
Densely connected normalizing flows

Matej Grcić, Ivan Grubišić and Siniša Šegvić
Faculty of Electrical Engineering and Computing

University of Zagreb
matej.grcic@fer.hr ivan.grubisic@fer.hr sinisa.segvic@fer.hr

Abstract

Normalizing flows are bijective mappings between inputs and latent representations
with a fully factorized distribution. They are very attractive due to exact likelihood
evaluation and efficient sampling. However, their effective capacity is often insuffi-
cient since the bijectivity constraint limits the model width. We address this issue
by incrementally padding intermediate representations with noise. We precondition
the noise in accordance with previous invertible units, which we describe as cross-
unit coupling. Our invertible glow-like modules increase the model expressivity
by fusing a densely connected block with Nyström self-attention. We refer to
our architecture as DenseFlow since both cross-unit and intra-module couplings
rely on dense connectivity. Experiments show significant improvements due to
the proposed contributions and reveal state-of-the-art density estimation under
moderate computing budgets.1

1 Introduction

One of the main tasks of modern artificial intelligence is to generate images, audio waveforms,
and natural-language symbols. To achieve the desired goal, the current state of the art uses deep
compositions of non-linear transformations [1, 2] known as deep generative models [3, 4, 5, 6, 7].
Formally, deep generative models estimate an unknown data distribution pD given by a set of i.i.d.
samples D = {x1, ...,xn}. The data distribution is approximated with a model distribution pθ
defined by the architecture of the model and a set of parameters θ. While the architecture is usually
handcrafted, the set of parameters θ is obtained by optimizing the likelihood across the training
distribution pD:

θ∗ = argmin
θ∈Θ

Ex∼pD [− ln pθ(x)]. (1)

Properties of the model (e.g. efficient sampling, ability to evaluate likelihood etc.) directly depend on
the definition of pθ(x), or decision to avoid it. Early approaches consider unnormalized distribution
[3] which usually requires MCMC-based sample generation [8, 9, 10] with long mixing times. Alter-
natively, the distribution can be autoregressively factorized [7, 11], which allows likelihood estimation
and powerful but slow sample generation. VAEs [4] use a factorized variational approximation of
the latent representation, which allows to learn an autoencoder by optimizing a lower bound of the
likelihood. Diffussion models [12, 13, 14] learn to reverse a diffusion process, which is a fixed
Markov chain that gradually adds noise to the data in the opposite direction of sampling until the
signal is destroyed. Generative adversarial networks [5] mimic the dataset samples by competing in a
minimax game. This allows to efficiently produce high quality samples [15], which however often
do not span the entire training distribution support [16]. Additionally, the inability to "invert" the
generation process in any meaningful way implies inability to evaluate the likelihood.

Contrary to previous approaches, normalizing flows [6, 17, 18] model the likelihood using a bijective
mapping to a predefined latent distribution p(z), typically a multivariate Gaussian. Given the bijection

1Code available at: https://github.com/matejgrcic/DenseFlow

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/matejgrcic/DenseFlow

fθ, the likelihood is defined using the change of variables formula:

pθ(x) = p(z)

∣∣∣∣det ∂z∂x
∣∣∣∣ , z = fθ(x). (2)

This approach requires computation of the Jacobian determinant (det ∂z∂x). Therefore, during the
construction of bijective transformations, a great emphasis is placed on tractable determinant compu-
tation and efficient inverse computation [18, 19]. Due to these constraints, invertible transformations
require more parameters to achieve a similar capacity compared to standard NN building blocks [20].
Still, modeling pθ(x) using bijective formulation enables exact likelihood evaluation and efficient
sample generation, which makes this approach convenient for various downstream tasks [21, 22, 23].

The bijective formulation (2) implies that the input and the latent representation have the same
dimensionality. Typically, convolutional units of normalizing-flow approaches [18] internally inflate
the dimensionality of the input, extract useful features, and then compress them back to the original
dimensionality. Unfortunately, the capacity of such transformations is limited by input dimensionality
[24]. This issue can be addressed by expressing the model as a sequence of bijective transformations
[18]. However, increasing the depth alone is a suboptimal approach to improve capacity of a deep
model [25]. Recent works propose to widen the flow by increasing the input dimensionality [24, 26].
We propose an effective development of that idea which further improves the performance while
relaxing computational requirements.

We increase the expressiveness of normalizing flows by incremental augmentation of intermediate
latent representations with Gaussian noise. The proposed cross-unit coupling applies an affine
transformation to the noise, where the scaling and translation are computed from a set of previ-
ous intermediate representations. In addition, we improve intra-module coupling by proposing a
transformation which fuses the global spatial context with local correlations. The proposed image-
oriented architecture improves expressiveness and computational efficiency. Our models set the new
state-of-the-art result in likelihood evaluation on ImageNet32 and ImageNet64.

2 Densely connected normalizing flows

We present a recursive view on normalizing flows and propose improvements based on incremental
augmentation of latent representations, and densely connected coupling modules paired with self-
attention. The improved framework is then used to develop an image-oriented architecture, which we
evaluate in the experimental section.

2.1 Normalizing flows with cross-unit coupling

Normalizing flows (NF) achieve their expressiveness by stacking multiple invertible transformations
[18]. We illustrate this with the scheme (3) where each two consecutive latent variables zi−1 and
zi are connected via a dedicated flow unit fi. Each flow unit fi is a bijective transformation with
parameters θi which we omit to keep notation uncluttered. The variable z0 is typically the input x
drawn from the data distribution pD(x).

z0
f1←→ z1

f2←→ z2
f3←→ · · · fi−1←→ zi

fi←→ · · · fK←→ zK , zK ∼ N (0, I). (3)

Following the change of variables formula, log likelihoods of consecutive random variables zi and
zi+1 can be related through the Jacobian of the corresponding transformation Jfi+1 [18]:

ln p(zi) = ln p(zi+1) + ln |detJfi+1 |. (4)

This relation can be seen as a recursion. The term ln p(zi+1) can be recursively replaced either with
another instance of (4) or evaluated under the latent distribution, which marks the termination step.
This setup is characteristic for most contemporary architectures [17, 18, 19, 27].

The standard NF formulation can be expanded by augmenting the input by a noise variable ei
[24, 26]. The noise ei subjects to some known distribution p∗(ei), e.g. a multivariate Gaussian.
We further improve this approach by incrementally concatenating noise to each intermediate latent
representation zi. A tractable formulation of this idea can be obtained by computing the lower bound
of the likelihood p(zi) through Monte Carlo sampling of ei:

ln p(zi) ≥ Eei∼p∗(e) [ln p(zi, ei)− ln p∗(ei)] . (5)

2

The learned joint distribution p(zi, ei) approximates the product of the target distributions p∗(zi)
and p∗(ei), which is explained in more detail in Appendix D. We transform the introduced noise ei
with element-wise affine transformation. Parameters of this transformation are computed by a learned
non-linear transformation gi(z<i) of previous representations z<i = [z0, ...,zi−1]. The resulting
layer hi can be defined as:

z(aug)
i = hi(zi, ei, z<i) = [zi,σ � ei + µ], (µ,σ) = gi(z<i). (6)

Square brackets [·, ·] denote concatenation along the features dimension. In order to compute the
likelihood for (zi, ei), we need the determinant of the jacobian

∂z(aug)
i

∂[zi, ei]
=

[
I 0
0 diag(σ)

]
. (7)

Now we can express p(zi, ei) in terms of p(z(aug)
i) according to (4):

ln p(zi, ei) = ln p(z(aug)
i) + ln |det diag(σ)|. (8)

We join equations (5) and (8) into a single step:

ln p(zi) ≥ Eei∼p∗(ei)[ln p(z
(aug)
i)− ln p∗(ei) + ln |det diag(σ)|]. (9)

We refer the transformation hi as cross-unit coupling since it acts as an affine coupling layer [17]
over a group of previous invertible units. The latent part of the input tensor is propagated without
change, while the noise part is linearly transformed. The noise transformation can be viewed
as reparametrization of the distribution from which we sample the noise [4]. Note that we can
conveniently recover zi from z(aug)

i by removing the noise dimensions. This step is performed during
model sampling.

Fig. 1 compares the standard normalizing flow (a) normalizing flow with input augmentation [24] (b)
and the proposed densely connected incremental augmentation with cross-unit coupling (c). Each
flow unit fDF

i consists of several invertible modules mi,j and cross-unit coupling hi. The main
novelty of our architecture is that each flow unit fDF

i+1 increases the dimensionality with respect to its
predecessor fDF

i . Cross-unit coupling hi augments the latent variable zi with affinely transformed
noise ei. Parameters of the affine noise transformation are obtained by an arbitrary function gi which
accepts all previous variables z<i. Note that reversing the direction does not require evaluating gi
since we are only interested in the value of zi. For further clarification, we show the likelihood
computation for the extended framework.

Invertible module m
i,N

z
i-1
(aug)

z
i
e
i
~N(0, I)

[z
i
,e
i
·σ+μ]

g
i
(·)

(μ,σ)

[z
i
,e
i
]

(c)

[x,e]
e ~ p(e|x)

Cross-unit
coupling (hi)

z
1

z
i
(aug)

Invertible module m
i,1

··
·

··
·

Invertible
unit (mi)

···z
i-1
z
i-2

Flow unit fDF
i

z
0

Invertible module m
1,N

Invertible module m
1,1

··
·

Invertible
unit (m1)

Flow unit f
1

··
·

z
2

Invertible module m
2,N

Invertible module m
2,1

··
·

Invertible
unit (m2)

Flow unit f
2

x

z
1

Invertible module m
1,N

Invertible module m
1,1

··
·

Invertible
unit (m1)

Flow unit f
1

··
·

z
2

Invertible module m
2,N

Invertible module m
2,1

··
·

Invertible
unit (m2)

Flow unit f
2

(b)(a)

Figure 1: Standard normalizing flow [17, 18] (a), normalizing flow with augmented input [24] (b),
and the proposed incremental augmentation with cross-unit coupling (c). Unlike (b) which adds noise
only to the input, (c) adds noise to the output of every unit except the last.

3

Example 1 (Likelihood computation) Let m1 and m2 be the bijective mappings from z0 to z1 and
z(aug)

1 to z2, respectively. Let h1 be the cross-unit coupling from z1 to z(aug)
1 , z(aug)

1 = [z1,σ�e1+µ].
Assume σ and µ are computed by any non-invertible neural network g1. The network accepts z0

as the input. We calculate log likelihood of the input z0 according to the following sequence of
equations: [transformation, cross-unit coupling, transformation, termination].

ln p(z0) = ln p(z1) + ln |det Jf1 |, (10)

ln p(z1) ≥ Ee1∼p∗(e1)[ln p(z
(aug)
1)− ln p(e1) + ln |det diag(σ)|], (σ,µ) = g1(z0), (11)

ln p(z(aug)
1) = ln p(z2) + ln |det Jf2 |, (12)
ln p(z2) = lnN (z2; 0, I). (13)

We approximate the expectation using MC sampling with a single sample during training and a few
hundreds of samples during evaluation to reduce the variance of the likelihood. Note however that
our architecture generates samples with a single pass since the inverse does not require MC sampling.

We repeatedly apply the cross-unit coupling hi throughout the architecture to achieve incremental
augmentation of intermediate latent representations. Consequently, the data distribution is modeled
in a latent space of higher dimensionality than the input space [24, 26]. This enables better alignment
of the final latent representation with the NF prior. We materialize the proposed expansion of the
normalizing flow framework by developing an image-oriented architecture which we call DenseFlow.

2.2 Image-oriented invertible module

x

x
1

x
2

x’
2

Nyström
SA

Dense
Block

Projection

o
1 o

2

o

Blend

y
2y

1

y

(s,t)

Affine

Convolution 1x1

ActNorm

Intra-module
Coupling

Figure 2: A glow-like module mi,j

consist of ActNorm, 1x1 convolution
and intra-module affine coupling. The
proposed intra-module coupling fuses
the global context recovered by fast
self-attention [28] and local correla-
tions extracted by densely connected
convolutions [29].

We propose a glow-like invertible module (also known as
step of flow [19]) consisting of activation normalization,
1 × 1 convolution and intra-module affine coupling layer.
The attribute "intra-module" emphasizes distinction with
respect to cross-unit coupling. Different than in the origi-
nal glow design, our coupling network leverages advanced
transformations based on dense connectivity and fast self-
attention. All three layers are designed to capture complex
data dependencies while keeping tractable Jacobians and
efficient inverse computation. For completeness, we start by
reviewing elements of the original glow module [19].

ActNorm [19] is an invertible substitute for batch normaliza-
tion [30]. It performs affine transformation with per-channel
scale and bias parameters:

yi,j = s� xi,j + b. (14)
Scale and bias are calculated as the variance and mean of
the initial minibatch.

Invertible 1 × 1 Convolution is a generalization of chan-
nel permutation [19]. Convolutions with 1 × 1 kernel are
not invertible by construction. Instead, a combination of
orthogonal initialization and the loss function keeps the ker-
nel inverse numerically stable. The normalizing flow loss
maximizes ln |detJf | which is equivalent to maximizing∑
i ln |λi|, where λi are eigenvalues of the Jacobian. Main-

taining a relatively large amplitude of the eigenvalues en-
sures a stable inversion. The Jacobian of this transformation
can be efficiently computed by LU-decomposition [19].

Affine Coupling [18] splits the input tensor x channel-wise
into two halves x1 and x2. The first half is propagated
without changes, while the second half is linearly trans-
formed (15). The parameters of the linear transformation
are calculated from the first half. Finally, the two results are
concatenated as shown in Fig. 2.

y1 = x1, y2 = s� x2 + t, (s, t) = coupling_net(x1). (15)

4

Parameters s and t are calculated using a trainable network which is typically implemented as
a residual block [18]. However, this setting can only capture local correlations. Motivated by
recent advances in discriminative architectures [29, 31, 32], we design our coupling network to
fuse both global context and local correlations as shown in Fig. 2: First, we project the input into
a low-dimensional manifold. Next, we feed the projected tensor to a densely-connected block [29]
and self-attention module [31, 33]. The densely connected block captures the local correlations
[34], while the self-attention module captures the global spatial context. Outputs of these two
branches are concatenated and blended through a BN-ReLU-Conv unit. As usual, the obtained output
parameterizes the affine coupling transformation (15). Differences between the proposed coupling
network and other network designs are detailed in related work.

It is well known that full-fledged self-attention layers have a very large computational complexity.
This is especially true in the case of normalizing flows which require many coupling layers and large
latent dimensionalities. We alleviate this issue by approximating the keys and queries with their
low-rank approximations according to the Nystrom method [28].

2.3 Multi-scale architecture

We propose an image-oriented architecture which extends multi-scale Glow [19] with incremental
augmentation through cross-unit coupling. Each DenseFlow block consists of several DenseFlow
units and resolves a portion of the latent representation according to a decoupled normal distribution
[18]. Each DenseFlow unit fDF

i consists of N glow-like modules (mi = mi,N ◦ · · · ◦mi,1) and
cross-unit coupling (hi). Recall that each invertible module mi,j contains the affine coupling network
from Fig. 2 as described Section 2.2.

The input to each DenseFlow unit is the output of the previous unit augmented with the noise
and transformed in the cross-unit coupling fashion. The number of introduced noise channels is
defined as the growth-rate hyperparameter. Generally, the number of invertible modules in latter
DenseFlow units should increase due to enlarged latent representation. We stack M DenseFlow units
to form a DenseFlow block. The last invertible unit in the block does not have the corresponding
cross-unit coupling. We stack multiple DenseFlow blocks to form a normalizing flow with large
capacity. We decrease the spatial resolution and compress the latent representation by introducing
a squeeze-and-drop modules [18] between each two blocks. A squeeze-and-drop module applies
space-to-channel reshaping and resolves half of the dimensions according to the prior distribution.
We denote the developed architecture as DenseF low-L-k, where L is the total number of invertible
modules while k denotes the growth rate. The developed architecture uses two independent levels of
skip connections. The first level (intra-module) is formed of skip connections inside every coupling
network. The second level (cross-unit) connects DenseFlow units at the top level of the architecture.

Fig. 3 shows the final architecture of the proposed model. Gray squares represent DenseFlow units.
Cross-unit coupling is represented with blue dots and dashed skip connections. Finally, squeeze-
and-drop operations between successive DenseFlow blocks are represented by dotted squares. The
proposed DenseFlow design applies invertible but less powerful transformations (e.g. convolution
1×1) on tensors of larger dimensionality. On the other hand, powerful non-invertible transformations

Figure 3: The proposed DenseFlow architecture. DenseFlow blocks consist of DenseFlow units (fDF
i)

and a Squeeze-and-Drop module [18]. DenseFlow units are densely connected through cross-unit
coupling (hi). Each DenseFlow unit includes multiple invertible modules (mi,j) from Fig. 2.

5

such as coupling networks perform most of their operations on lower-dimensional tensors. This leads
to resource-efficient training and inference.

3 Experiments

Our experiments compare the proposed DenseFlow architecture with the state of the art. Quantitative
experiments measure the accuracy of density estimation and quality of generated samples, analyze the
computational complexity of model training, as well as ablate the proposed contributions. Qualitative
experiments present generated samples.

3.1 Density estimation

We study the accuracy of density estimation on CIFAR-10 [35], ImageNet [36] resized to 32×32 and
64× 64 pixels and CelebA [37]. Tab. 1 compares generative performance of various contemporary
models. Models are grouped into four categories based on factorization of the probability density.
Among these, autoregressive models have been achieving the best performance. Image Transformer
[38] has been the best on ImageNet32, while Routing transformer [39] has been the best on Ima-
geNet64. The fifth category contains hybrid architectures which combine multiple approaches into a
single model. Hybrid models have succeeded to outperform many factorization-specific architectures.

The bottom row of the table presents the proposed DenseFlow architecture. We use the same
DenseFlow-74-10 model in all experiments except ablations in order to illustrate the general applica-
bility of our concepts. The first block of DenseFlow-74-10 uses 6 units with 5 glow-like modules
in each DenseFlow unit, the second block uses 4 units with 6 modules, while the third block uses a
single unit with 20 modules. We use the growth rate of 10 in all units. Each intra-module coupling
starts with a projection to 48 channels. Subsequently, it includes a dense block with 7 densely
connected layers, and the Nyström self-attention module with a single head. Since the natural images
are discretized, we apply variational dequantization [27] to obtain continuous data which is suitable
for normalizing flows.

On CIFAR-10, DenseFlow reaches the best recognition performance among normalizing flows, which
equals to 2.98 bpd. Models trained on ImageNet32 and ImageNet64 achieve state-of-the-art density
estimation corresponding to 3.63 and 3.35 bpd respectively. The obtained recognition performance
is significantly better than the previous state of the art (3.77 and 3.43 bpd). Finally, our model
achieves competetive results on the CelebA dataset, which corresponds to 1.99 bpd. The likelihood is
computed using 1000 MC samples for CIFAR-10 and 200 samples for CelebA and ImageNet. The
reported results are averaged over three runs with different random seeds. One MC sample is enough
for accurate log-likelihood estimation since the per-example standard deviation is already about 0.01
bpd and a validation dataset size N additionally divides it by

√
N . The reported results are averaged

over seven runs with different random seeds. Training details are available in Appendix C.

3.2 Computational complexity

Deep generative models require an extraordinary amount of time and computation to reach state-of-
the-art performance. Moreover, contemporary architectures have scaling issues. For example, VFlow
[24] requires 16 GPUs and two months to be trained on the ImageNet32 dataset, while the NVAE
[56] requires 24 GPUs and about 3 days. This limits downstream applications of developed models
and slows down the rate of innovation in the field. In contrast, the proposed DenseFlow design places
a great emphasis on the efficiency and scalability.

Tab. 2 compares the time and memory consumption of the proposed model with respect to competing
architectures. We compare our model with VFlow [24] and NVAE [56] due to similar generative
performance on CIFAR-10 and CelebA, respectively. We note that RTX 3090 and Tesla V100 deliver
similar performance, while RTX2080Ti has a slightly lower performance compared to the previous
two. However, since we model relatively small images, GPU utilization is limited by I/O performance.
In our experiments, training the model for one epoch on any of the aforementioned GPUs had similar
duration. Therefore, we can still make a fair comparison. Please note that we are unable to include
approaches based on transformers [38, 39, 58] since they do not report the computational effort for
model training.

6

Table 1: Likelihood evaluation (in bits/dim) on standard datasets.

Method CIFAR-10 ImageNet CelebA ImageNet
32x32 32x32 64x64 64x64

Variational
Autoencoders

Conv Draw [40] 3.58 4.40 - 4.10
DVAE++ [41] 3.38 - - -
IAF-VAE [42] 3.11 - - -
BIVA [43] 3.08 3.96 2.48 -
CR-NVAE [44] 2.51 - 1.86 -

Diffusion
models

DDPM [13] 3.70 - - -
UDM (RVE) + ST [45] 3.04 - 1.93 -
Imp. DDPM [46] 2.94 - - 3.53
VDM [47] 2.65 3.72 - 3.40

Autoregressive
Models

Gated PixelCNN [48] 3.03 3.83 - 3.57
PixelRNN [7] 3.00 3.86 - 3.63
PixelCNN++ [11] 2.92 - - -
Image Transformer [38] 2.90 3.77 2.61 -
PixelSNAIL [49] 2.85 3.80 - -
SPN [50] - 3.85 - 3.53
Routing transformer [39] 2.95 - - 3.43

Normalizing
Flows

Real NVP [18] 3.49 4.28 3.02 3.98
GLOW [19] 3.35 4.09 - 3.81
Wavelet Flow [51] - 4.08 - 3.78
Residual Flow [52] 3.28 4.01 - 3.78
i-DenseNet [53] 3.25 3.98 - -
Flow++ [27] 3.08 3.86 - 3.69
ANF [26] 3.05 3.92 - 3.66
VFlow [24] 2.98 3.83 - 3.66

Hybrid
Architectures

mAR-SCF [54] 3.22 3.99 - 3.80
MaCow [55] 3.16 - - 3.69
SurVAE Flow [34] 3.08 4.00 - 3.70
NVAE [56] 2.91 3.92 2.03 -
PixelVAE++ [57] 2.90 - - -
δ-VAE [58] 2.83 3.77 - -
DenseFlow-74-10 (ours) 2.98 3.63 1.99 3.35

Table 2: Comparative analysis of the computational budget for training contemporary methods.
DenseFlow decreases the training complexity by an order of magnitude.

Dataset Model Params GPU type GPUs Duration (h) BPD

CIFAR-10
VFlow [24] 38M RTX 2080Ti 16 ∼500 2.98
NVAE [56] 257M Tesla V100 8 55 2.91
DenseFlow-74-10 130M RTX 3090 1 250 2.98

ImageNet32
VFlow [24] 38M Tesla V100 16 ∼1440 3.83
NVAE [56] - Tesla V100 24 70 3.92
DenseFlow-74-10 130M Tesla V100 1 310 3.63

CelebA
VFlow [24] - n/a n/a n/a -
NVAE [56] 153M Tesla V100 8 92 2.03
DenseFlow-74-10 130M Tesla V100 1 224 1.99

3.3 Image generation

Normalizing flows can efficiently generate samples. The generation is performed in two steps. We first
sample from the latent distribution and then transform the obtained latent tensor through the inverse
mapping. Fig. 4 shows unconditionally generated images with the model trained on ImageNet64.
Fig. 5 shows generated images using the model trained on CelebA. In this case, we modify the latent
distribution by temperature scaling with factor 0.8 [38, 19, 56]. Generated images show diverse
hairstyles, skin tones and backgrounds. More generated samples can be found in Appendix G. The

7

developed DenseFlow-74-10 model generates minibatch of 128 CIFAR-10 samples for 0.96 sec. The
result is averaged over 10 runs on RTX 3090.

Figure 4: Samples from DenseFlow-74-10 trained on ImageNet 64× 64.

Figure 5: Samples from DenseFlow-74-10 trained on CelebA.

3.4 Visual quality

The ability to generate high fidelity samples is crucial for real-world applications of generative models.
We measure the quality of generated samples using the FID score [59]. The FID score requires a
large corpus of generated samples in order to provide an unbiased estimate. Hence, we generate 50k
samples for CIFAR-10, and CelebA, and 200k samples for ImageNet. The samples are generated
using the model described in Sec. 3.1. The generated ImageNet32 samples achieve a FID score of
38.8, the CelebA samples achieve 17.1 and CIFAR-10 samples achieve 34.9 when compared to the
corresponding training dataset. When compared with corresponding validation datasets, we achieve
37.1 on CIFAR10 and 38.5 on ImageNet32.

Tab. 3 shows a comparison with FID scores of other generative models. Our model outperforms
contemporary autoregressive models [7, 60] and the majority of normalizing flows [61, 52, 19]. Our
FID score is comparable with the first generation of GANs. Similar to other NF models, the achieved
FID score is still an order of magnitude higher than current state of the art [62]. The results for
PixelCNN, DCGAN, and WGAN-GP are taken from [60].

3.5 Ablations

Tab. 4 explores the contributions of incremental augmentation and dense connectivity in cross-unit and
intra-module coupling transforms. We decompose cross-unit coupling into incremental augmentation
of the flow dimensionality (column 1) and affine noise transformation (column 2). Column 3 ablates
the proposed intra-module coupling network based on fusion of fast self-attention and a densely
connected convolutional block with the original Glow coupling [19].

The bottom row of the table corresponds to a DenseFlow-45-6 model. The first DenseFlow block has
5 DenseFlow units with 3 invertible modules per unit. The second DenseFlow block has 3 units with
5 modules, while the final block has 15 modules in a single unit. We use the growth rate of 6. The
top row of the table corresponds to the standard normalized flow [18, 19] with three blocks and 15
modules per block. Consequently, all models have the same number of invertible glow-like modules.
All models are trained on CIFAR-10 for 300 epochs and then fine-tuned for 10 epochs. We use the
same training hyperparameters for all models. The proposed cross-unit coupling improves the density
estimation from 3.42 bpd (row 1) to 3.37 bpd (row 3) starting from a model with the standard glow
modules. When a model is equipped with our intra-module coupling, cross-unit coupling leads to
improvement from 3.14 bpd (row 4) to 3.07 bpd (row 6). Hence, the proposed cross-unit coupling

8

Table 3: Evaluation of FID score on CIFAR-10.

Model FID ↓
Autoregressive
Models

PixelCNN [7, 60] 65.93
PixelIQN [60] 49.46

Normalizing
Flows

i-ResNet [61] 65.01
Glow [19] 46.90
Residual flow [52] 46.37
ANF [26] 30.60

GANs
DCGAN [15, 60] 37.11
WGAN-GP [63, 60] 36.40
DA-StyleGAN V2 [62] 5.79

Diffusion models
VDM [47] 4.00
DDPM [13] 3.17
UDM (RVE) + ST [45] 2.33

Hybrid
Architectures

SurVAE-flow [34] 49.03
mAR-SCF [54] 33.06
VAEBM [64] 12.19
DenseFlow-74-10 (ours) 34.90

improves the density estimation in all experiments. Both components of cross-unit coupling are
important. Models with preconditioned noise outperform models with simple white noise (row 2
vs row 3, and row 5 vs row 6). A comparison of rows 1-3 with rows 4-6 reveals that the proposed
intra-module coupling network also yields significant improvements. We have performed two further
ablation experiments with the same model. Densely connected cross-coupling contributes 0.01 bpd in
comparison to preconditioning noise with respect to the previous representation only. Self-attention
module contributes 0.01 bpd with respect to the model with only DenseBlock coupling on ImageNet
32× 32.

Table 4: Ablations on the CIFAR-10 dataset with DenseFlow-45-6.

Latent variable
augmentation

Pre-conditioned
noise

Intra-module coupling
with two-way fusion BPD

1 7 7 7 3.42
2 3 7 7 3.40
3 3 3 7 3.37
4 7 7 3 3.14
5 3 7 3 3.08
6 3 3 3 3.07

4 Related work

VFlow [24] increases the dimensionality of a normalizing flow by concatenating input with a
random variable drawn from p(e|x). The resulting optimization maximizes the lower bound
Ee∼p∗(e|x)[ln p(x, e) − ln p∗(e|x)], where each term is implemented by a separate normalizing
flow. Similarly, ANF [26] draws a connection between maximizing the joint density p(x, e) and
lower-bound optimization [4]. Both approaches augment only the input variable x while we augment
latent representations many times throughout our models.

Surjective flows [34] decrease the computational complexity of the flow by reducing the dimensional-
ity of deep layers. However, this also reduces the generative capacity. Our approach achieves a better
generative performance under affordable computational budget due to gradual increase of the latent
dimensionality and efficient coupling.

Invertible DenseNets [65, 53] apply skip connections within invertible residual blocks [61, 52].
However, this approach lacks a closed-form inverse, and therefore can generate data only through
slow iterative algorithms. Our approach leverages skip connections both in cross-unit and intra-
module couplings, and supports fast analytical inverse by construction.

9

Models with an analytical inverse allocate most of their capacity to coupling networks [17]. Early
coupling networks were implemented as residual blocks [18]. Recent work [27] increases the coupling
capacity by stacking convolutional and multihead self-attention layers into a gated residual [66, 49].
However, heavy usage of self-attention radically increases the computational complexity. Contrary
to stacking convolutional and self-attention layers in alternating fashion, the design of our network
uses two parallel modules. Outputs of the these two modules are fused into a single output. SurVAE
[34] expresses the coupling network as a densely connected block [29] with residual connection. In
comparison with [34], our intra-module coupling omits residual connectivity, decreases the number
of densely connected layers and introduces a parallel branch with Nyström self-attention. Thus, our
intra-module coupling fuses local cues with the global context.

Normalizing flow capacity can be further increased by adding complexity to the latent prior p(z).
Autoregressive prior [54] may deliver better density estimation and improved visual quality of the
generated samples. However, the computational cost of sample generation grows linearly with spatial
dimensionality. Joining this approach with the proposed incremental latent variable augmentation
could be a suitable direction for future work.

5 Conclusion

Normalizing flows allow principled recovery of the likelihood by evaluating factorized latent acti-
vations. However, their efficiency is hampered by the bijectivity constraint since it determines the
model width. We propose to address this issue by incremental augmentation of intermediate latent
representations. The introduced noise is preconditioned with respect to preceding representations
throughout cross-unit affine coupling. We also propose an improved design of intra-module coupling
transformations within glow-like invertible modules. We express these transformations as a fusion of
local correlations and the global context captured by self-attention. The resulting DenseFlow archi-
tecture sets the new state-of-the-art in likelihood evaluation on ImageNet while requiring a relatively
small computational budget. Our results imply that the expressiveness of a NF does not only depend
on latent dimensionality but also on its distribution across the model depth. Moreover, expressiveness
of a NF can be further improved by conditioning the introduced noise with the proposed densely
connected cross-unit coupling.

6 Broader impact

This paper introduces a new generative model called DenseFlow, which can be trained to achieve state-
of-the-art density evaluation under moderate computational budget. Fast convergence and modest
memory footprint lead to relatively small environmental impact of training and favor applicability
to many downstream tasks. Technical contributions of this paper do not raise any particular ethical
challenges. However, image generation has known issues related to bias and fairness [67]. In
particular, samples generated by our method will reflect any kind of bias from the training dataset.

Acknowledgements

This work has been supported by Croatian Science Foundation, grant IP-2020-02-5851 ADEPT. The
first two authors have been employed on research projects KK.01.2.1.02.0119 DATACROSS and
KK.01.2.1.02.0119 A-Unit funded by European Regional Development Fund and Gideon Brothers ltd.
This work has also been supported by VSITE - College for Information Technologies who provided
access to 2 GPU Tesla-V100 32GB. We thank Marin Oršić, Julije Ožegović, Josip Šarić as well as
Jakob Verbeek for insightful discussions during early stages of this work.

10

References
[1] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks, 3361(10):1995, 1995.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[3] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Proceedings of the Twelth
International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine
Learning Research, pages 448–455, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA,
2009. PMLR.

[4] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM, 63(11):139–144, 2020.

[6] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceed-
ings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1530–1538. JMLR.org, 2015.

[7] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, pages 1747–1756. PMLR, 2016.

[8] Rémi Bardenet, Arnaud Doucet, and Christopher C. Holmes. On markov chain monte carlo methods for
tall data. J. Mach. Learn. Res., 18:47:1–47:43, 2017.

[9] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Comput.,
14(8):1771–1800, 2002.

[10] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

[11] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improving the pixelcnn
with discretized logistic mixture likelihood and other modifications. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

[12] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and
Conference Proceedings, pages 2256–2265. JMLR.org, 2015.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[14] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020.

[15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convo-
lutional generative adversarial networks. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[16] Thomas Lucas, Konstantin Shmelkov, Karteek Alahari, Cordelia Schmid, and Jakob Verbeek. Adaptive
density estimation for generative models. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 11993–12003, 2019.

[17] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components estimation.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Workshop Track Proceedings, 2015.

[18] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

[19] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10236–10245,
2018.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[20] Jörn-Henrik Jacobsen, Arnold W. M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible networks.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018.

[21] Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 14680–14691, 2019.

[22] Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and Balaji Lakshminarayanan. Hybrid
models with deep and invertible features. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pages 4723–4732. PMLR, 2019.

[23] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural importance
sampling. ACM Trans. Graph., 38(5):145:1–145:19, 2019.

[24] Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. Vflow: More expressive generative flows
with variational data augmentation. In International Conference on Machine Learning, pages 1660–1669.
PMLR, 2020.

[25] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 6105–6114.
PMLR, 2019.

[26] Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging the gap
between generative flows and latent variable models. arXiv preprint arXiv:2002.07101, 2020.

[27] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-based
generative models with variational dequantization and architecture design. In International Conference on
Machine Learning, pages 2722–2730. PMLR, 2019.

[28] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. CoRR,
abs/2102.03902, 2021.

[29] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269. IEEE Computer Society, 2017.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages
448–456. JMLR.org, 2015.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017.

[32] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.

[33] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. CoRR,
abs/2010.11929, 2020.

[34] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae flows: Surjections
to bridge the gap between vaes and flows. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[35] Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05 2012.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[37] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

12

[38] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. Image transformer. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4052–4061. PMLR, 2018.

[39] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Trans. Assoc. Comput. Linguistics, 9:53–68, 2021.

[40] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra. Towards
conceptual compression. In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 3549–3557,
2016.

[41] Arash Vahdat, William G. Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash. DVAE++:
discrete variational autoencoders with overlapping transformations. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 5042–5051. PMLR, 2018.

[42] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improving
variational inference with inverse autoregressive flow. arXiv preprint arXiv:1606.04934, 2016.

[43] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep hierarchy of
latent variables for generative modeling. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 6548–6558, 2019.

[44] Samarth Sinha and Adji B. Dieng. Consistency regularization for variational auto-encoders. CoRR,
abs/2105.14859, 2021.

[45] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon. Score matching model
for unbounded data score. CoRR, abs/2106.05527, 2021.

[46] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. CoRR,
abs/2102.09672, 2021.

[47] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. CoRR,
abs/2107.00630, 2021.

[48] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol Vinyals, and Alex
Graves. Conditional image generation with pixelcnn decoders. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 4790–4798, 2016.

[49] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive
generative model. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 863–871. PMLR, 2018.

[50] Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel networks and
multidimensional upscaling. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

[51] Jason J. Yu, Konstantinos G. Derpanis, and Marcus A. Brubaker. Wavelet flow: Fast training of high reso-
lution normalizing flows. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[52] Tian Qi Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for invertible
generative modeling. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 9913–9923, 2019.

[53] Yura Perugachi-Diaz, Jakub M Tomczak, and Sandjai Bhulai. Invertible densenets with concatenated
lipswish. arXiv preprint arXiv:2102.02694, 2021.

[54] Apratim Bhattacharyya, Shweta Mahajan, Mario Fritz, Bernt Schiele, and Stefan Roth. Normalizing
flows with multi-scale autoregressive priors. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 8412–8421. Computer Vision
Foundation / IEEE, 2020.

[55] Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard H. Hovy. Macow: Masked convolutional
generative flow. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 5891–5900, 2019.

[56] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

13

[57] Hossein Sadeghi, Evgeny Andriyash, Walter Vinci, Lorenzo Buffoni, and Mohammad H. Amin. Pixelvae++:
Improved pixelvae with discrete prior. CoRR, abs/1908.09948, 2019.

[58] Ali Razavi, Aäron van den Oord, Ben Poole, and Oriol Vinyals. Preventing posterior collapse with
delta-vaes. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

[59] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 6626–6637, 2017.

[60] Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive quantile networks for generative modeling.
In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
3933–3942. PMLR, 2018.

[61] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible
residual networks. In International Conference on Machine Learning, pages 573–582. PMLR, 2019.

[62] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for data-
efficient GAN training. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[63] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved
training of wasserstein gans. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
5767–5777, 2017.

[64] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. VAEBM: A symbiosis between variational
autoencoders and energy-based models. CoRR, abs/2010.00654, 2020.

[65] Yura Perugachi-Diaz, Jakub M. Tomczak, and Sandjai Bhulai. Invertible densenets. In 3rd Symposium on
Advances in Approximate Bayesian Inference, pages 1–11, 2020.

[66] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018.

[67] Ramya Srinivasan and Ajay Chander. Biases in AI systems. Commun. ACM, 64(8):44–49, 2021.

[68] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon
emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes] See Abstract and the last paragraph of Section 1.

(b) Did you describe the limitations of your work? [Yes] See Appendix A.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Broader impact

(Section 6) and Environmental impact (Appendix B).
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] Code available at https:
//github.com/matejgrcic/DenseFlow

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] See Section 3, Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] The results are averaged over multiple seeds. The variance is reported in
Section 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Section 3, Tab. 2, Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix F.
(b) Did you mention the license of the assets? [Yes] See Appendix F.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] See the

official code release.
(d) Did you discuss whether and how consent was obtained from people whose data you’re us-

ing/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-

tion or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

15

https://github.com/matejgrcic/DenseFlow
https://github.com/matejgrcic/DenseFlow

	Introduction
	Densely connected normalizing flows
	Normalizing flows with cross-unit coupling
	Image-oriented invertible module
	Multi-scale architecture

	Experiments
	Density estimation
	Computational complexity
	Image generation
	Visual quality
	Ablations

	Related work
	Conclusion
	Broader impact

