
Under review as a conference paper at ICLR 2021

TRANSFORMING RECURRENT NEURAL NETWORKS
WITH ATTENTION AND FIXED-POINT EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer has achieved state of the art performance in multiple Natural Lan-
guage Processing tasks recently. Yet the Feed Forward Network(FFN) in a Trans-
former block is computationally expensive. In this paper, we present a frame-
work to transform Recurrent Neural Networks(RNNs) and their variants into self-
attention-style models, with an approximation of Banach Fixed-point Theorem.
Within this framework, we propose a new model, StarSaber, by solving a set of
equations obtained from RNN with Fixed-point Theorem and further approximate
it with a Multi-layer Perceptron. It provides a view of stacking layers. StarSaber
achieves better performance than both the vanilla Transformer and an improved
version called ReZero on three datasets and is more computationally efficient, due
to the reduction of Transformer’s FFN layer. It has two major parts. One is a way
to encode position information with two different matrices. For every position in
a sequence, we have a matrix operating on positions before it and another matrix
operating on positions after it. The other is the introduction of direct paths from
the input layer to the rest of layers. Ablation studies show the effectiveness of
these two parts. We additionally show that other RNN variants such as RNNs
with gates can also be transformed in the same way, outperforming the two kinds
of Transformers as well.

1 INTRODUCTION

Recurrent Neural Network, known as RNN, has been widely applied to various tasks in the last
decade, such as Neural Machine Translation (Kalchbrenner & Blunsom, 2013; Sutskever et al.,
2014), Text Classification (Zhou et al., 2016), Name Entity Recognition (Zhang & Yang, 2018; Chiu
& Nichols, 2016), Machine Reading Comprehension (Hermann et al., 2015; Kadlec et al., 2016)
and Natural Language Inference (Chen et al., 2017; Wang et al., 2017). Models applied to these
tasks are not the vanilla RNNs but two of their famous variants, Gated Recurrent Unit (Cho et al.,
2014), known as GRU, and Long Short Term Memory (Hochreiter & Schmidhuber, 1997), known
as LSTM, in which gates play an important role. RNNs are hard to be computed parallelly. They
are not bidirectional either, meaning that a word cannot utilize the information of words coming
after it. A general way to alleviate this problem is to reverse the input sequence and combine results
given by two different RNN encoders with operations like concatenation and addition.

However, Transformer (Vaswani et al., 2017) has provided a better solution. It is based on
purely attention mechanism, which has been widely used in Neural Machine Translation since
Bahdanau et al. (2014). Models based on self-attention mechanism are mostly Transformer and its
variants, such as Transformer-XL (Dai et al., 2019), Universal Transformer (Dehghani et al., 2019)
and Star-Transformer (Guo et al., 2019). Compared with recurrent units such as GRU and LSTM,
self-attention-style models can be computed parallelly, which means they suit better large-scale
training. But each of these Transformers has an FFN layer with a very high vector dimension,
which still is the bottleneck to improve the computation efficency.

In this paper, we present a new framework based on Banach Fixed-point Theorem to trans-
form the vanilla RNN and its variants with self-attention mechanism. StarSaber, one of such
transformed models, outperforms both the vanilla Transformer and ReZero (Bachlechner et al.,
2020) in our experiments with less parameters and thus less computational power. To start with,

1

Under review as a conference paper at ICLR 2021

we need a different view of attention. Attention is a way to build a relation graph between words,
and the vanilla RNN is nothing but a model with a relation graph as a chain. This graph is in fact
represented with an adjacent matrix, which is computed by mapping each pair of positions to a
positive real number and normalizing the numbers related to each position, which are just those in
the same row of the adjacent matrix, so that they sum up to one.

The vanilla RNN updates hidden states through a chain, that is, the hidden state for each po-
sition only depends on that in the previous position. However, if we have this relation graph, the
hidden state for each position depends on hidden states for all other positions in a sequence. This
is where we obtain equations. In our opinion, a bidirectional RNN is defined by some equations
and Banach Fixed-point Theorem inspires us to iterate according to them. When we fix the number
of iterations and specify distinct weights for each of them, a self-attention-style model is then
constructed.

In Transformer, Position Embedding(PE) as a way to capture word order information in lan-
guage by adding a matrix to the input, is indispensable. But in StarSaber, position encoding is
done in the aggregation step after the construction of a relation graph. For each position, we sum
up linear transformations of hidden states in all positions with the corresponding weights in the
relation matrix in order to get an attention vector. In the calculation of such a vector, we specify
different linear transformation weights for the ”future” and the ”past”. Then the hidden vector for
a position is computed with the corresponding attention vector and an input vector, which turns
into a direct path from the input layer to each hidden layer. And we directly drop the FFN layer
in Transformer achieving still competive and even better results with much less parameters on
three datasets provided by CLUE (Xu et al., 2020): the AFQMC dataset of Sentence Similarity,
the TNEWS dataset of Text Classification and the CMNLI dataset of Natural Language Inference.
More importantly, our derivation of StarSaber shows a universal way to transform different RNNs,
such as LSTM and GRU discussed in the following content, providing possibilities other than
Transformers for self-attention models.

2 RELATED WORK

Gates were first introduced into recurrent networks in LSTM and were rediscovered and simplified
in GRU. Gate mechanism is an operation that multiplies an output by a single sigmoid layer of the
input and is often seen as an approach to address the gradient vanishing issue. But if only so, other
approaches which addresses this problem should achieve similar results to LSTM and GRU. In this
paper, we show by experiments that in StarSaber which doesn’t have such a problem, gates can also
help improve the performance.

Attention in sequence modeling is a weighted sum of the output in each position of a se-
quence, which simulates the way a man distributes his attention to all its parts. Weights in this sum
are given by a certain function of some inputs. And self-attention is an approach computing both the
weighted sum and weights on the same sequence without any other inputs. There are different types
of attention like multi-head attention and scaled dot product attention in Transformer, attention
based on addition in Bahdanau et al. (2014), and bilinear attention in Luong et al. (2015). Our
model applies the bilinear attention in the construction of a word relation graph.

Residual Connection was proposed by He et al. (2015). It alleviates the problem of training
deep neural networks. In Natural Language Processing, Residual Connection alleviates both
the gradient vanishing problem and the degration problem of deep networks. Our model uses a
weighted residual connection (Bachlechner et al., 2020) which further alleviates the degration
problem. Another similar idea is the highway connection (Srivastava et al., 2015). In this paper, we
inspect the gate mechanism in our self-attention-style model. Note that the highway connection can
also fit into our framework, which is a fixed-point generalization of GRU.

Pretraining has proved to be extremely useful since Embeddings from Language Models(ELMO)
(Peters et al., 2018). Many works that follow such as BERT (Devlin et al., 2018), ALBERT (Lan
et al., 2020), XLNET (Yang et al., 2019) have outperformed humans. Pretraining is a training
pattern which trains a language model, usually extremely large, on an enormous dataset with one

2

Under review as a conference paper at ICLR 2021

or more unsupervised tasks and fine-tunes it on other datasets and tasks. There are two types of
language models in general, known as auto-regressive models(e.g., XLNET) and auto-encoder
ones(e.g., BERT). However, pretraining on a large dataset requires resources. We show in this paper
that only pretraining on a dadtaset formed by collecting the training, development and test inputs
together can as well improve the performance, revealing the significance of pretraining tasks.

MLM is the unsupervised task utilized by BERT to pretrain. It randomly masks some pieces
of a sentence and train the model to predict what has been masked. In this way, knowledge is
gained and the model is initialized for downstream tasks. However, experiments show that even not
pretrained on a large dataset, using MLM to pretrain on a dataset formed by collecting the training,
development and test inputs can still improve the performance, inspiring us that a more flexible and
task-related pretraining method is beneficial.

3 MODEL ARCHITECTURE

3.1 RECURRENT NEURAL NETWORKS AND BIDIRECTIONAL EQUATIONS WITH
SELF-ATTENTION

This section follows the intuition we have discussed before. The vanilla RNN formulas are listed
below:

hn = tanh(Uhn−1 +Wxn) (1)

In self-attention, we don’t just utilize the hidden state from the previous position but hidden states
from all positions, to compute a hidden vector for position n. To encode information of relative
order, we specify distinct linear transformation weights. For simplicity, we ignore all bias terms in
the following derivation. Following the bilinear self-attention mechanism, we have:

hn = tanh(An + V xn)

An =
∑
i<n

GniU
lefthi +

∑
i≥n

GniU
righthi

1

Gni = softmax(g,−1) = gni∑
j

gnj

gni = exp(
hTnWhi√

d
)2

(2)

What we have done here is replacing hn−1 with an attention vector An. Notice a fact that in
the first equality, h appears on both the left-hand side and the right-hand side(we use h to compute
An), turning it into an equation. This means a bidirectional model is defined by a set of equations,
because the word relation graph constructed by attention is not free of loops. Moreover, introducing
equations can be seen as a constraint to obtain stable representation of a sentence. Intuitively, if
we view the non-linear function on the right hand side as an updating operation and the hidden
vector we obtain in each position as a semantic representation, it simply means that when the model
”reads” the whole sentence again based on the current understanding, it should produce the same
representation, meaning that it has ”fully understands” the whole sentence and makes no changes on
the hidden vectors.

3.2 GENERALIZE EQUATIONS WITH FIXED-POINT

Now we have an equation to solve, which is extremely complex and difficult. But Banach Fixed-
point theorem shows us a way.

Theorem 3.1 (Banach Fixed-point Theorem) For any real-valued function f(x), if | dfdx | < 1, then
iteration process xn+1 = f(xn) converges and lim

n→+∞
xn = x∗, where x∗ = f(x∗).

1If not stated, a sum without a limit is to sum over all possible values.
2All these U, V, Ws are matrices that satisfy rules of the matrix-vector product. The hyperparameter d here

is the hidden size. The attention here is scaled for faster convergence.

3

Under review as a conference paper at ICLR 2021

The equation above is an equation of an iterative pattern, and this Theorem just tells us that as
long as we keep iterating, we will obtain a root of the equation if its jacobian matrix satisfies some
conditions. The iterative pattern is given as follows:

hl+1
n = tanh(Al

n + V xn)

Al
n =

∑
i<n

Gl
niU

lefthli +
∑
i≥n

Gl
niU

righthli

Gl
ni = softmax(gl,−1) = glni∑

j

glnj

glni = exp(
(hln)

TWhli√
d

)

(3)

We can then iterate till it converges. Similar ideas are in Bai et al. (2019), where the authors solve the
fixed-point directly with very high computational cost. Sometimes it cannot even converge to a fixed-
point, since the convergence condition is quite strict. A sufficient condition for convergence is that
all parameter matrices are strictly orthogonal, making the optimization problem hard. Therefore,
if we want to obtain a faster and more stable model, we can approximate it with a Multi-layer
Perceptron(MLP) and relax the condition of convergence. In addition, we allow our model to assign
different weights for different layers. The reason why we don’t reuse parameters in each layer is that
iterating with the same set of parameters without a constraint of orthogonality often diverges. Even
if we fix the number of iterations, it is still hardly possible to converge to the correct fixed-point. In
this case, specifying different weights for each layer allows our model to learn a better fit for the
whole iteration process. Therefore, we have

hl+1
n = tanh(Al

n + V lxn)

Al
n =

∑
i<n

Gl
niU

lhli +
∑
i≥n

Gl
niQ

lhli

Gl
ni = softmax(gl,−1) = glni∑

j

glnj

glni = exp(
(hln)

TW lhli√
d

)

(4)

Here we also need an initial point to start the iteration. In our model, we choose the input sequence
itself to be the initial value, that is to set h0i = xi. In more general cases, the initial value may be a
linear transformation of the input or just some fixed vector like a zero one.

3.3 RESIDUAL CONNECTIONS

Since we decide to approximate the iteration process with an MLP, Residual Connection is then
indispensable in for it helps to alleviate the problem of degration. However, its magnitude, which is
the fixed scaling number, needs to be tuned mannually. If we allow it to be automatically tuned by
our model, the whole model can be written as follows:

hl+1
n = hln + αltanh(Al

n + V lxn) (5)

The rest of formulas are the same as above. The αl here is a crucial weight initialized to be one
or zero in every layer. In Bachlechner et al. (2020) it is initialized to be zero in order to stabilize
Transformer. But in our experiments we don’t train extremely deep networks with a thousand or
more layers. Thus we initialize it to be one since we find that it speeds up convergence.

3.4 MODEL SUMMARY

The derivation above has demonstrated how to transform the vanilla RNN into a self-attention-style
model. To summarize, the structure of StarSaber can be described by Figure 1. The Attention Graph
here is the relation construction process returning a matrix G. It is exactly what happens in the last
two formulas shown above. Masked Attention here is how we implement Position Encoding. And
α is the weight for Residual Connection.

4

Under review as a conference paper at ICLR 2021

Figure 1: The model structure of a 1layer-Starber

4 EXPERIMENTS

4.1 A SPECIAL TYPE OF PRETRAINING: EFFECTIVENESS OF MASKED LANGUAGE

Although we don’t pretrain on an enormous dataset, we can still improve the performance by utiliz-
ing the common pretraining task. In practice, we pretrain our model on a collection of all the inputs
without their labels from the training, development and test set. We use dynamic mask (Liu et al.,
2019), which is to mask different positions of a sample at every epoch. The reconstruction loss is
computed on all positions of a sequence instead of only those masked ones. Masking probability in
every position is set to be 0.3. Different from BERT, we don’t have a MASK symbol. Instead every
masked position is replaced with a word uniformally selected from the whole vocabulary.

Table 1: Model Configurations
Configurations AFQMC TNEWS CMNLI

Word2Vec

#Layer

BiLSTM 1 1 1
ReZero 4 4 4

Transformer 4 4 4
StarSaber 4 4 4

#Parameter

BiLSTM 1.45M 1.45M 1.45M
ReZero 3.97M 3.97M 3.97M

Transformer 3.97M 3.98M 4.35M
StarSaber 2.89M 2.89M 2.89M

Pretrained

#Layer

ReZero 6 6 12
Transformer 6 6 12
StarSaber-1 12 12 24
StarSaber-2 6 6 12

#Parameter

ReZero 18.19M 19.81M 36.37M
Transformer 18.20M 19.82M 36.75M
StarSaber-1 13.47M 15.09M 27.30M
StarSaber-2 7.17M 8.79M 14.69M

5

Under review as a conference paper at ICLR 2021

4.2 SETTINGS

Experiments are conducted on three datasets from Xu et al. (2020), namely the AFQMC(Sentence
Similarity) dataset, the TNEWS(Text Classification) dataset and the CMNLI(Natural Language In-
ference) dataset. For the two text matching tasks, we concatenate the two input sentences with a
seperation. The Adam optimizer (Kingma & Ba, 2014) is used. The learning rate is set to 1e-3
in pretraining and 1e-4 in fine-tuning for ReZero and StarSaber. A learning rate of 1e-4 in both
pretraining and fine-tuning is applied to the vanilla Transformer. Random seed is set to 10. We
compare StarSaber with BiLSTM and two Transformers. For StarSaber and the two Transformers,
we have two versions each for every dataset, namely pretrained and not pretrained ones. For LSTM,
we only have a not-pretrained version. In such versions, we utilize word embeddings trained from
Word2Vec (Mikolov et al., 2013b;a) with data collected from Wikipedia provided by Li et al. (2018)
and finetune the embeddings on the pretraining dataset for each task. In training process, we freeze
these embeddings. Our BiLSTM concatenates features encoded by two LSTM encoders of oppo-
site directions. In ReZero Layer Normalization (Lei Ba et al., 2016) and the warmup procedure are
dropped. Both Transformer and ReZero have 8 heads and take 4 * Hidden-size as the size for the
FFN layer. For models using Word2Vec, the hidden size in every layer and the input size are all
set to 300. For models pretrained, they are set to 512. Early Stopping is used and the loss function
is Cross-Entropy in pretraining but Hinge Loss in training. More details on model configurations
are shown in Table 1.3 All results are submitted online to www.cluebenchmark.com and test
labels are not available. Due to the submission limit of 10 times in a month, we cannot try more
configuration settings.

4.3 RESULTS AND ANALYSIS

Table 2: Dataset Statistics
Dataset #Training Sample #Dev Sample #Test Sample #Characters

AFQMC 34334 4316 3861 1.14M
TNEWS 53360 10000 10000 1.63M
CMNLI 391782 12426 13880 22.24M

Table 3: Accuracy(%) on datasets

Models AFQMC TNEWS CMNLI
Dev Test Dev Test Dev Test

Word2Vec

BiLSTM 69.00 69.90 51.01 51.17 58.55 67.30
ReZero 69.05 69.90 49.20 50.03 58.82 67.30

Transformer 69.00 69.90 50.23 50.70 57.75 67.30
StarSaber 69.05 69.96 51.22 50.85 57.69 67.30

Pretrained

ReZero 69.97 70.27 52.59 52.69 69.44 69.43
Transformer 70.32 70.24 50.78 51.64 71.14 67.30
StarSaber-1 70.85 70.68 53.25 53.41 69.67 69.43
StarSaber-2 70.18 70.22 52.28 52.55 69.44 69.43

From Table 2 we can see that both AFQMC and TNEWS are datasets of medium size and CMNLI
is a larger dataset compared to the other two. AFQMC is a dataset of sentence similarity, rep-
resented in a binary classification task. TNEWS is a dataset of text classification which has 15
classes in total. We don’t use the keywords provided in order to make comparision with re-
sults in Xu et al. (2020). And CMNLI is a Natural Language Inference dataset containing 3
classes for each sample. Our results are shown in Table 3. Results achieved by different large
pretrained models are shown in Table 4. It can be seen that none of those large-scale models
can achieve astonishing performance. This is due to the construction approach used by CLUE.
They use a specific pretrained baseline to select all samples misclassified. Details can be found
in https://github.com/CLUEbenchmark/CLUE. Given the results from BiLSTM and
StarSaber, it shows that even pretraining on a small dataset with less time and computational power

3If not stated, parameter numbers are computed with the size of embedding matrices.

6

www.cluebenchmark.com
https://github.com/CLUEbenchmark/CLUE

Under review as a conference paper at ICLR 2021

can help improve the performance. Pretraining also allows us to use deeper and larger models. The
reason why models with Word2Vec are small is that larger models without pretraining can achieve
much worse performance, for they indicate greater search space and are harder to optimize.

Table 4: Accuracy for large-scale pretraining models in Xu et al. (2020)

Models AFQMC TNEWS CMNLI
Dev Test Dev Test Dev Test

Bert-base 74.16 73.70 56.09 56.58 79.47 79.69
BERT-wwm-ext-base 73.74 74.07 56.77 56.86 80.92 80.42

ERNIE-base 74.88 73.83 58.24 58.33 80.37 80.29
RoBERTa-large 73.32 74.02 57.95 57.84 82.40 81.70

XLNet-mid 70.73 70.50 56.09 56.24 82.21 81.25
RoBERTa-wwm-ext 74.30 74.04 57.51 56.94 80.70 80.51

RoBERTa-wwm-large-ext 74.92 76.55 58.32 58.61 83.20 82.12

For AFQMC, all models with Word2Vec in fact output zero for every sample(class labels are zero
and one). This may be due to distribution imbalance in such a dataset. Only those pretrained ones
can classify a small fraction of samples into the positive class. Thus an improvement of 0.41% is
uneasy to achieve. Another insteresting phenomenon appearing in CMNLI is that the gap between
the development set and the test set is surprisingly large. For models with Word2Vec, the gap
reaches up to 9.61%. For TNEWS, the input sentence is only the title of a passage. In this dataset,
StarSaber-1 outperforms ReZero by 0.72% while StarSaber-2 differs from ReZero by only 0.14%.

It can also be seen from the results of AFQMC and TNEWS that stacking more layers in
fact helps improve performance for StarSaber. On the dataset of CMNLI, the fact that StarSaber-1
doesn’t outperform StarSaber-2 is probably because 12 layers are enough or even redundant for
StarSaber. The same logic can be applied to the fact that StarSaber-1 doesn’t outperform ReZero.
With enough data and enough model complexity, ReZero and Transformer can perform fairly well.
Compared to them, StarSaber is more efficient. In all three datasets, it achieves almost the same
results as ReZero with the same number of layers, revealing a simple fact that many parts such as
Multi-head Attention and the FFN layer are not necessary within our framework. We can drop all
these computationally expensive parts.

ReZero is an improved version of Transformer in Vaswani et al. (2017). It adds a trainable
weight in front of the Residual Connection and leads to faster convergence. But the better perfor-
mance of ReZero here doesn’t mean it always outperforms Transformer with Layer Normalization,
since samples in all these datasets are selected using Transformer-based models. Such a conclusion
drawn from these selected data may not hold generally.

5 ABLATION STUDIES

5.1 EFFECTIVENESS OF GATES

In an RNN, gates allow gradients to flow back to the more distant past. But in our model, there
has been a weighted residual connection to solve such a problem, which means that gates’ function
of adjusting gradient flows is no more important. Here, we incorporate gates in a different way.
Formulas can be found in the appendix. Model configurations and results are in Table 5. Numbers
of layers, hidden sizes and input sizes are the same as StarSaber-2.

Table 5: Results of StarSaber-gate. Accuracy format:Test acc(Dev acc)
AFQMC TNEWS CMNLI

#Parameter 13.47M 15.09M 27.29M
Accuracy(%) 70.27(70.62) 53.56(53.04) 69.43(69.95)

We can compare the results here with the results in Table 3. With the number of layers, the hidden
size and the input size fixed, gates certainly help improve the performance. But when parameters are

7

Under review as a conference paper at ICLR 2021

equally many, that is our implementation of StarSaber-1 which has twice the number of layers, gates
don’t show any superiority. For simplicity and compactness, we drop all gates. We may also want
to drop the gates in LSTM and replace them with a weighted residual connection instead, which is
simpler and more efficient. And this weight itself can also be parametrized by a simple non-linear
function of hidden vectors.

5.2 COMPARISION OF TWO WAYS FOR POSITION ENCODING

We conduct experiments on our proposed methods for position encoding. We at first replace the
two matrices representing distinct directions with one and add a position embedding matrix made
of cosines and sines to the input. The number of parameters is increased by doubling the number of
layers. From Table 6, we can observe that after replacing our implementation of position encoding
with the PE matrix in Transformer, performance is even worse than StarSaber-2 with less parameters,
especially in CMNLI. It means that the PE in Transformer is not consistent with StarSaber. We may
give an intuitive explanation: Because of Transformer’s FFN layers, the PE matrix added to the input
can in fact be recognized in hidden layers. But StarSaber doesn’t have a Feed Forward Network,
therefore cannot seperate such mixed information.

Table 6: Results of StarSaber implemented with PE. Accuracy format:Test acc(Dev acc)
AFQMC TNEWS CMNLI

#Parameter 11.89M 13.51M 24.14M
Accuracy(%) 70.06(70.06) 52.05(52.13) 67.30(66.67)

5.3 EFFECTIVENESS OF DIRECT PATHS

Direct paths seem unecessary in StarSaber since we already have a residual connection. However,
from the perspective of fixed point, if we drop these direct paths in each layer, the model will finally
converge to the same fixed point for whatever inputs. In order to check whether these direct paths
are practical or not, we remove all of them and again increase the number of layers to equalize the
number of parameters. From the results of CMNLI in Table 7, we can clearly see the benefits they
bring.

Table 7: Results of StarSaber without direct paths. Accuracy format:Test acc(Dev acc)
AFQMC TNEWS CMNLI

#Parameter 10.32M 11.94M 20.99M
Accuracy(%) 69.75(70.16) 52.76(52.31) 67.30(69.00)

6 CONCLUSION

This paper proposes a framework to transform RNN-based models to attention-based ones. With the
perspective to view attention as a way to construct a word relation graph, we transform the vanilla
RNN to StarSaber, by defining a set of equations. Other variants of RNN can also be transformed
in the same way, such as LSTM and GRU discussed above. In this way, we reduce the number
of parameters in Transformer by dropping the FFN layer. Experiments on three datasets and the
ablation study show the effectiveness of our model and framework.

REFERENCES

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W. Cottrell,
and Julian McAuley. ReZero is All You Need: Fast Convergence at Large Depth. arXiv e-prints,
art. arXiv:2003.04887, March 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv e-prints, art. arXiv:1409.0473, September 2014.

8

Under review as a conference paper at ICLR 2021

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 32, pp. 690–701. Curran Associates, Inc., 2019. URL
http://papers.nips.cc/paper/8358-deep-equilibrium-models.pdf.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM
for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1657–1668, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1152. URL https:
//www.aclweb.org/anthology/P17-1152.

Jason P. C. Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-cnns. Trans. As-
soc. Comput. Linguistics, 4:357–370, 2016. URL https://transacl.org/ojs/index.
php/tacl/article/view/792.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, Oc-
tober 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL
https://www.aclweb.org/anthology/P19-1285.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv e-prints, art. arXiv:1810.04805,
October 2018.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer. In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 1315–1325, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1133. URL https://www.aclweb.org/anthology/
N19-1133.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv e-prints, art. arXiv:1512.03385, December 2015.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Pro-
cessing Systems 28, pp. 1693–1701. Curran Associates, Inc., 2015. URL http://papers.
nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understanding with the
attention sum reader network. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 908–918, Berlin, Germany, August
2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1086. URL https:
//www.aclweb.org/anthology/P16-1086.

9

http://papers.nips.cc/paper/8358-deep-equilibrium-models.pdf
https://www.aclweb.org/anthology/P17-1152
https://www.aclweb.org/anthology/P17-1152
https://transacl.org/ojs/index.php/tacl/article/view/792
https://transacl.org/ojs/index.php/tacl/article/view/792
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/P19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://www.aclweb.org/anthology/N19-1133
https://www.aclweb.org/anthology/N19-1133
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/P16-1086
https://www.aclweb.org/anthology/P16-1086

Under review as a conference paper at ICLR 2021

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing, pp. 1700–1709, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D13-1176.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints,
art. arXiv:1412.6980, December 2014.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv e-prints,
art. arXiv:1607.06450, July 2016.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and Xiaoyong Du. Analogical reasoning on chi-
nese morphological and semantic relations. In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pp. 138–143. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/P18-2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv e-prints, art. arXiv:1907.11692, July 2019.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL https://www.aclweb.
org/anthology/D15-1166.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv e-prints, art. arXiv:1301.3781, January 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Represen-
tations of Words and Phrases and their Compositionality. arXiv e-prints, art. arXiv:1310.4546,
October 2013b.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL
https://www.aclweb.org/anthology/N18-1202.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway Networks. arXiv e-
prints, art. arXiv:1505.00387, May 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective matching for natu-
ral language sentences. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 4144–4150, 2017. doi: 10.24963/ijcai.2017/579. URL
https://doi.org/10.24963/ijcai.2017/579.

10

https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://aclweb.org/anthology/P18-2023
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/N18-1202
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.24963/ijcai.2017/579

Under review as a conference paper at ICLR 2021

Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li, Kai
Sun, Yechen Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian, Dian Yu, Bo Shi, Jun Zeng,
Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou,
Shaoweihua Liu, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, and Zhenzhong
Lan. CLUE: A Chinese Language Understanding Evaluation Benchmark. arXiv e-prints, art.
arXiv:2004.05986, April 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv e-prints, art.
arXiv:1906.08237, June 2019.

Yue Zhang and Jie Yang. Chinese NER using lattice LSTM. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1554–
1564, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.
18653/v1/P18-1144. URL https://www.aclweb.org/anthology/P18-1144.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo Xu. Text classification
improved by integrating bidirectional LSTM with two-dimensional max pooling. In Proceedings
of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Pa-
pers, pp. 3485–3495, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee.
URL https://www.aclweb.org/anthology/C16-1329.

A FORMULAS TO INCORPORATE GATES

The formulas to incorporate gates mentioned in the ablation study are listed below:

hl+1
n = hln + αltanh(rln ◦Al

n + iln ◦ (V lxn))
4

Al
n =

∑
i<n

Gl
niU

lhli +
∑
i≥n

Gl
niQ

lhli

rln = σ(W rlAl
n + V rlxn)

iln = σ(W ilAl
n + V ilxn)

Gl
ni = softmax(gl,−1) = glni∑

j

glnj

glni = exp(
(hln)

TW lhli√
d

)

(6)

Note that this is also a demonstration of how to transform a recurrence-based model into an attention
based model in our framework.

4◦ denotes the element-wise product.

11

https://www.aclweb.org/anthology/P18-1144
https://www.aclweb.org/anthology/C16-1329

	Introduction
	Related Work
	Model Architecture
	Recurrent Neural Networks and Bidirectional Equations with Self-attention
	Generalize Equations with Fixed-point
	Residual Connections
	Model Summary

	Experiments
	A Special Type of Pretraining: Effectiveness of Masked Language
	Settings
	Results and Analysis

	Ablation Studies
	Effectiveness of Gates
	Comparision of Two Ways for Position Encoding
	Effectiveness of direct paths

	Conclusion
	Formulas to incorporate gates

