
MERMAIDE: Learning to Align Learners using
Model-Based Meta-Learning

Arundhati Banerjee∗
Machine Learning Department

Carnegie Mellon University
arundhat@cs.cmu.edu

Soham Phade†
Wayve Technologies Ltd

soham_phade@berkeley.edu

Stefano Ermon
Department of Computer Science

Stanford University
ermon@cs.stanford.edu

Stephan Zheng
Asari AI

stephan@asari.ai

Abstract

We study how a principal can efficiently and effectively intervene on the rewards of
a previously unseen learning agent in order to induce desirable outcomes. This is
relevant to many real-world settings like auctions or taxation, where the principal
may not know the learning behavior nor the rewards of real people. Moreover,
the principal should be few-shot adaptable and minimize the number of inter-
ventions, because interventions are often costly. We introduce MERMAIDE, a
model-based meta-learning framework to train a principal that can quickly adapt
to out-of-distribution agents with different learning strategies and reward func-
tions. We validate this approach step-by-step. First, in a Stackelberg setting with
a best-response agent, we show that meta-learning enables quick convergence
to the theoretically known Stackelberg equilibrium at test time, although noisy
observations severely increase the sample complexity. We then show that our
model-based meta-learning approach is cost-effective in intervening on bandit
agents with unseen explore-exploit strategies. Finally, we outperform baselines
that use either meta-learning or agent behavior modeling, in both 0-shot and 1-shot
settings with partial agent information.

1 Introduction

In many application domains, such as revenue maximization in auctions [18], economic policy design
for social welfare [27] or optimizing skill acquisition in personalized education [17], a principal
seeks to incentivize an adaptive agent to achieve the principal’s goal. In this work, we assume that
both the principal and the agent are learners and the principal incentivizes by directly intervening
on the rewards of the agent. However, the principal does not know neither the exact value of the
agent’s rewards nor its learning algorithm (or its parameters). For instance, an intelligent tutoring
system (principal) may want to incentivize the learning of a subject by different students, but needs
to consider that people (agents) may learn differently with different subjects and available tools.
Here, common agent models based on rationality or forms of bounded rationality often do not fully
describe real-world behavior. Hence, interacting with the agents is required for the principal to learn
how agents change their behavior, but such interactions are not “free” or without risk. For example,

∗Work done during an internship at Salesforce
†Work done while at Salesforce

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

it takes effort to measure the impact of a tutoring plan change on the students, while it may drive
students away if the designed curriculum is too difficult or easy (incurring cost for the principal).

To reduce the need for real-world interactions, we can use simulations with deep reinforcement
learning (RL) agents. This is an attractive solution framework: deep neural networks are expressive
enough to imitate real-world entities and simulations can be run safely and at will. Moreover, we
can use deep RL to learn intervention policies that are effective even in the face of complex agent
behaviors in sequential principal-agent problems.

However, this approach also faces several challenges. When deploying the learned policies in the
real world, interventions can typically only be applied a few times, due to implementation costs, and
rarely under identical circumstances; in contrast to simulations, we cannot reset the real world. Even
though principals may adapt their policies to new conditions, they cannot realistically know the true
rewards or learning strategy of the agent. Hence, our goal is to learn the principal’s intervention
policy that 1) can perform well even when agents learn, 2) can be quickly adapted, 3) is robust to
distribution shifts in agent behaviors, and 4) is effective despite having only partial information.

Contributions. To address these challenges, we propose MERMAIDE (Meta-learning for Model-
based Adaptive Incentive Design), a deep RL approach that 1) learns a world model and 2) uses
gradient-based meta-learning to learn a principal policy that can be quickly adapted to perform
well on unseen test agents. We consider a principal and single-agent setting wherein the principal
intervenes at a cost on the agent’s learning process to incentivize the agent to learn to act to achieve
the principal’s objective. We assume that the agent behaves in a first-order strategic manner and the
principal in a second-order strategic manner. Here, the agents optimize their experienced rewards and
minimize their regret, but do not account for their influence on the principal’s actions. In contrast, the
principal intervenes explicitly as to influence the agent’s actions.

First, we show that in a single-round Stackelberg game between the principal and an agent, our
meta-trained principal reliably finds solutions that one-shot adapt well with a best response agent
under both perfect and noisy observations for the agent and the principal. Furthermore, the principal’s
out-of-distribution performance depends on its observable information about the agent. Second, in
the multi-armed bandit setting, we show that MERMAIDE finds well-performing reward intervention
policies in a repeated interactive setup with the adaptive bandit agents. MERMAIDE’s test-time
performance and robustness against out-of-distribution bandit learners depends on the agent’s level
of exploration and their level of pessimism in the face of uncertainty, which are unknown to the
principal. In particular, this holds for both K = 0-shot and K = 1-shot evaluation. To the best of
our knowledge, prior works studying the principal-agent setup, even in an adaptive setting, overlook
several of these problems with more restrictive assumptions on either the observations available or
the types of agents and principal.

2 Related Work

Mechanism design. The principal-agent problem [6] relates to the general mechanism design
setting [11]. When the agents are themselves learners, it leads to a bilevel optimization problem
where joint learning of the mechanism and agents can be unstable. Prior work has proposed using
curriculum learning to stabilize learning in such scenarios [26], but our setting is more challenging
since the principal’s intervention essentially changes the task for the adaptive agent, thus presenting a
non-stationary learning task for both the principal and the agent at each time step.

Adaptive mechanism design. Previous work in mechanism design usually does not consider
learning how to learn to incentivize across agents of different types. Prior work has studied algorithms
for incentivizing exploration in bandit agents [5, 24] where the principal can incentivize different
arms to passively determine the global preferences of the agent population. Shi et al. [21] extend
this line of work to consider non-myopic strategic agents, but they assume that the agent is aware of
the principal’s incentive before choosing an arm and the agent always selects the incentivized arm.
Moreover, their setting does not focus on few-shot generalization to unseen test agents. Our work
expands on this theme by explicitly modeling agents that learn, considering shifts in the learning
algorithm of the agents, and using deep RL with meta-learning.

2

Meta-learning and inverse RL. In recent years, gradient-based meta-learning has proven effective
in learning initializations for complex policy models that generalize well to unseen tasks [7, 19].
Luketina et al. [16] study meta-gradients for adapting in environments with controlled sources of
non-stationarity, but ignore non-stationarity from interactions between strategic agents that learn.
Prior works in imitation learning [2] and inverse RL [1] assume access to expert demonstrations
with a fixed policy to imitate or learn the reward function of, whereas Jacq et al. [12], Ramponi et al.
[20] consider inverse RL with observations from learners that improve their policies, but they do
not feature a principal that actively intervenes. In contrast, our principal aims to learn a policy that
can strategically alter the behavior of such demonstrators (our agents), who are themselves learning
during an episode of the demonstration. Recently, Boutilier et al. [4] studied meta-learning for
bandit policies, while Guo et al. [10] introduced the inverse bandit setup for learning from low-regret
demonstrators. However, these works do not consider shifts in the bandit learning algorithm between
training and test time.

Modeling agents. A key challenge in multi-agent learning is that each agent experiences a non-
stationary environment if other agents are learning. As such, agents can benefit from having a
world model, e.g., to know what the policy or value function of the other agents are. World models
can stabilize multi-agent RL [15] and enable higher-order learning methods [9], and are a form of
model-based RL. However, this may require a large amount of observational data or prior knowledge,
sometimes hard to acquire. We show that world models make principals more efficient in our setting.

3 Problem formulation

Overview. We model a principal who aims to incentivize an agent to (learn to) execute the
principal’s preferred action. To do so, the principal can intervene and change the agent’s rewards at a
cost. Without interventions, the agent may learn to prefer an action different than the principal’s.

We focus on learning a principal policy that can adapt quickly at test-time and that is effective when
the agent’s learning algorithm differs from that during training. In this work, we focus on agents in a
stateless environment. For all variables, see Appendix A. We now formalize this setting.

The agent. The agents are characterized by their action space A and a base reward function
r : A → R. We call it base reward as the agent experiences an intervened reward

r̃t (at) = r (at) + r′t (at) , (1)

where the intervention r′t is provided externally (by the principal) for the agent action at. We index
time as t = 1, . . . , T . At each time step t, the agent’s policy πt computes a distribution over its
actions based on the observations for the agent up to timestep t and executes at ∼ πt. We assume
that the principal has a preferred action a∗ ∈ A that the agent should execute, whereas the agent’s
optimal policy can prefer a different action than a∗ without intervention. Finally, at time t, the agent
learns using an update rule f : (πt, at, r̃t) 7→ πt+1 to maximize the agent’s intervened rewards, e.g.,
under UCB [14], f updates the confidence bounds for the action selected at time t.

The principal. In this work, from the principal’s point of view, the world (environment) consists of
the agent who maximizes r̃. A standard assumption is that agents are rational and they may have
a private state (referred to as its type) which the principal cannot see. Although the agent faces a
stateless problem, the principal faces a stateful problem with partial observability. The full state
s ∈ S includes the principal’s internal state hp

t (e.g., the principal’s belief about the value of the
private agent information), and all information about the agent, including its past actions, reward
function, and policy model; often, the latter two are private.

More formally, the principal can be modeled as a POMDP (S, op, Ap, rp, γ,P). It receives observa-
tions op (a part of the world state s), Ap is its action space of interventions, rp is its reward, γ is a
discounting factor, and P are the environment dynamics, e.g., as caused by the agent’s actions. At
time t, the principal samples an action ap

t ∼ πp
(
ap
t |o

p
t−1, h

p
t−1

)
which determines its intervention

on each possible agent action a, i.e. ap
t =

[
r′1, . . . , r

′
|A|

]
.

Adaptive intervention policy learning. To model distribution shift at test time, we follow the
meta-learning terminology [8] and view each distinct agent as a task τ i. The principal has access to a

3

train set of agents τ i ∈ Ttrain; i = 1, . . . , ntrain and is evaluated on a test set of agents τ i ∈ Ttest; i =
1, . . . , ntest. We emphasize that during a task, both the principal and agent may learn and adapt, both
at train and test time.

Here, we focus on two key challenges: K-shot adaptation and distribution shift. First, the principal
gets only K episodes for fine-tuning for each test task (but can train indefinitely for each train
task). Second, the principal faces two types of distribution shift: 1) across tasks and 2) intra-task
non-stationarity. The train and test tasks may differ (significantly) in their temporal distribution of
actions, e.g., due to different agent updates f or the agent rewards rt being centered around different
values. Within a task, the agent’s learning is affected by the principal’s interventions that change its
reward r̃. This gives rise to non-stationarity in the agent’s environment, as its learning objective may
shift over time. These forms of task distribution shift distinguish our adaptive intervention policy
learning setting from most prior work in meta-learning, which often assume stationarity within a task
and also assume similar task distributions at train and test times.

Objectives. The principal’s objective is to maximize how often test-time agents choose a∗ during
learning and have them converge to a policy that always chooses a∗. To do so, the principal aims to
maximize the cost-adjusted test-time return Jp

test
(
πp, πi

)
=

∑T
t=1 γ

t−1(rpt − αct), where the agent
executes its (optimal) policy πi [πp] in response to πp. The principal incurs a cost ct if it intervenes.

πp∗ = argmax
πp

Eτ i∈TtestEπpEπi[πp]

[
T∑

t=1

γt−1(rpt − αct)

]
(2)

where rpt = 1 [at = a∗], α > 0. A simple cost function is ct = 1 [r′t ̸= 0], i.e., the cost is constant
across non-trivial interventions, where α > 0 is a constant. Note that if intervention were free
(ct = 0), a trivial solution is to always add a large r′ (a∗) ≫ 0 for its preferred action a∗, such
that it always yields the highest reward. Hence, we focus on learning non-trivial strategies when
intervention is costly, which forces the principal to strategically alter the agent’s learning behavior.

During an episode of T time steps, each agent i starts with a uniformly initialized action
probability distribution πi

0 and optimizes πi
t subject to interventions πp to maximize its return:

EπiEπp

[∑T
t=1 r̃

i
t

(
ait, a

p
t

)]
. Here, we assume that T and γ are sufficiently large so the agent con-

verges to its optimal policy under r̃, using its learning algorithm f . That is, we assume that the
objective in Equation (2) is sufficient to describe the principal’s objective of ensuring the agent
converges to preferring a∗ at some t < T .

In the K-shot adaptation setting, at test time, the principal gets K episodes to interact with any agent,
each episode of length T steps. The principal has a fixed policy during an episode and it can update
its policy at the end of an episode. The agent is reset across episodes, and within each episode, the
agent follows its own learning strategy in response to the principal’s interventions. On the K + 1th

episode, the principal evaluates its K-shot adapted policy on the agent. Note this assumes that the
principal has a separate copy of the test time agent for evaluation.

4 MERMAIDE: Learning to Align Learners

MERMAIDE learns an intervention policy to align the agent’s preferred action with the principal’s
one, using:

1) a recurrent world model parameterized by ω that outputs a distribution over an agent i’s actions
at the next time step t: π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
, conditioned on the planner’s intervention and the

observed agent action at t− 1. hi
t−1 is the hidden world model state. ait ∼ πi

t.

2) a recurrent intervention policy which outputs a distribution over interventions apt ∼
πp
θ

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
, conditioned on its previous intervention, the observed agent action

and the world model’s predicted next agent action âit = maxa π̂ω

(
a|ait−1, a

p
t−1, h

i
t−1

)
. hp

t−1 is the
hidden state of the policy network.

We train this with gradient-based meta-learning and RL (Algorithm 1). µi indicates the mean or base
reward function for agent i and µ̃i is the reward function after the principal’s intervention apt at time t.

4

Algorithm 1 MERMAIDE (Notations also in Table 3)

1: Initialize principal (θ0, ω0), and hidden states hi
0, h

p
0 .

2: for meta-train epoch e = 1, . . . , Etrain do
3: Update world model parameters ω = ωe (Equation (3)).
4: for agents (tasks) i = 1, . . . , ntrain do
5: Initialize agent: (µi, πi

0), task specific principal policy parameter θ
(
τ i
0

)
= θe.

6: for k = 1, . . . ,Ktrain do
7: for time t = 1, . . . , T do
8: Predict âi

t = argmaxai
t
π̂ω

(
ai
t|ai

t−1, a
p
t−1, h

i
t−1

)
9: Intervention: µ̃i = µi + ap

t , ap
t ∼ πp

θ(τi
k)

(
ap
t |ai

t−1, a
p
t−1, â

i
t, h

p
t−1

)
.

10: Agent acts: ai
t ∼ πi

t and receives reward rit ∼ N
(
µ̃i, σ2

)
. πi

t 7→ πi
t+1.

11: end for
12: Locally update θ

(
τ i
k

)
7→ θ

(
τ i
k+1

)
. {Using REINFORCE.}

13: end for{Rollout for meta-update; Dmeta
(
τ i
)
= {}}

14: for t = 1, . . . , T do
15: Predict âi

t = argmaxai
t
π̂ω

(
ai
t|ai

t−1, a
p
t−1, h

i
t−1

)
16: Intervention: µ̃i = µi + ap

t , ap
t ∼ πp

θ
(
τi
Ktrain

) (ap
t |ai

t−1, a
p
t−1, â

i
t, h

p
t−1

)
.

17: Agent acts: ai
t ∼ πi

t, receives reward rit ∼ N
(
µ̃i, σ2

)
. Updates πi

t 7→ πi
t+1.

18: Collect Dmeta
(
τ i
)
∪
{
ai
t, a

p
t , π

p

θ
(
τi
Ktrain

)
}

19: end for
20: end for
21: Meta-update θe 7→ θe+1 using Dmeta = ∪τiDmeta

(
τ i
)
. {Using MAML.}

22: end for

Please refer to Table 2 and Table 3 for a comprehensive list of the notations used. Here, the principal
maximizes Jp

train similar to the objective in Equation (2). The base RL algorithm is REINFORCE
[25] and the meta-learning update uses MAML [8]. The agent optimizes its cumulative intervened
reward (see Section 6). The world model π̂ω trains by maximizing the log-likelihood of the observed
ait, using Adam [13]:

argmax
ω

EapEai

[
T∑

t=1

log π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)]
(3)

Note that the principal’s parameters θ are updated after each T -step episode, while the agent con-
tinuously learns during each episode. Also, the agent is reset in between episodes. At time 0, the
world model makes a prediction based on zero initialization.We use a single world model for all
agents. At meta-test time, only the intervention policy is updated by one-shot adaptation to a new
agent (Algorithm 2).

5 Evaluating Meta-Learning for the Principal

We now compare the learning behavior of a principal that is meta-trained (MAML) [8] versus one
trained with standard policy gradients (RL), in a simple Stackelberg game between a principal and
an agent. The Stackelberg game features a principal (leader) who acts first (intervene or not), and
the agent (follower) acts second according to a best-response policy [23]. Our goal is to learn an
intervention policy that can adapt to different agent types and find the Stackelberg equilibrium.

The agent’s actions are “cooperate” and “defect”, while the principal can choose whether or not to
intervene. Assuming the row player is the agent and the column player is the principal, we define a
2× 2 payoff matrix

No intervention (NI) Intervene (IN)()Cooperate (C) u, 1 u+ 1, 1− c
Defect (D) 1− u, 0 −u,−c

,

5

(a) (b) (c)

Figure 1: Single round game. REINFORCE (RL) does not adapt to expected Stackelberg equilibrium
during evaluation. MAML’s adaptability suffers under observation noise.

where u ∈ (0, 1) and c is the cost of intervention (c < 1). The agent’s base payoff u is its type. The
principal prefers cooperation: it gets 1 if the agent cooperates and 0 if the agent defects (minus the
cost c if it intervenes). Note that intervention incentivizes cooperation (u+ 1 > −u).

We now analyze three scenarios with increasing difficulty:

1) First, we assume that the principal knows u. Here, there is a unique Stackelberg equilibrium at (C,
NI) when u ≥ 1

2 , and at (C, IN) when u < 1
2 .

2) Second, the principal observes a noisy version of u. In both cases, the agent first observes the
principal’s action and plays its best-response (knowing the payoffs).

Note that both 1) and 2) are single-round Stackelberg settings.

3) Finally, we study a repeated (multi-round) Stackelberg setting where the agent cannot see the
principal’s action. Instead, we assume that the agent keeps a running average for the experienced
payoffs for each of its actions. In an equivalent single-round setting this would correspond to the
principal committing to a mixed action and then the agent choosing its best response. When u ≥ 1

2 ,
the Stackelberg equilibrium occurs at (C, NI). When u < 1

2 , at the Stackelberg equilibrium the
principal has a mixed action where it chooses to intervene for 2u+1

2 fraction of times and the agent
always cooperates.

Given these expected Stackelberg equilibrium strategies, our goal is to learn a policy for the principal
that predicts its probability of intervention and study the adaptivity of MAML vs RL trained policies
on unseen agents. We set c = 0.75. Given a set of training agents with different types u ∼ U (0, 1),
the principal learns the optimal policy parameters θ∗ = argmaxθ EuEap∼πp

θ (u)
[rp (ap)]. Note that

here we do not use a world model, rather we focus on model-free policy learning. We study the
quality of the initialization θMAML vs θRL by evaluating the one-shot adaptation performance of the
trained principal on unseen test agents.

With perfect observability. In this setting, we assume that the principal observes an agent’s exact
payoff parameter u. Figure 1 shows the principal’s meta-test time probability of intervening with
3 different agents from the test set, across training epochs. The principal and agent should be at
different Stackelberg equilibria depending on the type u, as discussed above. We see that a principal
trained from scratch on the test agents using standard policy gradients is unable to adapt to different
agents in a single-shot adaptation setting. In contrast, with meta-learning, the principal learns a policy
πp
θMAML

that is one-shot adaptable to agents of different types and converges to the correct Stackelberg
equilibrium at meta-test time.

With noisy observations for the principal. Here, we emulate a principal with partial observability
of the agent, by letting the principal observe u with added i.i.d. Gaussian noise. The agent can see
all payoffs and chooses the best response to achieve a Stackelberg equilibrium. Figure 1 shows that
with noisy observations, the meta-learned principal policy requires more training time to be one-shot
adaptable to the equilibrium intervention policy. This empirically indicates the increased difficulty of
learning an adaptive intervention policy due to incomplete information about the agent, especially
under limited adaptation time with unseen agents. It therefore motivates us to adopt a model-based
approach for the principal to better estimate the agent type and learn an adaptive intervention policy.

6

(a) (b) (c)

Figure 2: Multi-round game. (a) Principal’s optimization trajectory in the expected payoff landscape
during training. Axes are PCA directions in the policy parameter space. Colorbar indicates the
principal’s expected payoff over the training agents. (b)(c) MAML adapts (single shot) to Stackelberg
equilibrium with a best response agent. The number of interventions are normalized by the episode
length T = 100.

Comparing Figure 1b and Figure 1c, when u < 1
2 , the difference in unintervened payoffs between the

principal’s preferred action (u) and the agent’s preferred action (1 − u) also impacts the one-shot
adaptability of the principal with noisy observations. This informs our analysis in Section 6.

Multi-round repeated game with noisy rewards. In this setting, the principal and agent repeatedly
play an iterated game over T = 100 steps. In each round, the principal observes the agent’s type u
with added i.i.d. Gaussian noise. The agent cannot see the principal’s actions, and best responds
given its payoff estimates. Whenever the agent selects an action, it receives a noisy observation of
the true payoff and updates its estimate. Compared to the single-round setting, here the agent’s best
response behavior may change across rounds in the game depending on its observed payoffs, giving
rise to non-stationarity in the principal’s environment. The planner, in turn, has to learn to intervene
so that the agent’s best response is to cooperate.

Figure 2a compares the optimization trajectory followed using 1) policy gradients and 2) meta-
learning for the principal. Starting from the same initialization, the meta-learned policy’s parameters
lie in a region of the payoff landscape with a higher expected value over the training agents. Moreover,
Figure 2b and Figure 2c show the one-shot adaptability of the principal’s policy for two different
agent types at meta-test time. Meta-learning helps learn a better intervention strategy that is robust to
the principal’s observation noise as well as the agent’s evolving best response strategy.

This analysis shows the benefits of meta-learning over standard policy gradients in learning a
principal’s intervention policy at equilibrium with strategic agents and under partial observability
for the principal in a simple Stackelberg setting. Our observations motivate using meta-training and
model learning in general principal-agent settings. MERMAIDE uses both these components; next,
we analyze its performance against learning agents with complex adaptive behavior under repeated
interventions.

6 Evaluating MERMAIDE on Bandits

We now consider a principal intervening sequentially on an adaptive no-regret learner agent, modeled
by an |A|-armed bandit instance with action set A having base reward r =

[
r1, . . . , r|A|

]
. At each

time step t, the agent chooses an arm a and gets a reward sampled from N
(
ra, σ

2
)
. We assume

ra ∈ (0, 1) ∀a. The agent aims to maximize its cumulative reward over a horizon of T steps. The
agent can only observe the reward for the chosen action, and hence faces a explore-exploit dilemma
addressed by bandit algorithms like UCB [14]. We assume there is a unique arm ã with the highest
base reward: ã = argmaxa ra, i.e., the agent’s preferred action without any intervention.

Costly interventions. To analyze the effect of the cost of intervention ct on the principal’s learnt
policy, we assume that the principal decides among three different intervention levels |r′| ∈ {0, 0.5, 1}
such that ct = |r′|. Across different bandit agent tasks τ i with distinct base rewards ri and
reward gaps δ = maxa∈A ri[a]− ri[a∗], the principal should learn to appropriately incentivize the
agent while minimizing the total cost of intervening. We then define the experienced reward as:

7

Table 1: Test-time principal performance on agents with different test-time learning parameters
(3 random seeds). Left column: Principal’s algorithm (e.g., MERMAIDE), training agent type (e.g.,
UCB with β = 0.17). Other columns: Test-time scores (mean and standard error (s.e.)) on agents
with the same algorithm, but different hyperparameters. MERMAIDE (K = 0) indicates zero-shot
evaluation. Rest are evaluated with one-shot adaptation (K = 1). MERMAIDE outperforms all
baselines in almost all cases in both the K = 0 and K = 1 cases, with K = 1 principals doing better
than K = 0.

Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 119 (2) 109 (2) 98 (2) 90 (2) 77 (1)
MF-MAML 133 (2) 125 (3) 107 (1) 97 (1) 77 (0)
WM-RL 123 (7) 112 (6) 100 (4) 92 (2) 75 (1)
MERMAIDE (K = 1) 154 (2) 151 (1) 129 (1) 129 (1) 87 (0)
MERMAIDE (K = 0) 148 (2) 138(1) 120(1) 103(2) 89(1)

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 115 (5) 94 (4) 54 (19) 39 (6) 22 (9)
MF-MAML 122 (4) 97 (3) 58 (5) 40 (2) 12 (1)
WM-RL 115 (4) 94 (5) 70 (1) 55 (3) 38 (1)
MERMAIDE (K = 1) 138 (1) 112 (2) 85 (3) 66 (2) 37 (4)
MERMAIDE (K = 0) 133 (2) 109 (3) 86 (2) 65 (3) 37 (1)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
MF-RL 103 (3) 101 (3) 92 (2) 85 (1) 74 (1)
MF-MAML 124 (2) 116 (1) 102 (1) 94 (1) 80 (1)
WM-RL 100 (4) 89 (0) 85 (1) 85 (1) 74 (0)
MERMAIDE (K = 1) 132 (1) 130 (1) 123 (2) 115 (2) 99 (1)
MERMAIDE (K = 0) 115 (3) 114 (3) 103 (4) 100 (3) 89 (3)

Train on ϵ-greedy, ϵ = 0.5 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
MF-RL 4 (5) 2 (3) 5 (0) 11 (5) 7 (1)
MF-MAML 2 (0) 4 (0) 6 (0) 8 (1) 11 (1)
WM-RL 102 (6) 79 (10) 68 (3) 47 (1) 30 (2)
MERMAIDE (K = 1) 87 (42) 102 (3) 78 (6) 69 (1) 46 (2)
MERMAIDE (K = 0) 113 (20) 85 (15) 71 (16) 48 (14) 21 (15)

∀a ̸= a∗, (a, a∗ ∈ A)

r̃t[a
∗] = ri[a∗] + r′t; r̃t[a] = ri[a]− r′t. (4)

Note that this ensures the agent always experiences an intervention, no matter which action it chooses.
During each episode, the agent learns but the principal’s policy is fixed; the principal can update its
policy only at the end of each episode (Algorithm 1). Also, we assume that the principal can only
observe the agent’s actions ait but not its base reward ri or policy update function f i. We measure
the performance of the principal using Equation (2), with γ = 1.

World model. The world model predicts the agent’s next action (given the principal’s prior observa-
tions) to characterize the agent’s behavior. We do not train the principal’s world model to estimate the
base rewards, because bandit agents with distinct base rewards could still execute the same sequence
of actions, depending on the agent’s explore-exploit algorithm and its observations.

Challenges in the sequential setting. Compared to the setting in Section 5, learning to intervene
on sequential (bandit) learners (Appendix B.1) creates more challenges:

1) Bandit agents may use different strategies to maximize their experienced reward. The agent’s
rate of exploration may be constant (e.g., ϵ-greedy) or it can reduce with time (e.g., UCB) within an
episode. This creates a highly non-stationary environment for the principal: its intervention policy
must adapt to different intra-episode explore-exploit behaviors for the same agent. When the agent

8

explores a larger action space, it further exacerbates these challenges as the principal only has partial
information about the agent.

2) Bandit agents are sequential learners and feedback (ait, r̃
i
t) can update the policy πi differently at

different t. This may depend on how optimistic (e.g., UCB) or pessimistic (e.g., EXP3) the agents
are about their reward estimates. Hence, an intervention ap may change agent behavior differently
at different t. Since interventions have different costs, a strategic principal must decide when to
intervene and how much (|r′|) based on its observations of the agent’s actions.

Appendix B.3 further illustrates the difficulty of this setting.

Results. Here, we use 15 bandit agents for training and 10 bandit agents for testing, each with
different base rewards (both within and across train and test sets). |A| = 10. We consider two agent
learning algorithms (UCB and ϵ-greedy) and a range of exploration vs exploitation characteristics, de-
termined by their exploration coefficients: β ∈ {0.17, 0.27, 0.42, 0.5, 0.67} for UCB (higher β gives
more exploration) and ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for ϵ-greedy (higher ϵ gives more exploration).
These constants were chosen such that they yield, on average, the same number of exploratory actions
with either UCB or ϵ-greedy without any intervention (see Appendix B.2).

Table 1 shows the one-shot adapted principal’s score on each test set over T = 200 time steps. We
compare MERMAIDE with 1) model-free baselines (MF-RL using REINFORCE, MF-MAML using
MAML) and 2) REINFORCE with world model (WM-RL); see Appendix B.4. We also include
zero-shot evaluation of the trained MERMAIDE intervention policy, showing that it outperforms
one-shot adapted baselines on unseen test agents. We further include a “No Intervention” baseline
to show how agents behave by default. In all, our results show that MERMAIDE’s model-based
meta-learning approach is highly effective: the principal obtains a higher score across agents with
different learning algorithms and explore-exploit behaviors.

Out-of-distribution performance. Table 1 shows the principal’s score when evaluated on test
agents with the same algorithm but a different exploration constant than train agents. Using meta-
learning (MF-MAML) and using a world model to predict the agent’s behavior (WM-RL) both
have advantages for training a robust and one-shot adaptable intervention policy. A world model is
advantageous when 1) the test agent is more exploratory than the train set (e.g., ϵ = 0.1 at training,
ϵ = 0.4 at test), or 2) the agent explores throughout an episode and is likely to often select actions
other than the one with its current maximum mean reward estimate (e.g., ϵ = 0.5 at training). Because
we evaluate on K = 1, fine-tuning on only a single test-time episode, a trained world model provides
a useful prior belief for the principal. Indeed, the MF-RL results show the hidden state representation
of the model-free principal might be unable to adapt to high environment non-stationarity without a
trained next-agent-action world model.

Compared to an ϵ-greedy agent, the UCB agent explores mostly at the start of an episode, for all β.
Hence, with UCB agents, the principal learns an effective one-shot adaptable intervention policy using
meta-learning (MF-MAML) only (even without a world model), as the agents cause less distribution
shift across different β. It further emphasizes the effectiveness of meta-learning for adaptive policy
learning: unlike MF-MAML, neither the world model nor the intervention policy is meta-learned
in WM-RL. Moreover, it also shows that for the same amount of distribution shift (characterized in
Appendix B.2), the relative benefit of a world model or meta-learning depends on the nature of the
agent’s exploration strategy (which is unknown to the principal).

Table 6, Appendix C includes observations from training with additional random seeds for the
experiments with MERMAIDE (K = 1) in Table 1.

Agent exploration vs intervention cost. In order to intervene effectively, the principal should learn
when to intervene and how much to incentivize the agent while minimizing its incurred cost. This is a
challenging learning problem for the principal not just during training, but more so during one-shot
adaptation at test time. Bandit algorithms like EXP3 [3] use pessimism in the face of uncertainty, and
encourage continued exploration. This increases the non-stationarity for the principal. In order to
effectively incentivize such agents to prefer a∗, the principal needs to accurately predict the agent’s
policy from its observations; otherwise it can incur a high cost for intervening ineffectively and
lowering its score, and learn to stop intervening. Indeed, our results when training on ϵ = 0.5-
greedy agents show that the MF-RL and MF-MAML principal stop intervening. In contrast, in that

9

setting, MERMAIDE learns an effective intervention policy that outperforms all baselines, even
under distribution shift between train and test agents.

7 Limitations and Future Work

We have shown that MERMAIDE is an effective framework to learn principal intervention policies
that adapt and generalize well to agents with unseen learning behavior. But our focus has been on
stateless, sequential adaptive agents. Extending this setup to RL agents that solve non-Markovian
settings (e.g., Markov Decision Processes) would introduce a more challenging learning problem for
the principal and may require different neural network architectures for the principal’s world model
and intervention policy. Future work could also extend MERMAIDE to settings with adversarial
agents or with multiple learning agents who may coordinate, compete, or a combination thereof.

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

[4] Craig Boutilier, Chih-wei Hsu, Branislav Kveton, Martin Mladenov, Csaba Szepes-
vari, and Manzil Zaheer. Differentiable meta-learning of bandit policies. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 2122–2134. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
171ae1bbb81475eb96287dd78565b38b-Paper.pdf.

[5] Bangrui Chen, Peter Frazier, and David Kempe. Incentivizing exploration by heterogeneous
users. In Conference On Learning Theory, pages 798–818. PMLR, 2018.

[6] Kathleen M Eisenhardt. Agency theory: An assessment and review. Academy of management
review, 14(1):57–74, 1989.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. arXiv:1703.03400 [cs], July 2017. URL http://arxiv.org/
abs/1703.03400.

[9] Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel,
and Igor Mordatch. Learning with Opponent-Learning Awareness. arXiv:1709.04326 [cs],
September 2018. URL http://arxiv.org/abs/1709.04326.

[10] Wenshuo Guo, Kumar Krishna Agrawal, Aditya Grover, Vidya Muthukumar, and Ashwin
Pananjady. Learning from an exploring demonstrator: Optimal reward estimation for bandits,
2021. URL https://arxiv.org/abs/2106.14866.

[11] Leonid Hurwicz and Stanley Reiter. Designing economic mechanisms. Cambridge University
Press, 2006.

[12] Alexis Jacq, Matthieu Geist, Ana Paiva, and Olivier Pietquin. Learning from a learner. In
International Conference on Machine Learning, pages 2990–2999. PMLR, 2019.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

https://proceedings.neurips.cc/paper/2020/file/171ae1bbb81475eb96287dd78565b38b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/171ae1bbb81475eb96287dd78565b38b-Paper.pdf
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1709.04326
https://arxiv.org/abs/2106.14866

[14] Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

[15] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 6379–6390. Curran Associates, Inc., 2017.

[16] Jelena Luketina, Sebastian Flennerhag, Yannick Schroecker, David Abel, Tom Zahavy, and
Satinder Singh. Meta-gradients in non-stationary environments. In ICLR Workshop on Agent
Learning in Open-Endedness, 2022.

[17] Setareh Maghsudi, Andrew Lan, Jie Xu, and Mihaela van Der Schaar. Personalized education
in the artificial intelligence era: what to expect next. IEEE Signal Processing Magazine, 38(3):
37–50, 2021.

[18] Paul Milgrom and Paul Robert Milgrom. Putting auction theory to work. Cambridge University
Press, 2004.

[19] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2018.

[20] Giorgia Ramponi, Gianluca Drappo, and Marcello Restelli. Inverse reinforcement learning from
a gradient-based learner. Advances in Neural Information Processing Systems, 33:2458–2468,
2020.

[21] Chengshuai Shi, Haifeng Xu, Wei Xiong, and Cong Shen. (almost) free incentivized exploration
from decentralized learning agents. Advances in Neural Information Processing Systems, 34:
560–571, 2021.

[22] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, 1998.

[23] Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business
Media, 2010.

[24] Huazheng Wang, Haifeng Xu, Chuanhao Li, Zhiyuan Liu, and Hongning Wang. Incentivizing
exploration in linear bandits under information gap. arXiv preprint arXiv:2104.03860, 2021.

[25] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[26] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C.
Parkes, and Richard Socher. The AI Economist: Improving Equality and Productivity with
AI-Driven Tax Policies. arXiv:2004.13332 [cs, econ, q-fin, stat], April 2020. URL http:
//arxiv.org/abs/2004.13332.

[27] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher. The
ai economist: Taxation policy design via two-level deep multiagent reinforcement learning.
Science Advances, 8(18):eabk2607, 2022. doi: 10.1126/sciadv.abk2607. URL https://www.
science.org/doi/abs/10.1126/sciadv.abk2607.

11

http://arxiv.org/abs/2004.13332
http://arxiv.org/abs/2004.13332
https://www.science.org/doi/abs/10.1126/sciadv.abk2607
https://www.science.org/doi/abs/10.1126/sciadv.abk2607

Table 2: Overview of notation.
Variable Symbol
Time t
Principal p
Agent i
State s
State vector s
State space S
Agent’s action space A
Principal’s action space Ap

Action sequence a1:T = {a1, a2, . . . , aT }
Agent i’s reward sequence r̃i1:T =

{
r̃i1, . . . , r̃

i
T

}
Principal’s reward sequence rp1:T = {rp1 , . . . , r

p
T }

Transition function P
Agent i’s policy πi

Principal’s intervention policy πp

Agent’s mean estimate of intervened rewards for
action a

µ̃a

Number of adaptation steps K
Number of meta-tasks for the planner N
Principal’s history of interventions and observed
agent actions upto time t

Hp
t =

{
ap1, a

i
1, a

p
2, a

i
2, . . . , a

p
t−1, a

i
t−1

}
Agent’s history of actions taken and rewards ob-
served upto time t

Hi
t =

{
ai1, r̃

i
1, a

i
2, r̃

i
2, . . . , a

i
t−1, r̃

i
t−1

}

Table 3: Notation for MERMAIDE See Section Section 4 for their use.
Principal’s policy parameter θ ∈ Θ
Agent i’s learning algorithm f i ∈ F
Agent i’s true action mean rewards µi ∼ U
Agent i’s intervened action mean rewards µ̃i

Principal’s action at time t apt ∼ πp
θ

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
Hidden state space of the principal’s recurrent
world model

H

Agent’s action at time t ait ∼ πi
t

(
ait|Hi

t

)
, t = 1, . . . , T

Agent’s reward at time t rit ∼ N
(
µ̃i, σ2

)
Principal’s world model estimate of the agent’s
action probability distribution

π̂i
ω : A×Ap ×H → ∆(A) , π̂i

ω,0 ∈ A

Principal’s world model estimate of the latent
state of the environment

giω : A×Ap ×H → H, giω,0 ∈ ∆(H)

Principal’s world model hidden state embeding in
the LSTM architecture

hi
t = giω

(
ait−1, a

p
t−1, ht−1

)
, t = 2, . . . , T hi

1 =

giω,0

A Notation

For an overview of all symbols and variables used in this work, see Table 2, Table 3 and Figure 3.

B Additional Details

B.1 Description of the bandit algorithms

We provide a brief overview of the learning algorithms referred to in Section 6.

UCB. This is an Upper Confidence Bound based exploration-exploitation algorithm that follows
the principle of optimism in the face of uncertainty. At each time step t, the bandit agent selects an

12

Figure 3: Overview of MERMAIDE. Left: Flow of principal and agent observables, rewards, and
actions. Right: The principal’s world model and intervention policy. Also see Algorithm 1.

action

at = argmax
a

µ̃a + β

√
log t

na
(5)

where na is the number of steps until t in which it previously selected the action a, µ̃a is its
corresponding mean estimate for the experienced rewards r̃ for action a and β is the exploration
constant that balances the amount of exploration vs. exploitation across a time horizon T . A higher
value of β makes the agent less optimistic and explore its action space more. The UCB agent’s
tendency to explore is also affected by the difference in the mean reward estimates of its actions.
In the context of our principal - agent problem formulation, if the UCB agent has a larger value of
δ = maxa ra − ra∗ , without any intervention at the beginning of an episode, its confidence bounds
would quickly converge to exploiting the action argmaxa ra. So a principal that intervenes only
towards the later stages of an episode with this agent would have to provide much more incentives
(higher r′) to alter the agent’s preferred action to be a∗, thus incurring a larger cost c as compared to a
principal that intervenes more at the beginning of an episode when the UCB agent is still exploring its
action space. This is also illustrated in Section 5 with a simpler best response agent in the single round
game setting. As shown in Figure 1b and Figure 1c, under observation noise (partial information), the
meta-trained principal has a better one-shot meta-test-time performance when the agent’s base payoff
has a higher difference between the principal’s preferred action and the agent’s intrinsic preference
without any intervention. Additionally, Appendix B.3 provides an illustration of this behavior.

ϵ-greedy. A simple exploration-exploitation strategy in the bandit setting is the ϵ-greedy rule [22]
wherein the agent selects with probability 1− ϵ the action at = argmaxa µ̃a and with probability
ϵ it selects a random action. In our setting, we consider ϵ to be constant during an episode, which
results in a uniform exploration rate throughout. In contrast to the UCB agent, the ϵ-greedy algorithm
simulates a less optimistic, more exploratory agent for which the principal requires a robust belief
representation of the agent’s predicted behavior conditioned on the principal’s past observations
(Table 1). Since there is a uniform exploration rate for the agent, the principal has to continue
intervening intermittently throughout an episode, especially when δ is large and the agent could
obtain a higher reward for an action a ̸= a∗ by exploring its action space when the principal does not
intervene.

EXP3. The Exponential-weight algorithm for Exploration and Exploitation (EXP3) [3] follows
a more pessimistic approach to exploration-exploitation in the bandit setting. It maintains a set of
weights for each agent action a ∈ A which are updated using the experienced rewards r̃ as follows:

πt(at) =
w

|A|
+ (1− w)

η exp (Sat,t)∑
at∈|A| η exp (Sat,t)

, (6)

where

Sat,t =

t∑
l=1

1 {al = at}
r̃at,l

πl
, η =

w

|A|
. (7)

13

Table 4: Experiment design choice. Frequency of agent selecting at ̸= argmaxa ra with UCB
and ϵ-greedy algorithms on the same set of base rewards (without any intervention) with a horizon
T = 200, averaged across 3 random seeds.

β UCB ϵ-greedy ϵ

0.17 33 (0) 33 (0) 0.10
0.27 47 (0) 47 (4) 0.20
0.42 70 (0) 68 (9) 0.30
0.50 80 (0) 81 (3) 0.40
0.67 99 (0) 99 (1) 0.50

Here, w is the variable that determines the extent of uniform random exploration in the action space.
This presents a very challenging problem to learn a suitable belief representation for such agents that
can be utilized by a principal to guide its intervention policy. In Section 6, we exclude EXP3 from
Table 1 since it is primarily designed for an adversarial bandit setup, whereas we do not consider an
agent to have such biases under our current problem formulation.

B.2 Characterizing the distribution shift in our evaluation setup

Bandit agents having the same base reward r make different explore-exploit decisions depending
on their algorithm (eg. UCB, ϵ-greedy) and also their prior observations. In Section 6, we consider
agents with the same set of base rewards, but following different bandit algorithms. Both UCB and
ϵ-greedy have tunable parameters that determine their explore-exploit tradeoff. In order to measure
the robustness of the learnt principal policy to different agent behavior (leading to different levels of
non-stationarity in the principal’s environment between training and test agents), we vary the amount
of exploration performed by the agent by varying the respective parameters: β for the UCB agent and
ϵ for the ϵ-greedy agent. Table 4 shows the average (and standard error) frequency of exploration
by the agents for our choices of β and ϵ in Section 6. We vary β and ϵ such that they are pairwise
comparable in Table 1 and would lead to similar change in exploration frequency for both UCB and
ϵ-greedy agents. In other words, following Table 1, a principal trained with UCB agents having
β = 0.17 when evaluated with UCB agents having β ∈ {0.17, 0.27, 0.42, 0.50, 0.67} will encounter
a similar shift in the agent’s exploration frequency as in the case of training with ϵ-greedy agents
with ϵ = 0.1 and evaluating on ϵ-greedy agents having ϵ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. In that case, the
difference in achieved scores between the UCB and ϵ-greedy agents can be attributed to the way in
which they distribute their exploratory actions: UCB agent being more optimistic focuses most of
its exploration at the beginning of an episode, whereas the ϵ-greedy agent is more stochastic with
uniform random exploration throughout.

B.3 Visualizing the effect of β and the effect of different types of principal’s interventions on
the behavior of a UCB agent

We will consider three different instances of base rewards for a UCB agent and characterize its
behavior when

• unintervened

• the principal intervenes once every 10 time steps for T = 200 (strategy S1)

• the principal intervenes continuously until the first 20 time steps for T = 200 (strategy S2)

for β ∈ {0.17, 0.27, 0.42, 0.50, 0.67}. Instead of a learned stochastic intervention policy, we will
analyze the effect of the deterministic policies S1 and S2 in aligning the preferred action of an agent
with the preferred action of the principal. Note that both S1 and S2 incur the same total intervention
cost.

First, consider a UCB agent whose base reward is r =
[0.16, 0.11, 0.66, 0.14, 0.20, 0.37, 0.82, 0.10, 0.84, 0.10] (Figure 4). The principal prefers the
action with base reward 0.82, whereas the unintervened agent would prefer the action with base
reward 0.84. For such small value of δ = maxa∈A ri[a] − ri[a∗] = 0.02, the agent can be
incentivized to align its preferred action with a∗ more easily than if δ were larger. Figure 4 depicts the

14

behavior of the UCB agents with different exploration coefficients β under different principal-agent
interaction conditions over T = 200 as follows. In Figure 4a, a value of 1 indicates the time step
when the unintervened agent selects the action with base reward 0.84, whereas Figure 4b similarly
shows its frequency of selecting a∗ without the principal’s intervention. As expected, these frequency
distributions are quite similar since δ = 0.02. Given the same budget for interventions, Figure 4c
shows the agent’s response to the principal’s intervention strategy S1 and Figure 4d shows its
response to the intervention strategy S2. In these figures, a value of 1 indicates the time step when
the agent selects a∗. Both the principal intervention policies are able to align the action preference of
the UCB agent with the principal’s preference. But S2 receives a higher score, especially for agents
with lower values for β. This is because the UCB algorithm gradually shifts from exploration to
exploitation as the episode progresses, and since S2 uses its intervention budget in the initial 20 time
steps of the episode, the principal is able to incentivize the agent by effectively changing the observed
reward r̃ at the beginning of the episode. It experimentally verifies our discussion in Section 6:
in sequential learners, the time step when the principal intervenes determines how effective the
intervention will be in helping align the agent’s action preference with that of the principal. This
becomes more pronounced for higher values of δ, which we analyze next.

Figure 5 demonstrates the behavior of a UCB agent with base reward r =
[0.32, 0.67, 0.13, 0.72, 0.29, 0.18, 0.59, 0.02, 0.83, 0.01]. The principal prefers the action with base
reward 0.59. Without any interventions, the agent prefers the action with base reward 0.83. In
this case, δ = maxa∈A ri[a] − ri[a∗] = 0.24. Figure 5b indicates the frequency with which the
unintervened agent selects a∗ whereas Figure 5a shows the frequency of selecting the action with
base reward 0.83 without the principal’s intervention. Note that the unintervened agent would rarely
pick a∗, even less so for smaller values of the exploration coefficient β. Figure 5c indicates the
frequency of the agent selecting a∗ with principal’s intervention policy S1 and Figure 5d indicates its
frequency of selection a∗ with principal’s intervention policy S2. We observe that S2 outperforms
S1 in aligning the agent’s preferred action with the principal’s preferred action. Since UCB agents
tend to explore their action space more at the beginning of the episode, intervening on the agent’s
experienced reward during the initial time steps (S2) has a more noticeable effect in influencing the
agent’s preferred action than intervening with a fixed interval (S1).

Similar observations also hold in Figure 6 where the UCB agent has a base reward r =
[0.79, 0.53, 0.57, 0.93, 0.07, 0.09, 0.02, 0.83, 0.78, 0.87] and the principal prefers the action with
base reward 0.02. In this case, δ = maxa∈A ri[a]− ri[a∗] = 0.91. As Figure 6b shows, this implies
that the unintervened agent would almost never select a∗ even when it has a higher exploration
coefficient β. Even with intervention policy S1, over T = 200, the principal wouldn’t be able to
align the agent’s preferred action with its own as shown in Figure 6c. In contrast, Figure 6d shows
that a principal with intervention policy S2 would outperform S1 and achieve a higher score, but the
agent eventually discovers its own preference when the intervention stops in S2 and then it no longer
selects a∗. This further highlights the extent of non-stationarity in the environment that affects the
intervention policy of the principal and also the learning behavior of the agent. It also demonstrates
the difficulty of the learning problem in our setup and the importance of learning a cost-efficient
few-shot adaptable principal intervention policy to effectively intervene on unknown adaptive agents.

B.4 Description of baselines

We now describe the details of our evaluated baselines in Section 6 along with their variations that
assume access to an agent state oracle.

Rule based intervention with an agent state oracle (RB): Given an oracle that correctly identifies
the action at to be taken by an agent in the next time step, a simple rule based approach is for the
principal to intervene at time t when at ̸= a∗. We assume that the principal always intervenes with a
fixed incentive (r′ = 0.5 or 1) and we compute the principal’s maximum possible score. Note that
this is not a realistic solution for the principal since it is impractical to expect the availability of such
an oracle, especially for out of distribution test agents.

Model-free learning based intervention policy: In this framework, we assume that the plan-
ner has a recurrent intervention policy that outputs a distribution over interventions apt ∼
πp
θ

(
apt |ait−1, a

p
t−1, h

p
t−1

)
, conditioned on the planner’s intervention and observed agent action at

15

(a) (b)

(c) (d)

Figure 4: Characterizing agent’s behavior. UCB agent with base rewards
[0.16, 0.11, 0.66, 0.14, 0.20, 0.37, 0.82, 0.10, 0.84, 0.10]. The agent prefers the action with
base reward 0.84, while the principal prefers the action with base reward 0.82. Horizontal axis
indicates time steps t = {1, . . . , 200}. Vertical axis indicates agents following UCB with different
exploration coefficient β. Values are either 0 or 1. (a) Frequency distribution of agent selecting its
unintervened preferred action with base reward 0.84. (b) Frequency distribution of agent selecting a∗

without principal’s intervention. (c) Frequency distribution of agent selecting a∗ under principal’s
intervention S1. (d) Frequency distribution of agent selecting a∗ under principal’s intervention S2.
For a small δ = maxa∈A ri[a] − ri[a∗] = 0.02, both S1 and S2 affect the agent’s behavior quite
similarly.

t− 1. The policy network is trained using REINFORCE for the MF-RL baseline and using MAML
for the MF-MAML baseline.

Learned intervention policy with an agent state oracle: In this setting, the principal learns a
recurrent intervention policy that outputs a distribution over interventions apt ∼ πp

θ

(
apt |ait, h

p
t−1

)
conditioned on the true agent action at time t provided by an oracle. The policy network is trained
using REINFORCE for the SB-RL baseline and MAML for the SB-MAML baseline.

Learned intervention policy with a world model without meta-learning (WM-RL): In this set-
ting, we use our proposed recurrent world model with a recurrent intervention policy trained using RE-
INFORCE. Here, the policy network outputs a distribution over interventions apt ∼ πp

θ

(
apt |âit, h

p
t−1

)
where âit = argmaxa π̂ω

(
ait|ait−1, a

p
t−1, h

i
t−1

)
.

We would like to highlight an implementation detail in our baselines indicated ‘RL’ in Section 6.
Since we evaluate our learnt principal policy in the K-shot adaptation setting which is common in
the meta-learning literature, we ensure that the principal policies that are not meta-trained are also
allowed to K-shot adapt at test time. This means that the ‘RL’ policies are also updated at test time,
before evaluation, using K rounds of principal-agent interactions. This is in contrast to Section 5
where ‘RL’ was trained from scratch during test time adaptation. It further shows that even with
pre-training (on the same set of train agents as used by ‘MAML’), standard policy gradient update
does not lead to effective test time K-shot adaptation on test agents.

16

(a) (b)

(c) (d)

Figure 5: Characterizing agent’s behavior. UCB agent with base rewards
[0.32, 0.67, 0.13, 0.72, 0.29, 0.18, 0.59, 0.02, 0.83, 0.01]. The agent prefers the action with
base reward 0.83, while the principal prefers the action with base reward 0.59. Horizontal axis
indicates time steps t = {1, . . . , 200}. Vertical axis indicates agents following UCB with different
exploration coefficient β. Values are either 0 or 1. (a) Frequency distribution of agent selecting its
unintervened preferred action with base reward 0.83. (b) Frequency distribution of agent selecting a∗

without principal’s intervention. (c) Frequency distribution of agent selecting a∗ under principal’s
intervention S1. (d) Frequency distribution of agent selecting a∗ under principal’s intervention S2.
For different values of β, the UCB agent acts differently based on when the principal intervened
following S1 or S2. S1 intervenes periodically whereas S2 intervenes only at the beginning. The
action selected by the agents in an episode clearly reflects the effect that this has in being able to
align the agent’s preference with that of the principal.

In Table 5, we compare the test time scores for the principal policy having access to a state based
oracle. We observe that overall, the meta-trained principal policy (SB-MAML) achieves a higher
score even with distribution shift across different bandit algorithms and different levels of exploration,
compared to the SB-RL baseline. The rule based baseline also shows strong performance but we note
its scores do not reflect adaptation to distribution shift. However, none of these baselines that assume
the principal has access to an oracle that correctly predicts the agent’s action at the next time step are
realistic. We can only treat the scores in Table 5 as gold standards in a perfect system that does not
account for the challenges faced by a principal in practice.

Training details. In Section 5, the principal policy πp is a fully connected neural network (MLP)
with one hidden layer and ReLU activation. Given an (noisy) observed value of the agent type as input,
it predicts the probability of intervention: πp

t . The principal’s action at time t is apt ∼ Bern (πp
t).

For the ‘RL’ principal, it is trained on the test agents starting from scratch over K episodes before
evaluation. For the MAML principal, it is meta-trained to learn an initial parameterization with a
different set of training agents and evaluated with K-shot adaptation on the test agents.

In Section 6, the recurrent world model and policy networks are GRUs with 2 layers and hidden state
dimension 128. For meta-training, the inner gradient update loop uses SGD optimizer with a learning
rate of 7× 10−4 whereas the meta-update step uses Adam with a learning rate of 0.001. The world

17

(a) (b)

(c) (d)

Figure 6: Characterizing agent’s behavior. UCB agent with base rewards
[0.79, 0.53, 0.57, 0.93, 0.07, 0.09, 0.02, 0.83, 0.78, 0.87]. The agent prefers the action with
base reward 0.93, while the principal prefers the action with base reward 0.02. Horizontal axis
indicates time steps t = {1, . . . , 200}. Vertical axis indicates agents following UCB with different
exploration coefficient β. Values are either 0 or 1. (a) Frequency distribution of agent selecting its
unintervened preferred action with base reward 0.93. (b) Frequency distribution of agent selecting a∗

without principal’s intervention. (c) Frequency distribution of agent selecting a∗ under principal’s
intervention S1. (d) Frequency distribution of agent selecting a∗ under principal’s intervention S2.
Since δ = maxa∈A ri[a] − ri[a∗] = 0.91 is large and the UCB agent explores its action space in
the initial time steps, S2 is able to intervene more effectively than S1 and achieves a higher score.
Since the agent is a sequential learner, it discovers its own preferred action once the principal stops
intervening and does not select a∗.

model is trained only with the set of training agents, it is not adapted at test time: only the policy
network is K-shot adapted.

We plan to release the code for our implementation with the published paper.

B.5 Overview of K-shot adaptation with MERMAIDE:

Algorithm 2 outlines our framework for K-shot adaptation of the meta-trained principal to test agents.
In our experiments, K = 1.

C Additional experimental results with bandit agents

C.1 Comparing the stability of MERMAIDE for different sets of random seeds.

We trained and evaluated MERMAIDE for 3 additional random seeds in the K = 1-shot setting
from Table 1. In Table 6, we show the scores (mean and standard error) for both sets of seeds and
all the six seeds combined. Our results indicate that the training and evaluation of MERMAIDE is
stable, with reasonable and explainable variability across random seeds. More specifically, models
trained with different sets of random seeds result in similar mean scores with small standard error

18

Table 5: Principal (with oracle agent state input) scores across 3 random seeds. These baselines
are not applicable in practice since they cheat by assuming access to an oracle that always informs
them of the agent’s next action. We include them here as a form of standardization with respect to
a (perfect) system that does not face the challenges of partial observability or out-of-distribution
generalization in our setting.

Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
RB 173 (0) 166 (0) 154 (0) 146 (0) 126 (0)
SB-RL 168 (3) 138 (27) 128 (26) 122 (24) 107 (22)
SB-MAML 169 (3) 169 (1) 155 (2) 148 (1) 128 (2)

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
RB 156 (3) 130 (1) 105 (4) 87 (4) 62 (6)
SB-RL 148 (2) 119 (3) 87 (4) 75 (6) 50 (2)
SB-MAML 152 (1) 126 (2) 105 (3) 66 (3) 30 (9)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
RB 173 (0) 166 (0) 154 (0) 146 (0) 126 (0)
SB-RL 166 (3) 163 (2) 150 (3) 146 (2) 128 (2)
SB-MAML 173 (1) 170 (0) 159 (0) 152 (0) 133 (0)

Train on ϵ-greedy, ϵ = 0.5 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
RB 156 (3) 130 (1) 105 (4) 87 (4) 62 (6)
SB-RL 49 (46) 51 (35) 64 (29) 61 (15) 28 (17)
SB-MAML 93 (45) 62 (32) 32 (13) 58 (25) 24 (17)

Algorithm 2 MERMAIDE (K-shot Adaptation)

1: Initialize principal with trained parameters (θmeta, ωtrain), and hidden states hi
0, h

p
0.

2: for agents (tasks) i = 1, . . . , ntest do
3: Initialize agent: (µi, πi

0), task specific intervention policy parameter θ
(
τ i0
)
= θmeta.

4: for k = 1, . . . ,K do
5: for time t = 1, . . . , T do
6: Predict âit = argmaxai

t
π̂ωtrain

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

7: Intervention: µ̃i = µi + apt , apt ∼ πp

θ(τ i
k)

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
.

8: Agent acts: ait ∼ πi
t and receives reward rit ∼ N

(
µ̃i, σ2

)
. πi

t 7→ πi
t+1.

9: end for
10: Locally update θ

(
τ ik
)
7→ θ

(
τ ik+1

)
. {Using REINFORCE.}

11: end for
12: for t = 1, . . . , T do
13: Predict âit = argmaxai

t
π̂ωtrain

(
ait|ait−1, a

p
t−1, h

i
t−1

)
using the world model.

14: Intervention: µ̃i = µi + apt , apt ∼ πp

θ(τ i
K)

(
apt |ait−1, a

p
t−1, â

i
t, h

p
t−1

)
.

15: Agent acts: ait ∼ πi
t, receives reward rit ∼ N

(
µ̃i, σ2

)
. Updates πi

t 7→ πi
t+1.

16: Update principal’s score.
17: end for
18: end for

when K = 1-shot evaluated on the less stochastic UCB agents. In contrast, evaluation with the
more stochastic ϵ-greedy agents results in comparably larger standard error and more variation in
the mean scores for models trained with different sets of random seeds. Due to the computational
costs involved, we were unable to evaluate all baselines with six seeds but on the basis of these
observations, we do not expect a significant deviation from the claims made in Section 6 and the
values originally reported in Table 1 and Table 7, even with more seeds.

19

Table 6: Comparing the variability of MERMAIDE test scores with a trained model across
different sets of random seeds. Set 1 uses the seeds {11, 26, 90} and Set 2 uses the seeds {12, 27,
91}. ‘Combined’ indicates mean and s.e. scores for models trained with the seeds {11, 12, 26, 27, 90,
91}. Overall, we observe that training MERMAIDE with different sets of random seeds shows little
variance in the evaluation scores within error bounds, especially with the less stochastic UCB agent.
For the ϵ-greedy agent, we observe a higher standard error in the K = 1-shot evaluation scores, but it
is in line with the stochasticity associated with ϵ-greedy action selection in the bandit agent.

Train on UCB, β = 0.17 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
MERMAIDE (Set 1; 3 seeds) 154 (2) 151 (1) 129 (1) 129 (1) 87 (0)
MERMAIDE (Set 2; 3 seeds) 144 (3) 133 (3) 122 (2) 108 (2) 81 (2)
MERMAIDE (Combined; 6 seeds) 151 (3) 142 (4) 125 (2) 118 (5) 84 (2)

Train on UCB, β = 0.67 β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
MERMAIDE (Set 1; 3 seeds) 132 (1) 130 (1) 123 (2) 115 (2) 99 (1)
MERMAIDE (Set 2; 3 seeds) 119 (7) 118 (5) 110 (3) 104 (3) 87 (2)
MERMAIDE (Combined; 6 seeds) 126 (4) 124 (3) 116 (3) 110 (3) 93 (3)

Train on ϵ-greedy, ϵ = 0.1 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
MERMAIDE (Set 1; 3 seeds) 138 (1) 112 (2) 85 (3) 66 (2) 37 (4)
MERMAIDE (Set 2; 3 seeds) 133 (2) 133 (4) 133 (4) 133 (4) 133 (4)
MERMAIDE (Combined; 6 seeds) 136 (2) 123 (5) 109 (11) 99 (15) 85 (22)

Table 7: K=0-shot evaluation across different agent algorithms: test-time principal scores (3
random seeds). Left column: principal’s algorithm (e.g., MERMAIDE), training agent type (e.g.,
UCB, β = 0.42). Other columns: Test-time scores (mean and s.e.) on agents with different algorithm
and hyperparameters.

Train on UCB, β = 0.42 Test on ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.5
No intervention 3 (0) 4 (1) 7 (0) 9 (1) 11 (0)
WM-RL 91 (4) 62 (8) 68 (1) 28 (4) -
MERMAIDE (ours) 103 (1) 67 (2) 30 (2) 8 (1) -

Train on ϵ-greedy, ϵ = 0.3 Test on β = 0.17 β = 0.27 β = 0.42 β = 0.5 β = 0.67
No intervention 3 (0) 5 (0) 8 (0) 10 (0) 12 (0)
WM-RL 127 (7) 95 (2) 80 (5) 80 (5) 61 (4)
MERMAIDE (ours) 138 (2) 102 (6) 116 (2) 96 (5) 77 (2)

C.2 Cross-algorithm evaluation.

Table 7 shows the principal’s scores in the zero-shot generalization setting when the training agent
and test agents are of different types (different algorithms and different exploration coefficients). We
consider only the WM-RL baseline to evaluate the generalization ability of the world model with
standard policy gradients vs world model with meta-gradients, without adaptation to unseen test
agents. We observe that when trained with UCB agents, MERMAIDE outperforms WM-RL for
generalizing to ϵ-greedy agents that have a lower exploration coefficient ϵ = 0.1 or 0.2. In contrast,
when trained with ϵ-greedy agents, MERMAIDE outperforms WM-RL for generalizing to UCB
agents with both higher and lower levels of exploration. Note that the behavior of UCB agents is
less stochastic than ϵ-greedy agents. More generally, a meta-learning principal that is trained on a
stochastic agent generalizes well to an equal or less stochastic agent in the zero-shot setting.

20

	Introduction
	Related Work
	Problem formulation
	MERMAIDE: Learning to Align Learners
	Evaluating Meta-Learning for the Principal
	Evaluating MERMAIDE on Bandits
	Limitations and Future Work
	Notation
	Additional Details
	Description of the bandit algorithms
	Characterizing the distribution shift in our evaluation setup
	Visualizing the effect of and the effect of different types of principal's interventions on the behavior of a UCB agent
	Description of baselines
	Overview of K-shot adaptation with MERMAIDE:

	Additional experimental results with bandit agents
	Comparing the stability of MERMAIDE for different sets of random seeds.
	Cross-algorithm evaluation.

