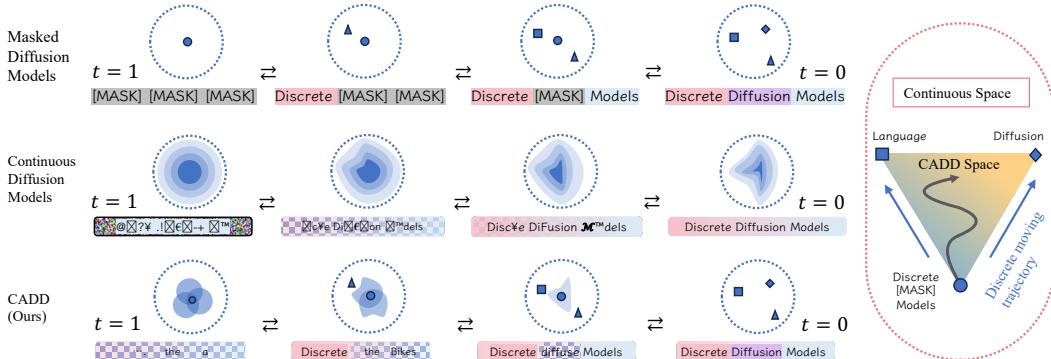


CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION MODEL FOR CATEGORICAL GENERATIVE MODELING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Standard discrete diffusion models treat all unobserved states identically by map-
012 ping them to an absorbing [MASK] token. This creates an “information void”
013 where semantic information that could be inferred from unmasked tokens is lost
014 between denoising steps. We introduce *Continuously Augmented Discrete Diffu-*
015 *sion* (CADD), a framework that augments the discrete state space with a paired
016 diffusion in a continuous latent space. This yields graded, gradually corrupted
017 states in which masked tokens are represented by noisy yet informative latent
018 vectors rather than collapsed “information voids”. At each reverse step, CADD
019 may leverage the continuous latent as a semantic hint to guide discrete denoising.
020 The design is clean and compatible with existing discrete diffusion training. At
021 sampling time, the strength and choice of estimator for the continuous latent vector
022 enables a controlled trade-off between mode-coverage (generating diverse outputs)
023 and mode-seeking (generating contextually precise outputs) behaviors. Empirically,
024 we demonstrate CADD improves generative quality over mask-based diffusion
025 across text generation, image synthesis, and code modeling, with consistent gains
026 on both qualitative and quantitative metrics against strong discrete baselines.
027



028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Comparison of diffusion models in different modeling spaces. Masked diffusion models use [MASK] as noise and decode through a single mask-to-token path, while continuous diffusion models explore the Gaussian space but often produce unreadable tokens due to the vast search space. CADD combines the *stability* of masked diffusion with the *flexibility* of continuous diffusion, enabling better token decoding for masked positions.

1 INTRODUCTION

Diffusion models have significantly advanced generative modeling tasks (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Karras et al., 2022), particularly in image synthesis (Saharia et al., 2022; Esser et al., 2024; Polyak et al., 2024; Zheng et al., 2024a; Brooks et al., 2024). Recently, with the rapid progress on discrete diffusion models (Austin et al., 2021a; Hoogeboom et al., 2021; Lou et al., 2024), diffusion models have become a strong tool on the discrete categorical data domain, such as text generative modeling and code generation (Gat et al., 2024; Gong et al., 2023; 2025b).

054 Early work on Continuous Diffusion Models (CDMs) for categorical data maps tokens into a
 055 continuous space, applies Gaussian diffusion to the representations, and then rounds back to discrete
 056 symbols (Li et al., 2022; Dieleman et al., 2022; Han et al., 2022; Zhang et al., 2023; Gulrajani &
 057 Hashimoto, 2023). This route preserves smooth semantic signals and enables the use of established
 058 score-based methods. In parallel, Masked Diffusion Models (MDMs) have recently shown strong
 059 results for categorical data (Shi et al., 2024; Sahoo et al., 2024; Nie et al., 2025): instead of adding
 060 noise in an embedding space, MDMs progressively mask tokens over time and learn to unmask them,
 061 yielding clear training signals via token-level cross-entropy.

062 Despite their respective successes, both approaches have limitations, which illustrated in Figure 1. (i)
 063 MDMs suffer from information loss due to their use of absorbing [MASK] state (Wang et al., 2025).
 064 This design collapses all unobserved possibilities into one symbol, erasing any information about
 065 how close a corrupted position is to the original token, creating an “information void”. This reduces
 066 the information available for the model to resolve ambiguity and maintain global semantic coherence.
 067 As an example shown in the right of the figure, if a masked token could plausibly be “Language” or
 068 “Diffusion”, the [MASK] representation offers no semantic clue to favor one over the other, forcing
 069 the model to make a hard choice without graded guidance. (ii) While CDMs can represent semantic
 070 proximity, they face a different challenge, known as over-smoothing. Because the denoising process
 071 occurs entirely in a continuous embedding space and discretization to tokens only happens in the
 072 end (Gao et al., 2022), their continuous denoising objective can over-smooth token identities, which
 073 makes it difficult for the model to make precise predictions without localized context.

074 To address these challenges, we propose **Continuously Augmented Discrete Diffusion (CADD)**,
 075 which integrates the strengths of CDMs into MDMs. CADD retains the discrete masking trajectory
 076 and augments it with a paired conditional Gaussian diffusion in a continuous semantic embedding
 077 space. Our forward process jointly evolves the token sequence and its latent, so positions that are
 078 masked in the discrete path are accompanied by noisy yet informative latent vectors rather than
 079 information voids. In the reverse process, the model uses the continuous latent as a soft semantic
 080 hint to guide token denoising at each step, while the discrete context constrains the latent dynamics
 081 locally. Returning to Figure 1, the continuous manifold offers a graded path between candidates
 082 (“Language” and “Diffusion”, in this case), and the discrete neighborhood restricts the search space,
 083 allowing movement within the triangular region between hypotheses and enabling smooth transitions
 084 driven by the hints. In addressing the limits of both pure MDMs and CDMs, our contributions are:

- 085 1. *Better token prediction with soft hints.* For masked positions, the continuous latent preserves
 086 graded proximity to the ground-truth token embedding, which reduces ambiguity and makes
 087 discrete prediction easier.
- 088 2. *Diversity without off-manifold drift.* At inference, one can resample the continuous latent
 089 (e.g., multiple latent draws per discrete state) to explore alternative yet valid choices for a
 090 token or span. Because the discrete head stays grounded in the vocabulary, diversity comes
 091 from semantic variation rather than uncontrolled noise.
- 092 3. *Training and sampling remain simple.* CADD keeps standard cross-entropy for tokens and a
 093 standard diffusion loss for the continuous head. The sampler can alternate or jointly update
 094 the discrete and continuous states.
- 095 4. *Efficient fine-tuning.* CADD requires no special architecture and can reuse the same backbone
 096 as any MDM, enabling efficient fine-tuning of existing MDM to gain the above benefits.

098 2 RELATED WORK

100 **Discrete Diffusion Models** Discrete diffusion models (Hoogeboom et al., 2021; Zheng et al., 2024b;
 101 Austin et al., 2021a) operate by defining a Markov chain over the discrete token space, gradually
 102 diffusing the data with either uniform or absorbing transitions. Later, the model was unified and
 103 simplified to continuous-time masked diffusion models (Campbell et al., 2022; Lou et al., 2024; Shi
 104 et al., 2024; Sahoo et al., 2024; Zhang et al., 2025b). Building on this, several recent works further
 105 scaled diffusion LMs to 7B parameters (Gong et al., 2025a; Ye et al., 2025; Nie et al., 2024), achieving
 106 performance on par with AR models. Parallel efforts explored unified multimodal variants that model
 107 text and images both in discrete token (Yang et al., 2025; Li et al., 2025). However, because masked
 108 diffusion models do not allow unmasked tokens to change, errors can accumulate during generation

108 because of suboptimal unmasking in the earlier steps. Several enhanced (re-)masking techniques have
 109 been proposed, using bits and simplex representation to enrich the binary choice of masking (Chao
 110 et al., 2025; Song et al., 2025a), remasking during the reverse process (Gat et al., 2024; Zhao et al.,
 111 2024; Wang et al., 2025), enabling edit operations (Havasi et al., 2025; Song et al., 2025b).
 112

113 **Continuous Relaxations for Discrete Data** Early continuous approaches either learn denoising
 114 in a latent embedding without explicit statistical structure (Li et al., 2022; Dieleman et al., 2022;
 115 Chen et al., 2023) or fully relax tokens into unconstrained Euclidean space as simplex (Han et al.,
 116 2022; Karimi Mahabadi et al., 2024; Tae et al., 2025; Jo & Hwang, 2024; 2025). However, such
 117 unconstrained relaxations often fail to preserve the inherent discreteness and categorical semantics
 118 of language (Gulrajani & Hashimoto, 2023). More recent methods impose structure in the logit
 119 space (Hoogeboom et al., 2021; Graves et al., 2023) or directly on the probability simplex via
 120 Dirichlet priors (Avdeyev et al., 2023; Stärk et al., 2024), enforcing stronger statistical constraints on
 121 the noising process. Flow-matching techniques further treat the simplex as a statistical manifold (Liu
 122 et al., 2023; Cheng et al., 2024; Davis et al., 2024), yet these approaches still lag behind discrete
 123 diffusion models in generation fidelity. Recently, Zhang et al. (2025a) leveraging density models with
 124 normalizing flow (Zhai et al., 2025; Gu et al., 2025) for flexible language modeling, and Sahoo et al.
 125 (2025) connect discrete diffusion language models and the underlying Gaussian diffusion.
 126

126 **Bridging Through the Lens of Mode Balancing** Our work is also motivated by balancing mode
 127 seeking and mode covering. Related efforts pursue this balance via guidance methods that tune the
 128 diversity–precision trade-off (Dhariwal & Nichol, 2021; Ho & Salimans, 2022); score-distillation
 129 approaches that sharpen samples while retaining diffusion training for coverage (Poole et al., 2022;
 130 Song et al., 2023; Luo et al., 2023; Yin et al., 2024; Zhou et al., 2024; Zhang et al., 2025b); and
 131 techniques that improve GAN mode coverage using diffusion or augmentation (Zheng & Zhou,
 132 2021; Zheng et al., 2023a; Wang et al., 2023; Karras et al., 2020; Zhao et al., 2020). Similar effects
 133 have been observed when distilling in a paired continuous space (Sahoo et al., 2025). From this
 134 perspective, the discrete path in CADD is naturally mode-seeking, while the continuous channel
 135 spreads probability mass to cover plausible alternatives for the next token.
 136

3 PRELIMINARY

138 Let $\mathbf{x}_0 = (\mathbf{x}_0^1, \dots, \mathbf{x}_0^n)$ represent a sequence of discrete tokens in a vocabulary set $\mathcal{V} = \{1, 2, \dots, V\} \cup$
 139 $\{\mathbf{m}\}$ that containing V tokens plus a mask token \mathbf{m} ([MASK]), i.e., for any positions i , $\mathbf{x}_0^i \in$
 140 $\{0, 1\}^{V+1}$ is a one-hot vector. Let $\mathbf{w}_\theta : \mathcal{V} \rightarrow \mathbb{R}^d$ be a learnable token embedding matrix and the
 141 embedding latent representations are deterministically transformed as $\mathbf{z}_0 := \mathbf{w}_\theta(\mathbf{x}_0)$, and $\mathbf{z}_0 \in \mathbb{R}^{n \times d}$.
 142

143 **Discrete Diffusion Models** The forward diffusion process is performed through an element-wise
 144 conditional sampler $q(\mathbf{x}_t | \mathbf{x}_0) = \prod_{i=1}^n q(\mathbf{x}_t^i | \mathbf{x}_0^i)$, defined as ($\delta(\cdot)$ denotes the dirac function):
 145

$$q(\mathbf{x}_t^i | \mathbf{x}_0^i) \triangleq \alpha_t \delta(\mathbf{x}_t^i - \mathbf{x}_0^i) + (1 - \alpha_t) \delta(\mathbf{x}_t^i - \mathbf{m}), \quad (1)$$

146 where $\alpha_t \in [0, 1]$ is a strictly decreasing scheduling function following $\alpha_t = \prod_{s=1}^t (1 - \beta_s)$. The
 147 reverse process aims to learn $p(\mathbf{x}_s | \mathbf{x}_t)$ for $0 \leq s < t \leq 1$. This is typically achieved by training
 148 a model $p_\theta(\mathbf{x}_0 | \mathbf{x}_t)$ to predict the original data from a corrupted state, optimized by minimizing a
 149 variational bound on the negative log-likelihood, denoting α'_t the derivative of α_t w.r.t. t :
 150

$$\mathcal{L}_{\text{vb}}(\mathbf{x}_0; \theta) \triangleq \mathbb{E}_{t, \mathbf{x}_t \sim q(\cdot | \mathbf{x}_0)} \left[-\frac{\alpha'_t}{1 - \alpha_t} \log p_\theta(\mathbf{x}_0 | \mathbf{x}_t) \right]. \quad (2)$$

151 **Continuous Diffusion Models** Continuous diffusion models corrupt real-valued data $\mathbf{z}_0 \in \mathbb{R}^{n \times d}$
 152 by adding Gaussian noise scheduled by $\bar{\gamma}_t$. The forward process $q(\mathbf{z}_t | \mathbf{z}_0)$ is a Gaussian distribution
 153 with a closed form:
 154

$$q(\mathbf{z}_t | \mathbf{z}_0) = \mathcal{N}(\mathbf{z}_t; \sqrt{\bar{\gamma}_t} \mathbf{z}_0, (1 - \bar{\gamma}_t) \mathbf{I}) \quad (3)$$

155 where $\bar{\gamma}_t$ is a noise schedule analogous to α_t , with $\bar{\gamma}_t = \prod_{s=1}^t \gamma_s$ holding. The reverse process
 156 $p_\theta(\mathbf{z}_{t-1} | \mathbf{z}_t)$ is trained by fitting a network $f_\theta(\cdot)$ with a MSE objective reweighted by signal-to-noise
 157 ratio (SNR) function $\lambda(\bar{\gamma}_t, t)$:
 158

$$\mathcal{L}_{\text{vb}}(\mathbf{z}_0; \theta) \triangleq \mathbb{E}_{t, \mathbf{x}_t \sim q(\cdot | \mathbf{z}_0)} [\lambda(\bar{\gamma}_t, t) \|f_\theta(\mathbf{z}_t; t) - \mathbf{z}_0\|^2]. \quad (4)$$

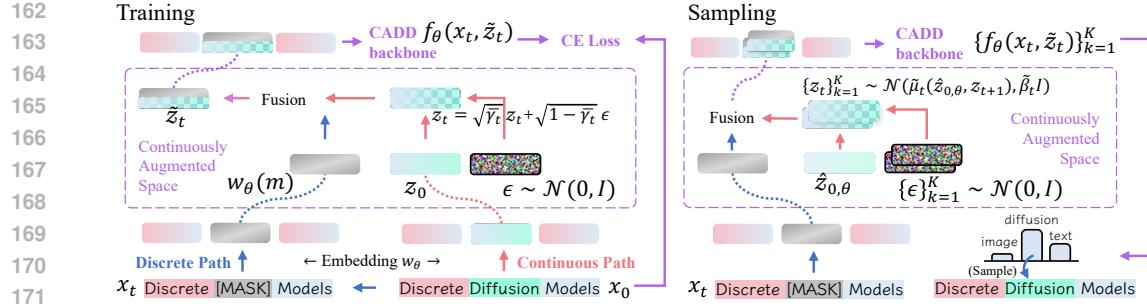


Figure 2: Illustrative depiction of CADD model, combining both the discrete and continuous feature of the data. In training, the clean token at the masked position will be created by embedding matrix and used to form the noisy embedding according to the continuous forward. In sampling, the model is able to predict a diverse distribution of possible tokens by sampling multiple z_{t+1} . Then the predicted tokens will be recycled into the embedding matrix to form $\hat{z}_{0,\theta}$ for the next iteration.

4 CONTINUOUSLY AUGMENTED DISCRETE DIFFUSION (CADD)

Here we introduce Continuously Augmented Discrete Diffusion (CADD). The high-level intuition is to mitigate the sudden information loss that occurs when tokens are replaced by an absorbing state in discrete diffusion. Inspired by the smooth signal degradation in Gaussian diffusion, CADD augments the discrete state space with a continuous latent variable, z_t . This variable is paired with discrete tokens x_t and is designed to retain semantics of a token’s original signal even when tokens in x_t are masked. Guided by a set of latent vectors $\{z_t^{(k)}\}_{k=1}^K$, the model predicts next tokens by:

$$p_\theta(x_{t-1} | x_t) = \mathbb{E}_{z_t} [p_\theta(x_{t-1} | x_t, z_t)] \approx \sum_{k=1}^K p_\theta(x_{t-1} | x_t, z_t^{(k)}). \quad (5)$$

Conditioning continuous view of the underlying content at step t and traverse on the z_t space, the expectation averages over plausible continuous states so the predictor could realize the distribution of the possible tokens more accurately. The full model design is illustrated in Figure 2 and we present the detailed designs in the following sections. Noted that although we use continuous-time notation s and t for diffusion steps, to improve readability, we also denote specific consecutive steps in the diffusion process by t and $t-1$, with total T steps. Below we present the construction of CADD with main derivations. For more detailed ELBO derivations and proofs, please refer to Appendix A.

4.1 FORWARD

To let z_t retain semantic hints of tokens in x_t when they are masked, we define the joint transition:

$$q(x_t, z_t | x_{t-1}, z_{t-1}, x_0) := \underbrace{q(x_t | x_{t-1})}_{\text{discrete part}} \cdot \underbrace{q(z_t | z_{t-1}, x_{t-1}, x_t, x_0)}_{\text{continuous part}}, \quad (6)$$

Given a fixed discrete schedule $\{\beta_t\}_{t=1}^T \in [0, 1]^T$ and continuous diffusion schedule $\{\gamma_t\}_{t=1}^T$, the forward transition of discrete and continuous part can be written as following:

$$q(x_t | x_{t-1}) = \prod_{i=1}^n \text{Categorical}(x_t^i; \mathbf{Q}_t^\top \mathbf{x}_{t-1}^i), \quad \mathbf{Q}_t = (1 - \beta_t) \mathbf{I} + \beta_t \mathbf{1} \mathbf{m}^\top. \quad (7)$$

$$q(z_t | z_{t-1}, x_{t-1}, x_t, x_0) = \prod_{i=1}^n \begin{cases} \delta(z_t^i - z_{t-1}^i), & \mathbf{x}_t^i \neq \mathbf{m}, \\ \mathcal{N}(z_t^i; \sqrt{\gamma_t} z_{t-1}^i, (1 - \gamma_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \mathbf{x}_{t-1}^i \neq \mathbf{m}, \\ \mathcal{N}(z_t^i; \sqrt{\gamma_t} z_{t-1}^i, (1 - \gamma_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \mathbf{x}_{t-1}^i = \mathbf{m}. \end{cases} \quad (8)$$

The discrete transition is the same as normal discrete diffusion like Austin et al. (2021a) and acts as a trigger for the continuous embedding’s evolution. The continuous trajectory for an embedding remains dormant as long as its token is unmasked, holding its value constant at its original state ($\delta(z_t^i - z_{t-1}^i) = \delta(z_t^i - z_0^i)$ if x_t^i is never masked as the information is not changed). The moment a

216 token is masked, it triggers the continuous diffusion process for its embedding. The embedding then
 217 begins a smooth degradation path determined by the Gaussian diffusion (Ho et al., 2020). If a token
 218 stays masked, its embedding simply continues along this path, becoming progressively noisier.

219 Now we extend the case to the marginals at timestep t with the following proposition.

220 **Proposition 1** (Timestep- t joint marginal factorization). *The marginal at timestep t can be factorized:*

$$222 \quad q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0) = q(\mathbf{x}_t \mid \mathbf{x}_0) \cdot q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0) \quad (9)$$

223 Given $\alpha_t := \prod_{s=1}^t (1 - \beta_s)$ and $\bar{\mathbf{Q}}_t := \prod_{s=1}^t \mathbf{Q}_s = \alpha_t \mathbf{I} + (1 - \alpha_t) \mathbf{1} \mathbf{m}^\top$ and let $\bar{\gamma}_t := \prod_{s=1}^t \gamma_s$,
 224 with $\mathbf{z}_0^i = \mathbf{w}_\theta(\mathbf{x}_0^i)$, the two terms factorized above represent the discrete and continuous part:

$$226 \quad q(\mathbf{x}_t \mid \mathbf{x}_0) = \prod_{i=1}^n q(\mathbf{x}_t^i \mid \mathbf{x}_0^i), \quad q(\mathbf{x}_t^i \mid \mathbf{x}_0^i) = \text{Categorical}(\mathbf{x}_t^i; \bar{\mathbf{Q}}_t^\top \mathbf{x}_0^i). \quad (10)$$

$$229 \quad q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0) = \prod_{i=1}^n q(\mathbf{z}_t^i \mid \mathbf{x}_t^i, \mathbf{x}_0^i) = \prod_{i=1}^n \begin{cases} \delta(\mathbf{z}_t^i - \mathbf{z}_0^i), & \mathbf{x}_t^i = \mathbf{x}_0^i, \\ \mathcal{N}(\mathbf{z}_t^i; \sqrt{\bar{\gamma}_t} \mathbf{z}_0^i, (1 - \bar{\gamma}_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \end{cases} \quad (11)$$

232 A key property of the marginal distribution $q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)$ is that it conveniently factorizes into
 233 discrete and continuous components: $q(\mathbf{x}_t \mid \mathbf{x}_0)$ and $q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0)$. This factorization is highly
 234 advantageous, as the distribution for each component is tractable and can be computed in closed form
 235 according to the predefined diffusion schedule.

237 4.2 REVERSE

239 Following Kingma et al. (2021); Xiao et al. (2022); Zhou et al. (2023), we choose the conditional
 240 distribution parameterized with neural network $f_\theta(\cdot)$ to define:

$$241 \quad p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t) := q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0 = \hat{\mathbf{x}}_0), \quad (12)$$

$$242 \quad p_\theta(\hat{\mathbf{x}}_0 \mid \mathbf{x}_t, \mathbf{z}_t) = \text{Categorical}(\text{logits} = f_\theta(\mathbf{x}_t, \mathbf{z}_t)) \text{ if } \mathbf{x}_t = \mathbf{m} \text{ else } \delta(\hat{\mathbf{x}}_0 - \mathbf{x}_t). \quad (13)$$

244 The objective is to close the gap between the defined parametric distribution and the true posterior.
 245 Below we present the close form of the posterior. For notation simplicity, below we discuss on
 246 per position formulation and omit the notation i , since all distributions factorize across positions
 247 $i \in \{1, \dots, n\}$.

248 **Proposition 2** (Factorization of the true posterior). *By the forward construction, the posterior can be
 249 factorized in the following form*

$$250 \quad q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) = \underbrace{q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)}_{\text{discrete part}} \cdot \underbrace{q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0)}_{\text{continuous part}}. \quad (14)$$

253 Moreover, we can write the close form of each component:

$$254 \quad q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)}{q(\mathbf{x}_t \mid \mathbf{x}_0)} = \begin{cases} \frac{\alpha_{t-1} - \alpha_t}{1 - \alpha_t} \mathbf{x}_{t-1}^\top \mathbf{x}_0 & \mathbf{x}_{t-1} \neq \mathbf{m}, \mathbf{x}_t = \mathbf{m} \\ \frac{1 - \alpha_{t-1}}{1 - \alpha_t} & \mathbf{x}_{t-1} = \mathbf{m}, \mathbf{x}_t = \mathbf{m} \\ \mathbf{x}_{t-1}^\top \mathbf{x}_t & \mathbf{x}_t \neq \mathbf{m}. \end{cases} \quad (15)$$

$$259 \quad q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0) = \begin{cases} \delta(\mathbf{z}_{t-1} - \mathbf{z}_0), & \mathbf{x}_t = \mathbf{x}_0 \text{ (no mask at } t\text{),} \\ \delta(\mathbf{z}_{t-1} - \mathbf{z}_0), & \mathbf{x}_t = \mathbf{m}, \mathbf{x}_{t-1} = \mathbf{x}_0 \text{ (first unmask at } t\text{),} \\ \mathcal{N}(\mathbf{z}_{t-1}; \tilde{\boldsymbol{\mu}}_t, \tilde{\beta}_t \mathbf{I}_d), & \mathbf{x}_t = \mathbf{m}, \mathbf{x}_{t-1} = \mathbf{m}, \end{cases} \quad (16)$$

262 with the following parameters:

$$264 \quad \tilde{\beta}_t = \frac{(1 - \bar{\gamma}_{t-1})(1 - \gamma_t)}{1 - \bar{\gamma}_t}, \quad \tilde{\boldsymbol{\mu}}_t = \frac{\sqrt{\bar{\gamma}_{t-1}}(1 - \gamma_t)}{1 - \bar{\gamma}_t} \mathbf{z}_0 + \frac{\sqrt{\gamma_t}(1 - \bar{\gamma}_{t-1})}{1 - \bar{\gamma}_t} \mathbf{z}_t. \quad (17)$$

266 **Lemma 1.** *For the unmasked positions ($\mathbf{x}_t \neq \mathbf{m}$), the KL is identically 0, and the masked positions
 267 splits exactly as*

$$269 \quad D_{\text{KL}}(q(\cdot \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \parallel p_\theta(\cdot \mid \mathbf{x}_t, \mathbf{z}_t)) = \underbrace{\rho_t^{\text{flip}} \left[-\log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_t, \mathbf{z}_t) \right]}_{\text{discrete}} + \underbrace{\rho_t^{\text{keep}} \mathcal{D}_{\text{KL}}^{\text{cont}}}_{\text{continuous}}, \quad (18)$$

270

271

272

Algorithm 1 Training of CADD

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

```

1: Input: data minibatch  $\{\mathbf{x}_0^{(j)}\}_{j=1}^B$ , network  $f_\theta(\cdot)$ ,
   masking schedule  $\{\alpha_t\}_{t=1}^T$ , continuous schedule
    $\{\bar{\gamma}_t\}_{t=1}^T$ 
2: for  $j = 1, \dots, B$  do
3:   draw  $t_j \sim \text{Uniform}(1, \dots, T)$  for each sample
4:   mask out each token position  $\mathbf{x}_0^{(j),i}$  with prob-
   ability  $1 - \alpha_{t_j}$  to obtain  $\mathbf{x}_{t_j}^{(j)}$ 
5:   form embeddings  $\mathbf{z}_{\text{disc}}^{(j)} \leftarrow \mathbf{w}_\theta(\mathbf{x}_{t_j}^{(j)})$ ,  $\mathbf{z}_t^{(j)} \leftarrow$ 
    $\mathbf{w}_\theta(\mathbf{x}_0^{(j)})$ 
6:
7:   for position  $i \in \{1, \dots, n\}$ , if  $\mathbf{x}_{t_j}^{(j),i} = \mathbf{m}$  do,
    $\mathbf{z}_{t_j}^{(j),i} \leftarrow \sqrt{\bar{\gamma}_{t_j}} \mathbf{z}_{t_j}^{(j),i} + \sqrt{1 - \bar{\gamma}_{t_j}} \boldsymbol{\epsilon}$ ,  $\boldsymbol{\epsilon} \sim (\mathbf{0}, \mathbf{I})$ 
8:   end for
9:    $\tilde{\mathbf{z}}_{t_j}^{(j)} \leftarrow \mathbf{z}_{\text{disc}}^{(j)} + \mathbf{z}_t^{(j)}$ , compute logits  $f_\theta(\tilde{\mathbf{z}}_{t_j}^{(j)})$ 
10:  optimize with cross entropy loss in Eq. (20)
11: end for

```

292

293

294

with the ratio that determines whether the position is going to be flipped to unmask or keep moving in the continuous space:

295

296

297

298

299

300

301

$$\rho_t^{\text{keep}} = \frac{1 - \alpha_{t-1}}{1 - \alpha_t}, \quad \rho_t^{\text{flip}} = \frac{\alpha_{t-1} \beta_t}{1 - \alpha_t} = \frac{\alpha_{t-1} - \alpha_t}{1 - \alpha_t}.$$

The KL divergence in the continuous space has a reweighted MSE form:

302

303

304

305

306

307

$$D_{\text{KL}}^{\text{cont}} = \frac{1}{2\tilde{\beta}_t} \|\tilde{\mu}_t(\mathbf{z}_0, \mathbf{z}_t) - \tilde{\mu}_t(\hat{\mathbf{z}}_{0,\theta}, \mathbf{z}_t^i)\|^2 = \frac{a_t^2}{2\tilde{\beta}_t} \|\mathbf{z}_0 - \hat{\mathbf{z}}_{0,\theta}\|^2; a_t = \frac{\sqrt{\bar{\gamma}_{t-1}}(1 - \gamma_t)}{1 - \bar{\gamma}_t}. \quad (19)$$

4.3 ALGORITHM AND IMPLEMENTATION

308

309

310

Training Loss According to Eq. (18), the model aims to learn to maximize the likelihood of discrete path, and also minimize the reweighted MSE in Eq. (19). Inspired by continuous diffusion models that used for categorical modeling, e.g., CDCC (Dieleman et al., 2022) and Plaid (Gulrajani & Hashimoto, 2023), we may estimate $\hat{\mathbf{z}}_{0,\theta} := \sum_v p_\theta(\hat{\mathbf{x}}_0 = v \mid \mathbf{x}_t, \mathbf{z}_t) \mathbf{w}_{\theta,v}$ and just train the model to predict correct categorical output to minimize the KL divergence. Thus, we choose to train CADD by minimizing a simple cross entropy loss as following and the training is summarized in Algorithm 1:

311

312

313

314

$$\mathcal{L}_{\text{CADD}} = \mathbb{E}_t \mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)} \left[- \sum_{i: \mathbf{x}_t^i = \mathbf{m}} \log p_\theta(\mathbf{x}_0^i \mid \mathbf{x}_t^i, \mathbf{z}_t^i) \right] \quad (20)$$

315

316

317

318

Note that we may add the MSE loss in Eq. (19) to the above objective to more accurately estimate the exact variational lower bound. Empirically we find the simplified loss is more computationally efficient, thus we choose to use this loss for most of our experiments unless otherwise specified.

319

320

321

322

323

Sampling The sampling start from the last timestep T of the diffusion chain. Under the absorbing forward, $\alpha_T \approx 0$, hence $p(\mathbf{x}_T) = \delta_{\mathbf{x}_T=\mathbf{m}}$, i.e., all tokens are masked. Since all positions are masked at T , the continuous prior is $p(\mathbf{z}_T \mid \mathbf{x}_T) = \prod_{i=1}^n \mathcal{N}(\mathbf{z}_T^i; \mathbf{0}, \mathbf{I}_d)$, which matches the forward marginal at T . For each timestep, given $(\mathbf{x}_t, \mathbf{z}_t)$, the network predicts

324

325

326

327

328

329

330

331

332

333

334

335

$$\pi_{\theta,i}(v) := \frac{1}{K} \sum_{k=1}^K p_\theta(\hat{\mathbf{x}}_0^i = v \mid \mathbf{x}_t, \mathbf{z}_t^{(k)}) \in \Delta^{V-1} \quad \text{for each position } i.$$

If the position i is unmasked, the absorbing chain keeps $\mathbf{x}_{t-1}^i = \mathbf{x}_t^i$ almost surely and the continuous variable is deterministic $\mathbf{z}_{t-1}^i = \mathbf{z}_t^i = \mathbf{w}_\theta(\mathbf{x}_t^i)$. If this position is masked, it draws a clean token $v \sim$

Algorithm 2 Sampling of CADD

1: **Input:** desired minibatch size B , network $f_\theta(\cdot)$, schedules $\{\alpha_t\}_{t=1}^T$, $\{\bar{\gamma}_t\}_{t=1}^T$

2: **for** $j = 1, \dots, B$ **do**

3: **init:** $\mathbf{x}_T^{(j)} \leftarrow (\mathbf{m}, \dots, \mathbf{m})$, $\mathbf{z}_T^{(j)} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I})$

4: **for** $t = T, \dots, 1$ **do**

5: **for** $i = 1, \dots, n$, if $\mathbf{x}_t^{(j),i} = \mathbf{m}$ **do**

6: compute ρ_t^{flip} and ρ_t^{keep} (Eq. (38))

7: $\mathbf{x}_{t-1}^{(j),i} \sim \text{Cat}(\rho_t^{\text{flip}} f_\theta(\mathbf{x}_t^{(j),i}, \mathbf{z}_t^{(j),i}) + \rho_t^{\text{keep}} \mathbf{m})$

8:

9: **if** $\mathbf{x}_{t-1}^{(j),i} \leftarrow \mathbf{m}$ **then** draw $\mathbf{z}_{t-1}^i \sim \mathcal{N}(\tilde{\mu}_t(\mathbf{z}_{0,\theta}^i, \mathbf{z}_t^i), \tilde{\beta}_t \mathbf{I}_d)$ with Eq. (21)

10: **else** $\mathbf{z}_{t-1}^{(j),i} \leftarrow \mathbf{w}_\theta(\mathbf{x}_{t-1}^{(j),i})$

11: **end if**

12: **end for**

13: **end for**

14: **end for**

324 $\pi_{\theta,i}(\cdot)$ with probability $\frac{1-\alpha_{t-1}}{1-\alpha_t}$ to unmask it, and the continuous latent $\mathbf{z}_{t-1}^i \leftarrow w_{\theta,v}$. If it remains
 325 unmasked, \mathbf{z}_{t-1}^i moves along the continuous diffusion trajectory $\mathbf{z}_{t-1}^i \sim \mathcal{N}(\tilde{\mu}_t(\tilde{\mathbf{z}}_{0,\theta}^i, \mathbf{z}_t^i), \tilde{\beta}_t \mathbf{I}_d)$.
 326 The full sampling process is shown in Algorithm 2. Note the choice of $\tilde{\mathbf{z}}_{0,\theta}^i$ has two options:
 327

328 **hard:** $\hat{\mathbf{x}}_0 = \arg \max_v \pi_{\theta,i}(v)$, $\hat{\mathbf{z}}_0 = \mathbf{w}_{\theta}(\hat{\mathbf{x}}_0)$ **soft:** $\hat{\mathbf{z}}_{0,\theta} := \sum_v p_{\theta}(\hat{\mathbf{x}}_0 = v \mid \mathbf{x}_t, \mathbf{z}_t) \mathbf{w}_{\theta,v}$. (21)
 329

330 These two choices are both valid to use depending on whether we are looking for mode-covering or
 331 mode-seeking behavior, i.e., better context localization or better diversity, respectively. In our main
 332 experiments we keep the hard option, and our empirical exploration in Appendix C.3 justify these
 333 two choices could meet the demand of these two behavior. Moreover, although CADD may leverage
 334 multi-sample for the \mathbf{x}_0 distribution estimation, for fair comparison with baselines, we keep $K = 1$
 335 for most of our experiments. More detailed studies are also shown in the Appendix C.3.
 336

337 **Implementation** We follow the common-used design of the model architecture to let $f_{\theta}(\cdot)$ predict
 338 logits for categorical distribution. The discrete path follows earlier masked-diffusion setups: starting
 339 from \mathbf{x}_0 , we mask a subset of positions to obtain \mathbf{x}_t , embed the mixed sequence with the learnable
 340 table and form $\mathbf{z}_{\text{disc}} = \mathbf{w}_{\theta}(\mathbf{x}_t)$. The only difference is the model needs to take an additional
 341 variable \mathbf{z}_t input for the continuous embeddings. To achieve this, we first form the clean embeddings
 342 $\mathbf{z}_0 = \mathbf{w}_{\theta}(\mathbf{x}_0)$, and then apply noise only at masked positions using the forward marginal Eq. (11)
 343 to obtain \mathbf{z}_t . We fuse \mathbf{z}_{disc} and \mathbf{z}_t by element-wise addition $\tilde{\mathbf{z}}_t := \mathbf{z}_{\text{disc}} + \mathbf{z}_t$, and feed $\tilde{\mathbf{z}}_t$ to the
 344 backbone f_{θ} to produce per-position logits.
 345

5 EXPERIMENTS

347 In this section we present experiments to validate the proposed CADD model through experiments
 348 on text, image, and code generation benchmarks. The evaluations are designed to assess the model’s
 349 performance across diverse data modalities and scales.
 350

5.1 TEXT GENERATION

351 **Experiment setting** For text generation, we strictly follow the experimental setup of the Masked
 352 Diffusion Language Model (MDLM) (Sahoo et al., 2024), a common configuration for this task. We
 353 train our CADD models on the OpenWebText (OWT) dataset (Gokaslan & Cohen, 2019). Data is
 354 tokenized using the GPT-2 tokenizer with a vocabulary size of $|\mathcal{V}| = 50,257$ (Radford et al., 2019),
 355 and sequences are fixed to a length of $n = 1,024$. To be consistent with the baselines, we use a
 356 Discrete DiT backbone (Peebles & Xie, 2023) with approximately 168M parameters, and train with
 357 same number of iterations. All training hyper-parameters are identical to those in MDLM.
 358

359 **Evaluation.** We mainly compare the performance with discrete diffusion baselines in terms of the
 360 generative quality, and our evaluation protocol strictly follows that of Wang et al. (2025). We compare
 361 the performance against discrete diffusion baselines using two metrics: the MAUVE score (higher is
 362 better) (Liu et al., 2021; Pillutla et al., 2021) and generative perplexity (lower is better) (Lou et al.,
 363 2024). Further details on the evaluation setup are located in Appendix B.
 364

365 **Main Results.** Figure 3 presents the results for unconditional text generation on the OpenWebText
 366 (OWT) dataset, comparing CADD with SEDD (absorb) and MDLM across a range of sampling steps
 367 $T \in \{128, 256, 512, 1024, 4096\}$. Within the range $T \leq 1024$, all models shows improvement as
 368 the number of sampling steps increases. We can notice CADD demonstrates stronger and consistent
 369 gains as steps increase compared to SEDD and MDLM in terms of both metrics. Plotting the x-axis
 370 on a \log_2 scale reveals that the performance trend is approximately linear.
 371

372 Extending the sampling process to $T = 4096$ further demonstrates CADD’s scaling capabilities
 373 at inference time, as it continues to improve while the masked-only baselines stagnate or degrade.
 374 From $T = 1024$ to 4096, CADD’s MAUVE score still increases by 0.3, and its generative perplexity
 375 is scored from 44.6 to 35.3. MDLM’s performance slightly worsens, which is consistent with the
 376 observation that mask-only diffusion models scale poorly with T (Wang et al., 2025). Overall, CADD
 377 consistently show performance gain across all tested number of sampling steps over the mask-only
 378 discrete diffusion models, validating the effectiveness of the proposed continuous-augmented space.
 379

Figure 3: Unconditional text generative evaluation of model trained on OpenWebText (OWT) data. All method are evaluated with 128, 256, 512 1024, and 4096 sampling steps. MAUVE (higher is better) and generative perplexity (measured using GPT2-Large, lower is better) are reported.

Table 1: FID and IS evaluation on CIFAR-10. The arrow symbols denotes lower/higher is better respectively. Baseline results are quoted from Chao et al. (2025).

Method	FID (\downarrow)	IS (\uparrow)
CADD (NFE=512)	2.88	10.04
Discrete		
MDM (NFE=512)	4.66	9.09
MDM-Mixture (NFE=512)	4.80	9.22
MDM-Prime (NFE=512)	3.26	9.67
D3PM Absorb (NFE=1,000)	30.97	6.78
D3PM Gauss. (NFE=1,000)	7.34	8.56
CTDD-DG (NFE=1,000)	7.86	8.91
Tau-LDR (NFE=1,000)	3.74	9.49
Discrete FM (NFE=1,024)	3.63	-
Continuous		
Continuous FM	6.35	-
Bit Diffusion	3.48	-
StyleGAN+ADA	3.26	9.74
DDPM	3.17	9.46

Table 2: FID evaluation using model unconditionally trained on ImageNet (32 \times 32 resolution).

Method	FID (\downarrow)
CADD (NFE=1,024)	3.74
Discrete	
MDM (NFE=1,024)	7.91
MDM-Mixture (NFE=1,024)	8.08
MDM-Prime (NFE=1,024)	6.98
Continuous	
NDM	17.02
DDPM	16.18
MSGAN	12.30
i-DODE (SP)	10.31
i-DODE (VP)	9.09
Stochastic Interp.	8.49
Soft Trunc. DDPM	8.42
ScoreFlow (subVP)	8.87
ScoreFlow (VP)	8.34
Continuous FM	5.02

5.2 IMAGE GENERATION

We train and evaluate our models on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Krizhevsky et al., 2017) datasets (resolution 32 \times 32). For both, input images are in RGB channels, thus a dimensionality of $n = 32 \times 32 \times 3$ with $|\mathcal{V}| = 256$ pixel values per channel. For fair comparison the MDM baselines, our model architecture follows the one used in Chao et al. (2025); Gat et al. (2024), which is based on the ADM (Dhariwal & Nichol, 2021) architecture. We choose MDM-Prime (Chao et al., 2025) and its variants as our main discrete diffusion baseline. We also include its discrete and continuous diffusion model baselines for comparison (Shih et al., 2022; Ho et al., 2020; Song et al., 2021; Austin et al., 2021a; Campbell et al., 2022; Gat et al., 2024; Nisonoff et al., 2025; Lipman et al., 2022; Chen et al., 2023; Bartosh et al., 2023; Tran et al., 2019; Zheng et al., 2023b; Albergo & Vanden-Eijnden, 2023; Kim et al., 2022). To assess sample quality, we report Fréchet Inception Distance (FID) and Inception Score (IS), computed with 50,000 randomly sampled images.

We follow MDM variants to unconditionally sample images with same number of function evaluation (NFE) and report results on CIFAR-10 in Table 1. With the same NFE, we can observe CADD improves upon MDMs by a significant margin. Attaining an FID of 2.88 and an Inception Score of 10.04 with 512 function evaluations (NFE), CADD surpasses the MDM variants by 0.38 in terms of FID and represents the best result among all compared method. On ImageNet-32, as shown in Table 2, the observation is constant, where CADD obtains FID of 3.74 and outperforms all reported baselines. The qualitative generated samples are provided in Appendix D for visual justifications.

432
 433 Table 3: Benchmark coding capacities of AR and Diffusion LLMs in 7/8B scale. We follow the
 434 evaluation settings in DiffuCoder (Gong et al., 2025b), where EvalPlus is computed as the average of
 435 HE+ and MBPP+. The best performance in AR and Diffusion LLMs are marked in bold.
 436

437 Model	HumanEval		MBPP		EvalPlus	BigCodeBench (C)		Avg.
	-	Plus	-	Plus		Full	Hard	
438 AR								
439 Qwen2.5-Coder	61.6	51.8	75.9	61.4	56.6	46.1	16.2	52.2
440 OpenCoder (Huang et al., 2024)	66.5	63.4	79.9	70.4	66.9	40.5	9.5	55.0
441 Diffusion								
442 LLaDA (Nie et al., 2025)	35.4	30.5	50.1	42.1	36.3	18.9	4.1	30.2
443 Dream (Ye et al., 2025)	56.7	50.0	68.7	57.4	53.7	23.6	4.1	43.4
444 DiffuCoder	67.1	60.4	74.2	60.9	60.7	40.2	12.8	52.6
445 CADD (ours)	72.0	63.4	75.7	63.2	63.3	42.1	17.6	55.7
446 CADD (ours, DiffuCoder init)	73.8	64.6	73.9	60.4	62.5	41.5	15.5	55.0

447 448 5.3 CODE GENERATION

449 For a large-scale setting, we conduct code generation experiments based on the DiffuCoder
 450 pipeline (Gong et al., 2025b). The DiffuCoder base model training process involves adapting a
 451 pretrained autoregressive LLM (e.g., Qwen2.5-coder (Hui et al., 2024)) into a discrete diffusion
 452 model by annealing its attention mechanism from causal to bidirectional (Gong et al., 2025a). The
 453 resulting model is then trained using a masking diffusion loss (Shi et al., 2024). In this context,
 454 we evaluate our method using the following two distinct configurations. (i) Vanilla CADD: We
 455 follow the DiffuCoder procedure to adapt the Qwen2.5-coder model. Instead of using the MDM
 456 loss, we train the model from the beginning with our proposed CADD loss. (ii) CADD (fine-tuned):
 457 To demonstrate CADD’s effectiveness as a fine-tuning objective, we initialize our model from a
 458 pretrained DiffuCoder checkpoint and then continue training it with the CADD loss. To ensure a fair
 459 comparison, both CADD variants are trained on the same 65B total tokens and use the same training
 460 hyperparameters as the original DiffuCoder. In the evaluation, we follow their settings to test the
 461 model performance on three coding benchmarks: HumanEval (Chen et al., 2021), MBPP (Austin
 462 et al., 2021b), and BigCodeBench (Zhuo et al., 2024).

463 Table 3 reports the pass@1 performance, where the results of both autoregressive (AR) and diffusion-
 464 based LLMs are included, with an overall average score provided. Compared with Diffusion-based
 465 models, CADD emerges as the strongest diffusion model, outperforming competitors on nearly
 466 all metrics. Compared to the previous leading DM, DiffuCoder, CADD significantly improves
 467 performance on HumanEval, e.g., from 67.1 to 72.0; on the challenging BigCodeBench-Hard subset,
 468 we can also observe significant performance gain from 12.8 to 17.6. CADD is also highly competitive
 469 with leading AR code models. It surpasses Qwen2.5-Coder across all benchmarks and achieves a
 470 higher overall average than OpenCoder (55.7 vs. 55.0).

471 472 6 CONCLUSION

473 In standard discrete diffusion, information is lost abruptly when tokens are replaced by an absorbing
 474 state. Inspired by Gaussian diffusion, where the data signal degrades smoothly, CADD’s core idea
 475 is to introduce an auxiliary continuous space to guide the discrete process. This space is designed
 476 to retain semantic information, providing a smooth continuous representation of a token even after
 477 its discrete form has been absorbed. By conditioning on it, the model can better “remember” what
 478 was supposed to be in the masked position. This leads to more coherent and contextually accurate
 479 generations, as the model has a stronger grasp of the underlying meaning. With extensive empirical
 480 justification on text, image and code generation, we justify that with the continuous augmented space
 481 proposed in CADD, the discrete diffusion models consistently generate higher quality samples across
 482 these different tasks and achieve strong performance.

486
487
ETHICS STATEMENT488
489
490
491
492
This research proposes Continuously Augmented Discrete Diffusion model, for discrete data gener-
ation, with possible impacts on misusage to generate toxic information. Since our research scope
is on the fundamental machine learning algorithm, we use all public datasets, which do not contain
personal and sensitive information. In our paper, all generated results have been checked and do not
contain misleading and malicious information.493
494
REPRODUCIBILITY STATEMENT
495496
497
498
499
500
The authors are committed to the principle of reproducibility and have made every effort to ensure
our theoretical and experimental results can be reproduced. We confirm the variables used for
the derivations are well defined and the claims are provided with proofs, which are attached in
Appendix A. We have introduced our methods with precise math tools and visual aids, such as
Figure 1, Figure 2, and Algorithm box 1, 2. The datasets we used are all public and widely-used. The
training and inference details are described in Appendix B, including data pre-processing, training
hyper-parameters, and inference pipeline. The source-code of our model will be released upon
acceptance.501
502
503
THE USE OF LARGE LANGUAGE MODELS (LLMs)
504505
506
We acknowledge that LLMs are used to only polish the presentation and writing of the paper. The
507 generated sentences are double checked and rephrased by the authors.
508510
511
REFERENCES512
Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
513
polants. In *Proc. Int. Conf. on Learning Representations (ICLR)*, 2023.
514
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
515
denoising diffusion models in discrete state-spaces. In *Advances in Neural Information Processing
516
Systems*, 2021a.
517
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
518
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
519
models. *ArXiv preprint*, abs/2108.07732, 2021b. URL <https://arxiv.org/abs/2108.07732>.
520
521
Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Ksenia Dudnyk, and Jian Zhou. Dirichlet diffusion score
522
model for biological sequence generation. In *International Conference on Machine Learning*,
523
2023.
524
525
Grigory Bartosh, Dmitry Vetrov, and Christian A Naesseth. Neural diffusion models. *arXiv preprint
arXiv:2310.08337*, 2023.
526
527
Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
528
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.
529
530
Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
531
Arnaud Doucet. A continuous time framework for discrete denoising models. In *Advances in
532
Neural Information Processing Systems*, 2022.
533
534
Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang annd Chun-Yi Lee, and Rahul G. Krishnan. Beyond
535
Masked and Unmasked: Discrete Diffusion Models via Partial Masking. In *Proceedings of the
536
Conference on Neural Information Processing Systems (NeurIPS)*, 2025.
537
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
538
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
539
language models trained on code. *ArXiv preprint*, abs/2107.03374, 2021. URL <https://arxiv.org/abs/2107.03374>.

540 Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using
 541 Diffusion Models with Self-Conditioning. In *ICLR*, 2023.

542

543 Chaoran Cheng, Jiahao Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical manifolds.
 544 In *Advances in Neural Information Processing Systems*, 2024.

545

546 Oscar Davis, Samuel Kessler, Mircea Petrache, İsmail İlkan Ceylan, Michael M. Bronstein, and
 547 Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. In *Advances
 548 in Neural Information Processing Systems*, 2024.

549

550 Justin Deschenaux and Caglar Gulcehre. Beyond Autoregression: Fast LLMs via Self-Distillation
 551 Through Time. In *Proceedings of the International Conference on Learning Representations
 552 (ICLR)*, 2025.

553

554 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
 555 *Advances in Neural Information Processing Systems*, 2021.

556

557 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
 558 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
 559 for categorical data. *arXiv:2211.15089*, 2022.

560

561 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 562 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
 563 and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
 564 *International Conference on Machine Learning*, 2024.

565

566 Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Empowering
 567 diffusion models on the embedding space for text generation. *arXiv preprint arXiv:2212.09412*,
 568 2022.

569

570 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
 571 Yaron Lipman. Discrete flow matching. In *Advances in Neural Information Processing Systems*,
 572 2024.

573

574 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
 575 OpenWebTextCorpus](http://Skylion007.github.io/OpenWebTextCorpus), 2019.

576

577 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
 578 to sequence text generation with diffusion models. In *The Eleventh International Conference on
 579 Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 580 URL https://openreview.net/pdf?id=jQj-_rLVXsj.

581

582 Shanshan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 583 Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
 584 models via adaptation from autoregressive models. In *The Thirteenth International Conference on
 585 Learning Representations*, 2025a.

586

587 Shanshan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 588 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code
 589 generation. *arXiv preprint arXiv:2506.20639*, 2025b. URL [https://arxiv.org/abs/
 590 2506.20639](https://arxiv.org/abs/2506.20639).

591

592 Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow
 593 networks. *arXiv:2308.07037*, 2023.

594

595 Jiatao Gu, Tianrong Chen, David Berthelot, Huangjie Zheng, Yuyang Wang, Ruixiang Zhang,
 596 Laurent Dinh, Miguel Angel Bautista, Josh Susskind, and Shuangfei Zhai. Starflow: Scaling latent
 597 normalizing flows for high-resolution image synthesis. *arXiv preprint arXiv:2506.06276*, 2025.

598

599 Ishaan Gulrajani and Tatsunori B. Hashimoto. Likelihood-based diffusion language models. In
 600 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 601 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 602 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 603 16, 2023*. URL [http://papers.nips.cc/paper_files/paper/2023/hash/
 604 35b5c175e139bff5f22a5361270fce87-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/35b5c175e139bff5f22a5361270fce87-Abstract-Conference.html).

594 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
 595 diffusion language model for text generation and modular control. *arXiv:2210.17432*, 2022.
 596

597 Marton Havasi, Brian Karrer, Itai Gat, and Ricky TQ Chen. Edit flows: Flow matching with edit
 598 operations. *arXiv preprint arXiv:2506.09018*, 2025.

599 Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu.
 600 Diffusionbert: Improving generative masked language models with diffusion models. In *Annual*
 601 *Meeting of the Association for Computational Linguistics*, 2023.

602

603 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv:2207.12598*, 2022.

604

605 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Proc. of Int.*
 606 *Conf. on Neural Information Processing Systems (NeurIPS)*, 2020.

607

608 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 609 and multinomial diffusion: Learning categorical distributions. In *Advances in Neural Information*
Processing Systems, 2021.

610

611 Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
 612 JH Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier code
 613 large language models. *ArXiv preprint*, abs/2411.04905, 2024. URL <https://arxiv.org/abs/2411.04905>.

614

615 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 616 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *ArXiv preprint*, abs/2409.12186,
 617 2024. URL <https://arxiv.org/abs/2409.12186>.

618

619 Jaehyeong Jo and Sung Ju Hwang. Generative modeling on manifolds through mixture of riemannian
 620 diffusion processes. In *International Conference on Machine Learning*, 2024.

621

622 Jaehyeong Jo and Sung Ju Hwang. Continuous diffusion model for language modeling. In *Advances*
 623 *in Neural Information Processing Systems*, 2025.

624

625 Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew
 626 Peters, and Arman Cohan. TESS: Text-to-text self-conditioned simplex diffusion. In Yvette
 627 Graham and Matthew Purver (eds.), *Proceedings of the 18th Conference of the European Chapter*
 628 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2347–2361, St.
 Julian’s, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 eacl-long.144. URL <https://aclanthology.org/2024.eacl-long.144/>.

629

630 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
 631 generative adversarial networks with limited data. *arXiv preprint arXiv:2006.06676*, 2020.

632

633 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 634 based generative models. In *Proc. NeurIPS*, 2022.

635

636 Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Soft Truncation: A
 637 Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation.
 In *Proc. Int. Conf. on Machine Learning (ICML)*, 2022.

638

639 Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *arXiv*
 640 *preprint arXiv:2107.00630*, 2021.

641

642 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 643 neural networks. *Communications of the ACM*, 60(6):84–90, 2017.

644

645 Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

646

647 Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 648 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 649 model for multimodal understanding. *ArXiv preprint*, abs/2505.16839, 2025. URL <https://arxiv.org/abs/2505.16839>.

648 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
 649 improves controllable text generation. In *Advances in Neural Information Processing Systems*,
 650 2022.

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 652 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

653 Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion models for
 654 constrained and watermarked generation. *Advances in Neural Information Processing Systems*, 36:
 655 42898–42917, 2023.

656 Lang Liu, Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi, and Zaid Harchaoui. Divergence
 657 frontiers for generative models: Sample complexity, quantization effects, and frontier integrals.
 658 *Advances in Neural Information Processing Systems*, 34:12930–12942, 2021.

659 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
 660 the ratios of the data distribution. In *International Conference on Machine Learning*, 2024.

661 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
 662 Instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
 663 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=MLIs5iRq4w>.

664 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 665 Li. Scaling up masked diffusion models on text. *ArXiv preprint*, abs/2410.18514, 2024. URL
 666 <https://arxiv.org/abs/2410.18514>.

667 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 668 Ji-Rong Wen, and Chongxuan Li. Large Language Diffusion Models. *arXiv:2502.09992*
 669 [cs.CL], 2025.

670 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
 671 for discrete state-space diffusion and flow models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=XsgH154y07>.

672 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 673 the IEEE/CVF International Conference on Computer Vision*, 2023.

674 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 675 and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
 676 divergence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.

677 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 678 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 679 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh,
 680 Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar
 681 Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh
 682 Rambhatla, Sam S. Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh
 683 Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li,
 684 Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng
 685 Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali K.
 686 Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh
 687 Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schönenfeld, Elliot Blanchard, Felix Juefei-Xu,
 688 Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence
 689 Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li,
 690 Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen: A
 691 cast of media foundation models. *arXiv:2410.13720*, 2024.

692 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 693 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

702 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 703 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

704

705 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Seyed Kam-
 706 yar Seyed Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
 707 Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
 708 deep language understanding. In *Advances in Neural Information Processing Systems*, 2022.

709

710 Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Marroquin, Alexander M
 711 Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion
 712 language models. In *Advances in Neural Information Processing Systems*, 2024.

713

714 Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and
 715 Volodymyr Kuleshov. The diffusion duality. In *Forty-second International Conference on Machine
 Learning*, 2025. URL <https://openreview.net/forum?id=9P9Y8FOSOK>.

716

717 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
 718 generalized masked diffusion for discrete data. In *Advances in Neural Information Processing
 Systems*, 2024.

719

720 Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
 721 models the right way. In *Advances in Neural Information Processing Systems*, 2022.

722

723 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
 724 Learning using Nonequilibrium Thermodynamics. In *Proc. Int. Conf. on Machine Learning (ICML)*,
 2015.

725

726 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 727 Poole. Score-based generative modeling through stochastic differential equations. In *International
 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

728

729 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
 730 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 731 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
 732 202 of *Proceedings of Machine Learning Research*, pp. 32211–32252. PMLR, 23–29 Jul 2023.
 733 URL <https://proceedings.mlr.press/v202/song23a.html>.

734

735 Yuxuan Song, Zhe Zhang, Yu Pei, Jingjing Gong, Qiying Yu, Zheng Zhang, Mingxuan Wang, Hao
 736 Zhou, Jingjing Liu, and Wei-Ying Ma. Shortlisting model: A streamlined simplexdiffusion for
 737 discrete variable generation. *arXiv preprint arXiv:2508.17345*, 2025a.

738

739 Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
 740 Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model with
 741 high-speed inference. *arXiv preprint arXiv:2508.02193*, 2025b.

742

743 Hannes Stärk, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 744 Tommi S. Jaakkola. Dirichlet flow matching with applications to DNA sequence design. In
 745 *International Conference on Machine Learning*, 2024.

746

747 Jaesung Tae, Hamish Ivison, Sachin Kumar, and Arman Cohan. TESS 2: A large-scale generalist diffu-
 748 sion language model. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 749 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational
 750 Linguistics (Volume 1: Long Papers)*, pp. 21171–21188, Vienna, Austria, July 2025. Association
 751 for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1029.
 752 URL <https://aclanthology.org/2025.acl-long.1029/>.

753

754 Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Linxiao Yang, and Ngai-Man Cheung. Self-
 755 supervised GAN: Analysis and Improvement with Multi-class Minimax Game. In *Proc. of Int.
 Conf. on Neural Information Processing Systems (NeurIPS)*, 2019.

756

757 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking Discrete
 758 Diffusion Models with Inference-Time Scaling. *arXiv:2503.00307 [cs.LG]*, 2025.

756 Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
 757 GAN: Training GANs with diffusion. In *The Eleventh International Conference on Learning*
 758 *Representations*, 2023. URL <https://openreview.net/forum?id=HZf7UbpWHuA>.

759

760 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
 761 denoising diffusion GANs. In *International Conference on Learning Representations*, 2022. URL
 762 <https://openreview.net/forum?id=JprM0p-q0Co>.

763

764 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 765 Multimodal large diffusion language models. *ArXiv preprint*, abs/2505.15809, 2025. URL
 766 <https://arxiv.org/abs/2505.15809>.

767

768 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 769 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025.

770

771 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 772 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 773 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6613–6623, 2024.

774

775 Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
 776 Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, and Joshua M Susskind. Normalizing flows
 777 are capable generative models. In *Forty-second International Conference on Machine Learning*,
 778 2025.

779

780 Ruixiang Zhang, Shuangfei Zhai, Jiatao Gu, Yizhe Zhang, Huangjie Zheng, Tianrong Chen,
 781 Miguel Angel Bautista, Josh Susskind, and Navdeep Jaitly. Flexible language modeling in
 782 continuous space with transformer-based autoregressive flows. *arXiv preprint arXiv:2507.00425*,
 783 2025a.

784

785 Ruixiang Zhang, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua M Susskind, and
 786 Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion. In
 787 *Forty-second International Conference on Machine Learning*, 2025b.

788

789 Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua Susskind, and Navdeep Jaitly.
 790 Planner: Generating diversified paragraph via latent language diffusion model. *Advances in Neural*
 791 *Information Processing Systems*, 36:80178–80190, 2023.

792

793 Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for
 794 data-efficient gan training. In *Conference on Neural Information Processing Systems (NeurIPS)*,
 795 2020.

796

797 Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. Informed
 798 Correctors for Discrete Diffusion Models. *arXiv:2407.21243 [cs.LG]*, 2024.

799

800 Huangjie Zheng and Mingyuan Zhou. Exploiting chain rule and Bayes’ theorem to compare prob-
 801 ability distributions. *Advances in Neural Information Processing Systems*, 34:14993–15006,
 802 2021.

803

804 Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion prob-
 805 abilistic models and diffusion-based adversarial auto-encoders. In *The Eleventh International*
 806 *Conference on Learning Representations*, 2023a. URL <https://openreview.net/forum?id=HDxgaKk9561>.

807

808 Huangjie Zheng, Zhendong Wang, Jianbo Yuan, Guanghan Ning, Pengcheng He, Quanzeng You,
 809 Hongxia Yang, and Mingyuan Zhou. Learning stackable and skippable LEGO bricks for efficient,
 810 reconfigurable, and variable-resolution diffusion modeling. In *The Twelfth International Confer-
 811 ence on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=qmXedvwrT1>.

812

813 Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved Techniques for Maximum Likelihood
 814 Estimation for Diffusion ODEs. In *Proc. Int. Conf. on Machine Learning (ICML)*, 2023b.

810 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
811 text generation. In *Conferenec on Language Modeling, COLM, October 7-9, 2024, Philadelphia,*
812 PA, 2024b.

813

814 Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion. *Advances in*
815 *Neural Information Processing Systems*, 36:30070–30095, 2023.

816 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
817 distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In
818 *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=QhqQJqe0Wq>.

819

820 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
821 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
822 generation with diverse function calls and complex instructions. *ArXiv preprint*, abs/2406.15877,
823 2024. URL <https://arxiv.org/abs/2406.15877>.

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A DETAILED DERIVATIONS AND PROOF
865866 A.1 ELBO DERIVATION
867868 **Forward chain.** For any observation \mathbf{x}_0 , the forward diffusion constructs as
869

870
$$q(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{x}_0) = \prod_{t=1}^T q_t(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{z}_{t-1}, \mathbf{x}_0), \quad (22)$$

871

872 note we represent $(\mathbf{x}_0, \mathbf{z}_0)$ as \mathbf{x}_0 since the transform \mathbf{w}_θ is deterministic.
873874 **Reverse generative model.**
875

876
$$p_\theta(\mathbf{x}_0, \mathbf{x}_{1:T}, \mathbf{z}_{1:T}) = p_T(\mathbf{x}_T, \mathbf{z}_T) \left[\prod_{t=2}^T p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t) \right] p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1). \quad (23)$$

877

878 **Proposition 3** (ELBO decomposition). *Given the forward chain q defined in Eq. (22) and reverse
879 model p_θ in Eq. (23), we have the decomposed ELBO as following:*
880

881
$$\begin{aligned} \log p_\theta(\mathbf{x}_0) &\geq \underbrace{\mathbb{E}_{q(\mathbf{x}_1, \mathbf{z}_1 \mid \mathbf{x}_0)} [\log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1)]}_{\text{reconstruction term at } t=1} \\ &\quad - \underbrace{\sum_{t=2}^T \mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)} \left[D_{\text{KL}}(q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t)) \right]}_{\text{denoising matches for } t > 1} \\ &\quad - \underbrace{D_{\text{KL}}(q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0) \parallel p_T(\mathbf{x}_T, \mathbf{z}_T))}_{\text{prior match at } T}. \end{aligned} \quad (24)$$

882

883 If $q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0) = p_T(\mathbf{x}_T, \mathbf{z}_T)$ for all \mathbf{x}_0 , then the prior match term is zero. The bound is tight if
884 and only if
885

886
$$p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t) = q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \quad \text{for all } t \geq 2,$$

887 and the prior match is zero, and the decoder $p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1)$ equals the true conditional induced by
888 the joint.
889

890 Recap the forward kernel defined in Eq. (7) and Eq. (8):
891

892
$$\begin{aligned} q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) &= \prod_{i=1}^n \text{Categorical}(\mathbf{x}_t^i; \mathbf{Q}_t^\top \mathbf{x}_{t-1}^i), \quad \mathbf{Q}_t = (1 - \beta_t) \mathbf{I} + \beta_t \mathbf{1} \mathbf{m}^\top. \\ q(\mathbf{z}_t \mid \mathbf{z}_{t-1}, \mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_0) &= \prod_{i=1}^n \begin{cases} \delta(\mathbf{z}_t^i - \mathbf{z}_{t-1}^i), & \mathbf{x}_t^i \neq \mathbf{m}, \\ \mathcal{N}(\mathbf{z}_t^i; \sqrt{\gamma_t} \mathbf{z}_{t-1}^i, (1 - \bar{\gamma}_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \mathbf{x}_{t-1}^i \neq \mathbf{m}, \\ \mathcal{N}(\mathbf{z}_t^i; \sqrt{\gamma_t} \mathbf{z}_{t-1}^i, (1 - \gamma_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \mathbf{x}_{t-1}^i = \mathbf{m}. \end{cases} \end{aligned}$$

893

894 *Proof of Proposition 3.* The proof is mostly done in Sohl-Dickstein et al. (2015) and Ho et al. (2020).
895 We include the following proof to show the generalized version with added variables. Start from the
896 evidence identity and apply Jensen inequality:
897

898
$$\begin{aligned} \log p_\theta(\mathbf{x}_0) &= \log \int q(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{x}_0) \frac{p_\theta(\mathbf{x}_0, \mathbf{x}_{1:T}, \mathbf{z}_{1:T})}{q(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{x}_0)} d\mathbf{x}_{1:T} d\mathbf{z}_{1:T} \\ &\geq \mathbb{E}_{q(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{x}_0)} [\log p_\theta(\mathbf{x}_0, \mathbf{x}_{1:T}, \mathbf{z}_{1:T}) - \log q(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \mathbf{x}_0)] \\ &=: \mathcal{L}(\theta; \mathbf{x}_0). \end{aligned} \quad (25)$$

900

901 Insert the model and forward factorizations Eq. (23) and Eq. (22):
902

903
$$\mathcal{L}(\theta; \mathbf{x}_0) = \mathbb{E}_q \left[\log p_T(\mathbf{x}_T, \mathbf{z}_T) + \sum_{t=2}^T \log p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t) \right] \quad (26)$$

904

905
$$+ \log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1) - \sum_{t=1}^T \log q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{z}_{t-1}, \mathbf{x}_0). \quad (27)$$

906

918 For each $t \geq 2$ use Bayes' rule under q :

$$920 \quad q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{z}_{t-1}, \mathbf{x}_0) = \frac{q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)}{q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_0)}. \quad (28)$$

922 Taking $\mathbb{E}_q[\log(\cdot)]$ of Eq. (28) and rearranging gives, for $t \geq 2$,

$$924 \quad \mathbb{E}_q \left[\log p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t) - \log q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{z}_{t-1}, \mathbf{x}_0) \right] \\ 925 \\ 926 = -\mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)} \left[D_{\text{KL}}(q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t)) \right] \\ 927 \\ 928 - \mathbb{E}_q[\log q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)] + \mathbb{E}_q[\log q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_0)]. \quad (29)$$

929 Sum Eq. (29) over $t = 2, \dots, T$. The last two expectations telescope:

$$931 \quad - \sum_{t=2}^T \mathbb{E}_q[\log q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)] + \sum_{t=2}^T \mathbb{E}_q[\log q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_0)] \\ 932 \\ 933 = \mathbb{E}_q[\log q(\mathbf{x}_1, \mathbf{z}_1 \mid \mathbf{x}_0)] - \mathbb{E}_q[\log q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0)]. \quad (30)$$

935 Plug this back into Eq. (27) and group the boundary terms with $\log p_T$:

$$937 \quad \mathcal{L}(\theta; \mathbf{x}_0) = \mathbb{E}_q[\log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1)] \\ 938 \\ 939 - \sum_{t=2}^T \mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)} \left[D_{\text{KL}}(q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t)) \right] \\ 940 \\ 941 - \left(\mathbb{E}_q[\log q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0)] - \mathbb{E}_q[\log p_T(\mathbf{x}_T, \mathbf{z}_T)] \right) \\ 942 \\ 943 - \mathbb{E}_q[\log q(\mathbf{x}_1, \mathbf{z}_1 \mid \mathbf{x}_0)]. \quad (31)$$

944 Now we recognize the prior KL to obtain

$$946 \quad \mathcal{L}(\theta; \mathbf{x}_0) = \mathbb{E}_q[\log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_1, \mathbf{z}_1)] \\ 947 \\ 948 - \sum_{t=2}^T \mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t \mid \mathbf{x}_0)} \left[D_{\text{KL}}(q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \parallel p_\theta(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t)) \right] \\ 949 \\ 950 - D_{\text{KL}}(q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0) \parallel p_T(\mathbf{x}_T, \mathbf{z}_T)) - \underbrace{\mathbb{E}_q[\log q(\mathbf{x}_1, \mathbf{z}_1 \mid \mathbf{x}_0)]}_{=:C(\mathbf{x}_0)}. \quad (32)$$

953 Note the last term $C(\mathbf{x}_0)$ does not involve p_θ and can be dropped, and we normally do not optimize
954 the last KL term $D_{\text{KL}}(q(\mathbf{x}_T, \mathbf{z}_T \mid \mathbf{x}_0) \parallel p_T(\mathbf{x}_T, \mathbf{z}_T))$ as we let the schedule to make this statistical
955 distance is sufficiently small. \square

956 A.2 FORWARD

957 We can derive the following lemma for the marginal at time step t .

958 **Lemma 2** (Continuous marginal conditioned on $(\mathbf{x}_t, \mathbf{x}_0)$). *Let $\bar{\gamma}_t := \prod_{s=1}^t \gamma_s$. For each position i ,
959 we have continuous marginal conditioned on $(\mathbf{x}_t, \mathbf{x}_0)$ as*

$$963 \quad q(\mathbf{z}_t^i \mid \mathbf{x}_t^i, \mathbf{x}_0^i) = \begin{cases} \delta(\mathbf{z}_t^i - \mathbf{z}_0^i), & \mathbf{x}_t^i = \mathbf{x}_0^i, \\ \mathcal{N}(\mathbf{z}_t^i; \sqrt{\bar{\gamma}_t} \mathbf{z}_0^i, (1 - \bar{\gamma}_t) \mathbf{I}_d), & \mathbf{x}_t^i = \mathbf{m}, \end{cases}$$

965 with $\mathbf{z}_0^i = \mathbf{w}_\theta(\mathbf{x}_0^i)$. Hence We finally have

$$967 \quad q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0) = \prod_{i=1}^n q(\mathbf{z}_t^i \mid \mathbf{x}_t^i, \mathbf{x}_0^i) = \left[\prod_{i: \mathbf{x}_t^i \neq \mathbf{m}} \delta(\mathbf{z}_t^i - \mathbf{z}_0^i) \right] \cdot \left[\prod_{i: \mathbf{x}_t^i = \mathbf{m}} \mathcal{N}(\mathbf{z}_t^i; \sqrt{\bar{\gamma}_t} \mathbf{z}_0^i, (1 - \bar{\gamma}_t) \mathbf{I}_d) \right].$$

970 Then what follows proves Proposition 2. We first prove the conditional independency between \mathbf{z}_t and
971 \mathbf{x}_{t-1} given $(\mathbf{x}_t, \mathbf{x}_0)$ in the reverse context.

972 **Lemma 3** (Conditional independency between \mathbf{z}_t and \mathbf{x}_{t-1} given $(\mathbf{x}_t, \mathbf{x}_0)$). \mathbf{z}_t and \mathbf{x}_{t-1} are
973 conditionally independent given $(\mathbf{x}_t, \mathbf{x}_0)$ based on the forward kernel defined in Eq. (8).
974

975 To prove Proposition 1, we first prove the following lemma:
976

977 *Proof of Lemma 2 and Lemma 3.* If $\mathbf{x}_t^i = \mathbf{x}_0^i$ then the absorbing chain implies $\mathbf{x}_s^i \neq \mathbf{m}$ for $s \leq t$, so
978 the kernel gives $\mathbf{z}_t^i = \mathbf{z}_0^i$ almost surely, which is the first line of Eq. (8).
979

980 If $\mathbf{x}_t^i = \mathbf{m}$, use the law of total probability over $\mathbf{x}_{t-1}^i \in \{\mathbf{x}_0^i, \mathbf{m}\}$.
981

982 When $\mathbf{x}_{t-1}^i \neq \mathbf{m}$ (first time masking at t), the second branch of the kernel gives $\mathbf{z}_t^i \sim \mathcal{N}(\sqrt{\gamma_t} \mathbf{z}_0^i, (1 - \bar{\gamma}_t) \mathbf{I})$.
983

984 When $\mathbf{x}_{t-1}^i = \mathbf{m}$ (already masked), the third branch composes a diffusion forward step with the
985 previous marginal $\mathbf{z}_{t-1}^i \sim \mathcal{N}(\sqrt{\gamma_{t-1}} \mathbf{z}_0^i, (1 - \bar{\gamma}_{t-1}) \mathbf{I})$, which yields
986

$$\mathbf{z}_t^i \sim \mathcal{N}(\sqrt{\gamma_t \bar{\gamma}_{t-1}} \mathbf{z}_0^i, (1 - \gamma_t \bar{\gamma}_{t-1}) \mathbf{I}) = \mathcal{N}(\sqrt{\gamma_t} \mathbf{z}_0^i, (1 - \bar{\gamma}_t) \mathbf{I}).$$

987 This proves the masked line of Eq. (8). \square
988

989 Then leveraging these results, we can easily prove Proposition 1.
990

991 *Proof of Proposition 1.* Expand the path marginal, use Eq. (6) and Lemma 2, and factor over positions.
992 The sum over discrete paths yields $q(\mathbf{x}_t \mid \mathbf{x}_0)$; conditioning on \mathbf{x}_t reduces the continuous part to
993 Lemma 2. \square

994 A.3 REVERSE

995 *Proof of Proposition 2.* We first prove the factorization shown in Eq. (14). To achieve this, we just
996 need to show:
997

$$q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \cdot q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0) \quad (33)$$

$$= \frac{q(\mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_0)q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)}{q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0)} \cdot q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0) \quad (34)$$

$$= q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) \cdot q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0), \quad (35)$$

1004 where $q(\mathbf{z}_t \mid \mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_0) = q(\mathbf{z}_t \mid \mathbf{x}_t, \mathbf{x}_0)$ by the conditional independence according to Lemma 3.
1005 Then the discrete part is the same as discrete diffusion, we may leverage the results from Austin et al.
1006 (2021a); Sahoo et al. (2024); Shi et al. (2024) to complete the proof of Eq. (15).
1007

1008 Next, we prove the closed form of the continuous part, $q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0)$, by case analysis
1009 based on the discrete states. We start with Bayes' rule for the continuous variables:
1010

$$q(\mathbf{z}_{t-1} \mid \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_{t-1}, \mathbf{x}_0) \propto q(\mathbf{z}_t \mid \mathbf{z}_{t-1}, \mathbf{x}_t) \cdot q(\mathbf{z}_{t-1} \mid \mathbf{x}_{t-1}, \mathbf{x}_0). \quad (36)$$

1011 The forms of the two terms on the right-hand side are Gaussian distributions, but will change
1012 depending on the discrete states and it leads to the three cases.
1013

1014 **Case 1: No mask at t ($\mathbf{x}_t = \mathbf{x}_0$).** In this case, no noise has been applied to the embedding up to
1015 timestep $t-1$. Thus, both terms directly have a Dirac delta function: $q(\mathbf{z}_{t-1} \mid \mathbf{x}_{t-1} = \mathbf{x}_0, \mathbf{x}_0) =$
1016 $\delta(\mathbf{z}_{t-1} - \mathbf{z}_0)$. The posterior is therefore also a Dirac delta function, proving the first part of Eq. (16).
1017

1018 **Case 2: First time unmask at t ($\mathbf{x}_t = \mathbf{m}$, $\mathbf{x}_{t-1} = \mathbf{x}_0$).** In this case, the first term in Eq. (36) is
1019 Gaussian while the second term becomes a Dirac $\delta(\mathbf{z}_{t-1} - \mathbf{z}_0)$. The multiplication yields a Dirac
1020 posterior at the same point: $q(\mathbf{z}_{t-1} \mid \mathbf{x}_{t-1} = \mathbf{x}_0, \mathbf{x}_0) = \delta(\mathbf{z}_{t-1} - \mathbf{z}_0)$.
1021

1022 **Case 3: Remaining masked at t ($\mathbf{x}_t = \mathbf{m}$, $\mathbf{x}_{t-1} = \mathbf{m}$).** In this case, both terms remain in Gaussian
1023 distribution, and the parameters are same with normal Gaussian diffusion models. The product of
1024 these two Gaussians is a new Gaussian, allowing us to use the standard derivation for DDPM (Ho
1025 et al., 2020), by completing the square on the exponent, we find that the resulting distribution is
1026 $\mathcal{N}(\mathbf{z}_{t-1}; \tilde{\mu}_t(\mathbf{z}_t, \mathbf{z}_0), \tilde{\beta}_t \mathbf{I})$, which proves the last part of Eq. (16).
1027

\square

1026 *Proof of Lemma 1.* Using the results from Proposition 2, for a single position i , the exact one-step
 1027 KL at timestep $t > 1$ inside the ELBO is
 1028

$$1029 D_{\text{KL}}(\mathbf{x}_0, t) := \mathbb{E}_{q(\mathbf{x}_t, \mathbf{z}_t | \mathbf{x}_0)} \left[D_{\text{KL}}(q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} | \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \| p_{\theta}(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} | \mathbf{x}_t, \mathbf{z}_t)) \right], \quad (37)$$

1030
 1031 For the unmasked positions ($\mathbf{x}_t \neq \mathbf{m}$), the KL is identically 0, and plug in Eq. (14), 15 and 16, we
 1032 recover Eq. (18) exactly as

$$1033 D_{\text{KL}}(q(\cdot | \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \| p_{\theta}(\cdot | \mathbf{x}_t, \mathbf{z}_t)) = \underbrace{\rho_t^{\text{flip}} \left[-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_t, \mathbf{z}_t) \right]}_{\text{discrete}} + \underbrace{\rho_t^{\text{keep}} D_{\text{KL}}^{\text{cont}}}_{\text{continuous}},$$

1036 with the ratio that determines whether the position is going to be flipped to unmask:
 1037

$$1038 \rho_t^{\text{keep}} = \frac{1 - \alpha_{t-1}}{1 - \alpha_t}, \quad \rho_t^{\text{flip}} = \frac{\alpha_{t-1} \beta_t}{1 - \alpha_t} = \frac{\alpha_{t-1} - \alpha_t}{1 - \alpha_t}. \quad (38)$$

1039 The discrete KL part exactly recovers the results from the absorbing discrete diffusion models (Austin
 1040 et al., 2021a; Sahoo et al., 2024; Shi et al., 2024), and the continuous KL divergence:
 1041

$$1043 D_{\text{KL}}^{\text{cont}} = D_{\text{KL}}\left(\mathcal{N}(\boldsymbol{\mu}^*, \tilde{\beta}_t \mathbf{I}_d) \| \mathcal{N}(\boldsymbol{\mu}_v, \tilde{\beta}_t \mathbf{I}_d)\right), \quad \boldsymbol{\mu}^* = \tilde{\boldsymbol{\mu}}_t(\mathbf{z}_0, \mathbf{z}_t), \quad \boldsymbol{\mu}_v = \tilde{\boldsymbol{\mu}}_t(\hat{\mathbf{z}}_0, \mathbf{z}_t), \quad (39)$$

1044 where we recap
 1045

$$1046 \tilde{\boldsymbol{\mu}}_t(\zeta, \mathbf{z}_t) = \frac{\sqrt{\gamma_{t-1}}(1 - \gamma_t)}{1 - \bar{\gamma}_t} \zeta + \frac{\sqrt{\gamma_t}(1 - \bar{\gamma}_{t-1})}{1 - \bar{\gamma}_t} \mathbf{z}_t, \quad \tilde{\beta}_t = \frac{(1 - \bar{\gamma}_{t-1})(1 - \gamma_t)}{1 - \bar{\gamma}_t}.$$

1047 This results in the comparison between \mathbf{z}_0 and $\hat{\mathbf{z}}_0$ and the KL divergence reduced to:
 1048

$$1049 D_{\text{KL}}^{\text{cont}} = \frac{1}{2\tilde{\beta}_t} \|\tilde{\boldsymbol{\mu}}_t(\mathbf{z}_0, \mathbf{z}_t) - \tilde{\boldsymbol{\mu}}_t(\hat{\mathbf{z}}_0, \mathbf{z}_t)\|^2 = \frac{a_t^2}{2\tilde{\beta}_t} \|\mathbf{z}_0 - \hat{\mathbf{z}}_0\|^2; \quad a_t = \frac{\sqrt{\gamma_{t-1}}(1 - \gamma_t)}{1 - \bar{\gamma}_t}.$$

1050 \square

1051 **Remark 1** (On the Alternative Factorization). *One could also decompose the posterior using the
 1052 alternative order from the chain rule:*

$$1053 q(\mathbf{x}_{t-1}, \mathbf{z}_{t-1} | \cdot) = q(\mathbf{z}_{t-1} | \mathbf{x}_t, \mathbf{z}_t, \mathbf{x}_0) \cdot q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{z}_t, \mathbf{z}_{t-1}, \mathbf{x}_0).$$

1054 While mathematically valid and could provide new properties in the sampling, this factorization is not
 1055 fully tractable. The first term, $q(\mathbf{z}_{t-1} | \cdot)$, is a complex Gaussian Mixture Model. More critically, the
 1056 second term, $q(\mathbf{x}_{t-1} | \cdot)$, has no analytical closed form, as it would require inverting the continuous
 1057 diffusion process and the embedding function to infer a discrete state. The factorization in Prop. 2 is
 1058 therefore adopted as a tractable choice for a more efficient algorithm implementation.

1059 B DETAILED EXPERIMENT SETTINGS

1060 B.1 DIFFUSION SETTINGS

1061 The CADD forward process has two coupled components, each with its own schedule.

- 1062 • Discrete schedule: we adopt the MDLM log-linear masking schedule for the discrete
 1063 process (Sahoo et al., 2024). The discrete forward corruption uses a continuous-time
 1064 $\alpha(t) = 1 - t$, with $t \in [0, 1]$.
- 1065 • Continuous schedule: to keep the meaning of time aligned, we set the continuous latent \mathbf{z}
 1066 to follow a linear flow-matching path to isotropic noise (Lipman et al., 2022), i.e., if the
 1067 position is masked, we have $\mathbf{z}_t = (1 - t)\mathbf{z}_0 + t\mathbf{\epsilon}$, $\mathbf{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
- 1068 • Multi-sample estimation: we by default set $K = 1$ for the estimation of $\hat{\mathbf{x}}_{0,\theta}$ for fair
 1069 comparison with the baselines. We provide ablation studies to demonstrate the effect of
 1070 $K > 1$.

1080
1081
1082 Table 4: Benchmark computation cost of discrete (mask) diffusion and CADD.
1083
1084
1085
1086
1087
1088
1089

Setting	Throughputs (Tokens/s - per GPU)	TFLOPS	TFLOPS/s	Avg. GPU Mem (GB)
Training				
Discrete Diffusion	47,416	0.29	6.049	1.362
CADD	47,152	0.291	6.082	1.492
Inference				
$k = 1$	47,373	0.291	6.082	1.492
$k = 2$	24,852	0.581	12.206	3.511
$k = 3$	15,768	0.873	18.310	5.253
$k = 4$	1,417	1.162	24.417	7.470

1090
1091
1092 B.2 EXPERIMENT-SPECIFIC SETTINGS
1093

1094 **Text Generation** In our main experiments, including ablation studies that used to explore the
1095 properties of CADD, we train the models on OpenWebText. Following the standard MDLM pre-
1096 processing (Sahoo et al., 2024), we use the GPT-2 tokenizer, resulting in a vocabulary of 50,257
1097 tokens. The sequence length is fixed at 1,024. Our text model is a 12-layer DiT with 12 attention
1098 heads and an embedding dimension of 768, totaling approximately 168M parameters. During training,
1099 we keep the same training configuration, i.e., we train for about 2M steps with a batch size of 256
1100 to match the total 262B tokens seen in the training. We use the AdamW optimizer with a learning
1101 rate warmed up from 0 to 3×10^{-4} . The results in Table 5 and Table 6, are based on Text8 and
1102 LM1B dataset, where we strictly follow the training setting in Jo & Hwang (2025) and Sahoo
1103 et al. (2024). Please refer their experiment settings for more details. For evaluation, we follow
1104 ReMDM (Wang et al., 2025)’s evaluation setting, where we randomly sample 5,000 text samples with
1105 length $n = 1,024$, using $\{128, 256, 512, 1024, 4096\}$ sampling steps. The sampled token sequences
1106 are used to compute MAUVE score, generative perplexity with GPT2-Large model, and entropy.

1107 **Image Generation** We experiment on CIFAR-10 and ImageNet (with resolution 32×32), which
1108 consists of 50,000 and 1,281,149 natural images respectively. CIFAR-10 already has 32×32
1109 resolution. For ImageNet images, we follow the preprocessing used in EDM (Karras et al., 2022),
1110 i.e., using center-crop to make it as squared image and rescale to the desired 32×32 resolution. As
1111 the model is trained on pixel space, we treat each pixel as a discrete token, resulting in a vocabulary
1112 size 256 at each position. We follow the architecture design used in MDM-Prime (Chao et al.,
1113 2025), which is a U-Net architecture based on ADM (Dhariwal & Nichol, 2021). For CIFAR-10,
1114 we leverage an augmentation pipeline proposed in Karras et al. (2020), but only keep the rotation
1115 and flip operation to avoid pixel value changes. We let set the augmentation probability as 15% on
1116 CIFAR-10, and there is no augmentation used on ImageNet. For both experiments, we set learning
1117 rate as 1×10^{-4} using AdamW optimizer, and train the model until it has seen 200M and 4B images
1118 respectively. In sampling, we adopt a cosine decay for temperature with $\tau_{max} = 2.5$, and applied
1119 the corrector following Gat et al. (2024). We use the standard Fréchet Inception Distance (FID) and
1120 Inception Score for evaluation, computed with 50,000 randomly generate images.

1121 **Code Generation** We use the OpenCoder dataset (Huang et al., 2024), selected by following the
1122 recipe in DiffuCoder (Gong et al., 2025b). We strictly follow their settings to initialize the 7B model
1123 with Qwen2.5-Coder checkpoint, and adapt it to diffusion model using the techniques introduced in
1124 Gong et al. (2025a). Then we train the model on a 64 NVIDIA A100 GPUs in total. The training
1125 process utilized BF16 mixed precision and was scaled using Fully Sharded Data Parallelism (FSDP).
1126 For optimization, we employed the Adam optimizer with a peak learning rate of 1×10^{-5} , preceded
1127 by a 2,000-step linear warmup. The model is trained with 65B tokens in total. For generation,
1128 both models were configured with a maximum sequence length of 512 tokens and a total of T=512
1129 diffusion timesteps. During generation, we employed a top negative entropy remasking sampler.
1130 The CADD from scratch variant uses temperature 0.2 and the DiffuCoder initialized variant uses
1131 temperature 0.01.

1132
1133 B.3 COMPUTATION ANALYSIS
1134

1135 We measured both training and inference efficiency under the same hardware (H100, FP32) and batch
1136 settings (batch size=1), using the DiT model with 169 M parameters. The results are summarized in

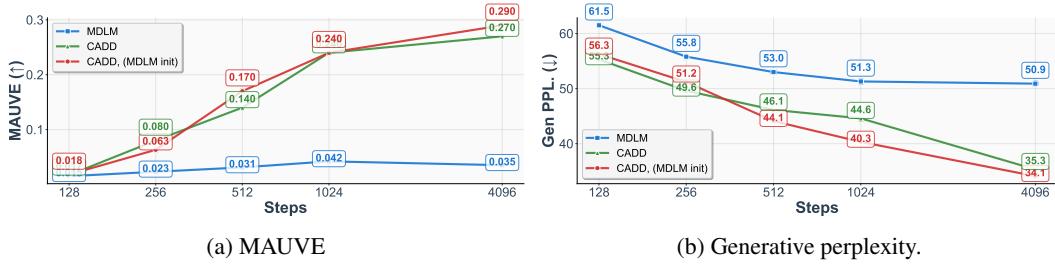


Figure 4: Analogous figure of Figure 3. We compare the finetuned checkpoint using CADD objective with CADD and the initialization checkpoint of MDLM.

the table 4. During training, CADD matches the speed of the MDM baseline, with nearly identical token throughput (tokens/s) per gpu and memory usage. During inference, when $K = 1$, CADD shows similar computation cost to MDM. The inference cost increases in a linear way as K increases, since the model performs K times forward for the z_0 estimation, while the training cost remains unchanged.

C ADDITIONAL EXPERIMENT RESULTS

C.1 TRAINING FROM MASK DIFFUSION MODEL

From the experiments on code generation, we have seen CADD could be used to finetune an existing discrete (masking) diffusion model to improve the performance. Here we provide complementary evidence that such observation is also valid on text generation. We finetune a MDLM checkpoint with CADD objective for additional 50B tokens and evaluate the performance with same setting shown in the main experiments (Figure 3). The results are shown in Figure 4. The red curve shows close performance to the green one that represent CADD’s performance, which indicates CADD could efficiently finetune an existing MDM model to enhance the generation capabilities.

C.2 PERPLEXITY EVALUATION

Since the objective of CADD involves the KL divergence of both discrete and continuous component as shown in Eq. (14), it is not fair to compare the tightness of the bound directly with other models, and we choose to focus more on the evaluation of the generated samples. However, our model is still able to compute the likelihood of the discrete part. Here we put the results for reference, aiming to provide more information to help the readers understand how the model helps the discrete diffusion side.

Table 5 and Table 6 report the perplexity evaluation on character-level and token-level respectively. The model is trained on Text8 and LM1B, following the settings of Jo & Hwang (2025) and Sahoo et al. (2024). On Text8, we can see CADD achieve very competitive perplexity results, and is slightly worse than the SoTA RDLM (Jo & Hwang, 2024). On LM1B, we can see CADD achieve the best results among diffusion models when evaluate the discrete part perplexity on both LM1B data and OWT data.

Table 7 reports the zero-shot evaluation results of the checkpoint trained on OWT data. We can observe CADD and MDLM both surpasses the perplexity of AR models on Lambada, Pubmed and Arxiv datasets. They have different dataset that they are good at in terms of perplexity, and CADD wins slightly more as it shows better zero-shot perplexity than MDLM on 4/7 tasks. These experiments result jointly indicate that CADD can not only provide strong generation quality, but also provide a good discrete likelihood bound.

C.3 ABLATION STUDIES

Comparing the number of samples used for $\hat{x}_0 = f_\theta(x_t, z_t^{(k)})$ We first conduct ablation to study how the number of samples used to compute \hat{x}_0 would affect CADD’s performance. Similar to our

1188 Table 5: Bits Per Character (BPC) results on Table 6: Test perplexities (PPL; \downarrow) on LM1B. The
 1189 Text8 test set. Results are taken from Jo & baseline results are taken from Sahoo et al. (2025). For
 1190 Hwang (2025). Bold denotes the best result in CADD, we report the bound on the discrete likelihood.
 1191 autoregressive or diffusion models. The best Best diffusion value is **bolded**. * the dataset for SEDD
 1192 diffusion results are marked in bold. didn't incorporate sentence packing.

1193

Method	BPC (\downarrow)
<i>Autoregressive</i>	
AR	1.23
<i>Continuous Diffusion</i>	
Plaid	≤ 1.48
BNF	≤ 1.41
RDLM	$\leq \mathbf{1.32}$
<i>Discrete Diffusion</i>	
Multinomial Diffusion	≤ 1.72
D3PM Uniform	≤ 1.61
D3PM Absorb	≤ 1.45
SEDD Absorb	≤ 1.39
MDLM	≤ 1.40
MD4	≤ 1.37
CADD (Ours)	≤ 1.35

Method	LM1B	OWT
<i>Autoregressive</i>		
Transformer	22.8	17.5
<i>Diffusion (Uniform-state / Gaussian)</i>		
D3PM Uniform (Austin et al., 2021a)	137.9	-
Diffusion-LM* (Li et al., 2022)	118.6	-
SEDD Uniform (Lou et al., 2024)	40.3*	29.7
UDLM (Deschenaux & Gulcehre, 2025)	36.7	27.4
DUO (Sahoo et al., 2025)	33.7	25.2
<i>Diffusion (absorbing state)</i>		
D3PM Absorb (Austin et al., 2021a)	76.9	-
DiffusionBert (He et al., 2023)	63.8	-
SEDD Absorb (Lou et al., 2024)	32.7*	24.1
MDLM (Sahoo et al., 2024)	31.8	23.2
CADD (Ours)	31.4	23.1

1208

1209

1210 Table 7: Zero-shot perplexities (\downarrow) of models trained for 1M steps on OpenWebText. All perplexities
 1211 for diffusion models are upper bounds. Baseline results are taken from Sahoo et al. (2025). Best
 1212 diffusion model performance results are **bolded** and diffusion values better than AR are underlined.
 1213 Plaid and D3PM are trained with 0.3M more steps.

1214

1215

Method	PTB	Wikitext	LM1B	Lambada	AG News	Pubmed	Arxiv
<i>Autoregressive</i>							
Transformer	82.05	25.75	51.25	51.28	52.09	49.01	41.73
<i>Diffusion (Uniform-state / Gaussian)</i>							
SEDD Unifor	105.51	41.10	82.62	57.29	82.64	55.89	50.86
Plaid	142.60	50.86	91.12	57.28	-	-	-
UDLM	112.82	39.42	77.59	53.57	80.96	50.98	44.08
DUO	89.35	33.57	73.86	<u>49.78</u>	67.81	<u>44.48</u>	<u>40.39</u>
<i>Diffusion (absorbing state)</i>							
SEDD Absorb	100.09	34.28	68.20	<u>49.86</u>	62.09	<u>44.53</u>	<u>38.48</u>
D3PM Absorb	200.82	50.86	138.92	<u>93.47</u>	-	-	-
MDLM	95.26	32.83	67.01	<u>47.52</u>	61.15	41.89	37.37
CADD (Ours)	93.33	31.84	64.98	46.81	62.80	<u>42.62</u>	<u>37.52</u>

1228

1229

1230 main experiments in text generation, we compare CADD with $K \in \{1, 2, 3, 4\}$ in terms of MAUVE
 1231 and generative perplexity.

1232

1233

1234 As shown in Figure 5, increasing both the number of sampling steps and the hyperparameter K
 1235 consistently improves CADD's performance. The value of K , which corresponds to the number of
 1236 continuous samples used for soft hints, has a consistent and positive effect on generation quality. It
 1237 is interesting to see the largest performance gain, especially for generative perplexity, comes from
 1238 increasing K from 2 to 3. The subsequent gain from $K = 3$ to $K = 4$ is smaller. One possible reason
 1239 is that when K is not large enough, the predicted logits could vary and make the expected value
 1240 smoothed to be a flatten distribution. As K gets bigger, the estimation of the correct x_0 becomes
 1241 more accurate, resulting in better generation quality, with a trade-off between desired sample quality
 and inference-time latency.

1242

1243

1244 We also use entropy as a complementary metric to observe the model's behavior, and the results are
 1245 shown in Figure 6. We observe CADD, the highest-quality model in terms of MAUVE and generative

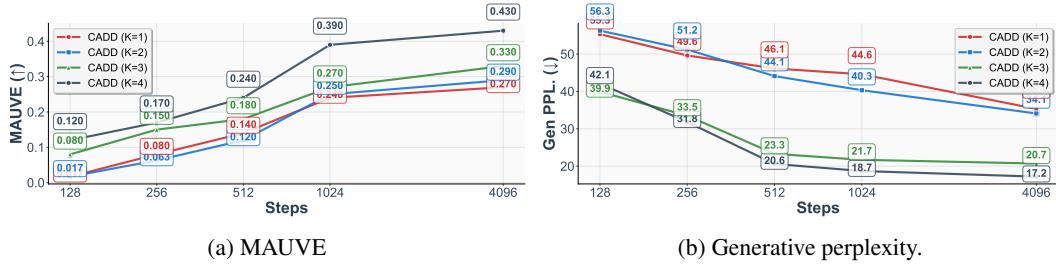


Figure 5: Analogous figure of Figure 3. We compare of CADD variants using different number of samples to estimate \hat{x}_0 ($K=1-4$).

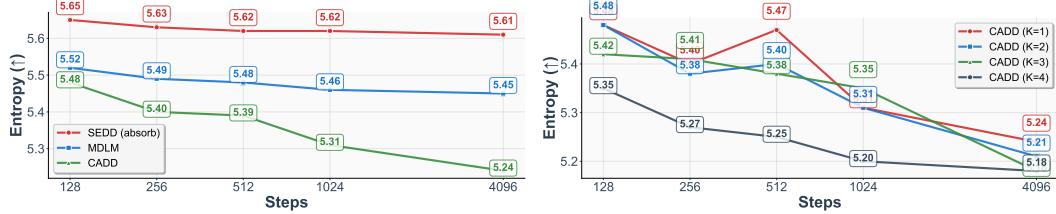


Figure 6: Analogous figure of Figure 3: study of generation variance and diversity across all methods and across different K . We use entropy (higher indicates more stochasticity) are reported.

perplexity (shown in Figure 3), has the lowest entropy. This indicates that CADD achieves its keeps a lower variance in the generation process with concentrating its continuous conditions. The right plot, which analyzes different values of K for CADD, shows that a larger K consistently leads to lower entropy. This reveals the role of K as a hint mechanism. A larger K provides a stronger, more deterministic "soft hint" from the continuous space, preserving smaller variance during generation. However, this does not mean CADD lack of generation diversity, as it still hits a strong MAUVE score, indicating it strikes a good balance between mode-covering and mode-seeking.

On the choice of fusion and \hat{z}_0 estimation In most of our experiments, we choose to fuse the discrete mask token embedding and continuous embedding with addition operation, i.e., $\hat{z}_t = z_{\text{disc}} + z_t$. We consider two extra manners to fuse these two domains: 1) concatenation $[z_{\text{disc}}, z_t]$; 2) reweighted sum $\alpha_t z_{\text{disc}} + (1 - \alpha_t) z_t$, where α_t decreases as the position is more likely to be clean (unmasked). The intuition is that when a token is unlikely to be masked, the model should lean more on z_t to carry semantic content, hence a smaller α_t .

Observing the results in Table 8, MAUVE varies by only 0.03 absolute and Entropy varies by 0.07 absolute across the different choices. These three options do not show significant difference to the performance, while concatenation involves an additional projection layer to match the embedding dimension.

Moreover, we compare the choice of \hat{z}_0 estimation, as discussed in Eq. (21):

$$\text{hard: } \hat{x}_0 = \arg \max_v \pi_{\theta, i}(v), \quad \hat{z}_0 = \mathbf{w}_\theta(\mathbf{x}_0) \quad \text{soft: } \hat{z}_{0,\theta} := \sum_v p_\theta(\hat{x}_0 = v \mid \mathbf{x}_t, \mathbf{z}_t) \mathbf{w}_{\theta, v}.$$

On the choice of training objective To further justify whether we should use MSE to optimize at the embedding level in the categorical generative modeling scenario. We add training results that include an extra MSE loss $\|\hat{z}_0 - z_0\|^2$ using the two parameterizations of \hat{z}_0 (soft and hard) defined in Eq. (21). From the results, CE + MSE provides performance that is close to using CE alone. The soft parameterization gives a gain under hard-inference MAUVE, but it introduces higher computation cost. This is because the soft prediction requires a matrix multiplication between the predicted probability vector $\mathbb{R}^{B \times L \times d}$ and the token embedding matrix $\mathbb{R}^{d \times V}$ with batch size B , sequence length L , embedding dimension d and vocabulary size V . Such extra cost reduces TPS/GPU and increases TFLOPS. A possible explanation for the limited improvement is that, in the categorical setting, an MSE loss behaves similarly to cross entropy since both losses guide the model toward

1296
1297Table 8: Performance vs. fusion method for \tilde{z}_t 1298
1299
1300

Fusion	MAUVE (\uparrow)	Entropy (\uparrow)
Add	0.24	5.31
Concat	0.21	5.37
Reweight	0.24	5.30

1301

Table 9: Performance vs. continuous schedules

1302
1303
1304
1305
1306

Metrics	FM	VP
MAUVE	0.24	0.24
FiD	2.88	3.16

1307
1308
1309
1310Table 12: Qualitative Generation Analysis. We visualize the prediction for the masked token in "A [MASK] sits on the mat" as we vary the noise level t of the continuous embedding corrupted from the embedding "model".1311
1312
1313
1314
1315
1316
1317
1318

Noise Level (t)	Predicted Sentence	Predicted Token
Input (GT)	A model sits on the mat	model
$t = 0.1$	A model sits on the mat	model
$t = 0.3$	A model sits on the mat	model
$t = 0.5$	A vase sits on the mat	vase
$t = 0.7$	A tank sits on the mat	tank
$t = 1.0$	A and sits on the mat	and

1319

selecting the correct token and its embedding. We expect MSE to be more useful in settings where the targets are not purely categorical.

1320
1321
1322
1323
1324
1325
1326
1327

On the choice of continuous schedule We compare the Variance-Preserving (VP) schedule with Flow-matching (FM) schedule in both text and image generation experiments. The results are shown in Table 9. For text generation, the results are on par with the Flow-matching schedule. For image generation, the FiD score is slightly worse under the VP schedule. This difference may come from the need for different hyper-parameter settings for the two schedules.

1328
1329
1330
1331
1332
1333
1334

On model architecture Similar to the text generation, we also examine the performance of image generation. We conduct experiments to test the impacts of model architecture and number of function evaluations (NFEs) in the sampling stage. The results are reported in Table 11. As shown, ADM (Dhariwal & Nichol, 2021) shows stronger performance than DDPM++ (Song et al., 2021) across different NFEs. Especially when NFE is sufficiently large as 512, the performance of using ADM + NFE=512 configuration demonstrate a significant performance gain. As qualitative justification, we can also observe the last row of Figure 7 has the best visual quality.

1335
1336
1337
1338
1339
1340
1341

Model	FID (\downarrow)		
	64	256	512
DDPM++	31.24	4.72	4.70
ADM	30.41	4.29	2.88

1342
1343
1344
1345

Table 11: Ablation results on image generation, trained with DDPM++ and ADM architecture. FID results measured using NFE=64, 256, 512.

1346
1347
1348
1349

Qualitative visualization Table 12 demonstrates the effect of the continuous embedding \tilde{z}_t as a semantic scaffold that guides the discrete unmasking process. We use "A model sits on the mat" as input, and mask the second position. Using different noise level t to corrupt the embedding of token "model" to form \tilde{z}_t and predict the masked token. In the low-noise regime ($t \leq 0.3$), the continuous signal is clear enough and the prediction is same as "model". As noise increases, the embedding

Table 10: Performance vs. training and estimation method for \hat{z}_0

Metric	CE	CE + MSE	
		soft \hat{z}_0	hard \hat{z}_0
MAUVE			
soft \hat{z}_0	0.24	0.24	0.22
hard \hat{z}_0	0.18	0.24	0.24
computation cost			
TFLOPS	0.291	0.325	0.291
TPS/GPU	47,152	32,117	47,152

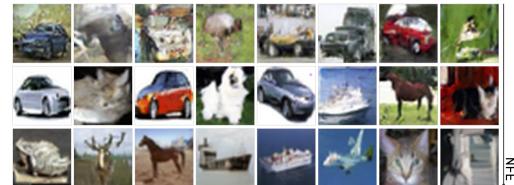


Figure 7: Qualitative results of CIFAR-10, generated by ADM, using NFE=64,256,512 (from top row to bottom).

1350 degrades and we can observe the predictions traverse from relevant category (e.g., vase”, tank”) to
 1351 generic priors only when the guiding signal is fully destroyed at $t = 1.0$.
 1352

1353 D ADDITIONAL GENERATED SAMPLES

1354 D.1 TEXT GENERATION

1355 Researchers conducted a study from the Centre for Applied Biology
 1356 Interface (IRAP) which appeared in a unit of the journal Institutale
 1357 Konczakalye Medicine, gave the results: Sleep stimulation were
 1358 involved in a randomized setting compared. The results showed a
 1359 measurable difference when the abnormal disturbances involved in
 1360 reducing working mood and reward were involved in the absence of
 1361 serotonin. There was a significant difference when serotonin was
 1362 compared to aerobic stimuli that more positively affected aerobic
 1363 intensity. These increased tactile disturbances were mediated
 1364 by dopamine concentration, increased concentration, changes in
 1365 peak pressure, reduced appetite and spin pressure intensity. The
 1366 effects were important since aerobic activity was also involved
 1367 in increased concentration and the brain was involved at the
 1368 same level. The results were analyzed for physiological stimuli
 1369 such as the EEG OxyRS. The results showed a clear decrease for
 1370 the subjective rhythm, concentration and reward and reward were
 1371 involved. Changes also showed expression by changes in the total
 1372 dopamine function and sleep frequencies were placed within a stable
 1373 pathway. In antidepressant stimulation, the heightened release
 1374 of dopamine pressure and higher reward reward led to gradual
 1375 differences in the frequency of dopamine stimulation...

1376
 1377
 1378 We have started recently introducing first parameter support.
 1379 first command control is custom function that utilizes some
 1380 combination of variable function to allow editing and transitions
 1381 and transitions across the inputs. It causes filter support to
 1382 activate. The extension utilizes the ability to set different
 1383 inputs and outputs, allowing for different transitions between
 1384 inputs and outputs, with option to set transitions and transitions
 1385 around all possible transitions with switch. The extension depends
 1386 on applying a hierarchy of outputs like parameter function that
 1387 links progress across inputs of different inputs. The workflow
 1388 also improves inputs, inputs, balance and even random inputs. It
 1389 is the common variable and function parameter for whatever input
 1390 modification, variable control and outputs for common variables for
 1391 possible play what regarding variable control. The basic parameter
 1392 and many other useful possible explain the potential behind set
 1393 functions as stack control and stack control. Linimental Changes
 1394 to Use The parameter is given a macro directly changing the linear
 1395 parameter of filter control, instead, leading to possible read
 1396 transitions and transitions to change around the inputs. It
 1397 also supports based movable stack set and also based on inputs
 1398 and gradient support resulting via the fixed inputs and inputs
 1399 representing variable selection. It is only possible by binding
 1400 in the inputs, first input control, first iteration control,
 1401 variable control, stack control and guarantees that all effects
 1402 fail to return performance. It can also be easily activated with
 1403 continuous stack control, stack control and quick stack control.
 Increased prior warning and filter control are very important to
 filter control...

1404
 1405 When it was only briefly used to experience psychic balance, after
 1406 being removed at the optimal frequency, decreasing the chance for
 1407 general performance, but when it changed at a rest and only even
 1408 moved at the same intensity, it did not you seriously control the
 1409 transition from strength to strength. Instead, it also gained
 1410 the balance in the fluid balance with the normal balance. It
 1411 was slow and powerful in healing activity that was available
 1412 beyond all kinds of fluctuations in concentration. So, when the
 1413 movement was replaced with other possible such qualities with
 1414 torque, psychic or psychic activity, it still had a stronger
 1415 sensitivity to performance, yet when it received even a deeper
 1416 part of the metabolism, it began becoming more energetic and
 1417 efficient and therefore, it improves balance. When it was replaced
 1418 with the meditation and then removed, it moved around a rest and
 1419 finally switched to random balance, and at that point with the
 1420 max stimulation the amount of basic torque applied at the spell.
 1421 It also returned to a smooth, constant and consistent transition
 1422 between internal and temporal control, therefore demonstrating
 1423 that balance also decreases. But even after the activation of
 1424 the trait, it experienced a change in intensity. Now, the tactile
 1425 balance is becoming more effective and more stable, and it leads to
 1426 increased gains in concentration and performance. Do you be really
 1427 concerned about the balance, balance and balance connection to the
 1428 spell? The positive effect on the tactile balance now comes true
 1429 to speed. The tactile balance is only determined by strength and
 1430 balance, and it is still held at a constant point at the critical
 1431 frequency. In fact, the spirit is not moving in the same direction
 1432 as a spell, and it has not been able to experience balance because
 1433 it moved to another true frequency. !The Target Applateur store
 1434 website representative today confirmed that Philips was shut down
 1435 in order to restart its current launch. While Target has not
 1436 been asked for any explanation, confirmed a major shutdown was
 1437 found. It does no longer fully support operating systems, while
 1438 its switch has been changed to replace the current system running
 1439 the Double Storage, Fresh, Medium Storage and Hot Storage modules.
 1440 Please Note that we are working on the matter is not there. He said:
 1441 Print had working to resolve all the issues on the platform, and
 1442 if it fails, the shutdown requiring the vendor being able to fix
 1443 them. We do not know at the reason for the delay and therefore
 1444 the reasons why we are continuing control will be determined by
 1445 them and discussed today so we will not go on a more comprehensive
 1446 timetable. We will't speculate on the basis whether to continue
 1447 running locally used current systems. While the error created
 1448 more complexity, it is decided by the seller if this fix is true,
 1449 we expect that these issues will be resolved with proper action.
 1450 We know that if we want to continue with browsing cycles then it
 1451 will be very difficult to restart, and with our support, access
 1452 is always applied to data settings, store volumes and automatic
 1453 navigation. Loading.

D.2 CODE GENERATION

```

1 from typing import List, Tuple
2
3
4 def rolling_max(numbers: List[int]) -> List[int]:
5     """ From a given list of integers, generate a list of rolling maximum
6     element found until given moment
  
```

```

1458     in the sequence.
1459     >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
1460     [1, 2, 3, 3, 3, 4, 4]
1461     """
1462     result = []
1463     current_max = numbers[0]
1464     for num in numbers:
1465         if num > current_max:
1466             current_max = num
1467     result.append(current_max)
1468     return result

```

Listing 1: "Generation on HumanEval"

```

1469 1 def comb_sort(arr):
1470 2     n = len(arr)
1471 3     gap = n
1472 4     swapped = True
1473 5     while ((gap > 1) or swapped):
1474 6         swapped = False
1475 7         gap = int((gap / 1.3))
1476 8         if (gap < 1):
1477 9             gap = 1
1478 10        for i in range((n - gap)):
1479 11            if (arr[i] > arr[i + gap]):
1480 12                (arr[i], arr[i + gap]) = (arr[i + gap], arr[i])
1481 13                swapped = True
1482 14    return arr
1483 15
1484 16
1485 17 assert comb_sort([5, 15, 37, 25, 79]) == [5, 15, 25, 37, 79]

```

Listing 2: "Generation on MBPP"

```

1485 1 from random import randint, seed as random_seed
1486 2 import time
1487 3 import matplotlib.pyplot as plt
1488 4
1489 5 def task_func(my_list, size=100, seed=100):
1490 6     """
1491 7     Enhances 'my_list' by appending the number 12, then generates a list
1492 8     of random integers based
1493 9     on the sum of elements in 'my_list', limited by 'size'. It measures
1494 10    the time taken for this process
1495 11    and plots a histogram of the generated random numbers.
1496 12
1497 13    The size of the random numbers list is determined by the sum of the
1498 14    numbers in 'my_list', with
1499 15    an upper limit set by 'size'. The random integers are within the
1500 16    range 1 to 100, inclusive.
1501 17
1502 18    Parameters:
1503 19    - my_list (list): The input list containing numeric elements.
1504 20    - size (int): Maximum size limit for the generated list of random
1505 21    numbers. Default is 100.
1506 22    - seed (int): Seed value for random number generator for
1507 23    reproducibility. Default is 100.
1508 24
1509 25    Returns:
1510 26    - tuple: A tuple containing the time taken to generate the list (in
1511 27    seconds, as a float) and
1512 28    the matplotlib Axes object for the histogram. The histogram's x-
1513 29    axis is labeled 'Number',
1514 30    representing the range of random integers, and the y-axis is
1515 31    labeled 'Frequency', representing
1516 32    the frequency of each integer in the generated list.

```

```

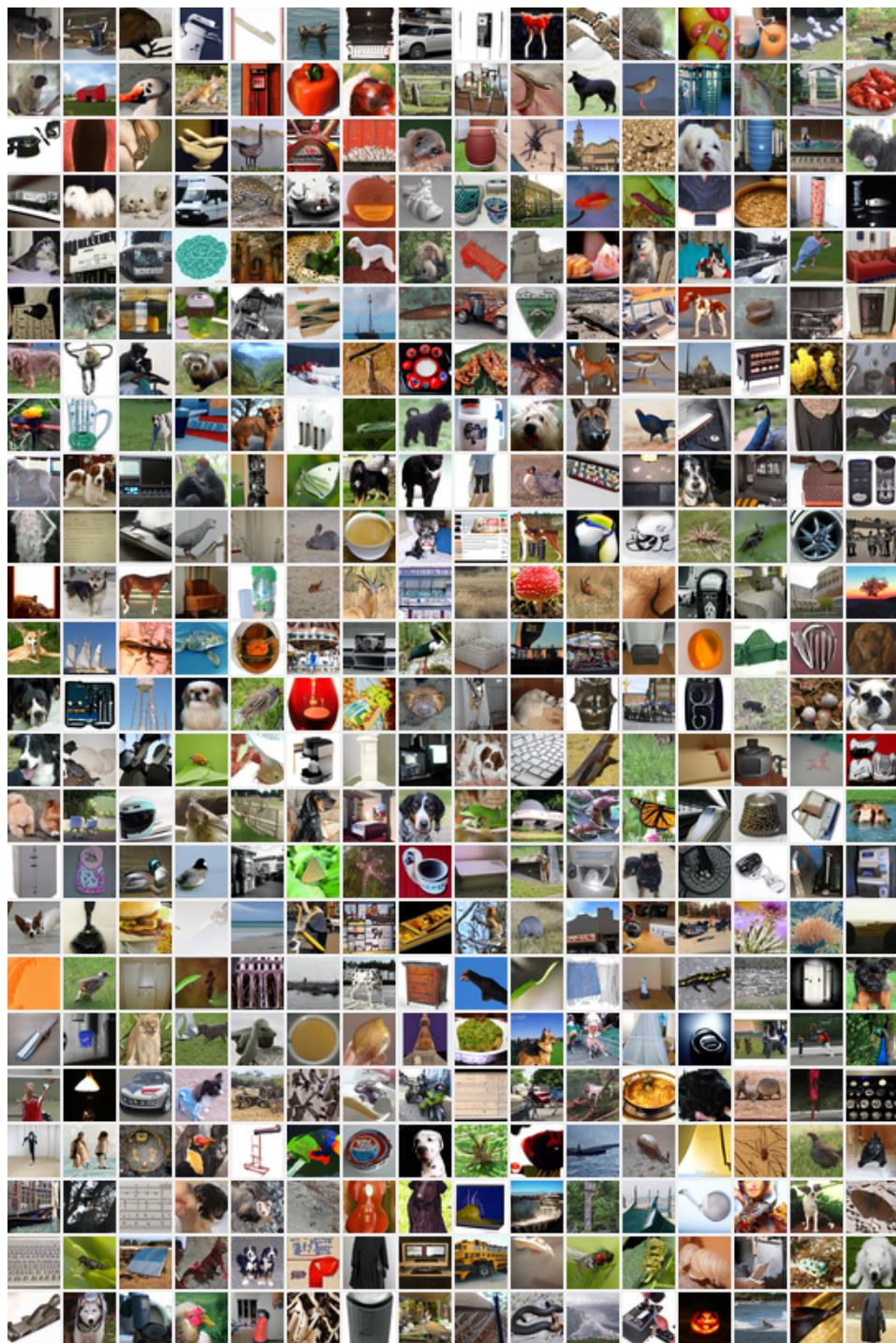
1512 25     Raises:
1513 26         - TypeError: If 'my_list' is not a list.
1514 27         - ValueError: If 'my_list' contains elements that are not numeric (int or float).
1515 28
1516 29     The histogram plots the distribution of the random numbers generated,
1517 30         with the number range (1-100)
1518 31         on the x-axis and the count (frequency) of each number on the y-axis.
1519 32
1520 33     Requirements:
1521 34         - random
1522 35         - time
1523 36         - matplotlib.pyplot
1524 37
1525 38     Example:
1526 39         >>> my_list = [2, 3, 5]
1527 40         >>> time_taken, ax = task_func(my_list)
1528 41         >>> print(type(time_taken))  # Example output: <class 'float'>
1529 42         <class 'float'>
1530 43         >>> ax.get_title()  # Returns 'Histogram of Random Numbers'
1531 44         'Histogram of Random Numbers'
1532 45         """
1533 46         if not isinstance(my_list, list):
1534 47             raise TypeError("'my_list' must be a list.")
1535 48
1536 49         if not all(isinstance(x, (int, float)) for x in my_list):
1537 50             raise ValueError("'my_list' must contain numeric elements.")
1538 51
1539 52     # Append 12 to the list
1540 53     my_list.append(12)
1541 54
1542 55     # Calculate the sum of the list
1543 56     total_sum = sum(my_list)
1544 57
1545 58     # Determine the size of the random numbers list
1546 59     list_size = min(total_sum, size)
1547 60
1548 61     # Set the seed for reproducibility
1549 62     random.seed(seed)
1550 63
1551 64     # Generate the list of random numbers
1552 65     random_numbers = [randint(1, 100) for _ in range(list_size)]
1553 66
1554 67     # Measure the time taken
1555 68     start_time = time.time()
1556 69     # Generate the histogram
1557 70     plt.figure(figsize=(10, 6))
1558 71     plt.hist(random_numbers, bins=range(1, 102), align='left', edgecolor='black')
1559 72     plt.xlabel('Number')
1560 73     plt.ylabel('Frequency')
1561 74     plt.title('Histogram of Random Numbers')
1562 75     plt.show()
1563 76     end_time = time.time()
1564 77
1565 78     # Return the time taken and the Axes object
1566 79     return end_time - start_time, plt.gca()

```

Listing 3: "Generation on BigcodeBench"

1566
1567

D.3 IMAGE GENERATION

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619Figure 8: Unconditional image generation, generated by CADD trained on ImageNet-32 \times 32.