
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION
MODEL FOR CATEGORICAL GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard discrete diffusion models treat all unobserved states identically by map-
ping them to an absorbing [MASK] token. This creates an “information void”
where semantic information that could be inferred from unmasked tokens is lost
between denoising steps. We introduce Continuously Augmented Discrete Diffu-
sion (CADD), a framework that augments the discrete state space with a paired
diffusion in a continuous latent space. This yields graded, gradually corrupted
states in which masked tokens are represented by noisy yet informative latent
vectors rather than collapsed “information voids”. At each reverse step, CADD
may leverage the continuous latent as a semantic hint to guide discrete denoising.
The design is clean and compatible with existing discrete diffusion training. At
sampling time, the strength and choice of estimator for the continuous latent vector
enables a controlled trade-off between mode-coverage (generating diverse outputs)
and mode-seeking (generating contextually precise outputs) behaviors. Empirically,
we demonstrate CADD improves generative quality over mask-based diffusion
across text generation, image synthesis, and code modeling, with consistent gains
on both qualitative and quantitative metrics against strong discrete baselines.
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Figure 1: Comparison of diffusion models in different modeling spaces. Masked diffusion models use
[MASK] as noise and decode through a single mask-to-token path, while continuous diffusion models
explore the Gaussian space but often produce unreadable tokens due to the vast search space. CADD
combines the stability of masked diffusion with the flexibility of continuous diffusion, enabling better
token decoding for masked positions.

1 INTRODUCTION

Diffusion models have significantly advanced generative modeling tasks (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Karras et al., 2022), particularly in
image synthesis (Saharia et al., 2022; Esser et al., 2024; Polyak et al., 2024; Zheng et al., 2024a;
Brooks et al., 2024). Recently, with the rapid progress on discrete diffusion models (Austin et al.,
2021a; Hoogeboom et al., 2021; Lou et al., 2024), diffusion models have become a strong tool on the
discrete categorical data domain, such as text generative modeling and code generation (Gat et al.,
2024; Gong et al., 2023; 2025b).
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Early work on Continuous Diffusion Models (CDMs) for categorical data maps tokens into a
continuous space, applies Gaussian diffusion to the representations, and then rounds back to discrete
symbols (Li et al., 2022; Dieleman et al., 2022; Han et al., 2022; Zhang et al., 2023; Gulrajani &
Hashimoto, 2023). This route preserves smooth semantic signals and enables the use of established
score-based methods. In parallel, Masked Diffusion Models (MDMs) have recently shown strong
results for categorical data (Shi et al., 2024; Sahoo et al., 2024; Nie et al., 2025): instead of adding
noise in an embedding space, MDMs progressively mask tokens over time and learn to unmask them,
yielding clear training signals via token-level cross-entropy.

Despite their respective successes, both approaches have limitations, which illustrated in Figure 1. (i)
MDMs suffer from information loss due to their use of absorbing [MASK] state (Wang et al., 2025).
This design collapses all unobserved possibilities into one symbol, erasing any information about
how close a corrupted position is to the original token, creating an “information void”. This reduces
the information available for the model to resolve ambiguity and maintain global semantic coherence.
As an example shown in the right of the figure, if a masked token could plausibly be “Language” or
“Diffusion”, the [MASK] representation offers no semantic clue to favor one over the other, forcing
the model to make a hard choice without graded guidance. (ii) While CDMs can represent semantic
proximity, they face a different challenge, known as over-smoothing. Because the denoising process
occurs entirely in a continuous embedding space and discretization to tokens only happens in the
end (Gao et al., 2022), their continuous denoising objective can over-smooth token identities, which
makes it difficult for the model to make precise predictions without localized context.

To address these challenges, we propose Continuously Augmented Discrete Diffusion (CADD),
which integrates the strengths of CDMs into MDMs. CADD retains the discrete masking trajectory
and augments it with a paired conditional Gaussian diffusion in a continuous semantic embedding
space. Our forward process jointly evolves the token sequence and its latent, so positions that are
masked in the discrete path are accompanied by noisy yet informative latent vectors rather than
information voids. In the reverse process, the model uses the continuous latent as a soft semantic
hint to guide token denoising at each step, while the discrete context constrains the latent dynamics
locally. Returning to Figure 1, the continuous manifold offers a graded path between candidates
(“Language” and “Diffusion”, in this case), and the discrete neighborhood restricts the search space,
allowing movement within the triangular region between hypotheses and enabling smooth transitions
driven by the hints. In addressing the limits of both pure MDMs and CDMs, our contributions are:

1. Better token prediction with soft hints. For masked positions, the continuous latent preserves
graded proximity to the ground-truth token embedding, which reduces ambiguity and makes
discrete prediction easier.

2. Diversity without off-manifold drift. At inference, one can resample the continuous latent
(e.g., multiple latent draws per discrete state) to explore alternative yet valid choices for a
token or span. Because the discrete head stays grounded in the vocabulary, diversity comes
from semantic variation rather than uncontrolled noise.

3. Training and sampling remain simple. CADD keeps standard cross-entropy for tokens and a
standard diffusion loss for the continuous head. The sampler can alternate or jointly update
the discrete and continuous states.

4. Efficient fine-tuning. CADD requires no special architecture and can reuse the same backbone
as any MDM, enabling efficient fine-tuning of existing MDM to gain the above benefits.

2 RELATED WORK

Discrete Diffusion Models Discrete diffusion models (Hoogeboom et al., 2021; Zheng et al., 2024b;
Austin et al., 2021a) operate by defining a Markov chain over the discrete token space, gradually
diffusing the data with either uniform or absorbing transitions. Later, the model was unified and
simplified to continuous-time masked diffusion models (Campbell et al., 2022; Lou et al., 2024; Shi
et al., 2024; Sahoo et al., 2024; Zhang et al., 2025b). Building on this, several recent works further
scaled diffusion LMs to 7B parameters (Gong et al., 2025a; Ye et al., 2025; Nie et al., 2024), achieving
performance on par with AR models. Parallel efforts explored unified multimodal variants that model
text and images both in discrete token (Yang et al., 2025; Li et al., 2025). However, because masked
diffusion models do not allow unmasked tokens to change, errors can accumulate during generation

2
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because of suboptimal unmasking in the earlier steps. Several enhanced (re-)masking techniques have
been proposed, using bits and simplex representation to enrich the binary choice of masking (Chao
et al., 2025; Song et al., 2025a), remasking during the reverse process (Gat et al., 2024; Zhao et al.,
2024; Wang et al., 2025), enabling edit operations (Havasi et al., 2025; Song et al., 2025b).

Continuous Relaxations for Discrete Data Early continuous approaches either learn denoising
in a latent embedding without explicit statistical structure (Li et al., 2022; Dieleman et al., 2022;
Chen et al., 2023) or fully relax tokens into unconstrained Euclidean space as simplex (Han et al.,
2022; Karimi Mahabadi et al., 2024; Tae et al., 2025; Jo & Hwang, 2024; 2025). However, such
unconstrained relaxations often fail to preserve the inherent discreteness and categorical semantics
of language (Gulrajani & Hashimoto, 2023). More recent methods impose structure in the logit
space (Hoogeboom et al., 2021; Graves et al., 2023) or directly on the probability simplex via
Dirichlet priors (Avdeyev et al., 2023; Stärk et al., 2024), enforcing stronger statistical constraints on
the noising process. Flow-matching techniques further treat the simplex as a statistical manifold (Liu
et al., 2023; Cheng et al., 2024; Davis et al., 2024), yet these approaches still lag behind discrete
diffusion models in generation fidelity. Recently, Zhang et al. (2025a) leveraging density models with
normalizing flow (Zhai et al., 2025; Gu et al., 2025) for flexible language modeling, and Sahoo et al.
(2025) connect discrete diffusion language models and the underlying Gaussian diffusion.

Bridging Through the Lens of Mode Balancing Our work is also motivated by balancing mode
seeking and mode covering. Related efforts pursue this balance via guidance methods that tune the
diversity–precision trade-off (Dhariwal & Nichol, 2021; Ho & Salimans, 2022); score-distillation
approaches that sharpen samples while retaining diffusion training for coverage (Poole et al., 2022;
Song et al., 2023; Luo et al., 2023; Yin et al., 2024; Zhou et al., 2024; Zhang et al., 2025b); and
techniques that improve GAN mode coverage using diffusion or augmentation (Zheng & Zhou,
2021; Zheng et al., 2023a; Wang et al., 2023; Karras et al., 2020; Zhao et al., 2020). Similar effects
have been observed when distilling in a paired continuous space (Sahoo et al., 2025). From this
perspective, the discrete path in CADD is naturally mode-seeking, while the continuous channel
spreads probability mass to cover plausible alternatives for the next token.

3 PRELIMINARY

Let x0 = (x1
0, . . . ,x

n
0 ) represent a sequence of discrete tokens in a vocabulary set V = {1, 2, ..., V }∪

{m} that containing V tokens plus a mask token m ([MASK]), i.e., for any positions i, xi
0 ∈

{0, 1}V+1 is a one-hot vector. Let wθ : V → Rd be a learnable token embedding matrix and the
embedding latent representations are deterministically transformed as z0 := wθ(x0), and z0 ∈ Rn×d.

Discrete Diffusion Models The forward diffusion process is performed through an element-wise
conditional sampler q(xt|x0) =

∏n
i=1 q(x

i
t|xi

0), defined as (δ(·) denotes the dirac function):

q(xi
t|xi

0) ≜ αtδ(x
i
t − xi

0) + (1− αt)δ(x
i
t −m), (1)

where αt ∈ [0, 1] is a strictly decreasing scheduling function following αt =
∏t

s=1(1 − βs). The
reverse process aims to learn p(xs|xt) for 0 ≤ s < t ≤ 1. This is typically achieved by training
a model pθ(x0|xt) to predict the original data from a corrupted state, optimized by minimizing a
variational bound on the negative log-likelihood, denoting α′

t the derivative of αt w.r.t. t:

Lvb(x0; θ) ≜ Et,xt∼q(·|x0)

[
− α′

t

1− αt
log pθ(x0|xt)

]
. (2)

Continuous Diffusion Models Continuous diffusion models corrupt real-valued data z0 ∈ Rn×d

by adding Gaussian noise scheduled by γ̄t. The forward process q(zt|z0) is a Gaussian distribution
with a closed form:

q(zt|z0) = N (zt;
√
γ̄tz0, (1− γ̄t)I) (3)

where γ̄t is a noise schedule analogous to αt, with γ̄t =
∏t

s=1 γs holding. The reverse process
pθ(zt−1|zt) is trained by fitting a network fθ(·) with a MSE objective reweighted by signal-to-noise
ratio (SNR) function λ(γ̄t, t):

Lvb(z0; θ) ≜ Et,xt∼q(·|z0)

[
λ(γ̄t, t)∥fθ(zt; t)− z0∥2

]
. (4)

3
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Figure 2: Illustrative depiction of CADD model, combining both the discrete and continuous feature
of the data. In training, the clean token at the masked position will be created by embedding matrix
and used to form the noisy embedding according to the continuous forward. In sampling, the model is
able to predict a diverse distribution of possible tokens by sampling multiple zt+1. Then the predicted
tokens will be recycled into the embedding matrix to form ẑ0,θ for the next iteration.

4 CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION (CADD)

Here we introduce Continuously Augmented Discrete Diffusion (CADD). The high-level intuition is
to mitigate the sudden information loss that occurs when tokens are replaced by an absorbing state in
discrete diffusion. Inspired by the smooth signal degradation in Gaussian diffusion, CADD augments
the discrete state space with a continuous latent variable, zt. This variable is paired with discrete
tokens xt and is designed to retain semantics of a token’s original signal even when tokens in xt are
masked. Guided by a set of latent vectors {z(k)

t }Kk=1, the model predicts next tokens by:

pθ(xt−1 | xt) = Ezt [pθ(xt−1 | xt, zt)] ≈
K∑

k=1

pθ(xt−1 | xt, z
(k)
t ). (5)

Conditioning continuous view of the underlying content at step t and traverse on the zt space, the
expectation averages over plausible continuous states so the predictor could realize the distribution of
the possible tokens more accurately. The full model design is illustrated in Figure 2 and we present
the detailed designs in the following sections. Noted that although we use continuous-time notation
s and t for diffusion steps, to improve readability, we also denote specific consecutive steps in the
diffusion process by t and t − 1, with total T steps. Below we present the construction of CADD
with main derivations. For more detailed ELBO derivations and proofs, please refer to Appendix A.

4.1 FORWARD

To let zt retain semantic hints of tokens in xt when they are masked, we define the joint transition:

q(xt, zt | xt−1, zt−1,x0) := q(xt | xt−1)︸ ︷︷ ︸
discrete part

· q(zt | zt−1,xt−1,xt,x0)︸ ︷︷ ︸
continuous part

, (6)

Given a fixed discrete schedule {βt}Tt=1 ∈ [0, 1)T and continuous diffusion schedule {γt}Tt=1, the
forward transition of discrete and continuous part can be written as following:

q(xt | xt−1) =

n∏
i=1

Categorical
(
xi
t; Q

⊤
t x

i
t−1

)
, Qt = (1− βt)I + βt 1m

⊤. (7)

q(zt | zt−1,xt−1,xt,x0) =

n∏
i=1


δ(zi

t − zi
t−1), xi

t ̸= m,

N
(
zi
t;
√
γ̄t z

i
t−1, (1− γ̄t)Id

)
, xi

t = m,xi
t−1 ̸= m,

N
(
zi
t;
√
γt z

i
t−1, (1− γt)Id

)
, xi

t = m,xi
t−1 = m.

(8)

The discrete transition is the same as normal discrete diffusion like Austin et al. (2021a) and acts
as a trigger for the continuous embedding’s evolution. The continuous trajectory for an embedding
remains dormant as long as its token is unmasked, holding its value constant at its original state
(δ(zi

t − zi
t−1) = δ(zi

t − zi
0) if xi

t is never masked as the information is not changed). The moment a

4
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token is masked, it triggers the continuous diffusion process for its embedding. The embedding then
begins a smooth degradation path determined by the Gaussian diffusion (Ho et al., 2020). If a token
stays masked, its embedding simply continues along this path, becoming progressively noisier.

Now we extend the case to the marginals at timestep t with the following proposition.
Proposition 1 (Timestep-t joint marginal factorization). The marginal at timestep t can be factorized:

q(xt, zt | x0) = q(xt | x0) · q(zt | xt,x0) (9)

Given αt :=
∏t

s=1(1− βs) and Qt :=
∏t

s=1 Qs = αtI + (1− αt)1m
⊤ and let γ̄t :=

∏t
s=1 γs,

with zi
0 = wθ(x

i
0), the two terms factorized above represent the discrete and continuous part:

q(xt | x0) =

n∏
i=1

q(xi
t | xi

0), q(xi
t | xi

0) = Categorical(xi
t; Q

⊤
t x

i
0). (10)

q(zt | xt,x0) =

n∏
i=1

q(zi
t | xi

t,x
i
0) =

n∏
i=1

{
δ(zi

t − zi
0), xi

t = xi
0,

N
(
zi
t;
√
γ̄t z

i
0, (1− γ̄t)Id

)
, xi

t = m,
(11)

A key property of the marginal distribution q(xt, zt | x0) is that it conveniently factorizes into
discrete and continuous components: q(xt | x0) and q(zt | xt,x0). This factorization is highly
advantageous, as the distribution for each component is tractable and can be computed in closed form
according to the predefined diffusion schedule.

4.2 REVERSE

Following Kingma et al. (2021); Xiao et al. (2022); Zhou et al. (2023), we choose the conditional
distribution parameterized with neural network fθ(·) to define:

pθ(xt−1, zt−1 | xt, zt) := q(xt−1, zt−1 | xt, zt,x0 = x̂0), (12)

pθ(x̂0 | xt, zt) = Categorical
(
logits = fθ(xt, zt)

)
if xt = m else δ(x̂0 − xt). (13)

The objective is to close the gap between the defined parametric distribution and the true posterior.
Below we presenet the close form of the posterior. For notation simplicity, below we discuss on
per position formulation and omit the notation i, since all distributions factorize across positions
i ∈ {1, . . . , n}.
Proposition 2 (Factorization of the true posterior). By the forward construction, the posterior can be
factorized in the following form

q(xt−1, zt−1 | xt, zt,x0) = q(xt−1 | xt,x0)︸ ︷︷ ︸
discrete part

· q(zt−1 | xt, zt,xt−1,x0)︸ ︷︷ ︸
continuous part

. (14)

Moreover, we can write the close form of each component:

q(xt−1|xt,x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
=


αt−1−αt

1−αt
x⊤
t−1x0 xt−1 ̸= m,xt = m

1−αt−1

1−αt
xt−1 = m,xt = m

x⊤
t−1xt xt ̸= m.

(15)

q(zt−1 | xt, zt,xt−1,x0) =


δ(zt−1 − z0), xt = x0 (no mask at t),
δ(zt−1 − z0), xt = m, xt−1 = x0 (first unmask at t),
N
(
zt−1; µ̃t, β̃tId

)
, xt = m, xt−1 = m,

(16)
with the following paramters:

β̃t =
(1− γ̄t−1) (1− γt)

1− γ̄t
, µ̃t =

√
γ̄t−1 (1− γt)

1− γ̄t
z0 +

√
γt (1− γ̄t−1)

1− γ̄t
zt. (17)

Lemma 1. For the unmasked positions (xt ̸= m), the KL is identically 0, and the masked positions
splits exactly as

DKL

(
q(· | xt, zt,x0)

∥∥ pθ(· | xt, zt)
)
= ρflipt

[
− log pθ(x0|xt, zt)

]︸ ︷︷ ︸
discrete

+ ρkeept DKL
cont︸ ︷︷ ︸

continuous

, (18)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training of CADD

1: Input: data minibatch {x(j)
0 }Bj=1, network fθ(·),

masking schedule {αt}Tt=1, continuous schedule
{γ̄t}Tt=1

2: for j = 1, . . . , B do
3: draw tj ∼ Uniform(1, ..., T ) for each sample
4: mask out each token position x

(j),i
0 with prob-

ability 1− αtj to obtain x
(j)
tj

5: form embeddings z
(j)
disc←wθ(x

(j)
tj

), z(j)
t ←

wθ(x
(j)
0 )

6:
7: for position i ∈ {1, ..., n}, if x(j),i

tj
= m do,

z
(j),i
tj
←
√

γ̄tjz
(j),i
tj

+
√

1− γ̄tjϵ, ϵ ∼ (0, I)

8: end for
9: z̃

(j)
tj
← z

(j)
disc + z

(j)
t , compute logits fθ(z̃

(j)
tj

)

10: optimize with cross entropy loss in Eq. (20)
11: end for

Algorithm 2 Sampling of CADD
1: Input: desired minibatch size B, network

fθ(·), schedules {αt}Tt=1, {γ̄t}Tt=1,
2: for j = 1, . . . , B do
3: init: x(j)

T ←(m, ...m), z(j)
T

i.i.d.∼ N (0, I)
4: for t = T, . . . , 1 do
5: for i = 1, . . . , n, if x(j),i

t = m do
6: compute ρflipt and ρkeept (Eq. (38))
7: determine whether to unmask

x
(j),i
t−1∼Cat(ρ

flip
t fθ(x

(j),i
t ,z

(j),i
t )+ρkeept m)

8:
9: if x(j),i

t−1 ←m then draw zi
t−1 ∼

N
(
µ̃t

(
ẑi
0,θ, z

i
t

)
, β̃tId

)
with Eq. (21)

10: else z
(j),i
t−1 ← wθ(x

(j),i
t−1 )

11: end if
12: end for
13: end for
14: end for

with the ratio that determines whether the position is going to be flipped to unmask or keep moving in
the continuous space:

ρkeept =
1− αt−1

1− αt
, ρflipt =

αt−1 βt

1− αt
=

αt−1 − αt

1− αt
.

The KL divergence in the continuous space has a reweighted MSE form:

Dcont
KL =

1

2β̃t

∥∥µ̃t(z0, zt)− µ̃t(ẑ0,θ, z
i
t)
∥∥2 =

a2t

2β̃t

∥z0 − ẑ0,θ∥2; at =
√
γ̄t−1(1− γt)

1− γ̄t
. (19)

4.3 ALGORITHM AND IMPLEMENTATION

Training Loss According to Eq. (18), the model aims to learn to maximize the likelihood of
discrete path, and also minimize the reweighted MSE in Eq. (19). Inspired by continuous diffusion
models that used for categorical modeling, e.g., CDCD (Dieleman et al., 2022) and Plaid (Gulrajani &
Hashimoto, 2023), we may estimate ẑ0,θ :=

∑
v pθ(x̂0 = v | xt, zt)wθ,v and just train the model to

predict correct categorical output to minimize the KL divergence. Thus, we choose to train CADD by
minimizing a simple cross entropy loss as following and the training is summarized in Algorithm 1:

LCADD = EtEq(xt,zt|x0)

[
−

∑
i:xi

t=m

log pθ(x
i
0 | xi

t, z
i
t)
]

(20)

Note that we may add the MSE loss in Eq. (19) to the above objective to more accurately estimate
the exact variational lower bound. Empirically we find the simplified loss is more computationally
efficient, thus we choose to use this loss for most of our experiments unless otherwise specified.

Sampling The sampling start from the last timestep T of the diffusion chain. Under the absorbing
forward, αT ≈ 0, hence p(xT ) = δxT=m, i.e., all tokens are masked. Since all positions are masked
at T , the continuous prior is p(zT |xT ) =

∏n
i=1N

(
zi
T ; 0, Id

)
, which matches the forward marginal

at T . For each timestep, given (xt, zt), the network predicts

πθ,i(v) :=
1

K

K∑
k=1

pθ(x̂
i
0 = v | xt, z

(k)
t ) ∈ ∆V−1 for each position i.

If the position i is unmasked, the absorbing chain keeps xi
t−1 = xi

t almost surely and the continuous
variable is deterministic zi

t−1 = zi
t = wθ(x

i
t). If this position is masked, it draws a clean token v ∼
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πθ,i(·) with probability 1−αt−1

1−αt
to unmask it, and the continuous latent zi

t−1 ← wθ,v. If it remains

unmasked, zi
t−1 moves along the continuous diffusion trajectory zi

t−1 ∼ N
(
µ̃t

(
ẑi
0,θ, z

i
t

)
, β̃tId

)
.

The full sampling process in shown in Algorithm 2. Note the choice of ẑi
0,θ has two options:

hard: x̂0 = argmax
v

πθ,i(v), ẑ0 = wθ(x̂0) soft: ẑ0,θ :=
∑
v

pθ(x̂0 = v | xt, zt)wθ,v. (21)

These two choices are both valid to use depending on whether we are looking for mode-covering or
mode-seeking behavior, i.e., better context localization or better diversity, respectively. In our main
experiments we keep the hard option, and our empirical exploration in Appendix C.3 justify these
two choices could meet the demand of these two behavior. Moreover, although CADD may leverage
multi-sample for the x0 distribution estimation, for fair comparison with baselines, we keep K = 1
for most of our experiments. More detailed studies are also shown in the Appendix C.3.

Implementation We follow the common-used design of the model architecture to let fθ(·) predict
logits for categorical distribution. The discrete path follows earlier masked-diffusion setups: starting
from x0, we mask a subset of positions to obtain xt, embed the mixed sequence with the learnable
table and form zdisc = wθ(xt). The only difference is the model needs to take an additional
variable zt input for the continuous embeddings. To achieve this, we first form the clean embeddings
z0 = wθ(x0), and then apply noise only at masked positions using the forward marginal Eq. (11)
to obtain zt. We fuse zdisc and zt by element-wise addition z̃t := zdisc + zt, and feed z̃t to the
backbone fθ to produce per-position logits.

5 EXPERIMENTS

In this section we present experiments to validate the proposed CADD model through experiments
on text, image, and code generation benchmarks. The evaluations are designed to assess the model’s
performance across diverse data modalities and scales.

5.1 TEXT GENERATION

Experiment setting For text generation, we strictly follow the experimental setup of the Masked
Diffusion Language Model (MDLM) (Sahoo et al., 2024), a common configuration for this task. We
train our CADD models on the OpenWebText (OWT) dataset (Gokaslan & Cohen, 2019). Data is
tokenized using the GPT-2 tokenizer with a vocabulary size of |V| = 50, 257 (Radford et al., 2019),
and sequences are fixed to a length of n = 1,024. To be consistent with the baselines, we use a
Discrete DiT backbone (Peebles & Xie, 2023) with approximately 168M parameters, and train with
same number of iterations. All training hyper-parameters are identical to those in MDLM.

Evaluation. We mainly compare the performance with discrete diffusion baselines in terms of the
generative quality, and our evaluation protocol strictly follows that of Wang et al. (2025). We compare
the performance against discrete diffusion baselines using two metrics: the MAUVE score (higher is
better) (Liu et al., 2021; Pillutla et al., 2021) and generative perplexity (lower is better) (Lou et al.,
2024). Further details on the evaluation setup are located in Appendix B.

Main Results. Figure 3 presents the results for unconditional text generation on the OpenWebText
(OWT) dataset, comparing CADD with SEDD (absorb) and MDLM across a range of sampling steps
T ∈ {128, 256, 512, 1024, 4096}. Within the range T ≤ 1024, all models shows improvement as
the number of sampling steps increases. We can notice CADD demonstrates stronger and consistent
gains as steps increase compared to SEDD and MDLM in terms of both metrics. Plotting the x-axis
on a log2 scale reveals that the performance trend is approximately linear.

Extending the sampling process to T = 4096 further demonstrates CADD’s scaling capabilities
at inference time, as it continues to improve while the masked-only baselines stagnate or degrade.
From T = 1024 to 4096, CADD’s MAUVE score still increases by 0.3, and its generative perplexity
is scored from 44.6 to 35.3. MDLM’s performance slightly worsens, which is consistent with the
observation that mask-only diffusion models scale poorly with T (Wang et al., 2025). Overall, CADD
consistently show performance gain across all tested number of sampling steps over the mask-only
discrete diffusion models, validating the effectiveness of the proposed continuous-augmented space.
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Figure 3: Unconditional text generative evaluation of model trained on OpenWebText (OWT) data.
All method are evaluated with 128, 256, 512 1024, and 4096 sampling steps. MAUVE (higher is
better) and generative perplexity (measured using GPT2-Large, lower is better) are reported.

Table 1: FID and IS evaluation on CIFAR-10.
The arrow symbols denotes lower/higher is better
respectively. Baseline results are quoted from
Chao et al. (2025).

Method FID (↓) IS (↑)
CADD (NFE=512) 2.88 10.04

Discrete
MDM (NFE=512) 4.66 9.09
MDM-Mixture (NFE=512) 4.80 9.22
MDM-Prime (NFE=512) 3.26 9.67
D3PM Absorb (NFE=1,000) 30.97 6.78
D3PM Gauss. (NFE=1,000) 7.34 8.56
CTDD-DG (NFE=1,000) 7.86 8.91
Tau-LDR (NFE=1,000) 3.74 9.49
Discrete FM (NFE=1,024) 3.63 -

Continuous
Continuous FM 6.35 -
Bit Diffusion 3.48 -
StyleGAN+ADA 3.26 9.74
DDPM 3.17 9.46

Table 2: FID evaluation using model uncondi-
tionally trained on ImageNet (32 × 32 resolu-
tion).

Method FID (↓)
CADD (NFE=1,024) 3.74

Discrete
MDM (NFE=1,024) 7.91
MDM-Mixture (NFE=1,024) 8.08
MDM-Prime (NFE=1,024) 6.98

Continuous
NDM 17.02
DDPM 16.18
MSGAN 12.30
i-DODE (SP) 10.31
i-DODE (VP) 9.09
Stochastic Interp. 8.49
Soft Trunc. DDPM 8.42
ScoreFlow (subVP) 8.87
ScoreFlow (VP) 8.34
Continuous FM 5.02

5.2 IMAGE GENERATION

We train and evaluate our models on the CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet (Krizhevsky et al., 2017) datasets (resolution 32 × 32). For both, input images are in RGB
channels, thus a dimensionality of n = 32× 32× 3 with |V| = 256 pixel values per channel. For fair
comparison the MDM baselines, our model architecture follows the one used in Chao et al. (2025);
Gat et al. (2024), which is based on the ADM (Dhariwal & Nichol, 2021) architecture. We choose
MDM-Prime (Chao et al., 2025) and its variants as our main discrete diffusion baseline. We also
include its discrete and continuous diffusion model baselines for comparison (Shih et al., 2022; Ho
et al., 2020; Song et al., 2021; Austin et al., 2021a; Campbell et al., 2022; Gat et al., 2024; Nisonoff
et al., 2025; Lipman et al., 2022; Chen et al., 2023; Bartosh et al., 2023; Tran et al., 2019; Zheng
et al., 2023b; Albergo & Vanden-Eijnden, 2023; Kim et al., 2022). To assess sample quality, we
report Fréchet Inception Distance (FID) and Inception Score (IS), computed with 50,000 randomly
sampled images.

We follow MDM variants to unconditionally sample images with same number of function evaluation
(NFE) and report results on CIFAR-10 in Table 1. With the same NFE, we can observe CADD
improves upon MDMs by a significant margin. Attaining an FID of 2.88 and an Inception Score of
10.04 with 512 function evaluations (NFE), CADD surpasses the MDM variants by 0.38 in terms
of FID and represents the best result among all compared method. On ImageNet-32, as shown in
Table 2, the observation is constent, where CADD obtains FID of 3.74 and outperforms all reported
baselines. The qualitative generated samples are provided in Appendix D for visual justifications.
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Table 3: Benchmark coding capacities of AR and Diffusion LLMs in 7/8B scale. We follow the
evaluation settings in DiffuCoder (Gong et al., 2025b), where EvalPlus is computed as the average of
HE+ and MBPP+. The best performance in AR and Diffusion LLMs are marked in bold.

Model HumanEval MBPP EvalPlus BigCodeBench (C) Avg.
- Plus - Plus Full Hard

AR
Qwen2.5-Coder 61.6 51.8 75.9 61.4 56.6 46.1 16.2 52.2
OpenCoder (Huang et al., 2024) 66.5 63.4 79.9 70.4 66.9 40.5 9.5 55.0

Diffusion
LLaDA (Nie et al., 2025) 35.4 30.5 50.1 42.1 36.3 18.9 4.1 30.2
Dream (Ye et al., 2025) 56.7 50.0 68.7 57.4 53.7 23.6 4.1 43.4
DiffuCoder 67.1 60.4 74.2 60.9 60.7 40.2 12.8 52.6

CADD (ours) 72.0 63.4 75.7 63.2 63.3 42.1 17.6 55.7
CADD (ours, DiffuCoder init) 73.8 64.6 73.9 60.4 62.5 41.5 15.5 55.0

5.3 CODE GENERATION

For a large-scale setting, we conduct code generation experiments based on the DiffuCoder
pipeline (Gong et al., 2025b). The DiffuCoder base model training process involves adapting a
pretrained autoregressive LLM (e.g., Qwen2.5-coder (Hui et al., 2024)) into a discrete diffusion
model by annealing its attention mechanism from causal to bidirectional (Gong et al., 2025a). The
resulting model is then trained using a masking diffusion loss (Shi et al., 2024). In this context,
we evaluate our method using the following two distinct configurations. (i) Vanilla CADD: We
follow the DiffuCoder procedure to adapt the Qwen2.5-coder model. Instead of using the MDM
loss, we train the model from the beginning with our proposed CADD loss. (ii) CADD (fine-tuned):
To demonstrate CADD’s effectiveness as a fine-tuning objective, we initialize our model from a
pretrained DiffuCoder checkpoint and then continue training it with the CADD loss. To ensure a fair
comparison, both CADD variants are trained on the same 65B total tokens and use the same training
hyperparameters as the original DiffuCoder. In the evaluation, we follow their settings to test the
model performance on three coding benchmarks: HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021b), and BigCodeBench (Zhuo et al., 2024).

Table 3 reports the pass@1 performance, where the results of both autoregressive (AR) and diffusion-
based LLMs are included, with an overall average score provided. Compared with Diffusion-based
models, CADD emerges as the strongest diffusion model, outperforming competitors on nearly
all metrics. Compared to the previous leading DM, DiffuCoder, CADD significantly improves
performance on HumanEval, e.g., from 67.1 to 72.0; on the challenging BigCodeBench-Hard subset,
we can also observe significant performance gain from 12.8 to 17.6. CADD is also highly competitive
with leading AR code models. It surpasses Qwen2.5-Coder across all benchmarks and achieves a
higher overall average than OpenCoder (55.7 vs. 55.0).

6 CONCLUSION

In standard discrete diffusion, information is lost abruptly when tokens are replaced by an absorbing
state. Inspired by Gaussian diffusion, where the data signal degrades smoothly, CADD’s core idea
is to introduce an auxiliary continuous space to guide the discrete process. This space is designed
to retain semantic information, providing a smooth continuous representation of a token even after
its discrete form has been absorbed. By conditioning on it, the model can better "remember" what
was supposed to be in the masked position. This leads to more coherent and contextually accurate
generations, as the model has a stronger grasp of the underlying meaning. With extensive empirical
justification on text, image and code generation, we justify that with the continuous augmented space
proposed in CADD, the discrete diffusion models consistently generate higher quality samples across
these different tasks and achieve strong performance.
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ETHICS STATEMENT

This research proposes Continuously Augmented Discrete Diffusion model, for discrete data gener-
ation, with possible impacts on misusage to generate toxic information. Since our research scope
is on the fundamental machine learning algorithm, we use all public datasets, which do not contain
personal and sensitive information. In our paper, all generated results have been checked and do not
contain misleading and malicious information.

REPRODUCIBILITY STATEMENT

The authors are committed to the principle of reproducibility and have made every effort to ensure
our theoretical and experimental results can be reproduced. We confirm the variables used for
the derivations are well defined and the claims are provided with proofs, which are attached in
Appendix A. We have introduced our methods with precise math tools and visual aids, such as
Figure 1, Figure 2, and Algorithm box 1, 2. The datasets we used are all public and widely-used. The
training and inference details are described in Appendix B, including data pre-processing, training
hyper-parameters, and inference pipeline. The source-code of our model will be released upon
acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge that LLMs are used to only polish the presentation and writing of the paper. The
generated sentences are double checked and rephrased by the authors.
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A DETAILED DERIVATIONS AND PROOF

A.1 ELBO DERIVATION

Forward chain. For any observation x0, the forward diffusion constructs as

q(x1:T , z1:T | x0) =

T∏
t=1

qt
(
xt, zt | xt−1, zt−1,x0

)
, (22)

note we represent
(
x0, z0

)
as x0 since the transform wθ is deterministic.

Reverse generative model.

pθ(x0,x1:T , z1:T ) = pT (xT , zT )
[ T∏
t=2

pθ
(
xt−1, zt−1 | xt, zt

)]
pθ(x0 | x1, z1). (23)

Proposition 3 (ELBO decomposition). Given the forward chain q defined in Eq. (22) and reverse
model pθ in Eq. (23), we have the decomposed ELBO as following:

log pθ(x0) ≥ Eq(x1,z1|x0)

[
log pθ(x0 | x1, z1)

]︸ ︷︷ ︸
reconstruction term at t=1

−
T∑

t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0)

∥∥ pθ(xt−1, zt−1 | xt, zt)
)]

︸ ︷︷ ︸
denoising matches for t>1

−DKL

(
q(xT , zT | x0) ∥ pT (xT , zT )

)︸ ︷︷ ︸
prior match at T

. (24)

If q(xT , zT | x0) = pT (xT , zT ) for all x0, then the prior match term is zero. The bound is tight if
and only if

pθ(xt−1, zt−1 | xt, zt) = q(xt−1, zt−1 | xt, zt,x0) for all t ≥ 2,

and the prior match is zero, and the decoder pθ(x0 | x1, z1) equals the true conditional induced by
the joint.

Recap the forward kernel defined in Eq. (7) and Eq. (8):

q(xt | xt−1) =

n∏
i=1

Categorical
(
xi
t; Q

⊤
t x

i
t−1

)
, Qt = (1− βt)I + βt 1m

⊤.

q(zt | zt−1,xt−1,xt,x0) =

n∏
i=1


δ(zi

t − zi
t−1), xi

t ̸= m,

N
(
zi
t;
√
γ̄t z

i
t−1, (1− γ̄t)Id

)
, xi

t = m,xi
t−1 ̸= m,

N
(
zi
t;
√
γt z

i
t−1, (1− γt)Id

)
, xi

t = m,xi
t−1 = m.

Proof of Proposition 3. The proof is mostly done in Sohl-Dickstein et al. (2015) and Ho et al. (2020).
We include the following proof to show the generalized version with added variables. Start from the
evidence identity and apply Jensen inequality:

log pθ(x0) = log

∫
q(x1:T , z1:T | x0)

pθ(x0,x1:T , z1:T )

q(x1:T , z1:T | x0)
dx1:T dz1:T

≥ Eq(x1:T ,z1:T |x0)

[
log pθ(x0,x1:T , z1:T )− log q(x1:T , z1:T | x0)

]
=: L(θ;x0). (25)

Insert the model and forward factorizations Eq. (23) and Eq. (22):

L(θ;x0) = Eq

[
log pT (xT , zT ) +

T∑
t=2

log pθ(xt−1, zt−1 | xt, zt) (26)

+ log pθ(x0 | x1, z1)−
T∑

t=1

log q(xt, zt | xt−1, zt−1,x0)
]
. (27)
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For each t ≥ 2 use Bayes’ rule under q:

q(xt, zt | xt−1, zt−1,x0) =
q(xt−1, zt−1 | xt, zt,x0) q(xt, zt | x0)

q(xt−1, zt−1 | x0)
. (28)

Taking Eq[log(·)] of Eq. (28) and rearranging gives, for t ≥ 2,

Eq

[
log pθ(xt−1, zt−1 | xt, zt)− log q(xt, zt | xt−1, zt−1,x0)

]
= −Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
− Eq

[
log q(xt, zt | x0)

]
+ Eq

[
log q(xt−1, zt−1 | x0)

]
. (29)

Sum Eq. (29) over t = 2, . . . , T . The last two expectations telescope:

−
T∑

t=2

Eq

[
log q(xt, zt | x0)

]
+

T∑
t=2

Eq

[
log q(xt−1, zt−1 | x0)

]
= Eq

[
log q(x1, z1 | x0)

]
−Eq

[
log q(xT , zT | x0)

]
. (30)

Plug this back into Eq. (27) and group the boundary terms with log pT :

L(θ;x0) = Eq

[
log pθ(x0 | x1, z1)

]
−

T∑
t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
−
(
Eq

[
log q(xT , zT | x0)

]
− Eq

[
log pT (xT , zT )

])
− Eq

[
log q(x1, z1 | x0)

]
. (31)

Now we recoginize the prior KL to obtain

L(θ;x0) = Eq

[
log pθ(x0 | x1, z1)

]
−

T∑
t=2

Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0) ∥ pθ(xt−1, zt−1 | xt, zt)

)]
−DKL

(
q(xT , zT | x0) ∥ pT (xT , zT )

)
− Eq

[
log q(x1, z1 | x0)

]︸ ︷︷ ︸
=:C(x0)

. (32)

Note the last term C(x0) does not involve pθ and can be dropped, and we normally do not optimize
the last KL term DKL

(
q(xT , zT | x0) ∥ pT (xT , zT )

)
as we let the schedule to make this statistical

distance is sufficiently small.

A.2 FORWARD

We can derive the following lemma for the marginal at time step t.

Lemma 2 (Continuous marginal conditioned on (xt,x0)). Let γ̄t :=
∏t

s=1 γs. For each position i,
we have continuous marginal conditioned on (xt,x0) as

q(zi
t | xi

t,x
i
0) =

{
δ(zi

t − zi
0), xi

t = xi
0,

N
(
zi
t;
√
γ̄t z

i
0, (1− γ̄t)Id

)
, xi

t = m,

with zi
0 = wθ(x

i
0). Hence We finally have

q(zt | xt,x0) =

n∏
i=1

q(zi
t | xi

t,x
i
0) =

[ ∏
i:xi

t ̸=m

δ(zi
t − zi

0)
]
·
[ ∏
i:xi

t=m

N (zi
t;
√
γ̄tz

i
0, (1− γ̄t)Id)

]
.

Then what follows proves Proposition 2. We first prove the conditional independency between zt and
xt−1 given (xt,x0) in the reverse context.
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Lemma 3 (Conditional independency between zt and xt−1 given (xt,x0)). zt and xt−1 are
conditionally independent given (xt,x0) based on the forward kerned defined in Eq. (8).

To prove Proposition 1, we first prove the following lemma:

Proof of Lemma 2 and Lemma 3. If xi
t = xi

0 then the absorbing chain implies xi
s ̸= m for s ≤ t, so

the kernel gives zi
t = zi

0 almost surely, which is the first line of Eq. (8).

If xi
t = m, use the law of total probability over xi

t−1 ∈ {xi
0,m}.

When xi
t−1 ̸= m (first time masking at t), the second branch of the kernel gives zi

t ∼ N (
√
γ̄t z

i
0, (1−

γ̄t)I).

When xi
t−1 = m (already masked), the third branch composes a diffusion forward step with the

previous marginal zi
t−1 ∼ N (

√
γ̄t−1 z

i
0, (1− γ̄t−1)I), which yields

zi
t ∼ N

(√
γtγ̄t−1 z

i
0, (1− γtγ̄t−1)I

)
= N

(√
γ̄t z

i
0, (1− γ̄t)I

)
.

This proves the masked line of Eq. (8).

Then leveraging these results, we can easily prove Proposition 1.

Proof of Proposition 1. Expand the path marginal, use Eq. (6) and Lemma 2, and factor over positions.
The sum over discrete paths yields q(xt | x0); conditioning on xt reduces the continuous part to
Lemma 2.

A.3 REVERSE

Proof of Proposition 2. We first prove the factorization shown in Eq. (14). To achieve this, we just
need to show:

q(xt−1, zt−1 | xt, zt,x0) = q(xt−1 | xt, zt,x0) · q(zt−1 | xt, zt,xt−1,x0) (33)

=
q(zt | xt−1,xt,x0)q(xt−1 | xt,x0)

q(zt | xt,x0)
· q(zt−1 | xt, zt,xt−1,x0)

(34)
= q(xt−1 | xt,x0) · q(zt−1 | xt, zt,xt−1,x0), (35)

where q(zt | xt−1,xt,x0) = q(zt | xt,x0) by the conditional independence according to Lemma 3.
Then the discrete part is the same as discrete diffusion, we may leverage the results from Austin et al.
(2021a); Sahoo et al. (2024); Shi et al. (2024) to complete the proof of Eq. (15).

Next, we prove the closed form of the continuous part, q(zt−1 | xt, zt,xt−1,x0), by case analysis
based on the discrete states. We start with Bayes’ rule for the continuous variables:

q(zt−1 | xt, zt,xt−1,x0) ∝ q(zt | zt−1,xt) · q(zt−1 | xt−1,x0). (36)

The forms of the two terms on the right-hand side are Gaussian distributions, but will change
depending on the discrete states and it leads to the three cases.

Case 1: No mask at t (xt = x0). In this case, no noise has been applied to the embedding up to
timestep t-1. Thus, both terms directly have a Dirac delta function: q(zt−1 | xt−1 = x0,x0) =
δ(zt−1 − z0). The posterior is therefore also a Dirac delta function, proving the first part of Eq. (16).

Case 2: First time unmask at t (xt = m, xt−1 = x0). In this case, the first term in Eq. (36) is
Gaussian while the second term becomes a Dirac δ(zt−1 − z0). The multiplication yields a Dirac
posterior at the same point: q(zt−1 | xt−1 = x0,x0) = δ(zt−1 − z0).

Case 3: Remaining masked at t (xt = m, xt−1 = m). In this case, both terms remain in Gaussian
distribution, and the parameters are same with normal Gaussian diffusion models. The product of
these two Gaussians is a new Gaussian, allowing usu to use the standard derivation for DDPM (Ho
et al., 2020), by completing the square on the exponent, we find that the resulting distribution is
N (zt−1; µ̃t(zt, z0), β̃tI), which proves the last part of Eq. (16).
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Proof of Lemma 1. Using the results from Proposition 2, for a single position i, the exact one–step
KL at timestep t > 1 inside the ELBO is

DKL(x0, t) := Eq(xt,zt|x0)

[
DKL

(
q(xt−1, zt−1 | xt, zt,x0)

∥∥ pθ(xt−1, zt−1 | xt, zt)
)]
, (37)

For the unmasked positions (xt ̸= m), the KL is identically 0, and plug in Eq. (14), 15 and 16, we
recover Eq. (18) exactly as

DKL

(
q(· | xt, zt,x0)

∥∥ pθ(· | xt, zt)
)
= ρflipt

[
− log pθ(x0|xt, zt)

]︸ ︷︷ ︸
discrete

+ ρkeept DKL
cont︸ ︷︷ ︸

continuous

,

with the ratio that determines whether the position is going to be flipped to unmask:

ρkeept =
1− αt−1

1− αt
, ρflipt =

αt−1 βt

1− αt
=

αt−1 − αt

1− αt
. (38)

The discrete KL part exactly recovers the results from the absorbing discrete diffusion models (Austin
et al., 2021a; Sahoo et al., 2024; Shi et al., 2024), and the continuous KL divergence:

Dcont
KL = DKL

(
N (µ⋆, β̃tId)

∥∥∥ N (µv, β̃tId)
)
, µ⋆ = µ̃t(z0, zt), µv = µ̃t(ẑ0, zt), (39)

where we recap

µ̃t(ζ,zt) =

√
γ̄t−1(1− γt)

1− γ̄t
ζ +

√
γt(1− γ̄t−1)

1− γ̄t
zt, β̃t =

(1− γ̄t−1)(1− γt)

1− γ̄t
.

This results in the comparison between z0 and ẑ0 and the KL divergence reduced to:

Dcont
KL =

1

2β̃t

∥∥µ̃t(z0, zt)− µ̃t(ẑ0,θ, z
i
t)
∥∥2 =

a2t

2β̃t

∥z0 − ẑ0,θ∥2; at =
√
γ̄t−1(1− γt)

1− γ̄t
.

Remark 1 (On the Alternative Factorization). One could also decompose the posterior using the
alternative order from the chain rule:

q(xt−1, zt−1 | ·) = q(zt−1 | xt, zt,x0) · q(xt−1 | xt, zt, zt−1,x0).

While mathematically valid and could provide new properties in the sampling, this factorization is not
fully tractable. The first term, q(zt−1|·), is a complex Gaussian Mixture Model. More critically, the
second term, q(xt−1|·), has no analytical closed form, as it would require inverting the continuous
diffusion process and the embedding function to infer a discrete state. The factorization in Prop. 2 is
therefore adopted as a tractable choice for a more efficient algorithm implementation.

B DETAILED EXPERIMENT SETTINGS

B.1 DIFFUSION SETTINGS

The CADD forward process has two coupled components, each with its own schedule.

• Discrete schedule: we adopt the MDLM log-linear masking schedule for the discrete
process (Sahoo et al., 2024). The discrete forward corruption uses a continuous-time
α(t) = 1− t, with t ∈ [0, 1].

• Continuous schedule: to keep the meaning of time aligned, we set the continuous latent z
to follow a linear flow-matching path to isotropic noise (Lipman et al., 2022), i.e., if the
position is masked, we have zt = (1− t)z0 + tϵ, ϵ ∼ N (0, I).

• Multi-sample estimation: we by default set K = 1 for the estimation of x̂0,θ for fair
comparison with the baselines. We provide ablation studies to demonstrate the effect of
K > 1.
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Table 4: Benchmark computation cost of discrete (mask) diffusion and CADD.

Setting Throughputs (Tokens/s - per GPU) TFLOPS TFLOPS/s Avg. GPU Mem (GB)
Training
Discrete Diffusion 47,416 0.29 6.049 1.362
CADD 47,152 0.291 6.082 1.492
Inference
k = 1 47,373 0.291 6.082 1.492
k = 2 24,852 0.581 12.206 3.511
k = 3 15,768 0.873 18.310 5.253
k = 4 1,417 1.162 24.417 7.470

B.2 EXPERIMENT-SPECIFIC SETTINGS

Text Generation In our main experiments, including ablation studies that used to explore the
properties of CADD, we train the models on OpenWebText. Following the standard MDLM pre-
processing (Sahoo et al., 2024), we use the GPT-2 tokenizer, resulting in a vocabulary of 50,257
tokens. The sequence length is fixed at 1,024. Our text model is a 12-layer DiT with 12 attention
heads and an embedding dimension of 768, totaling approximately 168M parameters. During training,
we keep the same training configuration, i.e., we train for about 2M steps with a batch size of 256
to match the total 262B tokens seen in the training. We use the AdamW optimizer with a learning
rate warmed up from 0 to 3 × 10−4. The results in Table 5 and Table 6, are based on Text8 and
LM1B dataset, where we strictly follow the training setting in Jo & Hwang (2025) and Sahoo
et al. (2024). Please refer their experiment settings for more details. For evaluation, we follow
ReMDM (Wang et al., 2025)’s evaluation setting, where we randomly sample 5,000 text samples with
length n = 1, 024, using {128, 256, 512, 1024, 4096} sampling steps. The sampled token sequences
are used to compute MAUVE score, generative perplexity with GPT2-Large model, and entropy.

Image Generation We experiment on CIFAR-10 and ImageNet (with resolution 32× 32), which
consists of 50,000 and 1,281,149 natural images respectively. CIFAR-10 already has 32 × 32
resolution. For ImageNet images, we follow the preprocessing used in EDM (Karras et al., 2022),
i.e., using center-crop to make it as squared image and rescale to the desired 32× 32 resolution. As
the model is trained on pixel space, we treat each pixel as a discrete token, resulting in a vocabulary
size 256 at each position. We follow the architecture design used in MDM-Prime (Chao et al.,
2025), which is a U-Net architecture based on ADM (Dhariwal & Nichol, 2021). For CIFAR-10,
we leverage an augmentation pipeline proposed in Karras et al. (2020), but only keep the rotation
and flip operation to avoid pixel value changes. We let set the augmentation probability as 15% on
CIFAR-10, and there is no augmentation used on ImageNet. For both experiments, we set learning
rate as 1× 10−4 using AdamW optimizer, and train the model until it has seen 200M and 4B images
respectively. In sampling, we adopt a cosine decay for temperature with τmax = 2.5, and applied
the corrector following Gat et al. (2024). We use the standard Fréchet Inception Distance (FID) and
Inception Score for evaluation, computed with 50,000 randomly generate images.

Code Generation We use the OpenCoder dataset (Huang et al., 2024), selected by following the
recipe in DiffuCoder (Gong et al., 2025b). We strictly follow their settings to initialize the 7B model
with Qwen2.5-Coder checkpoint, and adapt it to diffusion model using the techniques introduced in
Gong et al. (2025a). Then we traine the model on a 64 NVIDIA A100 GPUs in total. The training
process utilized BF16 mixed precision and was scaled using Fully Sharded Data Parallelism (FSDP).
For optimization, we employed the Adam optimizer with a peak learning rate of 1× 10−5, preceded
by a 2,000-step linear warmup. The model is trained with 65B tokens in total. For generation,
both models were configured with a maximum sequence length of 512 tokens and a total of T=512
diffusion timesteps. During generation, we employed a top negative entropy remasking sampler.
The CADD from scratch variant uses temperature 0.2 and the DiffuCoder initialized variant uses
temperature 0.01.

B.3 COMPUTATION ANALYSIS

We measured both training and inference efficiency under the same hardware (H100, FP32) and batch
settings (batch size=1), using the DiT model with 169 M parameters. The results are summarized in
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Figure 4: Analogous figure of Figure 3. We compare the finetuned checkpoint using CADD objective
with CADD and the initialization checkpoint of MDLM.

the table 4. During training, CADD matches the speed of the MDM baseline, with nearly identical
token throughput (tokens/s) per gpu and memory usage. During inference, when K = 1, CADD shows
similar computation cost to MDM. The inference cost increases in a linear way as K increases, since
the model performs K times forward for the z0 estimation, while the training cost remains unchanged.

C ADDITIONAL EXPERIMENT RESULTS

C.1 TRAINING FROM MASK DIFFUSION MODEL

From the experiments on code generation, we have seen CADD could be used to finentune an existing
discrete (masking) diffusion model to improve the performance. Here we provide complementary
evidence that such observation is also valid on text generation. We finetune a MDLM checkpoint with
CADD objective for additional 50B tokens and evaluate the performance with same setting shown
in the main experiments (Figure 3). The results are shown in Figure 4. The red curve shows close
performance to the green one that represent CADD’s performance, which indicates CADD could
efficiently finetune an existing MDM model to enhance the generation capabilities.

C.2 PERPLEXITY EVALUATION

Since the objective of CADD involves the KL divergence of both discrete and continuous component
as shown in Eq. (14), it is not fair to compare the tightness of the bound directly with other models,
and we choose to focus more on the evaluation of the generated samples. However, our model is still
able to compute the likelihood of the discrete part. Here we put the results for reference, aiming to
provide more information to help the readers understand how the model helps the discrete diffusion
side.

Table 5 and Table 6 report the perplexity evaluation on character-level and token-level respectively.
The model is trained on Text8 and LM1B, following the settings of Jo & Hwang (2025) and Sahoo
et al. (2024). On Text8, we can see CADD achieve very competitive perplexity results, and is slightly
worse than the SoTA RDLM (Jo & Hwang, 2024). On LM1B, we can see CADD achieve the best
results among diffusion models when evaluate the discrete part perplexity on both LM1B data and
OWT data.

Table 7 reports the zero-shot evaluation results of the checkpoint trained on OWT data. We can
observe CADD and MDLM both surpasses the perplexity of AR models on Lambada, Pubmed
and Arxiv datasets. They have different dataset that they are good at in terms of perplexity, and
CADD wins slightly more as it shows better zero-shot perplexity than MDLM on 4/7 tasks. These
experiments result jointly indicate that CADD can not only provide strong generation quality, but
also provide a good discrete likelihood bound.

C.3 ABLATION STUDIES

Comparing the number of samples used for x̂0 = fθ(xt, z
(k)
t ) We first conduct ablation to study

how the number of samples used to compute x̂0 would affect CADD’s performance. Similar to our
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Table 5: Bits Per Character (BPC) results on
Text8 test set. Results are taken from Jo &
Hwang (2025). Bold denotes the best result in
autoregressive or diffusion models. The best
diffusion results are marked in bold.

Method BPC (↓)
Autoregressive
AR 1.23
Continuous Diffusion
Plaid ≤ 1.48
BFN ≤ 1.41
RDLM ≤ 1.32
Discrete Diffusion
Multinomial Diffusion ≤ 1.72
D3PM Uniform ≤ 1.61
D3PM Absorb ≤ 1.45
SEDD Absorb ≤ 1.39
MDLM ≤ 1.40
MD4 ≤ 1.37

CADD (Ours) ≤ 1.35

Table 6: Test perplexities (PPL; ↓) on LM1B. The
baseline results are taken from Sahoo et al. (2025). For
CADD, we report the bound on the discrete likelihood.
Best diffusion value is bolded. ⋆ the dataset for SEDD
didn’t incorporate sentence packing.

Method LM1B OWT

Autoregressive
Transformer 22.8 17.5

Diffusion (Uniform-state / Gaussian)
D3PM Uniform (Austin et al., 2021a) 137.9 -
Diffusion-LM∗ (Li et al., 2022) 118.6 -
SEDD Uniform (Lou et al., 2024) 40.3⋆ 29.7
UDLM (Deschenaux & Gulcehre, 2025) 36.7 27.4
DUO (Sahoo et al., 2025) 33.7 25.2

Diffusion (absorbing state)
D3PM Absorb (Austin et al., 2021a) 76.9 -
DiffusionBert (He et al., 2023) 63.8 -
SEDD Absorb (Lou et al., 2024) 32.7⋆ 24.1
MDLM (Sahoo et al., 2024) 31.8 23.2

CADD (Ours) 31.4 23.1

Table 7: Zero-shot perplexities (↓) of models trained for 1M steps on OpenWebText. All perplexities
for diffusion models are upper bounds. Baseline results are taken from Sahoo et al. (2025). Best
diffusion model performance results are bolded and diffusion values better than AR are underlined.
Plaid and D3PM are trained with 0.3M more steps.

Method PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

Autoregressive
Transformer 82.05 25.75 51.25 51.28 52.09 49.01 41.73

Diffusion (Uniform-state / Gaussian)
SEDD Unifor 105.51 41.10 82.62 57.29 82.64 55.89 50.86
Plaid 142.60 50.86 91.12 57.28 - - -
UDLM 112.82 39.42 77.59 53.57 80.96 50.98 44.08
DUO 89.35 33.57 73.86 49.78 67.81 44.48 40.39

Diffusion (absorbing state)
SEDD Absorb 100.09 34.28 68.20 49.86 62.09 44.53 38.48
D3PM Absorb 200.82 50.86 138.92 93.47 - - -
MDLM 95.26 32.83 67.01 47.52 61.15 41.89 37.37

CADD (Ours) 93.33 31.84 64.98 46.81 62.80 42.62 37.52

main experiments in text generation, we compare CADD with K ∈ {1, 2, 3, 4} in terms of MAUVE
and generative perplexity.

As shown in Figure 5, increasing both the number of sampling steps and the hyperparameter K
consistently improves CADD’s performance. The value of K, which corresponds to the number of
continuous samples used for soft hints, has a consistent and positive effect on generation quality. It
is interesting to see the largest performance gain, especially for generative perplexity, comes from
increasing K from 2 to 3. The subsequent gain from K = 3 to K = 4 is smaller. One possible reason
is that when K is not large enough, the predicted logits could vary and make the expected value
smoothed to be a flatten distribution. As K gets bigger, the estimation of the correct x0 becomes
more accurate, resulting in better generation quality, with a trade-off between desired sample quality
and inference-time latency.

We also use entropy as a complementary metric to observe the model’s behavior, and the results are
shown in Figure 6. We observe CADD, the highest-quality model in terms of MAUVE and generative
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Figure 5: Analogous figure of Figure 3. We compare of CADD variants using different number of
samples to estimate x̂0 (K=1-4).
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Figure 6: Analogous figure of Figure 3: study of generation variance and diversity across all methods
and across different K. We use entropy (higher indicates more stochasticity) are reported.

perplexity (shown in Figure 3), has the lowest entropy. This indicates that CADD achieves its keeps
a lower variance in the generation process with concentrating its continuous conditions. The right
plot, which analyzes different values of K for CADD, shows that a larger K consistently leads to
lower entropy. This reveals the role of K as a hint mechanism. A larger K provides a stronger, more
deterministic "soft hint" from the continuous space, preserving smaller variance during generation.
However, this does not mean CADD lack of generation diversity, as it still hits a strong MAUVE
score, indicating it strikes a good balance between mode-covering and mode-seeking.

On the choice of fusion and ẑ0 estimation In most of our experiments, we choose to fuse the
discrete mask token embedding and continuous embedding with addition operation, i.e., z̃t =
zdisc + zt. We consider two extra manners to fuse these two domains: 1) concatenation [zdisc, zt]; 2)
reweighted sum αtzdisc + (1− αt)zt, where αt decreases as the position is more likely to be clean
(unmasked). The intuition is that when a token is unlikely to be masked, the model should lean more
on zt to carry semantic content, hence a smaller αt.

Observing the results in Table 8, MAUVE varies by only 0.03 absolute and Entropy varies by 0.07
absolute across the different choices. These three options do not show significant difference to the
performance, while concatenation involves an additional projection layer to match the embedding
dimension.

Morever, we compare the choice of ẑ0 estimation, as discussed in Eq. (21):

hard: x̂0 = argmax
v

πθ,i(v), ẑ0 = wθ(x0) soft: ẑ0,θ :=
∑
v

pθ(x̂0 = v | xt, zt)wθ,v.

On the choice of training objective To further justify whether we should use MSE to optimize
at the embedding level in the categorical generative modeling scenario. We add training results
that include an extra MSE loss ∥ẑ0 − z0∥2 using the two parameterizations of ẑ0 (soft and hard)
defined in Eq. (21). From the results, CE + MSE provides performance that is close to using CE
alone. The soft parameterization gives a gain under hard-inference MAUVE, but it introduces higher
computation cost. This is because the soft prediction requires a matrix multiplication between the
predicted probability vector RB×L×d and the token embedding matrix Rd×V with batch size B,
sequence length L, embedding dimension d and vocabulary size V . Such extra cost reduces TPS/GPU
and increases TFLOPS. A possible explanation for the limited improvement is that, in the categorical
setting, an MSE loss behaves similarly to cross entropy since both losses guide the model toward
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Table 8: Performance vs. fusion method for z̃t

Fusion MAUVE (↑) Entropy (↑)
Add 0.24 5.31
Concate 0.21 5.37
Reweight 0.24 5.30

Table 9: Performance vs. continuous schedules

Metrics FM VP

MAUVE 0.24 0.24
FiD 2.88 3.16

Table 10: Performance vs. training and esti-
mation method for ẑ0

Metric CE CE + MSE
soft ẑ0 hard ẑ0

MAUVE
soft ẑ0 0.24 0.24 0.22
hard ẑ0 0.18 0.24 0.24
computation cost
TFLOPS 0.291 0.325 0.291
TPS/GPU 47,152 32,117 47,152

Table 12: Qualitative Generation Analysis. We visualize the prediction for the masked token in "A
[MASK] sits on the mat" as we vary the noise level t of the continuous embedding corrupted from
the embedding "model".

Noise Level (t) Predicted Sentence Predicted Token
Input (GT) A model sits on the mat model
t = 0.1 A model sits on the mat model
t = 0.3 A model sits on the mat model
t = 0.5 A vase sits on the mat vase
t = 0.7 A tank sits on the mat tank
t = 1.0 A and sits on the mat and

selecting the correct token and its embedding. We expect MSE to be more useful in settings where
the targets are not purely categorical.

On the choice of continuous schedule We compare the Variance-Preserving (VP) schedule with
Flow-matching (FM) schedule in both text and image generation experiments. The results are shown
in Table 9. For text generation, the results are on par with the Flow-matching schedule. For image
generation, the FiD score is slightly worse under the VP schedule. This difference may come from
the need for different hyper-parameter settings for the two schedules.

On model architecture Similar to the text generation, we also examine the performance of
image generation. We conduct experiments to test the impacts of model architecture and number
of function evaluations (NFEs) in the sampling stage. The results are reported in Table 11. As
shown, ADM (Dhariwal & Nichol, 2021) shows stronger performance than DDPM++ (Song et al.,
2021) across different NFEs. Especially when NFE is sufficiently large as 512, the performance of
using ADM + NFE=512 configuration demonstrate a significant performance gain. As qualitative
justification, we can also observe the last row of Figure 7 has the best visual quality.

FID (↓)
Model 64 256 512

DDPM++ 31.24 4.72 4.70
ADM 30.41 4.29 2.88

Table 11: Ablation results on image generation,
trained with DDPM++ and ADM architecture.
FID results measured using NFE=64, 256, 512.

Figure 7: Qualitative results of CIFAR-10, gen-
erated by ADM, using NFE=64,256,512 (from
top row to bottom).

Qualitative visualization Table 12 demonstrates the effect of the continuous embedding zt as a
semantic scaffold that guides the discrete unmasking process. We use "A model sits on the mat" as
input, and mask the second position. Using different noise level t to corrupt the embedding of token
"model" to form zt and predict the masked token. In the low-noise regime (t ≤ 0.3), the continuous
signal is clear enough and the prediction is same as "model". As noise increases, the embedding
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degrades and we can observe the predictions traverse from relevant category (e.g., vase”, tank”) to
generic priors only when the guiding signal is fully destroyed at t = 1.0.

D ADDITIONAL GENERATED SAMPLES

D.1 TEXT GENERATION

Researchers conducted a study from the Centre for Applied Biology
Interface (IRAP) which appeared in a unit of the journal Institale
Konczakalye Medicine, gave the results: Sleep stimulation were
involved in a randomized setting compared. The results showed a
measurable difference when the abnormal disturbances involved in
reducing working mood and reward were involved in the absence of
serotonin. There was a significant difference when serotonin was
compared to aerobic stimuli that more positively affected aerobic
intensity. These increased tactile disturbances were mediated
by dopamine concentration, increased concentration, changes in
peak pressure, reduced appetite and spin pressure intensity. The
effects were important since aerobic activity was also involved
in increased concentration and the brain was involved at the
same level. The results were analyzed for physiological stimuli
such as the EEG OxyRS. The results showed a clear decrease for
the subjective rhythm, concentration and reward and reward were
involved. Changes also showed expression by changes in the total
dopamine function and sleep frequencies were placed within a stable
pathway. In antidepressant stimulation, the heightened release
of dopamine pressure and higher reward reward led to gradual
differences in the frequency of dopamine stimulation...

We have started recently introducing first parameter support.
first command control is custom function that utilizes some
combination of variable function to allow editing and transitions
and transitions across the inputs. It causes filter support to
activate. The extension utilizes the ability to set different
inputs and outputs, allowing for different transitions between
inputs and outputs, with option to set transitions and transitions
around all possible transitions with switch. The extension depends
on applying a hierarchy of outputs like parameter function that
links progress across inputs of different inputs. The workflow
also improves inputs, inputs, balance and even random inputs. It
is the common variable and function parameter for whatever input
modification, variable control and outputs for common variables for
possible play what regarding variable control. The basic parameter
and many other useful possible explain the potential behind set
functions as stack control and stack control. Linimental Changes
to Use The parameter is given a macro directly changing the linear
parameter of filter control, instead, leading to possible read
transitions and transitions to change around the inputs. It
also supports based movable stack set and also based on inputs
and gradient support resulting via the fixed inputs and inputs
representing variable selection. It is only possible by binding
in the inputs, first input control, first iteration control,
variable control, stack control and guarantees that all effects
fail to return performance. It can also be easily activated with
continuous stack control, stack control and quick stack control.
Increased prior warning and filter control are very important to
filter control...
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When it was only briefly used to experience psychic balance, after
being removed at the optimal frequency, decreasing the chance for
general performance, but when it changed at a rest and only even
moved at the same intensity, it did not you seriously control the
transition from strength to strength. Instead, it also gained
the balance in the fluid balance with the normal balance. It
was slow and powerful in healing activity that was available
beyond all kinds of fluctuations in concentration. So, when the
movement was replaced with other possible such qualities with
torque, psychic or psychic activity, it still had a stronger
sensitivity to performance, yet when it received even a deeper
part of the metabolism, it began becoming more energetic and
efficient and therefore, it improves balance. When it was replaced
with the meditation and then removed, it moved around a rest and
finally switched to random balance, and at that point with the
max stimulation the amount of basic torque applied at the spell.
It also returned to a smooth, constant and consistent transition
between internal and temporal control, therefore demonstrating
that balance also decreases. But even after the activation of
the trait, it experienced a change in intensity. Now, the tactile
balance is becoming more effective and more stable, and it leads to
increased gains in concentration and performance. Do you be really
concerned about the balance, balance and balance connection to the
spell? The positive effect on the tactile balance now comes true
to speed. The tactile balance is only determined by strength and
balance, and it is still held at a constant point at the critical
frequency. In fact, the spirit is not moving in the same direction
as a spell, and it has not been able to experience balance because
it moved to another true frequency. !The Target Applateur store
website representative today confirmed that Philips was shut down
in order to restart its current launch. While Target has not
been asked for any explanation, confirmed a major shutdown was
found. Ït does no longer fully support operating systems, while
its switch has been changed to replace the current system running
the Double Storage, Fresh, Medium Storage and Hot Storage modules.
P̈lease Note that we are working on the matter is not there.Ḧe said:
P̈rint had working to resolve all the issues on the platform, and
if it fails, the shutdown requiring the vendor being able to fix
them. Ẅe do not know at the reason for the delay and therefore
the reasons why we are continuing control will be determined by
them and discussed today so we will not go on a more comprehensive
timetable. Ẅe will’t speculate on the basis whether to continue
running locally used current systems. Ẅhile the error created
more complexity, it is decided by the seller if this fix is true,
we expect that these issues will be resolved with proper action.
Ẅe know that if we want to continue with browsing cycles then it
will be very difficult to restart, and with our support, access
is always applied to data settings, store volumes and automatic
navigation. Loading.

D.2 CODE GENERATION

1 from typing import List, Tuple
2

3

4 def rolling_max(numbers: List[int]) -> List[int]:
5 """ From a given list of integers, generate a list of rolling maximum

element found until given moment
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6 in the sequence.
7 >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
8 [1, 2, 3, 3, 3, 4, 4]
9 """

10 result = []
11 current_max = numbers[0]
12 for num in numbers:
13 if num > current_max:
14 current_max = num
15 result.append(current_max)
16 return result

Listing 1: "Generation on HumanEval"
1 def comb_sort(arr):
2 n = len(arr)
3 gap = n
4 swapped = True
5 while ((gap > 1) or swapped):
6 swapped = False
7 gap = int((gap / 1.3))
8 if (gap < 1):
9 gap = 1

10 for i in range((n - gap)):
11 if (arr[i] > arr[(i + gap)]):
12 (arr[i], arr[(i + gap)]) = (arr[(i + gap)], arr[i])
13 swapped = True
14 return arr
15

16

17 assert comb_sort([5, 15, 37, 25, 79]) == [5, 15, 25, 37, 79]

Listing 2: "Generation on MBPP"

1 from random import randint,seed as random_seed
2 import time
3 import matplotlib.pyplot as plt
4

5 def task_func(my_list, size=100, seed=100):
6 """
7 Enhances ’my_list’ by appending the number 12, then generates a list

of random integers based
8 on the sum of elements in ’my_list’, limited by ’size’. It measures

the time taken for this process
9 and plots a histogram of the generated random numbers.

10

11 The size of the random numbers list is determined by the sum of the
numbers in ’my_list’, with

12 an upper limit set by ’size’. The random integers are within the
range 1 to 100, inclusive.

13

14 Parameters:
15 - my_list (list): The input list containing numeric elements.
16 - size (int): Maximum size limit for the generated list of random

numbers. Default is 100.
17 - seed (int): Seed value for random number generator for

reproducibility. Default is 100.
18

19 Returns:
20 - tuple: A tuple containing the time taken to generate the list (in

seconds, as a float) and
21 the matplotlib Axes object for the histogram. The histogram’s x-

axis is labeled ’Number’,
22 representing the range of random integers, and the y-axis is

labeled ’Frequency’, representing
23 the frequency of each integer in the generated list.
24
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25 Raises:
26 - TypeError: If ’my_list’ is not a list.
27 - ValueError: If ’my_list’ contains elements that are not numeric (

int or float).
28

29 The histogram plots the distribution of the random numbers generated,
with the number range (1-100)

30 on the x-axis and the count (frequency) of each number on the y-axis.
31

32 Requirements:
33 - random
34 - time
35 - matplotlib.pyplot
36

37 Example:
38 >>> my_list = [2, 3, 5]
39 >>> time_taken, ax = task_func(my_list)
40 >>> print(type(time_taken)) # Example output: <class ’float’>
41 <class ’float’>
42 >>> ax.get_title() # Returns ’Histogram of Random Numbers’
43 ’Histogram of Random Numbers’
44 """
45 if not isinstance(my_list, list):
46 raise TypeError("’my_list’ must be a list.")
47

48 if not all(isinstance(x, (int, float)) for x in my_list):
49 raise ValueError("’my_list’ must contain numeric elements.")
50

51 # Append 12 to the list
52 my_list.append(12)
53

54 # Calculate the sum of the list
55 total_sum = sum(my_list)
56

57 # Determine the size of the random numbers list
58 list_size = min(total_sum, size)
59

60 # Set the seed for reproducibility
61 random_seed(seed)
62

63 # Generate the list of random numbers
64 random_numbers = [randint(1, 100) for _ in range(list_size)]
65

66 # Measure the time taken
67 start_time = time.time()
68 # Generate the histogram
69 plt.figure(figsize=(10, 6))
70 plt.hist(random_numbers, bins=range(1, 102), align=’left’, edgecolor=

’black’)
71 plt.xlabel(’Number’)
72 plt.ylabel(’Frequency’)
73 plt.title(’Histogram of Random Numbers’)
74 plt.show()
75 end_time = time.time()
76

77 # Return the time taken and the Axes object
78 return end_time - start_time, plt.gca()

Listing 3: "Generation on BigcodeBench"
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D.3 IMAGE GENERATION

Figure 8: Unconditional image generation, generated by CADD trained on ImageNet-32× 32.
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