
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION
MODEL FOR CATEGORICAL GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard discrete diffusion models treat all unobserved states identically by map-
ping them to an absorbing [MASK] token. This creates an “information void”
where semantic information that could be inferred from unmasked tokens is lost
between denoising steps. We introduce Continuously Augmented Discrete Diffu-
sion (CADD), a framework that augments the discrete state space with a paired
diffusion in a continuous latent space. This yields graded, gradually corrupted
states in which masked tokens are represented by noisy yet informative latent
vectors rather than collapsed “information voids”. At each reverse step, CADD
may leverage the continuous latent as a semantic hint to guide discrete denoising.
The design is clean and compatible with existing discrete diffusion training. At
sampling time, the strength and choice of estimator for the continuous latent vector
enables a controlled trade-off between mode-coverage (generating diverse outputs)
and mode-seeking (generating contextually precise outputs) behaviors. Empirically,
we demonstrate CADD improves generative quality over mask-based diffusion
across text generation, image synthesis, and code modeling, with consistent gains
on both qualitative and quantitative metrics against strong discrete baselines.

Discrete [MASK] Models

Masked
Diffusion
Models

Discrete Diffusion ModelsDiscrete [MASK] [MASK][MASK] [MASK] [MASK]

Discrete Diffusion Models

2 = 02 = 1 ⇄ ⇄ ⇄

@�?¥ .!�€�-+ �™ �c¥e Di�€�on �™dels Disc¥e DiFusion ℳ™dels

Continuous
Diffusion
Models

Discrete the Bikes Discrete diffuse Models

CADD
(Ours)

…. the a

2 = 02 = 1 ⇄ ⇄ ⇄

2 = 02 = 1 ⇄ ⇄ ⇄

Di
sc

re
te

mov
ing

tra
jec

tor
y

Continuous Space

CADD Space

Discrete
[MASK]
Models

Language Diffusion

Discrete ModelsDiscrete Discrete diffuse ModelsDiscrete Diffusion Models

Figure 1: Comparison of diffusion models in different modeling spaces. Masked diffusion models use
[MASK] as noise and decode through a single mask-to-token path, while continuous diffusion models
explore the Gaussian space but often produce unreadable tokens due to the vast search space. CADD
combines the stability of masked diffusion with the flexibility of continuous diffusion, enabling better
token decoding for masked positions.

1 INTRODUCTION

Diffusion models have significantly advanced generative modeling tasks (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Karras et al., 2022), particularly in
image synthesis (Saharia et al., 2022; Esser et al., 2024; Polyak et al., 2024; Zheng et al., 2024a;
Brooks et al., 2024). Recently, with the rapid progress on discrete diffusion models (Austin et al.,
2021a; Hoogeboom et al., 2021; Lou et al., 2024), diffusion models have become a strong tool on the
discrete categorical data domain, such as text generative modeling and code generation (Gat et al.,
2024; Gong et al., 2023; 2025b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Early work on Continuous Diffusion Models (CDMs) for categorical data maps tokens into a
continuous space, applies Gaussian diffusion to the representations, and then rounds back to discrete
symbols (Li et al., 2022; Dieleman et al., 2022; Han et al., 2022; Zhang et al., 2023; Gulrajani &
Hashimoto, 2023). This route preserves smooth semantic signals and enables the use of established
score-based methods. In parallel, Masked Diffusion Models (MDMs) have recently shown strong
results for categorical data (Shi et al., 2024; Sahoo et al., 2024; Nie et al., 2025): instead of adding
noise in an embedding space, MDMs progressively mask tokens over time and learn to unmask them,
yielding clear training signals via token-level cross-entropy.

Despite their respective successes, both approaches have limitations, which illustrated in Figure 1. (i)
MDMs suffer from information loss due to their use of absorbing [MASK] state (Wang et al., 2025).
This design collapses all unobserved possibilities into one symbol, erasing any information about
how close a corrupted position is to the original token, creating an “information void”. This reduces
the information available for the model to resolve ambiguity and maintain global semantic coherence.
As an example shown in the right of the figure, if a masked token could plausibly be “Language” or
“Diffusion”, the [MASK] representation offers no semantic clue to favor one over the other, forcing
the model to make a hard choice without graded guidance. (ii) While CDMs can represent semantic
proximity, they face a different challenge, known as over-smoothing. Because the denoising process
occurs entirely in a continuous embedding space and discretization to tokens only happens in the
end (Gao et al., 2022), their continuous denoising objective can over-smooth token identities, which
makes it difficult for the model to make precise predictions without localized context.

To address these challenges, we propose Continuously Augmented Discrete Diffusion (CADD),
which integrates the strengths of CDMs into MDMs. CADD retains the discrete masking trajectory
and augments it with a paired conditional Gaussian diffusion in a continuous semantic embedding
space. Our forward process jointly evolves the token sequence and its latent, so positions that are
masked in the discrete path are accompanied by noisy yet informative latent vectors rather than
information voids. In the reverse process, the model uses the continuous latent as a soft semantic
hint to guide token denoising at each step, while the discrete context constrains the latent dynamics
locally. Returning to Figure 1, the continuous manifold offers a graded path between candidates
(“Language” and “Diffusion”, in this case), and the discrete neighborhood restricts the search space,
allowing movement within the triangular region between hypotheses and enabling smooth transitions
driven by the hints. In addressing the limits of both pure MDMs and CDMs, our contributions are:

1. Better token prediction with soft hints. For masked positions, the continuous latent preserves
graded proximity to the ground-truth token embedding, which reduces ambiguity and makes
discrete prediction easier.

2. Diversity without off-manifold drift. At inference, one can resample the continuous latent
(e.g., multiple latent draws per discrete state) to explore alternative yet valid choices for a
token or span. Because the discrete head stays grounded in the vocabulary, diversity comes
from semantic variation rather than uncontrolled noise.

3. Training and sampling remain simple. CADD keeps standard cross-entropy for tokens and a
standard diffusion loss for the continuous head. The sampler can alternate or jointly update
the discrete and continuous states.

4. Efficient fine-tuning. CADD requires no special architecture and can reuse the same backbone
as any MDM, enabling efficient fine-tuning of existing MDM to gain the above benefits.

2 RELATED WORK

Discrete Diffusion Models Discrete diffusion models (Hoogeboom et al., 2021; Zheng et al., 2024b;
Austin et al., 2021a) operate by defining a Markov chain over the discrete token space, gradually
diffusing the data with either uniform or absorbing transitions. Later, the model was unified and
simplified to continuous-time masked diffusion models (Campbell et al., 2022; Lou et al., 2024; Shi
et al., 2024; Sahoo et al., 2024; Zhang et al., 2025b). Building on this, several recent works further
scaled diffusion LMs to 7B parameters (Gong et al., 2025a; Ye et al., 2025; Nie et al., 2024), achieving
performance on par with AR models. Parallel efforts explored unified multimodal variants that model
text and images both in discrete token (Yang et al., 2025; Li et al., 2025). However, because masked
diffusion models do not allow unmasked tokens to change, errors can accumulate during generation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

because of suboptimal unmasking in the earlier steps. Several enhanced (re-)masking techniques have
been proposed, using bits and simplex representation to enrich the binary choice of masking (Chao
et al., 2025; Song et al., 2025a), remasking during the reverse process (Gat et al., 2024; Zhao et al.,
2024; Wang et al., 2025), enabling edit operations (Havasi et al., 2025; Song et al., 2025b).

Continuous Relaxations for Discrete Data Early continuous approaches either learn denoising
in a latent embedding without explicit statistical structure (Li et al., 2022; Dieleman et al., 2022;
Chen et al., 2023) or fully relax tokens into unconstrained Euclidean space as simplex (Han et al.,
2022; Karimi Mahabadi et al., 2024; Tae et al., 2025; Jo & Hwang, 2024; 2025). However, such
unconstrained relaxations often fail to preserve the inherent discreteness and categorical semantics
of language (Gulrajani & Hashimoto, 2023). More recent methods impose structure in the logit
space (Hoogeboom et al., 2021; Graves et al., 2023) or directly on the probability simplex via
Dirichlet priors (Avdeyev et al., 2023; Stärk et al., 2024), enforcing stronger statistical constraints on
the noising process. Flow-matching techniques further treat the simplex as a statistical manifold (Liu
et al., 2023; Cheng et al., 2024; Davis et al., 2024), yet these approaches still lag behind discrete
diffusion models in generation fidelity. Recently, Zhang et al. (2025a) leveraging density models with
normalizing flow (Zhai et al., 2025; Gu et al., 2025) for flexible language modeling, and Sahoo et al.
(2025) connect discrete diffusion language models and the underlying Gaussian diffusion.

Bridging Through the Lens of Mode Balancing Our work is also motivated by balancing mode
seeking and mode covering. Related efforts pursue this balance via guidance methods that tune the
diversity–precision trade-off (Dhariwal & Nichol, 2021; Ho & Salimans, 2022); score-distillation
approaches that sharpen samples while retaining diffusion training for coverage (Poole et al., 2022;
Song et al., 2023; Luo et al., 2023; Yin et al., 2024; Zhou et al., 2024; Zhang et al., 2025b); and
techniques that improve GAN mode coverage using diffusion or augmentation (Zheng & Zhou,
2021; Zheng et al., 2023a; Wang et al., 2023; Karras et al., 2020; Zhao et al., 2020). Similar effects
have been observed when distilling in a paired continuous space (Sahoo et al., 2025). From this
perspective, the discrete path in CADD is naturally mode-seeking, while the continuous channel
spreads probability mass to cover plausible alternatives for the next token.

3 PRELIMINARY

Let x0 = (x1
0, . . . ,x

n
0) represent a sequence of discrete tokens in a vocabulary set V = {1, 2, ..., V }∪

{m} that containing V tokens plus a mask token m ([MASK]), i.e., for any positions i, xi
0 ∈

{0, 1}V+1 is a one-hot vector. Let wθ : V → Rd be a learnable token embedding matrix and the
embedding latent representations are deterministically transformed as z0 := wθ(x0), and z0 ∈ Rn×d.

Discrete Diffusion Models The forward diffusion process is performed through an element-wise
conditional sampler q(xt|x0) =

∏n
i=1 q(x

i
t|xi

0), defined as (δ(·) denotes the dirac function):

q(xi
t|xi

0) ≜ αtδ(x
i
t − xi

0) + (1− αt)δ(x
i
t −m), (1)

where αt ∈ [0, 1] is a strictly decreasing scheduling function following αt =
∏t

s=1(1 − βs). The
reverse process aims to learn p(xs|xt) for 0 ≤ s < t ≤ 1. This is typically achieved by training
a model pθ(x0|xt) to predict the original data from a corrupted state, optimized by minimizing a
variational bound on the negative log-likelihood, denoting α′

t the derivative of αt w.r.t. t:

Lvb(x0; θ) ≜ Et,xt∼q(·|x0)

[
− α′

t

1− αt
log pθ(x0|xt)

]
. (2)

Continuous Diffusion Models Continuous diffusion models corrupt real-valued data z0 ∈ Rn×d

by adding Gaussian noise scheduled by γ̄t. The forward process q(zt|z0) is a Gaussian distribution
with a closed form:

q(zt|z0) = N (zt;
√
γ̄tz0, (1− γ̄t)I) (3)

where γ̄t is a noise schedule analogous to αt, with γ̄t =
∏t

s=1 γs holding. The reverse process
pθ(zt−1|zt) is trained by fitting a network fθ(·) with a MSE objective reweighted by signal-to-noise
ratio (SNR) function λ(γ̄t, t):

Lvb(z0; θ) ≜ Et,xt∼q(·|z0)

[
λ(γ̄t, t)∥fθ(zt; t)− z0∥2

]
. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Sampling

! ∼ #(0, '))!

!! = #$! !!+ 1 − #$! '
Fusion

*" Discrete [MASK] Models *!
← Embedding $! →

Discrete Diffusion Models

+&(,)

Discrete Path Continuous Path

Continuously
Augmented
Space

)̃"

.&(*" ,)̃")CADD
backbone

CE Loss
Training

*" Discrete [MASK] Models Discrete Diffusion Models

)̂!,& ! ()*
+ ∼ #(0, ')

{!!}"#$% ∼ +(-.!(!̂&,(, !!)$), 23!4)
Fusion

CADD
backbone

{.&(*" ,)̃")}()*+

Continuously
Augmented

Space

diffusion

image text

(Sample)

Figure 2: Illustrative depiction of CADD model, combining both the discrete and continuous feature
of the data. In training, the clean token at the masked position will be created by embedding matrix
and used to form the noisy embedding according to the continuous forward. In sampling, the model is
able to predict a diverse distribution of possible tokens by sampling multiple zt+1. Then the predicted
tokens will be recycled into the embedding matrix to form ẑ0,θ for the next iteration.

4 CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION (CADD)

Here we introduce Continuously Augmented Discrete Diffusion (CADD). The high-level intuition is
to mitigate the sudden information loss that occurs when tokens are replaced by an absorbing state in
discrete diffusion. Inspired by the smooth signal degradation in Gaussian diffusion, CADD augments
the discrete state space with a continuous latent variable, zt. This variable is paired with discrete
tokens xt and is designed to retain semantics of a token’s original signal even when tokens in xt are
masked. Guided by a set of latent vectors {z(k)

t }Kk=1, the model predicts next tokens by:

pθ(xt−1 | xt) = Ezt [pθ(xt−1 | xt, zt)] ≈
K∑

k=1

pθ(xt−1 | xt, z
(k)
t). (5)

Conditioning continuous view of the underlying content at step t and traverse on the zt space, the
expectation averages over plausible continuous states so the predictor could realize the distribution of
the possible tokens more accurately. The full model design is illustrated in Figure 2 and we present
the detailed designs in the following sections. Noted that although we use continuous-time notation
s and t for diffusion steps, to improve readability, we also denote specific consecutive steps in the
diffusion process by t and t − 1, with total T steps. Below we present the construction of CADD
with main derivations. For more detailed ELBO derivations and proofs, please refer to Appendix A.

4.1 FORWARD

To let zt retain semantic hints of tokens in xt when they are masked, we define the joint transition:

q(xt, zt | xt−1, zt−1,x0) := q(xt | xt−1)︸ ︷︷ ︸
discrete part

· q(zt | zt−1,xt−1,xt,x0)︸ ︷︷ ︸
continuous part

, (6)

Given a fixed discrete schedule {βt}Tt=1 ∈ [0, 1)T and continuous diffusion schedule {γt}Tt=1, the
forward transition of discrete and continuous part can be written as following:

q(xt | xt−1) =

n∏
i=1

Categorical
(
xi
t; Q

⊤
t x

i
t−1

)
, Qt = (1− βt)I + βt 1m

⊤. (7)

q(zt | zt−1,xt−1,xt,x0) =

n∏
i=1


δ(zi

t − zi
t−1), xi

t ̸= m,

N
(
zi
t;
√
γ̄t z

i
t−1, (1− γ̄t)Id

)
, xi

t = m,xi
t−1 ̸= m,

N
(
zi
t;
√
γt z

i
t−1, (1− γt)Id

)
, xi

t = m,xi
t−1 = m.

(8)

The discrete transition is the same as normal discrete diffusion like Austin et al. (2021a) and acts
as a trigger for the continuous embedding’s evolution. The continuous trajectory for an embedding
remains dormant as long as its token is unmasked, holding its value constant at its original state
(δ(zi

t − zi
t−1) = δ(zi

t − zi
0) if xi

t is never masked as the information is not changed). The moment a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

token is masked, it triggers the continuous diffusion process for its embedding. The embedding then
begins a smooth degradation path determined by the Gaussian diffusion (Ho et al., 2020). If a token
stays masked, its embedding simply continues along this path, becoming progressively noisier.

Now we extend the case to the marginals at timestep t with the following proposition.
Proposition 1 (Timestep-t joint marginal factorization). The marginal at timestep t can be factorized:

q(xt, zt | x0) = q(xt | x0) · q(zt | xt,x0) (9)

Given αt :=
∏t

s=1(1− βs) and Qt :=
∏t

s=1 Qs = αtI + (1− αt)1m
⊤ and let γ̄t :=

∏t
s=1 γs,

with zi
0 = wθ(x

i
0), the two terms factorized above represent the discrete and continuous part:

q(xt | x0) =

n∏
i=1

q(xi
t | xi

0), q(xi
t | xi

0) = Categorical(xi
t; Q

⊤
t x

i
0). (10)

q(zt | xt,x0) =

n∏
i=1

q(zi
t | xi

t,x
i
0) =

n∏
i=1

{
δ(zi

t − zi
0), xi

t = xi
0,

N
(
zi
t;
√
γ̄t z

i
0, (1− γ̄t)Id

)
, xi

t = m,
(11)

A key property of the marginal distribution q(xt, zt | x0) is that it conveniently factorizes into
discrete and continuous components: q(xt | x0) and q(zt | xt,x0). This factorization is highly
advantageous, as the distribution for each component is tractable and can be computed in closed form
according to the predefined diffusion schedule.

4.2 REVERSE

Following Kingma et al. (2021); Xiao et al. (2022); Zhou et al. (2023), we choose the conditional
distribution parameterized with neural network fθ(·) to define:

pθ(xt−1, zt−1 | xt, zt) := q(xt−1, zt−1 | xt, zt,x0 = x̂0), (12)

pθ(x̂0 | xt, zt) = Categorical
(
logits = fθ(xt, zt)

)
if xt = m else δ(x̂0 − xt). (13)

The objective is to close the gap between the defined parametric distribution and the true posterior.
Below we presenet the close form of the posterior. For notation simplicity, below we discuss on
per position formulation and omit the notation i, since all distributions factorize across positions
i ∈ {1, . . . , n}.
Proposition 2 (Factorization of the true posterior). By the forward construction, the posterior can be
factorized in the following form

q(xt−1, zt−1 | xt, zt,x0) = q(xt−1 | xt,x0)︸ ︷︷ ︸
discrete part

· q(zt−1 | xt, zt,xt−1,x0)︸ ︷︷ ︸
continuous part

. (14)

Moreover, we can write the close form of each component:

q(xt−1|xt,x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
=


αt−1−αt

1−αt
x⊤
t−1x0 xt−1 ̸= m,xt = m

1−αt−1

1−αt
xt−1 = m,xt = m

x⊤
t−1xt xt ̸= m.

(15)

q(zt−1 | xt, zt,xt−1,x0) =


δ(zt−1 − z0), xt = x0 (no mask at t),
δ(zt−1 − z0), xt = m, xt−1 = x0 (first unmask at t),
N
(
zt−1; µ̃t, β̃tId

)
, xt = m, xt−1 = m,

(16)
with the following paramters:

β̃t =
(1− γ̄t−1) (1− γt)

1− γ̄t
, µ̃t =

√
γ̄t−1 (1− γt)

1− γ̄t
z0 +

√
γt (1− γ̄t−1)

1− γ̄t
zt. (17)

Lemma 1. For the unmasked positions (xt ̸= m), the KL is identically 0, and the masked positions
splits exactly as

DKL

(
q(· | xt, zt,x0)

∥∥ pθ(· | xt, zt)
)
= ρflipt

[
− log pθ(x0|xt, zt)

]︸ ︷︷ ︸
discrete

+ ρkeept DKL
cont︸ ︷︷ ︸

continuous

, (18)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training of CADD

1: Input: data minibatch {x(j)
0 }Bj=1, network fθ(·),

masking schedule {αt}Tt=1, continuous schedule
{γ̄t}Tt=1

2: for j = 1, . . . , B do
3: draw tj ∼ Uniform(1, ..., T) for each sample
4: mask out each token position x

(j),i
0 with prob-

ability 1− αtj to obtain x
(j)
tj

5: form embeddings z
(j)
disc←wθ(x

(j)
tj

), z(j)
t ←

wθ(x
(j)
0)

6:
7: for position i ∈ {1, ..., n}, if x(j),i

tj
= m do,

z
(j),i
tj
←
√

γ̄tjz
(j),i
tj

+
√

1− γ̄tjϵ, ϵ ∼ (0, I)

8: end for
9: z̃

(j)
tj
← z

(j)
disc + z

(j)
t , compute logits fθ(z̃

(j)
tj

)

10: optimize with cross entropy loss in Eq. (20)
11: end for

Algorithm 2 Sampling of CADD
1: Input: desired minibatch size B, network

fθ(·), schedules {αt}Tt=1, {γ̄t}Tt=1,
2: for j = 1, . . . , B do
3: init: x(j)

T ←(m, ...m), z(j)
T

i.i.d.∼ N (0, I)
4: for t = T, . . . , 1 do
5: for i = 1, . . . , n, if x(j),i

t = m do
6: compute ρflipt and ρkeept (Eq. (38))
7: determine whether to unmask

x
(j),i
t−1∼Cat(ρ

flip
t fθ(x

(j),i
t ,z

(j),i
t)+ρkeept m)

8:
9: if x(j),i

t−1 ←m then draw zi
t−1 ∼

N
(
µ̃t

(
ẑi
0,θ, z

i
t

)
, β̃tId

)
with Eq. (21)

10: else z
(j),i
t−1 ← wθ(x

(j),i
t−1)

11: end if
12: end for
13: end for
14: end for

with the ratio that determines whether the position is going to be flipped to unmask or keep moving in
the continuous space:

ρkeept =
1− αt−1

1− αt
, ρflipt =

αt−1 βt

1− αt
=

αt−1 − αt

1− αt
.

The KL divergence in the continuous space has a reweighted MSE form:

Dcont
KL =

1

2β̃t

∥∥µ̃t(z0, zt)− µ̃t(ẑ0,θ, z
i
t)
∥∥2 =

a2t

2β̃t

∥z0 − ẑ0,θ∥2; at =
√
γ̄t−1(1− γt)

1− γ̄t
. (19)

4.3 ALGORITHM AND IMPLEMENTATION

Training Loss According to Eq. (18), the model aims to learn to maximize the likelihood of
discrete path, and also minimize the reweighted MSE in Eq. (19). Inspired by continuous diffusion
models that used for categorical modeling, e.g., CDCD (Dieleman et al., 2022) and Plaid (Gulrajani &
Hashimoto, 2023), we may estimate ẑ0,θ :=

∑
v pθ(x̂0 = v | xt, zt)wθ,v and just train the model to

predict correct categorical output to minimize the KL divergence. Thus, we choose to train CADD by
minimizing a simple cross entropy loss as following and the training is summarized in Algorithm 1:

LCADD = EtEq(xt,zt|x0)

[
−

∑
i:xi

t=m

log pθ(x
i
0 | xi

t, z
i
t)
]

(20)

Note that we may add the MSE loss in Eq. (19) to the above objective to more accurately estimate
the exact variational lower bound. Empirically we find the simplified loss is more computationally
efficient, thus we choose to use this loss for most of our experiments unless otherwise specified.

Sampling The sampling start from the last timestep T of the diffusion chain. Under the absorbing
forward, αT ≈ 0, hence p(xT) = δxT=m, i.e., all tokens are masked. Since all positions are masked
at T , the continuous prior is p(zT |xT) =

∏n
i=1N

(
zi
T ; 0, Id

)
, which matches the forward marginal

at T . For each timestep, given (xt, zt), the network predicts

πθ,i(v) :=
1

K

K∑
k=1

pθ(x̂
i
0 = v | xt, z

(k)
t) ∈ ∆V−1 for each position i.

If the position i is unmasked, the absorbing chain keeps xi
t−1 = xi

t almost surely and the continuous
variable is deterministic zi

t−1 = zi
t = wθ(x

i
t). If this position is masked, it draws a clean token v ∼

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

πθ,i(·) with probability 1−αt−1

1−αt
to unmask it, and the continuous latent zi

t−1 ← wθ,v. If it remains

unmasked, zi
t−1 moves along the continuous diffusion trajectory zi

t−1 ∼ N
(
µ̃t

(
ẑi
0,θ, z

i
t

)
, β̃tId

)
.

The full sampling process in shown in Algorithm 2. Note the choice of ẑi
0,θ has two options:

hard: x̂0 = argmax
v

πθ,i(v), ẑ0 = wθ(x̂0) soft: ẑ0,θ :=
∑
v

pθ(x̂0 = v | xt, zt)wθ,v. (21)

These two choices are both valid to use depending on whether we are looking for mode-covering or
mode-seeking behavior, i.e., better context localization or better diversity, respectively. In our main
experiments we keep the hard option, and our empirical exploration in Appendix C.3 justify these
two choices could meet the demand of these two behavior. Moreover, although CADD may leverage
multi-sample for the x0 distribution estimation, for fair comparison with baselines, we keep K = 1
for most of our experiments. More detailed studies are also shown in the Appendix C.3.

Implementation We follow the common-used design of the model architecture to let fθ(·) predict
logits for categorical distribution. The discrete path follows earlier masked-diffusion setups: starting
from x0, we mask a subset of positions to obtain xt, embed the mixed sequence with the learnable
table and form zdisc = wθ(xt). The only difference is the model needs to take an additional
variable zt input for the continuous embeddings. To achieve this, we first form the clean embeddings
z0 = wθ(x0), and then apply noise only at masked positions using the forward marginal Eq. (11)
to obtain zt. We fuse zdisc and zt by element-wise addition z̃t := zdisc + zt, and feed z̃t to the
backbone fθ to produce per-position logits.

5 EXPERIMENTS

In this section we present experiments to validate the proposed CADD model through experiments
on text, image, and code generation benchmarks. The evaluations are designed to assess the model’s
performance across diverse data modalities and scales.

5.1 TEXT GENERATION

Experiment setting For text generation, we strictly follow the experimental setup of the Masked
Diffusion Language Model (MDLM) (Sahoo et al., 2024), a common configuration for this task. We
train our CADD models on the OpenWebText (OWT) dataset (Gokaslan & Cohen, 2019). Data is
tokenized using the GPT-2 tokenizer with a vocabulary size of |V| = 50, 257 (Radford et al., 2019),
and sequences are fixed to a length of n = 1,024. To be consistent with the baselines, we use a
Discrete DiT backbone (Peebles & Xie, 2023) with approximately 168M parameters, and train with
same number of iterations. All training hyper-parameters are identical to those in MDLM.

Evaluation. We mainly compare the performance with discrete diffusion baselines in terms of the
generative quality, and our evaluation protocol strictly follows that of Wang et al. (2025). We compare
the performance against discrete diffusion baselines using two metrics: the MAUVE score (higher is
better) (Liu et al., 2021; Pillutla et al., 2021) and generative perplexity (lower is better) (Lou et al.,
2024). Further details on the evaluation setup are located in Appendix B.

Main Results. Figure 3 presents the results for unconditional text generation on the OpenWebText
(OWT) dataset, comparing CADD with SEDD (absorb) and MDLM across a range of sampling steps
T ∈ {128, 256, 512, 1024, 4096}. Within the range T ≤ 1024, all models shows improvement as
the number of sampling steps increases. We can notice CADD demonstrates stronger and consistent
gains as steps increase compared to SEDD and MDLM in terms of both metrics. Plotting the x-axis
on a log2 scale reveals that the performance trend is approximately linear.

Extending the sampling process to T = 4096 further demonstrates CADD’s scaling capabilities
at inference time, as it continues to improve while the masked-only baselines stagnate or degrade.
From T = 1024 to 4096, CADD’s MAUVE score still increases by 0.3, and its generative perplexity
is scored from 44.6 to 35.3. MDLM’s performance slightly worsens, which is consistent with the
observation that mask-only diffusion models scale poorly with T (Wang et al., 2025). Overall, CADD
consistently show performance gain across all tested number of sampling steps over the mask-only
discrete diffusion models, validating the effectiveness of the proposed continuous-augmented space.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

128 256 512 1024 4096
Steps

0.00

0.05

0.10

0.15

0.20

0.25

M
A

U
VE

 (
)

0.007
0.0150.017

0.063

0.096

0.007
0.023

0.062
0.0800.080

0.008
0.031

0.062

0.1370.140

0.008

0.042

0.117

0.2400.240

0.009

0.035

0.087

0.128

0.270

SEDD (absorb)
MDLM
Duo
Duo (w cd)
CADD

(a) MAUVE

128 256 512 1024 4096
Steps

40

60

80

100

120

G
en

 P
PL

. (
)

55.355.8
61.5

75.5

119.2

48.949.6
55.8

74.1

110.1

46.1
48.7
53.0

72.2

107.2

44.6
47.3
51.3

72.1

104.7

35.3

47.8
50.9

71.8

102.5

(b) Generative perplexity

Figure 3: Unconditional text generative evaluation of model trained on OpenWebText (OWT) data.
All method are evaluated with 128, 256, 512 1024, and 4096 sampling steps. MAUVE (higher is
better) and generative perplexity (measured using GPT2-Large, lower is better) are reported.

Table 1: FID and IS evaluation on CIFAR-10.
The arrow symbols denotes lower/higher is better
respectively. Baseline results are quoted from
Chao et al. (2025).

Method FID (↓) IS (↑)
CADD (NFE=512) 2.88 10.04

Discrete
MDM (NFE=512) 4.66 9.09
MDM-Mixture (NFE=512) 4.80 9.22
MDM-Prime (NFE=512) 3.26 9.67
D3PM Absorb (NFE=1,000) 30.97 6.78
D3PM Gauss. (NFE=1,000) 7.34 8.56
CTDD-DG (NFE=1,000) 7.86 8.91
Tau-LDR (NFE=1,000) 3.74 9.49
Discrete FM (NFE=1,024) 3.63 -

Continuous
Continuous FM 6.35 -
Bit Diffusion 3.48 -
StyleGAN+ADA 3.26 9.74
DDPM 3.17 9.46

Table 2: FID evaluation using model uncondi-
tionally trained on ImageNet (32 × 32 resolu-
tion).

Method FID (↓)
CADD (NFE=1,024) 3.74

Discrete
MDM (NFE=1,024) 7.91
MDM-Mixture (NFE=1,024) 8.08
MDM-Prime (NFE=1,024) 6.98

Continuous
NDM 17.02
DDPM 16.18
MSGAN 12.30
i-DODE (SP) 10.31
i-DODE (VP) 9.09
Stochastic Interp. 8.49
Soft Trunc. DDPM 8.42
ScoreFlow (subVP) 8.87
ScoreFlow (VP) 8.34
Continuous FM 5.02

5.2 IMAGE GENERATION

We train and evaluate our models on the CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet (Krizhevsky et al., 2017) datasets (resolution 32 × 32). For both, input images are in RGB
channels, thus a dimensionality of n = 32× 32× 3 with |V| = 256 pixel values per channel. For fair
comparison the MDM baselines, our model architecture follows the one used in Chao et al. (2025);
Gat et al. (2024), which is based on the ADM (Dhariwal & Nichol, 2021) architecture. We choose
MDM-Prime (Chao et al., 2025) and its variants as our main discrete diffusion baseline. We also
include its discrete and continuous diffusion model baselines for comparison (Shih et al., 2022; Ho
et al., 2020; Song et al., 2021; Austin et al., 2021a; Campbell et al., 2022; Gat et al., 2024; Nisonoff
et al., 2025; Lipman et al., 2022; Chen et al., 2023; Bartosh et al., 2023; Tran et al., 2019; Zheng
et al., 2023b; Albergo & Vanden-Eijnden, 2023; Kim et al., 2022). To assess sample quality, we
report Fréchet Inception Distance (FID) and Inception Score (IS), computed with 50,000 randomly
sampled images.

We follow MDM variants to unconditionally sample images with same number of function evaluation
(NFE) and report results on CIFAR-10 in Table 1. With the same NFE, we can observe CADD
improves upon MDMs by a significant margin. Attaining an FID of 2.88 and an Inception Score of
10.04 with 512 function evaluations (NFE), CADD surpasses the MDM variants by 0.38 in terms
of FID and represents the best result among all compared method. On ImageNet-32, as shown in
Table 2, the observation is constent, where CADD obtains FID of 3.74 and outperforms all reported
baselines. The qualitative generated samples are provided in Appendix D for visual justifications.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Benchmark coding capacities of AR and Diffusion LLMs in 7/8B scale. We follow the
evaluation settings in DiffuCoder (Gong et al., 2025b), where EvalPlus is computed as the average of
HE+ and MBPP+. The best performance in AR and Diffusion LLMs are marked in bold.

Model HumanEval MBPP EvalPlus BigCodeBench (C) Avg.
- Plus - Plus Full Hard

AR
Qwen2.5-Coder 61.6 51.8 75.9 61.4 56.6 46.1 16.2 52.2
OpenCoder (Huang et al., 2024) 66.5 63.4 79.9 70.4 66.9 40.5 9.5 55.0

Diffusion
LLaDA (Nie et al., 2025) 35.4 30.5 50.1 42.1 36.3 18.9 4.1 30.2
Dream (Ye et al., 2025) 56.7 50.0 68.7 57.4 53.7 23.6 4.1 43.4
DiffuCoder 67.1 60.4 74.2 60.9 60.7 40.2 12.8 52.6

CADD (ours) 72.0 63.4 75.7 63.2 63.3 42.1 17.6 55.7
CADD (ours, DiffuCoder init) 73.8 64.6 73.9 60.4 62.5 41.5 15.5 55.0

5.3 CODE GENERATION

For a large-scale setting, we conduct code generation experiments based on the DiffuCoder
pipeline (Gong et al., 2025b). The DiffuCoder base model training process involves adapting a
pretrained autoregressive LLM (e.g., Qwen2.5-coder (Hui et al., 2024)) into a discrete diffusion
model by annealing its attention mechanism from causal to bidirectional (Gong et al., 2025a). The
resulting model is then trained using a masking diffusion loss (Shi et al., 2024). In this context,
we evaluate our method using the following two distinct configurations. (i) Vanilla CADD: We
follow the DiffuCoder procedure to adapt the Qwen2.5-coder model. Instead of using the MDM
loss, we train the model from the beginning with our proposed CADD loss. (ii) CADD (fine-tuned):
To demonstrate CADD’s effectiveness as a fine-tuning objective, we initialize our model from a
pretrained DiffuCoder checkpoint and then continue training it with the CADD loss. To ensure a fair
comparison, both CADD variants are trained on the same 65B total tokens and use the same training
hyperparameters as the original DiffuCoder. In the evaluation, we follow their settings to test the
model performance on three coding benchmarks: HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021b), and BigCodeBench (Zhuo et al., 2024).

Table 3 reports the pass@1 performance, where the results of both autoregressive (AR) and diffusion-
based LLMs are included, with an overall average score provided. Compared with Diffusion-based
models, CADD emerges as the strongest diffusion model, outperforming competitors on nearly
all metrics. Compared to the previous leading DM, DiffuCoder, CADD significantly improves
performance on HumanEval, e.g., from 67.1 to 72.0; on the challenging BigCodeBench-Hard subset,
we can also observe significant performance gain from 12.8 to 17.6. CADD is also highly competitive
with leading AR code models. It surpasses Qwen2.5-Coder across all benchmarks and achieves a
higher overall average than OpenCoder (55.7 vs. 55.0).

6 CONCLUSION

In standard discrete diffusion, information is lost abruptly when tokens are replaced by an absorbing
state. Inspired by Gaussian diffusion, where the data signal degrades smoothly, CADD’s core idea
is to introduce an auxiliary continuous space to guide the discrete process. This space is designed
to retain semantic information, providing a smooth continuous representation of a token even after
its discrete form has been absorbed. By conditioning on it, the model can better "remember" what
was supposed to be in the masked position. This leads to more coherent and contextually accurate
generations, as the model has a stronger grasp of the underlying meaning. With extensive empirical
justification on text, image and code generation, we justify that with the continuous augmented space
proposed in CADD, the discrete diffusion models consistently generate higher quality samples across
these different tasks and achieve strong performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research proposes Continuously Augmented Discrete Diffusion model, for discrete data gener-
ation, with possible impacts on misusage to generate toxic information. Since our research scope
is on the fundamental machine learning algorithm, we use all public datasets, which do not contain
personal and sensitive information. In our paper, all generated results have been checked and do not
contain misleading and malicious information.

REPRODUCIBILITY STATEMENT

The authors are committed to the principle of reproducibility and have made every effort to ensure
our theoretical and experimental results can be reproduced. We confirm the variables used for
the derivations are well defined and the claims are provided with proofs, which are attached in
Appendix A. We have introduced our methods with precise math tools and visual aids, such as
Figure 1, Figure 2, and Algorithm box 1, 2. The datasets we used are all public and widely-used. The
training and inference details are described in Appendix B, including data pre-processing, training
hyper-parameters, and inference pipeline. The source-code of our model will be released upon
acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge that LLMs are used to only polish the presentation and writing of the paper. The
generated sentences are double checked and rephrased by the authors.

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
polants. In Proc. Int. Conf. on Learning Representations (ICLR), 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information Processing
Systems, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. ArXiv preprint, abs/2108.07732, 2021b. URL https://arxiv.org/abs/2108.
07732.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
model for biological sequence generation. In International Conference on Machine Learning,
2023.

Grigory Bartosh, Dmitry Vetrov, and Christian A Naesseth. Neural diffusion models. arXiv preprint
arXiv:2310.08337, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Advances in
Neural Information Processing Systems, 2022.

Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang annd Chun-Yi Lee, and Rahul G. Krishnan. Beyond
Masked and Unmasked: Discrete Diffusion Models via Partial Masking. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using
Diffusion Models with Self-Conditioning. In ICLR, 2023.

Chaoran Cheng, Jiahan Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical manifolds.
In Advances in Neural Information Processing Systems, 2024.

Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael M. Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. In Advances
in Neural Information Processing Systems, 2024.

Justin Deschenaux and Caglar Gulcehre. Beyond Autoregression: Fast LLMs via Self-Distillation
Through Time. In Proceedings of the International Conference on Learning Representations
(ICLR), 2025.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems, 2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv:2211.15089, 2022.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
International Conference on Machine Learning, 2024.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Empowering
diffusion models on the embedding space for text generation. arXiv preprint arXiv:2212.09412,
2022.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. In Advances in Neural Information Processing Systems,
2024.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=jQj-_rLVXsj.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Conference on
Learning Representations, 2025a.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
generation. arXiv preprint arXiv:2506.20639, 2025b. URL https://arxiv.org/abs/
2506.20639.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow
networks. arXiv:2308.07037, 2023.

Jiatao Gu, Tianrong Chen, David Berthelot, Huangjie Zheng, Yuyang Wang, Ruixiang Zhang,
Laurent Dinh, Miguel Angel Bautista, Josh Susskind, and Shuangfei Zhai. Starflow: Scaling latent
normalizing flows for high-resolution image synthesis. arXiv preprint arXiv:2506.06276, 2025.

Ishaan Gulrajani and Tatsunori B. Hashimoto. Likelihood-based diffusion language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
35b5c175e139bff5f22a5361270fce87-Abstract-Conference.html.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/pdf?id=jQj-_rLVXsj
https://arxiv.org/abs/2506.20639
https://arxiv.org/abs/2506.20639
http://papers.nips.cc/paper_files/paper/2023/hash/35b5c175e139bff5f22a5361270fce87-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/35b5c175e139bff5f22a5361270fce87-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. arXiv:2210.17432, 2022.

Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
operations. arXiv preprint arXiv:2506.09018, 2025.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu.
Diffusionbert: Improving generative masked language models with diffusion models. In Annual
Meeting of the Association for Computational Linguistics, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Proc. of Int.
Conf. on Neural Information Processing Systems (NeurIPS), 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Advances in Neural Information
Processing Systems, 2021.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
JH Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier code
large language models. ArXiv preprint, abs/2411.04905, 2024. URL https://arxiv.org/
abs/2411.04905.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. ArXiv preprint, abs/2409.12186,
2024. URL https://arxiv.org/abs/2409.12186.

Jaehyeong Jo and Sung Ju Hwang. Generative modeling on manifolds through mixture of riemannian
diffusion processes. In International Conference on Machine Learning, 2024.

Jaehyeong Jo and Sung Ju Hwang. Continuous diffusion model for language modeling. In Advances
in Neural Information Processing Systems, 2025.

Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew
Peters, and Arman Cohan. TESS: Text-to-text self-conditioned simplex diffusion. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2347–2361, St.
Julian’s, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
eacl-long.144. URL https://aclanthology.org/2024.eacl-long.144/.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Proc. NeurIPS, 2022.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft Truncation: A
Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation.
In Proc. Int. Conf. on Machine Learning (ICML), 2022.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. arXiv
preprint arXiv:2107.00630, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
model for multimodal understanding. ArXiv preprint, abs/2505.16839, 2025. URL https:
//arxiv.org/abs/2505.16839.

12

https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2409.12186
https://aclanthology.org/2024.eacl-long.144/
https://arxiv.org/abs/2505.16839
https://arxiv.org/abs/2505.16839

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. In Advances in Neural Information Processing Systems,
2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models for
constrained and watermarked generation. Advances in Neural Information Processing Systems, 36:
42898–42917, 2023.

Lang Liu, Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi, and Zaid Harchaoui. Divergence
frontiers for generative models: Sample complexity, quantization effects, and frontier integrals.
Advances in Neural Information Processing Systems, 34:12930–12942, 2021.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. In International Conference on Machine Learning, 2024.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
Instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=MLIs5iRq4w.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. ArXiv preprint, abs/2410.18514, 2024. URL
https://arxiv.org/abs/2410.18514.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. arXiv:2502.09992
[cs.CL], 2025.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
XsgHl54yO7.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
divergence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh,
Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar
Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh
Rambhatla, Sam S. Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh
Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li,
Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng
Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali K.
Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh
Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schönfeld, Elliot Blanchard, Felix Juefei-Xu,
Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence
Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li,
Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen: A
cast of media foundation models. arXiv:2410.13720, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

13

https://openreview.net/forum?id=MLIs5iRq4w
https://openreview.net/forum?id=MLIs5iRq4w
https://arxiv.org/abs/2410.18514
https://openreview.net/forum?id=XsgHl54yO7
https://openreview.net/forum?id=XsgHl54yO7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In Advances in Neural Information Processing Systems, 2022.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M
Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion
language models. In Advances in Neural Information Processing Systems, 2024.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and
Volodymyr Kuleshov. The diffusion duality. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=9P9Y8FOSOk.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. In Advances in Neural Information Processing
Systems, 2024.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
models the right way. In Advances in Neural Information Processing Systems, 2022.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In Proc. Int. Conf. on Machine Learning (ICML),
2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/song23a.html.

Yuxuan Song, Zhe Zhang, Yu Pei, Jingjing Gong, Qiying Yu, Zheng Zhang, Mingxuan Wang, Hao
Zhou, Jingjing Liu, and Wei-Ying Ma. Shortlisting model: A streamlined simplexdiffusion for
discrete variable generation. arXiv preprint arXiv:2508.17345, 2025a.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
high-speed inference. arXiv preprint arXiv:2508.02193, 2025b.

Hannes Stärk, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi S. Jaakkola. Dirichlet flow matching with applications to DNA sequence design. In
International Conference on Machine Learning, 2024.

Jaesung Tae, Hamish Ivison, Sachin Kumar, and Arman Cohan. TESS 2: A large-scale generalist diffu-
sion language model. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 21171–21188, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1029.
URL https://aclanthology.org/2025.acl-long.1029/.

Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Linxiao Yang, and Ngai-Man Cheung. Self-
supervised GAN: Analysis and Improvement with Multi-class Minimax Game. In Proc. of Int.
Conf. on Neural Information Processing Systems (NeurIPS), 2019.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking Discrete
Diffusion Models with Inference-Time Scaling. arXiv:2503.00307 [cs.LG], 2025.

14

https://openreview.net/forum?id=9P9Y8FOSOk
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.mlr.press/v202/song23a.html
https://aclanthology.org/2025.acl-long.1029/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
GAN: Training GANs with diffusion. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=HZf7UbpWHuA.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=JprM0p-q0Co.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. ArXiv preprint, abs/2505.15809, 2025. URL
https://arxiv.org/abs/2505.15809.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024.

Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, and Joshua M Susskind. Normalizing flows
are capable generative models. In Forty-second International Conference on Machine Learning,
2025.

Ruixiang Zhang, Shuangfei Zhai, Jiatao Gu, Yizhe Zhang, Huangjie Zheng, Tianrong Chen,
Miguel Angel Bautista, Josh Susskind, and Navdeep Jaitly. Flexible language modeling in
continuous space with transformer-based autoregressive flows. arXiv preprint arXiv:2507.00425,
2025a.

Ruixiang Zhang, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua M Susskind, and
Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion. In
Forty-second International Conference on Machine Learning, 2025b.

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua Susskind, and Navdeep Jaitly.
Planner: Generating diversified paragraph via latent language diffusion model. Advances in Neural
Information Processing Systems, 36:80178–80190, 2023.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
data-efficient gan training. In Conference on Neural Information Processing Systems (NeurIPS),
2020.

Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. Informed
Correctors for Discrete Diffusion Models. arXiv:2407.21243 [cs.LG], 2024.

Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule and Bayes’ theorem to compare prob-
ability distributions. Advances in Neural Information Processing Systems, 34:14993–15006,
2021.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion prob-
abilistic models and diffusion-based adversarial auto-encoders. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=HDxgaKk956l.

Huangjie Zheng, Zhendong Wang, Jianbo Yuan, Guanghan Ning, Pengcheng He, Quanzeng You,
Hongxia Yang, and Mingyuan Zhou. Learning stackable and skippable LEGO bricks for efficient,
reconfigurable, and variable-resolution diffusion modeling. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https://openreview.net/forum?id=
qmXedvwrT1.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved Techniques for Maximum Likelihood
Estimation for Diffusion ODEs. In Proc. Int. Conf. on Machine Learning (ICML), 2023b.

15

https://openreview.net/forum?id=HZf7UbpWHuA
https://openreview.net/forum?id=JprM0p-q0Co
https://arxiv.org/abs/2505.15809
https://openreview.net/forum?id=HDxgaKk956l
https://openreview.net/forum?id=HDxgaKk956l
https://openreview.net/forum?id=qmXedvwrT1
https://openreview.net/forum?id=qmXedvwrT1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. In Conferenec on Language Modeling, COLM, October 7-9, 2024, Philadelphia,
PA, 2024b.

Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion. Advances in
Neural Information Processing Systems, 36:30070–30095, 2023.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=QhqQJqe0Wq.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. ArXiv preprint, abs/2406.15877,
2024. URL https://arxiv.org/abs/2406.15877.

16

https://openreview.net/forum?id=QhqQJqe0Wq
https://openreview.net/forum?id=QhqQJqe0Wq
https://arxiv.org/abs/2406.15877

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DETAILED DERIVATIONS AND PROOF

A.1 ELBO DERIVATION

Forward chain. For any observation x0, the forward diffusion constructs as

q(x1:T , z1:T | x0) =

T∏
t=1

qt
(
xt, zt | xt−1, zt−1,x0

)
, (22)

note we represent
(
x0, z0

)
as x0 since the transform wθ is deterministic.

Reverse generative model.

pθ(x0,x1:T , z1:T) = pT (xT , zT)
[T∏
t=2

pθ
(
xt−1, zt−1 | xt, zt

)]
pθ(x0 | x1, z1). (23)

Proposition 3 (ELBO decomposition). Given the forward chain q defined in Eq. (22) and reverse
model pθ in Eq. (23), we have the decomposed ELBO as following:

log pθ(x0) ≥ Eq(x1,z1|x0)

[
log pθ(x0 | x1, z1)

]︸ ︷︷ ︸
reconstruction term at t=1

−
T∑

t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0)

∥∥ pθ(xt−1, zt−1 | xt, zt)
)]

︸ ︷︷ ︸
denoising matches for t>1

−DKL

(
q(xT , zT | x0) ∥ pT (xT , zT)

)︸ ︷︷ ︸
prior match at T

. (24)

If q(xT , zT | x0) = pT (xT , zT) for all x0, then the prior match term is zero. The bound is tight if
and only if

pθ(xt−1, zt−1 | xt, zt) = q(xt−1, zt−1 | xt, zt,x0) for all t ≥ 2,

and the prior match is zero, and the decoder pθ(x0 | x1, z1) equals the true conditional induced by
the joint.

Recap the forward kernel defined in Eq. (7) and Eq. (8):

q(xt | xt−1) =

n∏
i=1

Categorical
(
xi
t; Q

⊤
t x

i
t−1

)
, Qt = (1− βt)I + βt 1m

⊤.

q(zt | zt−1,xt−1,xt,x0) =

n∏
i=1


δ(zi

t − zi
t−1), xi

t ̸= m,

N
(
zi
t;
√
γ̄t z

i
t−1, (1− γ̄t)Id

)
, xi

t = m,xi
t−1 ̸= m,

N
(
zi
t;
√
γt z

i
t−1, (1− γt)Id

)
, xi

t = m,xi
t−1 = m.

Proof of Proposition 3. The proof is mostly done in Sohl-Dickstein et al. (2015) and Ho et al. (2020).
We include the following proof to show the generalized version with added variables. Start from the
evidence identity and apply Jensen inequality:

log pθ(x0) = log

∫
q(x1:T , z1:T | x0)

pθ(x0,x1:T , z1:T)

q(x1:T , z1:T | x0)
dx1:T dz1:T

≥ Eq(x1:T ,z1:T |x0)

[
log pθ(x0,x1:T , z1:T)− log q(x1:T , z1:T | x0)

]
=: L(θ;x0). (25)

Insert the model and forward factorizations Eq. (23) and Eq. (22):

L(θ;x0) = Eq

[
log pT (xT , zT) +

T∑
t=2

log pθ(xt−1, zt−1 | xt, zt) (26)

+ log pθ(x0 | x1, z1)−
T∑

t=1

log q(xt, zt | xt−1, zt−1,x0)
]
. (27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For each t ≥ 2 use Bayes’ rule under q:

q(xt, zt | xt−1, zt−1,x0) =
q(xt−1, zt−1 | xt, zt,x0) q(xt, zt | x0)

q(xt−1, zt−1 | x0)
. (28)

Taking Eq[log(·)] of Eq. (28) and rearranging gives, for t ≥ 2,

Eq

[
log pθ(xt−1, zt−1 | xt, zt)− log q(xt, zt | xt−1, zt−1,x0)

]
= −Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
− Eq

[
log q(xt, zt | x0)

]
+ Eq

[
log q(xt−1, zt−1 | x0)

]
. (29)

Sum Eq. (29) over t = 2, . . . , T . The last two expectations telescope:

−
T∑

t=2

Eq

[
log q(xt, zt | x0)

]
+

T∑
t=2

Eq

[
log q(xt−1, zt−1 | x0)

]
= Eq

[
log q(x1, z1 | x0)

]
−Eq

[
log q(xT , zT | x0)

]
. (30)

Plug this back into Eq. (27) and group the boundary terms with log pT :

L(θ;x0) = Eq

[
log pθ(x0 | x1, z1)

]
−

T∑
t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
−
(
Eq

[
log q(xT , zT | x0)

]
− Eq

[
log pT (xT , zT)

])
− Eq

[
log q(x1, z1 | x0)

]
. (31)

Now we recoginize the prior KL to obtain

L(θ;x0) = Eq

[
log pθ(x0 | x1, z1)

]
−

T∑
t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
−DKL

(
q(xT , zT | x0) ∥ pT (xT , zT)

)
− Eq

[
log q(x1, z1 | x0)

]︸ ︷︷ ︸
=:C(x0)

. (32)

Note the last term C(x0) does not involve pθ and can be dropped, and we normally do not optimize
the last KL term DKL

(
q(xT , zT | x0) ∥ pT (xT , zT)

)
as we let the schedule to make this statistical

distance is sufficiently small.

A.2 FORWARD

We can derive the following lemma for the marginal at time step t.

Lemma 2 (Continuous marginal conditioned on (xt,x0)). Let γ̄t :=
∏t

s=1 γs. For each position i,
we have continuous marginal conditioned on (xt,x0) as

q(zi
t | xi

t,x
i
0) =

{
δ(zi

t − zi
0), xi

t = xi
0,

N
(
zi
t;
√
γ̄t z

i
0, (1− γ̄t)Id

)
, xi

t = m,

with zi
0 = wθ(x

i
0). Hence We finally have

q(zt | xt,x0) =

n∏
i=1

q(zi
t | xi

t,x
i
0) =

[∏
i:xi

t ̸=m

δ(zi
t − zi

0)
]
·
[∏
i:xi

t=m

N (zi
t;
√
γ̄tz

i
0, (1− γ̄t)Id)

]
.

Then what follows proves Proposition 2. We first prove the conditional independency between zt and
xt−1 given (xt,x0) in the reverse context.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 3 (Conditional independency between zt and xt−1 given (xt,x0)). zt and xt−1 are
conditionally independent given (xt,x0) based on the forward kerned defined in Eq. (8).

To prove Proposition 1, we first prove the following lemma:

Proof of Lemma 2 and Lemma 3. If xi
t = xi

0 then the absorbing chain implies xi
s ̸= m for s ≤ t, so

the kernel gives zi
t = zi

0 almost surely, which is the first line of Eq. (8).

If xi
t = m, use the law of total probability over xi

t−1 ∈ {xi
0,m}.

When xi
t−1 ̸= m (first time masking at t), the second branch of the kernel gives zi

t ∼ N (
√
γ̄t z

i
0, (1−

γ̄t)I).

When xi
t−1 = m (already masked), the third branch composes a diffusion forward step with the

previous marginal zi
t−1 ∼ N (

√
γ̄t−1 z

i
0, (1− γ̄t−1)I), which yields

zi
t ∼ N

(√
γtγ̄t−1 z

i
0, (1− γtγ̄t−1)I

)
= N

(√
γ̄t z

i
0, (1− γ̄t)I

)
.

This proves the masked line of Eq. (8).

Then leveraging these results, we can easily prove Proposition 1.

Proof of Proposition 1. Expand the path marginal, use Eq. (6) and Lemma 2, and factor over positions.
The sum over discrete paths yields q(xt | x0); conditioning on xt reduces the continuous part to
Lemma 2.

A.3 REVERSE

Proof of Proposition 2. We first prove the factorization shown in Eq. (14). To achieve this, we just
need to show:

q(xt−1, zt−1 | xt, zt,x0) = q(xt−1 | xt, zt,x0) · q(zt−1 | xt, zt,xt−1,x0) (33)

=
q(zt | xt−1,xt,x0)q(xt−1 | xt,x0)

q(zt | xt,x0)
· q(zt−1 | xt, zt,xt−1,x0)

(34)
= q(xt−1 | xt,x0) · q(zt−1 | xt, zt,xt−1,x0), (35)

where q(zt | xt−1,xt,x0) = q(zt | xt,x0) by the conditional independence according to Lemma 3.
Then the discrete part is the same as discrete diffusion, we may leverage the results from Austin et al.
(2021a); Sahoo et al. (2024); Shi et al. (2024) to complete the proof of Eq. (15).

Next, we prove the closed form of the continuous part, q(zt−1 | xt, zt,xt−1,x0), by case analysis
based on the discrete states. We start with Bayes’ rule for the continuous variables:

q(zt−1 | xt, zt,xt−1,x0) ∝ q(zt | zt−1,xt) · q(zt−1 | xt−1,x0). (36)

The forms of the two terms on the right-hand side are Gaussian distributions, but will change
depending on the discrete states and it leads to the three cases.

Case 1: No mask at t (xt = x0). In this case, no noise has been applied to the embedding up to
timestep t-1. Thus, both terms directly have a Dirac delta function: q(zt−1 | xt−1 = x0,x0) =
δ(zt−1 − z0). The posterior is therefore also a Dirac delta function, proving the first part of Eq. (16).

Case 2: First time unmask at t (xt = m, xt−1 = x0). In this case, the first term in Eq. (36) is
Gaussian while the second term becomes a Dirac δ(zt−1 − z0). The multiplication yields a Dirac
posterior at the same point: q(zt−1 | xt−1 = x0,x0) = δ(zt−1 − z0).

Case 3: Remaining masked at t (xt = m, xt−1 = m). In this case, both terms remain in Gaussian
distribution, and the parameters are same with normal Gaussian diffusion models. The product of
these two Gaussians is a new Gaussian, allowing usu to use the standard derivation for DDPM (Ho
et al., 2020), by completing the square on the exponent, we find that the resulting distribution is
N (zt−1; µ̃t(zt, z0), β̃tI), which proves the last part of Eq. (16).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof of Lemma 1. Using the results from Proposition 2, for a single position i, the exact one–step
KL at timestep t > 1 inside the ELBO is

DKL(x0, t) := Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0)

∥∥ pθ(xt−1, zt−1 | xt, zt)
)]
, (37)

For the unmasked positions (xt ̸= m), the KL is identically 0, and plug in Eq. (14), 15 and 16, we
recover Eq. (18) exactly as

DKL

(
q(· | xt, zt,x0)

∥∥ pθ(· | xt, zt)
)
= ρflipt

[
− log pθ(x0|xt, zt)

]︸ ︷︷ ︸
discrete

+ ρkeept DKL
cont︸ ︷︷ ︸

continuous

,

with the ratio that determines whether the position is going to be flipped to unmask:

ρkeept =
1− αt−1

1− αt
, ρflipt =

αt−1 βt

1− αt
=

αt−1 − αt

1− αt
. (38)

The discrete KL part exactly recovers the results from the absorbing discrete diffusion models (Austin
et al., 2021a; Sahoo et al., 2024; Shi et al., 2024), and the continuous KL divergence:

Dcont
KL = DKL

(
N (µ⋆, β̃tId)

∥∥∥ N (µv, β̃tId)
)
, µ⋆ = µ̃t(z0, zt), µv = µ̃t(ẑ0, zt), (39)

where we recap

µ̃t(ζ,zt) =

√
γ̄t−1(1− γt)

1− γ̄t
ζ +

√
γt(1− γ̄t−1)

1− γ̄t
zt, β̃t =

(1− γ̄t−1)(1− γt)

1− γ̄t
.

This results in the comparison between z0 and ẑ0 and the KL divergence reduced to:

Dcont
KL =

1

2β̃t

∥∥µ̃t(z0, zt)− µ̃t(ẑ0,θ, z
i
t)
∥∥2 =

a2t

2β̃t

∥z0 − ẑ0,θ∥2; at =
√
γ̄t−1(1− γt)

1− γ̄t
.

Remark 1 (On the Alternative Factorization). One could also decompose the posterior using the
alternative order from the chain rule:

q(xt−1, zt−1 | ·) = q(zt−1 | xt, zt,x0) · q(xt−1 | xt, zt, zt−1,x0).

While mathematically valid and could provide new properties in the sampling, this factorization is not
fully tractable. The first term, q(zt−1|·), is a complex Gaussian Mixture Model. More critically, the
second term, q(xt−1|·), has no analytical closed form, as it would require inverting the continuous
diffusion process and the embedding function to infer a discrete state. The factorization in Prop. 2 is
therefore adopted as a tractable choice for a more efficient algorithm implementation.

B DETAILED EXPERIMENT SETTINGS

B.1 DIFFUSION SETTINGS

The CADD forward process has two coupled components, each with its own schedule.

• Discrete schedule: we adopt the MDLM log-linear masking schedule for the discrete
process (Sahoo et al., 2024). The discrete forward corruption uses a continuous-time
α(t) = 1− t, with t ∈ [0, 1].

• Continuous schedule: to keep the meaning of time aligned, we set the continuous latent z
to follow a linear flow-matching path to isotropic noise (Lipman et al., 2022), i.e., if the
position is masked, we have zt = (1− t)z0 + tϵ, ϵ ∼ N (0, I).

• Multi-sample estimation: we by default set K = 1 for the estimation of x̂0,θ for fair
comparison with the baselines. We provide ablation studies to demonstrate the effect of
K > 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Benchmark computation cost of discrete (mask) diffusion and CADD.

Setting Throughputs (Tokens/s - per GPU) TFLOPS TFLOPS/s Avg. GPU Mem (GB)
Training
Discrete Diffusion 47,416 0.29 6.049 1.362
CADD 47,152 0.291 6.082 1.492
Inference
k = 1 47,373 0.291 6.082 1.492
k = 2 24,852 0.581 12.206 3.511
k = 3 15,768 0.873 18.310 5.253
k = 4 1,417 1.162 24.417 7.470

B.2 EXPERIMENT-SPECIFIC SETTINGS

Text Generation In our main experiments, including ablation studies that used to explore the
properties of CADD, we train the models on OpenWebText. Following the standard MDLM pre-
processing (Sahoo et al., 2024), we use the GPT-2 tokenizer, resulting in a vocabulary of 50,257
tokens. The sequence length is fixed at 1,024. Our text model is a 12-layer DiT with 12 attention
heads and an embedding dimension of 768, totaling approximately 168M parameters. During training,
we keep the same training configuration, i.e., we train for about 2M steps with a batch size of 256
to match the total 262B tokens seen in the training. We use the AdamW optimizer with a learning
rate warmed up from 0 to 3 × 10−4. The results in Table 5 and Table 6, are based on Text8 and
LM1B dataset, where we strictly follow the training setting in Jo & Hwang (2025) and Sahoo
et al. (2024). Please refer their experiment settings for more details. For evaluation, we follow
ReMDM (Wang et al., 2025)’s evaluation setting, where we randomly sample 5,000 text samples with
length n = 1, 024, using {128, 256, 512, 1024, 4096} sampling steps. The sampled token sequences
are used to compute MAUVE score, generative perplexity with GPT2-Large model, and entropy.

Image Generation We experiment on CIFAR-10 and ImageNet (with resolution 32× 32), which
consists of 50,000 and 1,281,149 natural images respectively. CIFAR-10 already has 32 × 32
resolution. For ImageNet images, we follow the preprocessing used in EDM (Karras et al., 2022),
i.e., using center-crop to make it as squared image and rescale to the desired 32× 32 resolution. As
the model is trained on pixel space, we treat each pixel as a discrete token, resulting in a vocabulary
size 256 at each position. We follow the architecture design used in MDM-Prime (Chao et al.,
2025), which is a U-Net architecture based on ADM (Dhariwal & Nichol, 2021). For CIFAR-10,
we leverage an augmentation pipeline proposed in Karras et al. (2020), but only keep the rotation
and flip operation to avoid pixel value changes. We let set the augmentation probability as 15% on
CIFAR-10, and there is no augmentation used on ImageNet. For both experiments, we set learning
rate as 1× 10−4 using AdamW optimizer, and train the model until it has seen 200M and 4B images
respectively. In sampling, we adopt a cosine decay for temperature with τmax = 2.5, and applied
the corrector following Gat et al. (2024). We use the standard Fréchet Inception Distance (FID) and
Inception Score for evaluation, computed with 50,000 randomly generate images.

Code Generation We use the OpenCoder dataset (Huang et al., 2024), selected by following the
recipe in DiffuCoder (Gong et al., 2025b). We strictly follow their settings to initialize the 7B model
with Qwen2.5-Coder checkpoint, and adapt it to diffusion model using the techniques introduced in
Gong et al. (2025a). Then we traine the model on a 64 NVIDIA A100 GPUs in total. The training
process utilized BF16 mixed precision and was scaled using Fully Sharded Data Parallelism (FSDP).
For optimization, we employed the Adam optimizer with a peak learning rate of 1× 10−5, preceded
by a 2,000-step linear warmup. The model is trained with 65B tokens in total. For generation,
both models were configured with a maximum sequence length of 512 tokens and a total of T=512
diffusion timesteps. During generation, we employed a top negative entropy remasking sampler.
The CADD from scratch variant uses temperature 0.2 and the DiffuCoder initialized variant uses
temperature 0.01.

B.3 COMPUTATION ANALYSIS

We measured both training and inference efficiency under the same hardware (H100, FP32) and batch
settings (batch size=1), using the DiT model with 169 M parameters. The results are summarized in

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

128 256 512 1024 4096
Steps

0.1

0.2

0.3

M
A

U
VE

 (
)

0.0150.0170.018
0.023

0.063
0.080

0.031

0.140

0.170

0.042

0.2400.240

0.035

0.270
0.290

MDLM
CADD
CADD, (MDLM init)

(a) MAUVE

128 256 512 1024 4096
Steps

40

50

60

G
en

 P
PL

. (
) 55.3

56.3

61.5

49.6
51.2

55.8

44.1
46.1

53.0

40.3

44.6

51.3

34.1
35.3

50.9

MDLM
CADD
CADD, (MDLM init)

(b) Generative perplexity.

Figure 4: Analogous figure of Figure 3. We compare the finetuned checkpoint using CADD objective
with CADD and the initialization checkpoint of MDLM.

the table 4. During training, CADD matches the speed of the MDM baseline, with nearly identical
token throughput (tokens/s) per gpu and memory usage. During inference, when K = 1, CADD shows
similar computation cost to MDM. The inference cost increases in a linear way as K increases, since
the model performs K times forward for the z0 estimation, while the training cost remains unchanged.

C ADDITIONAL EXPERIMENT RESULTS

C.1 TRAINING FROM MASK DIFFUSION MODEL

From the experiments on code generation, we have seen CADD could be used to finentune an existing
discrete (masking) diffusion model to improve the performance. Here we provide complementary
evidence that such observation is also valid on text generation. We finetune a MDLM checkpoint with
CADD objective for additional 50B tokens and evaluate the performance with same setting shown
in the main experiments (Figure 3). The results are shown in Figure 4. The red curve shows close
performance to the green one that represent CADD’s performance, which indicates CADD could
efficiently finetune an existing MDM model to enhance the generation capabilities.

C.2 PERPLEXITY EVALUATION

Since the objective of CADD involves the KL divergence of both discrete and continuous component
as shown in Eq. (14), it is not fair to compare the tightness of the bound directly with other models,
and we choose to focus more on the evaluation of the generated samples. However, our model is still
able to compute the likelihood of the discrete part. Here we put the results for reference, aiming to
provide more information to help the readers understand how the model helps the discrete diffusion
side.

Table 5 and Table 6 report the perplexity evaluation on character-level and token-level respectively.
The model is trained on Text8 and LM1B, following the settings of Jo & Hwang (2025) and Sahoo
et al. (2024). On Text8, we can see CADD achieve very competitive perplexity results, and is slightly
worse than the SoTA RDLM (Jo & Hwang, 2024). On LM1B, we can see CADD achieve the best
results among diffusion models when evaluate the discrete part perplexity on both LM1B data and
OWT data.

Table 7 reports the zero-shot evaluation results of the checkpoint trained on OWT data. We can
observe CADD and MDLM both surpasses the perplexity of AR models on Lambada, Pubmed
and Arxiv datasets. They have different dataset that they are good at in terms of perplexity, and
CADD wins slightly more as it shows better zero-shot perplexity than MDLM on 4/7 tasks. These
experiments result jointly indicate that CADD can not only provide strong generation quality, but
also provide a good discrete likelihood bound.

C.3 ABLATION STUDIES

Comparing the number of samples used for x̂0 = fθ(xt, z
(k)
t) We first conduct ablation to study

how the number of samples used to compute x̂0 would affect CADD’s performance. Similar to our

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Bits Per Character (BPC) results on
Text8 test set. Results are taken from Jo &
Hwang (2025). Bold denotes the best result in
autoregressive or diffusion models. The best
diffusion results are marked in bold.

Method BPC (↓)
Autoregressive
AR 1.23
Continuous Diffusion
Plaid ≤ 1.48
BFN ≤ 1.41
RDLM ≤ 1.32
Discrete Diffusion
Multinomial Diffusion ≤ 1.72
D3PM Uniform ≤ 1.61
D3PM Absorb ≤ 1.45
SEDD Absorb ≤ 1.39
MDLM ≤ 1.40
MD4 ≤ 1.37

CADD (Ours) ≤ 1.35

Table 6: Test perplexities (PPL; ↓) on LM1B. The
baseline results are taken from Sahoo et al. (2025). For
CADD, we report the bound on the discrete likelihood.
Best diffusion value is bolded. ⋆ the dataset for SEDD
didn’t incorporate sentence packing.

Method LM1B OWT

Autoregressive
Transformer 22.8 17.5

Diffusion (Uniform-state / Gaussian)
D3PM Uniform (Austin et al., 2021a) 137.9 -
Diffusion-LM∗ (Li et al., 2022) 118.6 -
SEDD Uniform (Lou et al., 2024) 40.3⋆ 29.7
UDLM (Deschenaux & Gulcehre, 2025) 36.7 27.4
DUO (Sahoo et al., 2025) 33.7 25.2

Diffusion (absorbing state)
D3PM Absorb (Austin et al., 2021a) 76.9 -
DiffusionBert (He et al., 2023) 63.8 -
SEDD Absorb (Lou et al., 2024) 32.7⋆ 24.1
MDLM (Sahoo et al., 2024) 31.8 23.2

CADD (Ours) 31.4 23.1

Table 7: Zero-shot perplexities (↓) of models trained for 1M steps on OpenWebText. All perplexities
for diffusion models are upper bounds. Baseline results are taken from Sahoo et al. (2025). Best
diffusion model performance results are bolded and diffusion values better than AR are underlined.
Plaid and D3PM are trained with 0.3M more steps.

Method PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

Autoregressive
Transformer 82.05 25.75 51.25 51.28 52.09 49.01 41.73

Diffusion (Uniform-state / Gaussian)
SEDD Unifor 105.51 41.10 82.62 57.29 82.64 55.89 50.86
Plaid 142.60 50.86 91.12 57.28 - - -
UDLM 112.82 39.42 77.59 53.57 80.96 50.98 44.08
DUO 89.35 33.57 73.86 49.78 67.81 44.48 40.39

Diffusion (absorbing state)
SEDD Absorb 100.09 34.28 68.20 49.86 62.09 44.53 38.48
D3PM Absorb 200.82 50.86 138.92 93.47 - - -
MDLM 95.26 32.83 67.01 47.52 61.15 41.89 37.37

CADD (Ours) 93.33 31.84 64.98 46.81 62.80 42.62 37.52

main experiments in text generation, we compare CADD with K ∈ {1, 2, 3, 4} in terms of MAUVE
and generative perplexity.

As shown in Figure 5, increasing both the number of sampling steps and the hyperparameter K
consistently improves CADD’s performance. The value of K, which corresponds to the number of
continuous samples used for soft hints, has a consistent and positive effect on generation quality. It
is interesting to see the largest performance gain, especially for generative perplexity, comes from
increasing K from 2 to 3. The subsequent gain from K = 3 to K = 4 is smaller. One possible reason
is that when K is not large enough, the predicted logits could vary and make the expected value
smoothed to be a flatten distribution. As K gets bigger, the estimation of the correct x0 becomes
more accurate, resulting in better generation quality, with a trade-off between desired sample quality
and inference-time latency.

We also use entropy as a complementary metric to observe the model’s behavior, and the results are
shown in Figure 6. We observe CADD, the highest-quality model in terms of MAUVE and generative

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

128 256 512 1024 4096
Steps

0.0

0.1

0.2

0.3

0.4

M
A

U
VE

 (
)

0.0170.017

0.080

0.120

0.063
0.080

0.150
0.170

0.120
0.140

0.180

0.240
0.240
0.250
0.270

0.390

0.270
0.290

0.330

0.430

CADD (K=1)
CADD (K=2)
CADD (K=3)
CADD (K=4)

(a) MAUVE

128 256 512 1024 4096
Steps

20

30

40

50

G
en

 P
PL

. (
)

39.9
42.1

55.3
56.3

31.8
33.5

49.6
51.2

20.6
23.3

44.1
46.1

18.7
21.7

40.3

44.6

17.2
20.7

34.1
35.3

CADD (K=1)
CADD (K=2)
CADD (K=3)
CADD (K=4)

(b) Generative perplexity.

Figure 5: Analogous figure of Figure 3. We compare of CADD variants using different number of
samples to estimate x̂0 (K=1-4).

128 256 512 1024 4096
Steps

5.3

5.4

5.5

5.6

En
tr

op
y

(
)

5.48

5.52

5.65

5.40

5.49

5.63

5.39

5.48

5.62

5.31

5.46

5.62

5.24

5.45

5.61

SEDD (absorb)
MDLM
CADD

128 256 512 1024 4096
Steps

5.2

5.3

5.4

En
tr

op
y

(
)

5.35

5.42

5.485.48

5.27

5.38
5.40
5.41

5.25

5.38
5.40

5.47

5.20

5.315.31

5.35

5.185.18

5.21

5.24

CADD (K=1)
CADD (K=2)
CADD (K=3)
CADD (K=4)

Figure 6: Analogous figure of Figure 3: study of generation variance and diversity across all methods
and across different K. We use entropy (higher indicates more stochasticity) are reported.

perplexity (shown in Figure 3), has the lowest entropy. This indicates that CADD achieves its keeps
a lower variance in the generation process with concentrating its continuous conditions. The right
plot, which analyzes different values of K for CADD, shows that a larger K consistently leads to
lower entropy. This reveals the role of K as a hint mechanism. A larger K provides a stronger, more
deterministic "soft hint" from the continuous space, preserving smaller variance during generation.
However, this does not mean CADD lack of generation diversity, as it still hits a strong MAUVE
score, indicating it strikes a good balance between mode-covering and mode-seeking.

On the choice of fusion and ẑ0 estimation In most of our experiments, we choose to fuse the
discrete mask token embedding and continuous embedding with addition operation, i.e., z̃t =
zdisc + zt. We consider two extra manners to fuse these two domains: 1) concatenation [zdisc, zt]; 2)
reweighted sum αtzdisc + (1− αt)zt, where αt decreases as the position is more likely to be clean
(unmasked). The intuition is that when a token is unlikely to be masked, the model should lean more
on zt to carry semantic content, hence a smaller αt.

Observing the results in Table 8, MAUVE varies by only 0.03 absolute and Entropy varies by 0.07
absolute across the different choices. These three options do not show significant difference to the
performance, while concatenation involves an additional projection layer to match the embedding
dimension.

Morever, we compare the choice of ẑ0 estimation, as discussed in Eq. (21):

hard: x̂0 = argmax
v

πθ,i(v), ẑ0 = wθ(x0) soft: ẑ0,θ :=
∑
v

pθ(x̂0 = v | xt, zt)wθ,v.

On the choice of training objective To further justify whether we should use MSE to optimize
at the embedding level in the categorical generative modeling scenario. We add training results
that include an extra MSE loss ∥ẑ0 − z0∥2 using the two parameterizations of ẑ0 (soft and hard)
defined in Eq. (21). From the results, CE + MSE provides performance that is close to using CE
alone. The soft parameterization gives a gain under hard-inference MAUVE, but it introduces higher
computation cost. This is because the soft prediction requires a matrix multiplication between the
predicted probability vector RB×L×d and the token embedding matrix Rd×V with batch size B,
sequence length L, embedding dimension d and vocabulary size V . Such extra cost reduces TPS/GPU
and increases TFLOPS. A possible explanation for the limited improvement is that, in the categorical
setting, an MSE loss behaves similarly to cross entropy since both losses guide the model toward

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: Performance vs. fusion method for z̃t

Fusion MAUVE (↑) Entropy (↑)
Add 0.24 5.31
Concate 0.21 5.37
Reweight 0.24 5.30

Table 9: Performance vs. continuous schedules

Metrics FM VP

MAUVE 0.24 0.24
FiD 2.88 3.16

Table 10: Performance vs. training and esti-
mation method for ẑ0

Metric CE CE + MSE
soft ẑ0 hard ẑ0

MAUVE
soft ẑ0 0.24 0.24 0.22
hard ẑ0 0.18 0.24 0.24
computation cost
TFLOPS 0.291 0.325 0.291
TPS/GPU 47,152 32,117 47,152

Table 12: Qualitative Generation Analysis. We visualize the prediction for the masked token in "A
[MASK] sits on the mat" as we vary the noise level t of the continuous embedding corrupted from
the embedding "model".

Noise Level (t) Predicted Sentence Predicted Token
Input (GT) A model sits on the mat model
t = 0.1 A model sits on the mat model
t = 0.3 A model sits on the mat model
t = 0.5 A vase sits on the mat vase
t = 0.7 A tank sits on the mat tank
t = 1.0 A and sits on the mat and

selecting the correct token and its embedding. We expect MSE to be more useful in settings where
the targets are not purely categorical.

On the choice of continuous schedule We compare the Variance-Preserving (VP) schedule with
Flow-matching (FM) schedule in both text and image generation experiments. The results are shown
in Table 9. For text generation, the results are on par with the Flow-matching schedule. For image
generation, the FiD score is slightly worse under the VP schedule. This difference may come from
the need for different hyper-parameter settings for the two schedules.

On model architecture Similar to the text generation, we also examine the performance of
image generation. We conduct experiments to test the impacts of model architecture and number
of function evaluations (NFEs) in the sampling stage. The results are reported in Table 11. As
shown, ADM (Dhariwal & Nichol, 2021) shows stronger performance than DDPM++ (Song et al.,
2021) across different NFEs. Especially when NFE is sufficiently large as 512, the performance of
using ADM + NFE=512 configuration demonstrate a significant performance gain. As qualitative
justification, we can also observe the last row of Figure 7 has the best visual quality.

FID (↓)
Model 64 256 512

DDPM++ 31.24 4.72 4.70
ADM 30.41 4.29 2.88

Table 11: Ablation results on image generation,
trained with DDPM++ and ADM architecture.
FID results measured using NFE=64, 256, 512.

Figure 7: Qualitative results of CIFAR-10, gen-
erated by ADM, using NFE=64,256,512 (from
top row to bottom).

Qualitative visualization Table 12 demonstrates the effect of the continuous embedding zt as a
semantic scaffold that guides the discrete unmasking process. We use "A model sits on the mat" as
input, and mask the second position. Using different noise level t to corrupt the embedding of token
"model" to form zt and predict the masked token. In the low-noise regime (t ≤ 0.3), the continuous
signal is clear enough and the prediction is same as "model". As noise increases, the embedding

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

degrades and we can observe the predictions traverse from relevant category (e.g., vase”, tank”) to
generic priors only when the guiding signal is fully destroyed at t = 1.0.

D ADDITIONAL GENERATED SAMPLES

D.1 TEXT GENERATION

Researchers conducted a study from the Centre for Applied Biology
Interface (IRAP) which appeared in a unit of the journal Institale
Konczakalye Medicine, gave the results: Sleep stimulation were
involved in a randomized setting compared. The results showed a
measurable difference when the abnormal disturbances involved in
reducing working mood and reward were involved in the absence of
serotonin. There was a significant difference when serotonin was
compared to aerobic stimuli that more positively affected aerobic
intensity. These increased tactile disturbances were mediated
by dopamine concentration, increased concentration, changes in
peak pressure, reduced appetite and spin pressure intensity. The
effects were important since aerobic activity was also involved
in increased concentration and the brain was involved at the
same level. The results were analyzed for physiological stimuli
such as the EEG OxyRS. The results showed a clear decrease for
the subjective rhythm, concentration and reward and reward were
involved. Changes also showed expression by changes in the total
dopamine function and sleep frequencies were placed within a stable
pathway. In antidepressant stimulation, the heightened release
of dopamine pressure and higher reward reward led to gradual
differences in the frequency of dopamine stimulation...

We have started recently introducing first parameter support.
first command control is custom function that utilizes some
combination of variable function to allow editing and transitions
and transitions across the inputs. It causes filter support to
activate. The extension utilizes the ability to set different
inputs and outputs, allowing for different transitions between
inputs and outputs, with option to set transitions and transitions
around all possible transitions with switch. The extension depends
on applying a hierarchy of outputs like parameter function that
links progress across inputs of different inputs. The workflow
also improves inputs, inputs, balance and even random inputs. It
is the common variable and function parameter for whatever input
modification, variable control and outputs for common variables for
possible play what regarding variable control. The basic parameter
and many other useful possible explain the potential behind set
functions as stack control and stack control. Linimental Changes
to Use The parameter is given a macro directly changing the linear
parameter of filter control, instead, leading to possible read
transitions and transitions to change around the inputs. It
also supports based movable stack set and also based on inputs
and gradient support resulting via the fixed inputs and inputs
representing variable selection. It is only possible by binding
in the inputs, first input control, first iteration control,
variable control, stack control and guarantees that all effects
fail to return performance. It can also be easily activated with
continuous stack control, stack control and quick stack control.
Increased prior warning and filter control are very important to
filter control...

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

When it was only briefly used to experience psychic balance, after
being removed at the optimal frequency, decreasing the chance for
general performance, but when it changed at a rest and only even
moved at the same intensity, it did not you seriously control the
transition from strength to strength. Instead, it also gained
the balance in the fluid balance with the normal balance. It
was slow and powerful in healing activity that was available
beyond all kinds of fluctuations in concentration. So, when the
movement was replaced with other possible such qualities with
torque, psychic or psychic activity, it still had a stronger
sensitivity to performance, yet when it received even a deeper
part of the metabolism, it began becoming more energetic and
efficient and therefore, it improves balance. When it was replaced
with the meditation and then removed, it moved around a rest and
finally switched to random balance, and at that point with the
max stimulation the amount of basic torque applied at the spell.
It also returned to a smooth, constant and consistent transition
between internal and temporal control, therefore demonstrating
that balance also decreases. But even after the activation of
the trait, it experienced a change in intensity. Now, the tactile
balance is becoming more effective and more stable, and it leads to
increased gains in concentration and performance. Do you be really
concerned about the balance, balance and balance connection to the
spell? The positive effect on the tactile balance now comes true
to speed. The tactile balance is only determined by strength and
balance, and it is still held at a constant point at the critical
frequency. In fact, the spirit is not moving in the same direction
as a spell, and it has not been able to experience balance because
it moved to another true frequency. !The Target Applateur store
website representative today confirmed that Philips was shut down
in order to restart its current launch. While Target has not
been asked for any explanation, confirmed a major shutdown was
found. Ït does no longer fully support operating systems, while
its switch has been changed to replace the current system running
the Double Storage, Fresh, Medium Storage and Hot Storage modules.
P̈lease Note that we are working on the matter is not there.Ḧe said:
P̈rint had working to resolve all the issues on the platform, and
if it fails, the shutdown requiring the vendor being able to fix
them. Ẅe do not know at the reason for the delay and therefore
the reasons why we are continuing control will be determined by
them and discussed today so we will not go on a more comprehensive
timetable. Ẅe will’t speculate on the basis whether to continue
running locally used current systems. Ẅhile the error created
more complexity, it is decided by the seller if this fix is true,
we expect that these issues will be resolved with proper action.
Ẅe know that if we want to continue with browsing cycles then it
will be very difficult to restart, and with our support, access
is always applied to data settings, store volumes and automatic
navigation. Loading.

D.2 CODE GENERATION

1 from typing import List, Tuple
2

3

4 def rolling_max(numbers: List[int]) -> List[int]:
5 """ From a given list of integers, generate a list of rolling maximum

element found until given moment

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

6 in the sequence.
7 >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
8 [1, 2, 3, 3, 3, 4, 4]
9 """

10 result = []
11 current_max = numbers[0]
12 for num in numbers:
13 if num > current_max:
14 current_max = num
15 result.append(current_max)
16 return result

Listing 1: "Generation on HumanEval"
1 def comb_sort(arr):
2 n = len(arr)
3 gap = n
4 swapped = True
5 while ((gap > 1) or swapped):
6 swapped = False
7 gap = int((gap / 1.3))
8 if (gap < 1):
9 gap = 1

10 for i in range((n - gap)):
11 if (arr[i] > arr[(i + gap)]):
12 (arr[i], arr[(i + gap)]) = (arr[(i + gap)], arr[i])
13 swapped = True
14 return arr
15

16

17 assert comb_sort([5, 15, 37, 25, 79]) == [5, 15, 25, 37, 79]

Listing 2: "Generation on MBPP"

1 from random import randint,seed as random_seed
2 import time
3 import matplotlib.pyplot as plt
4

5 def task_func(my_list, size=100, seed=100):
6 """
7 Enhances ’my_list’ by appending the number 12, then generates a list

of random integers based
8 on the sum of elements in ’my_list’, limited by ’size’. It measures

the time taken for this process
9 and plots a histogram of the generated random numbers.

10

11 The size of the random numbers list is determined by the sum of the
numbers in ’my_list’, with

12 an upper limit set by ’size’. The random integers are within the
range 1 to 100, inclusive.

13

14 Parameters:
15 - my_list (list): The input list containing numeric elements.
16 - size (int): Maximum size limit for the generated list of random

numbers. Default is 100.
17 - seed (int): Seed value for random number generator for

reproducibility. Default is 100.
18

19 Returns:
20 - tuple: A tuple containing the time taken to generate the list (in

seconds, as a float) and
21 the matplotlib Axes object for the histogram. The histogram’s x-

axis is labeled ’Number’,
22 representing the range of random integers, and the y-axis is

labeled ’Frequency’, representing
23 the frequency of each integer in the generated list.
24

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

25 Raises:
26 - TypeError: If ’my_list’ is not a list.
27 - ValueError: If ’my_list’ contains elements that are not numeric (

int or float).
28

29 The histogram plots the distribution of the random numbers generated,
with the number range (1-100)

30 on the x-axis and the count (frequency) of each number on the y-axis.
31

32 Requirements:
33 - random
34 - time
35 - matplotlib.pyplot
36

37 Example:
38 >>> my_list = [2, 3, 5]
39 >>> time_taken, ax = task_func(my_list)
40 >>> print(type(time_taken)) # Example output: <class ’float’>
41 <class ’float’>
42 >>> ax.get_title() # Returns ’Histogram of Random Numbers’
43 ’Histogram of Random Numbers’
44 """
45 if not isinstance(my_list, list):
46 raise TypeError("’my_list’ must be a list.")
47

48 if not all(isinstance(x, (int, float)) for x in my_list):
49 raise ValueError("’my_list’ must contain numeric elements.")
50

51 # Append 12 to the list
52 my_list.append(12)
53

54 # Calculate the sum of the list
55 total_sum = sum(my_list)
56

57 # Determine the size of the random numbers list
58 list_size = min(total_sum, size)
59

60 # Set the seed for reproducibility
61 random_seed(seed)
62

63 # Generate the list of random numbers
64 random_numbers = [randint(1, 100) for _ in range(list_size)]
65

66 # Measure the time taken
67 start_time = time.time()
68 # Generate the histogram
69 plt.figure(figsize=(10, 6))
70 plt.hist(random_numbers, bins=range(1, 102), align=’left’, edgecolor=

’black’)
71 plt.xlabel(’Number’)
72 plt.ylabel(’Frequency’)
73 plt.title(’Histogram of Random Numbers’)
74 plt.show()
75 end_time = time.time()
76

77 # Return the time taken and the Axes object
78 return end_time - start_time, plt.gca()

Listing 3: "Generation on BigcodeBench"

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D.3 IMAGE GENERATION

Figure 8: Unconditional image generation, generated by CADD trained on ImageNet-32× 32.

30

	Introduction
	Related Work
	Preliminary
	Continuously Augmented Discrete Diffusion (CADD)
	Forward
	Reverse
	Algorithm and Implementation

	Experiments
	Text Generation
	Image Generation
	Code Generation

	Conclusion
	Detailed Derivations and Proof
	ELBO Derivation
	Forward
	Reverse

	Detailed Experiment Settings
	Diffusion Settings
	Experiment-Specific Settings
	Computation Analysis

	Additional Experiment Results
	Training from mask diffusion model
	Perplexity Evaluation
	Ablation studies

	Additional Generated Samples
	Text Generation
	Code Generation
	Image Generation

