σ(x))

|α|∑
i=1

∑
γ∈p(α,β)

α!

i∏
j=1

(∂ljσ(x))kj

kj !(lj !)|kj |
,

where p(α, β) = {γ = (k1, . . . , ks, l1, . . . , ls) | 0 ≤ l1 ≤ · · · ≤ ls,
∑s

j=1 kj = α,
∑s

j=1 |kj |lj =
β}. If σ is elementwise, lj and kj are chosen so that each of them has only one nonzero element,
such as (|lj |, 0, . . . , 0). By counting the number of terms in the summation and calculating the
coefficients of the terms, we can derive a bound of ∥Kσ∥. However, analytically representing the
number of terms in the summation is a challenging task. We admit that this strategy does not give
us a tight bound. There may be a more sophisticated approach to deriving a tight bound of ∥Kσ∥.
However, the main goal of this paper is to investigate how the property of the weight matrices affects
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the generalization property. Since ∥Kσ∥ does not depend on the weight matrices, if we assume the
structure of the network is given, the property of the weight matrices does not affect ∥Kσ∥. As we
stated in Section 6, investigating ∥Kσ∥ and deriving a tighter bound is future work.

C DETAILS OF REMARK 5

We first show that Gj is bounded by a constant that is independent of fj . Since Gj depends on
ker(Wj), we denote it byGj(ker(Wj)). Let W be a k-dimensional subspace of Rd and {u1, . . . , uk}
be an orthonormal basis of W . We consider the average ofGj(W) on the Grassmann manifold Gd,k.
For this purpose, we fix an orthonormal basis e1, . . . , ed on Rd and denote by ∂if the derivative of
f in the direction of ei. In addition, we denote ∂αU =

∏k
j=1(

∑d
i=1 uj,i∂i)

αj , where uj,i = ⟨uj , ei⟩.
Let s ∈ N. Then, we have

∥f∥2Hs(W) =
∑
|α|≤s

cα,s,d∥∂αUf∥2L2(W) ≤
s∑

l=1

∑
|α|=l

∑
|β|=l

cα,s,dDs,d,k∥∂βf∥2L2(W)

= Ds,d,k

s∑
l=1

∑
|α|=l

cα,s,d
∑
|β|=l

∥∂βf∥2L2(W)

= Ds,d,k

∑
|α|≤s

cα,s,d
∑
|β|≤s

∥∂βf∥2L2(W)

≤ Ds,d,k(2π)
d(d+ 1)s

∑
|β|≤s

cβ,s,d∥∂βf∥2L2(W). (12)

Here, we used the Cauchy–Schwartz inequality and derive the second inequality as follows:∣∣∣∣ k∏
j=1

( d∑
i=1

uj,i∂i

)αj

f

∣∣∣∣2 ≤
( k∏

j=1

( d∑
i=1

u2j,i

)αj
)( k∏

j=1

( d∑
i=1

D2
i

)αj

f

)

=

k∏
j=1

( d∑
i=1

D2
i

)αj

f =

k∏
j=1

∑
|β|=αj

(
αj

β

)
D2

βf ≤ Ds,d,k

∑
|β|=|α|

|∂βf |2

for some Ds,d,k > 0 that depends on s, d, and k. Here D2
i is the operator defined as D2

i f = |∂if |2

and D2
βf = |∂βi

i f |2. Assume {x ∈ Rd | ∥x∥ ≤ ϵ} is not contained in the support of f . In this case,
we have ∑

|β|≤s

cβ,s,d∥∂βf∥2L2(W) ≤ ϵk−d
∑
|β|≤s

cβ,s,d

∫
W

|∂βf(x)|2|x|d−kdx (13)

Integrating the both sides of (13) and by Theorem 2 by Rubin (2018), we have∫
Gd,k

∑
|β|≤s

cβ,s,d∥∂βf∥2L2(W)dW ≤ ϵk−d
∑
|β|≤s

cβ,s,d
σd
σk

∫
Rd

|∂βf(x)|2dx,

where σd = 2πd/2/Γ(d/2) and Γ is the Gamma function. In addition, dW is the integration with
respect to the O(d)-invariant probability measure on Gd,k and O(d) is the orthogonal group in Rd.
Combining with Eq. (12), we obtain∫

Gd,k

∥f∥2Hs(W)dW ≤ Ds,d,k(2π)
d(d+ 1)sϵk−d σd

σk
∥f∥2Hs(Rd).

As a result, we obtain∫
Gdj,dj−1

Gj(W)2dW ≤
∫
Gdj,dj−1

∥f∥2Hsj (W)

∥f∥2Hj

dW

≤ Dsj ,dj ,dj−1(dj + 1)sj (2π)dj ϵdj−1−dj
σdj

σdj−1

. (14)
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We admit that this inequality is not tight from the perspective of the dependence on sj , dj , and dj−1.
However, surprisingly, the inequality (14) shows that the factor Gj is bounded by a constant that is
independent of fj if {x ∈ Rd | ∥x∥ ≤ ϵ} is not contained in the support of fj . The assumption
about {x ∈ Rd | ∥x∥ ≤ ϵ} can be satisfied if the input is transformed so that it does not take the
value near 0.

One of the reasons for the looseness of the above bound is that we upper bounded ∥f∥Hsj−1 (W) by
∥f∥Hsj (W). If fj can be controlled by the Gaussian, then the factor Gj does not seriously affect
the bound. Indeed, let ϕc(x) = e−π2∥x∥2/c. In the case of |f̂j(ω1 + ω2)| ≥ |f̂j(ω1)|ϕc(ω2) for
ω1 ∈ R(Wj) and ω2 ∈ R(Wj)

⊥, we can evaluate Gj as follows:

∥ϕc∥2Hs(Rd) =

∫
ω∈Rd

|ϕc(ω)|2(1 + ∥ω∥2)sdω =

∫
ω∈Rd

e−2π2∥ω∥2/c(1 + ∥ω∥2)sdω

=

∫∞
0

e−2π2r2/c(1 + r2)srd−1dr · 2π
d−2∏
i=1

c̃i

= 2π

∫∞
0

e−2π2r2/c
s∑

i=0

(
s

i

)
r2i+d−1dr

d−2∏
i=1

c̃i

= 2π

s∑
i=0

(
s

i

) ∫∞
0

e−tti+(d−1)/2

(
c

2π2

)i+(d−1)/2 √
c

π
√
8t
dt

d−2∏
i=1

c̃i

∼ cs+d/2π−2s−d+12−s−d/2

∫∞
0

e−tts+d/2−1dt

d−2∏
i=1

c̃i

= cs+d/2π−2s−d+12−s−d/2Γ(s+ d/2)

d−2∏
i=1

c̃i, (15)

where a ∼ b means a/b→ 1 as s→ ∞ and d→ ∞. In addition, c̃i =
∫π
0
sini θdθ. Thus, we have

G2
j =

∥fj |R(Wj)∥2Hpj−1
(R(Wj))

∥fj∥2Hj

=

∫
R(Wj)

|f̂j(ω1)|2(1 + ∥ω1∥2)sj−1dω1∫
Rd |f̂j(ω1 + ω2)|2(1 + ∥ω1∥2 + ∥ω2∥2)sjdω

≤

∫
R(Wj)

|f̂j(ω1)|2(1 + ∥ω1∥2)sj−1dω1∫
Rd |f̂j(ω1)|2ϕc(ω2)2(1 + ∥ω1∥2 + ∥ω2∥2)sjdω

≤

∫
R(Wj)

|f̂j(ω1)|2(1 + ∥ω1∥2)sj−1dω1∫
Rd |f̂j(ω1)|2ϕc(ω2)2(1 + ∥ω1∥2)sj−1(1 + ∥ω2∥2)s̃jdω

=
1∫

R(Wj)⊥
ϕc(ω2)2(1 + ∥ω2∥2)s̃jdω

∼
(
cs̃j+d̃j/2π−2s̃j−d̃j+12−s̃j−d̃j/2Γ(s̃j + d̃j/2)

d̃j−2∏
i=1

c̃i

)−1

,

where s̃j = sj − sj−1 and d̃j = dj − dj−1. Note that since sj ≥ sj−1 and dj ≥ dj−1, Gj

becomes small as c becomes large and sj and dj becomes large. The assumption |f̂j(ω1 + ω2)| ≥
|f̂j(ω1)|ϕc(ω2) means that f̂j decays slower or equal to the speed of the Gaussian in the direction of
ω2. Even if c is chosen small to satisfy the condition, the factor Γ(s̃j + d̃j/2) becomes sufficiently
large if sj is sufficiently large. As a result, the upper bound becomes sufficiently small if sj is
sufficiently large.

Moreover, the factorGj can alleviate the dependency of ∥Kσj
∥ on dj and sj . Even if the dependence

of ∥Kσj
∥ on dj and sj is exponential, since the exponents appeared in the above evaluation are

−(dj − dj−1) and −(sj − sj−1), we can expect that the dependency on dj and sj is reduced to the
dependency on dj−1 and sj−1.
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D DETAILS OF REMARK 6

As an example of ψ, we can use a bump function ψ(x) = 1− g((∥x∥2 − a2)/(b2 − a2)) on Rd for
0 < a < b, where g(x) = f(x)/(f(x)−f(1−x)), f(x) = e−1/x for x > 0, and f(x) = 0 for x ≤ 0.
In this case, the support of ψ is {x ∈ Rd | ∥x∥ ≤ b} and ψ(x) = 1 for x ∈ {x ∈ Rd | ∥x∥ ≤ a}.
If the output of each layer is bounded on {x ∈ Rd | ∥x∥ ≤ a}, then we can obtain a modified
network that is exactly the same on {x ∈ Rd | ∥x∥ ≤ a} with this bump function. If a and b are
large, then the support of ψ becomes large, which makes the L2-norm of ψ large, and the Sobolev
norm of ψ also becomes large. If a − b is small, then |ψ(x) − ψ(y)|/∥x − y∥ for ∥x∥2 = a and
y = (b/a)x becomes large. Thus, the L2-norms of the derivatives of ψ are expected to be large, and
the Sobolev norm of ψ also becomes large if a− b is small.

E DETAILS OF REMARK 7

The factor ∥g̃∥H̃L
grows as Ω becomes large, where Ω is the region such that f̃(x) = f(x) on x ∈ Ω

for the network f and the modified network f̃ . Indeed, if pL(ω) = 1/(1 + ∥ω∥2)sL for sL ∈ N,
then we have

∥g̃∥2
H̃L

=
∑

|α|≤sL

cα,sL,δL−1+dL
∥∂α(ψ · g)∥2L2(RδL )

=
∑

|α|≤sL

cα,sL,δL−1+dL
∥∂βψ∂α−βg∥2

L2(RδL−1+dL )

=
∑

|α|≤sL

cα,sL,δL−1+dL
∥∂βψ∥2

L2(RδL−1 )
∥∂α−βg∥2L2(RdL ),

where β is the multi index whose elements corresponding to δL−1 equals to those of α and the
other elements are zero. The factor ∥ψ∥2

L2(RδL−1 )
becomes large as the volume of Ω gets large.

Thus, under the condition that ∥∂αψ∥L2(RδL−1 ) does not change, ∥g̃∥H̃L
becomes large as Ω gets

large. Indeed, assume δL = 1, ψ(x) = 1 for x ∈ Ω, and Ω is an interval (e.g., ψ is the bump
function defined in Appendix D). Then we can create a new function ψ̃ that satisfies ∥ψ̃(i)∥L2(R) =

∥ψ(i)∥L2(R) for any i = 1, 2, . . ., from ψ as follows. Here, ψ(i) is the ith derivative of ψ. For
simplicity, we consider the case where Ω = [−a, a] for some a > 0. For c > 0, we set ψ̃(x) = 1

for x ∈ [0, c], ψ̃(x) = ψ(x − c) for x ∈ (c,∞), ψ̃(x) = 1 for x ∈ [−c, 0], ψ̃(x) = ψ(x + c) for
x ∈ (−∞, 0).

F DETAILS OF REMARK 9

In Proposition 9, by combining with the factor Gj , the norm of ψj can be canceled as follows. Let
pj(ω) = 1/(1 + ∥ω∥2)sj and sj = 2sj−1. We have

∥ψj∥2Hj−1(ker(Wj))
∥fj∥2Hj−1(ker(Wj)⊥)

=

∫
ker(Wj)

|ψ̂j(ω1)|2(1 + ∥ω1∥2)sj−1dω1

∫
ker(Wj)⊥

|f̂j(ω2)|2(1 + ∥ω2∥2)sj−1dω2

≤
∫
ker(Wj)

∫
ker(Wj)⊥

|ψ̂j(ω1)f̂j(ω2)|2(1 + ∥ω1 + ω2∥2)sjdω1dω2

= ∥ψj,1fj |ker(Wj)⊥∥
2
Hj(Rdj−1 )

.

Thus, we obtain

∥ψj∥Hj−1(ker(Wj))Gj =
∥ψj∥Hj−1(ker(Wj))∥fj∥Hj−1(ker(Wj)⊥)

∥fj∥Hj

≤
∥ψj,1fj |ker(Wj)⊥∥Hj(Rdj−1 )

∥fj∥Hj

.
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If ψj,1fj |ker(Wj)⊥ = fj , e.g. ψj,1 and fj are the Gaussian, and dj−1 = dj , then the factor
∥ψj∥Hj−1(ker(Wj))Gj is bounded by 1.

G DETAILS OF REMARK 10

We can combine our Koopman-based approach with the existing “peeling” approach. For 1 ≤ l ≤ L,
let FReLU

l (C1) be the set of l-layer ReLU networks where the Frobenius norms of W1, . . . ,Wl are
bounded by C1, considered by Neyshabur et al. (2015). Let F̃1:l be the set of functions defined in
the same manner as Eq. (6), except for replacing σl with g ∈ Hl. In addition, let F̃1:l,inj(C2, D) =

{f ∈ F̃1:l | Wj ∈ Wj(C2, D)}. We combine FReLU
L−l (C1) and F̃1:l,inj(C2, D), and we define

FReLU,L
1:l,inj (C1, C2, D) = {h ◦ f | h ∈ FReLU

L−l (C1), f ∈ F̃1:l,inj(C2, D)}. Then, applying Theorem
1 by Neyshabur et al. (2015), we can bound the complexity ofL-layer networks using that of (L−1)-
layer networks and the Frobenius norm of WL. For example, by Eq. (8) by Golowich et al. (2018)),
we have

R̂n(x, F
ReLU,L
1:l,inj (C1, C2, D)) ≤ ∥WL∥2,2R̂n

(
x, σ

(
FReLU,L-1
1:l,inj (C1, C2, D)

))
≤ 2∥WL∥2,2R̂n(x, F

ReLU,L-1
1:l,inj (C1, C2, D)),

where R̂n(x,F) for a vector-valued function class F is defined as E[supf∈F 1/n∥
∑n

i=1 sif(xi)∥]
and σ is the ReLU. As a result, we obtain

R̂n(x, F
ReLU,L
1:l,inj (C1, C2, D)) ≤ 2∥WL∥2,2R̂n(x, F

ReLU,L-1
1:l,inj (C1, C2, D))

≤ 2L−l
L∏

j=l+1

∥Wj∥2,2R̂n(x, ˜2, 21:l,inj(C2, D))

≤ 2L−l∥g∥Hl

( L∏
j=l+1

∥Wj∥2,2
)( l∏

j=1

Gj∥Kσj
∥∥Wj∥sj

det(W ∗
j Wj)1/4

)
.

We can also apply other peeling approaches in the same manner as the above case.

H EXAMPLES OF CONCRETE KOOPMAN-BASED BOUNDS

We show examples of our Koopman-based bounds.

Example 3 Let g(x) = e−c∥x∥2

. Let pj(ω) = 1/(1 + ∥ω∥2)sj for sj > dj/2. We consider a
shallow network f(x) = g(Wx + b). Assume d1 ≥ d0 and W is full-rank. The final nonlinear
transformation g in f maps the high dimensional vector on Rd1 to a scalar value. In this case,
f1(x) = g(x+ b) is also the Gaussian. We have

R̂n(x, Finj(C,D)) ≤ B√
n
G1∥g∥H1

max{1, ∥W∥}s0
det(W ∗W )1/4

.

Since ∥g∥H1
= ∥f1∥H1

, by Eq. (15), we have

G2
1∥g∥2H1

=
∥f1|R(W )∥Hp0(R(W ))

∥g∥H1

∥f1∥H1

∼ cs0−d0/2π−2s0+12−s0−d0/2Γ(s0 + d0/2)

d0−2∏
i=1

c̃i.

As a result, we have

R̂n(x, Finj(C,D))

≲
B√
n
cs0/2−d0/4π−s0+1/22−s0/2−d0/4

( d0−2∏
i=1

c̃i

)1/2

Γ(s0 + d0/2)
1/2max{1, ∥W∥}s0

det(W ∗W )1/4
.

Note that dim(R(W )) = d0 is the dimension of the input and s0 is chosen as s0 > d0/2. They are
independent of the structure of the network.

22



Published as a conference paper at ICLR 2024

Example 4 Let σ(x) = (e−c1∥x∥2

, . . . , e−cd1∥x∥
2

). Let pj(ω) = 1/(1+∥ω∥2)sj for sj > dj/2. We
consider a shallow network f(x) = W2σ(W1x+ b). Assume d1 ≥ d0, d2 = 1 and W is full-rank.
Using the “peeling” approach and Example 3, we obtain

R̂n(x, F
2
1:1,inj(C1, C2, D)) ≤ ∥W2∥2,2R̂n(x, F

1
inj(C2, D))

≲ ∥W2∥2,2
d1∑
i=1

B√
n
c
s0/2−d0/4
i π−s0+1/22−s0/2−d0/4

( d0−2∏
i=1

c̃i

)1/2

Γ(s0 + d0/2)
1/2max{1, ∥W1∥}s0

det(W ∗
1W1)1/4

.

Here, we used the inequality

R̂n(x,F) =
1

n
E

[
sup
f∈F

∥∥∥∥ n∑
i=1

sif(xi)

∥∥∥∥] =
1

n
E

[
sup
f∈F

√√√√ d∑
j=1

( n∑
i=1

si(f(xi))j

)2]

≤ 1

n
E

[
sup
f∈F

d∑
j=1

√√√√( n∑
i=1

si(f(xi))j

)2]
=

1

n
E

[
sup
f∈F

d∑
j=1

∣∣∣∣ n∑
i=1

si(f(xi))j

∣∣∣∣]

≤ 1

n

d∑
j=1

E

[
sup
f∈F

∣∣∣∣ n∑
i=1

si(f(xi))j

∣∣∣∣],
where (f(xi))j is the jth element in the vector f(xi). In this case, the bound depends on d1 linearly.

I INJECTIVITY OF W̃j

The operator W̃j defined in Subsection 4.3.1 is injective. Indeed, assume (W1x, P1x) = (W1y, P1y)
for x, y ∈ Rd0 . Then, we have x− y ∈ ker(W1). On the other hand, we have P1(x− y) = 0. Since
x− y ∈ ker(W1), we have x− y = P1(x− y) = 0. The case of j ≥ 2 is the same.

J EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS

We explain details of experiments in Section 5 and show additional experimental results. All the
experiments were executed with Python 3.9 and TensorFlow 2.6.

J.1 VALIDITY OF THE BOUND (SYNTHETIC DATA)

We constructed a network fθ(x) = g(W2σ(W1x + b1) + b2), where W1 ∈ R3×3, W2 ∈ R6×3,
b1 ∈ R3, b2 ∈ R6, θ = (W1, b1,W2, b2), σ(x) = ((1 + α)x + (1 − α)x erf(µ(1 − α)x))/2, and
g(x) = e−∥x∥2

. Here, erf is the Gaussian error function, and σ is a smooth version of Leaky ReLU
proposed by Biswas et al. (2022). We set α = µ = 0.5. For training the network, we used n = 1000
samples xi (i = 1, . . . , 1000) drawn independently from the normal distribution with mean 0 and
standard deviation 1. The weight matrices are initialized by Kaiming Initialization (He et al., 2015),
and we used the SGD for the optimizer. In addition, we set the error function as lθ(x, y) =

|fθ(x) − y|2, and added the regularization term 0.01(
∏2

j=1 det(W
∗
j Wj)

−1/2 + 10
∏2

j=1 ∥Wj∥).
We added this regularization term since, according to our bound, both the determinant and the
operator norm of Wj should be small for achieving a small generalization error. The generaliza-
tion error here means |E[lθ(x, t(x))] − 1/n

∑n
i=1 lθ(xi, t(xi))|, which is compared to our bound

O(
∏L

j=1 ∥Wj∥sj/(det(W ∗
j Wj)

1/4)) in Figure 1 (a). Here, we set sj = (dj + 0.1)/2.

J.2 VALIDITY OF THE BOUND (MNIST)

We constructed a network fθ(x) = g(W4σ(W3σ(W2σ(W1x + b1) + b2) + b3) + b4) with dense
layers, whereW1 ∈ R1024×784,W2 ∈ R2048×1024,W3 ∈ R2048×2048,W4 ∈ R10×2048, b1 ∈ R1024,
b2 ∈ R2048, b3 ∈ R2048, b4 ∈ R10, θ = (W1, b1,W2, b2,W3, b3,W4, b4), σ is the same function
as Section J.1, and g is the softmax. See Remark 1 for the validity of our bound for the case
where g is the softmax. For training the network, we used only n = 1000 samples to create a
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Figure 2: Behavior of the value | cos(θ)|. Here, θ is the maximum value of the angles between the
output of the second layer and the directions of singular vectors of W3 associated with the singular
values that are larger than 0.1.

Figure 3: The ratio rd,j = η1,j/ηd,j of singular values (condition number) of weight matrices for
layers j = 1, 2, 4. (Right) Without regularization (Left) With the regularization based on our bound.

situation where the model is hard to generalize. We consider the regularization term λ1∥Wj∥ +
λ2/ det(I +W ∗

j Wj), where λ1 = λ2 = 0.01 to make both the norm and the determinant of Wj

small (thus, makes our bound small). Based on the observation in the last part of Subsection 4.4, we
set the regularization term for only j = 1, 2. The weight matrices are initialized by the orthogonal
initialization for j = 1, 2 and by the samples from a truncated normal distribution for j = 3, 4, and
we used Adam (Kingma & Ba, 2015) for the optimizer. In addition, we set the error function as the
categorical cross-entropy loss.

J.2.1 TRANSFORMATION OF SIGNALS BY LOWER LAYERS

We also investigated the transformation by lower layers, as we stated in the last part of Subsec-
tion 4.4. We computed | cos(θ)|, where θ is the maximum value of the angles between the output of
the second layer and the directions of singular vectors of W3 associated with the singular values that
are larger than 0.1. The results are illustrated in Figure 2. We can see that with the regularization
based on our bound, as the test accuracy grows, the value | cos(θ)| also grows. This result means
that the signals turn to the directions of the singular vectors of the subsequent weight matrix associ-
ated with large singular values. That makes the extraction of information from the signals in higher
layers easier. On the other hand, without the regularization, neither the test accuracy nor the value
| cos(θ)| do not become large after a sufficiently long learning process (see also Figure 1 (b)). The
results in Figures 1 (b) and 2 are obtained by three independent runs.

J.3 SINGULAR VALUES OF THE WEIGHT MATRICES

We constructed an AlexNet Krizhevsky et al. (2012) where the ReLU activation function is replaced
by the smooth version of Leaky ReLU (σ in Section J.1) to meet our setting. For training the
network, we used n = 50000 samples and used the Adam optimizer. We set the error function as the
categorical cross-entropy loss. We show the test accuracy through the learning process in Figure 4.
In addition to the AlexNet, we also computed the ratio rd,j of the largest and the smallest singular
values (condition number) of the weight matrices for the network we used in Section J.2. Since the
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Figure 4: Test accuracy of AlexNet traind by CIFAR-10 with and without regularization.

Figure 5: Test and train loss of AlexNet trained by CIFAR-10 with and without regularization.
(Right) Test loss (Left) Train loss.

behavior of the singular values of W3 was unstable and did not have clear patterns, we only show
the result for j = 1, 2, 4 in Figure 3. We scaled the values for j = 4 for readability. In the case of the
AlexNet, the behavior of singular values of each weight matrix was different depending on the layer.
However, in the case of the network in Section J.2, without the regularization, the condition number
rd,j stagnates for j = 1, 2, 4 through the learning process, and the test accuracy also stagnates. On
the other hand, with the regularization based on our bound, rd,j becomes small for j = 1, 2 as the
learning process proceeds by virtue of the regularization. We can also see that rd,j grows for j = 4
as the learning process proceeds, which makes the angle θ in Figure 2 large. As discussed in the last
part of Subsection 4.4, we can conclude that the regularization transforms the signals in lower layers
(j = 1, 2) and makes it easier for them to be extracted in higher layers (j = 4), and the test accuracy
becomes higher than the case without the regularization. The results in Figures 1 (c), 3, and 4 are
obtained by three independent runs.

J.4 VALIDITY OF THE BOUND (CIFAR-10)

We used the same network and the same dataset as Appendix J.3 and observed the generalization
property with and without a regularization based on our result. We consider the regularization term
λ1∥Wj∥+ λ2/∥0.01I +W ∗

j Wj∥, where λ1 = 0.1 and λ2 = 0.001 to make both the largest and the
smallest singular values ofWj small (thus, makes our bound small). Since the AlexNet is composed
of convolutional layers, we represented the convolutional layers as matrices. For the convolution∑n

i=1

∑m
j=1 fk−i,l−jxk,j with a convolutional filter F = [fi,j ], we can construct a tensor W̃i,j,k,l =

fk−i,l−j . If i or j is out of the bound of the index of the filter, then we set fi,j = 0. We can combine
the indices (i, j) and (k, l) in W̃j and obtain a matrix Wj that represents the convolution. Note that
since the dimension of Wj is large, setting a regularization term with the determinant of Wj can
cause numerical overflows. Thus, we set ∥0.01I +W ∗

j Wj∥ instead of its determinant in the same
manner as Appendix J.2. Based on the observation in the last part of Subsection 4.4, we set the
regularization term for only j = 1, 2. Figure 4 shows the test accuracy obtained with and without
the regularization. The behavior of the accuracy obtained with and without the regularization are
similar. Figure 5 shows the test and train loss. We can see that without the regularization, although
the train loss becomes small, the test loss becomes large as the iteration proceeds. On the other hand,

25



Published as a conference paper at ICLR 2024

with the regularization, the train loss becomes small, and the test loss does not become so large as
the case without the regularization.

K NORM OF THE SOBOLEV SPACE

Let p(ω) = (1 + ∥ω∥2)s with s ∈ N. We can represent the Sobolev norm ∥f∥Hp(Rd) using the
derivatives of f if s ∈ N. Indeed, we have

∥f∥2Hp(Rd) =

∫
Rd

|f̂(ω)|2(1 + ∥ω∥2)sdω =

∫
Rd

|f̂(ω)|2
s∑

i=0

(
s

i

)
∥ω∥2idω

=

∫
Rd

|f̂(ω)|2
s∑

i=0

(
s

i

)( d∑
j=1

ω2
j

)i

dω

=

∫
Rd

|f̂(ω)|2
s∑

i=0

(
s

i

) ∑
|α|=i

(
i

α

)
(ωα)2dω =

∑
|α|≤s

s!

(s− |α|)!α!

∫
Rd

|f̂(ω)ωα|2dω

=
∑
|α|≤s

s!

(s− |α|)!α!
(2π)d∥∂αf∥2L2(Rd).
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