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Abstract

One of the key challenges of Explainable Artificial
Intelligence (XAI) is providing concise and un-
derstandable explanations for classification model
predictions. An abductive explanation for a given
instance is a minimal set of features that justify
the prediction. These minimal explanations are
valuable for their interpretability, as they elimi-
nate redundant or irrelevant information. However,
computing these explanations is difficult, even for
simpler classifiers like decision trees. Finding a
minimum-size abductive explanation in decision
trees is an NP-complete problem, and this com-
plexity extends to random forests for minimum-
size majoritary reasons. In this work, we focus on
finding minimal sets of features along the paths
leading to the decision, called path-abductive ex-
planations. We show that the problem of finding
minimum-size path-abductive explanations in deci-
sion trees and minimum-size path-majoritary rea-
sons in random forests is also NP-complete. To
address this, we reformulate the problem as a sub-
modular optimization task and propose a greedy
algorithm with optimality guarantees. Our exper-
iments demonstrate that this algorithm produces
near-optimal explanations efficiently and offers a
strong alternative for difficult instances, where ex-
act methods based on SAT encodings are computa-
tionally expensive. This approach is especially use-
ful in resource-limited environments where mod-
ern SAT solvers are not feasible.

1 INTRODUCTION

The supervised classification problem involves deducing
a model capable of predicting labels from annotated data.
Common classifiers include decision trees [34], random

forests [10], XGBOOST [11], support vector machines [15],
and neural networks, which are widely used across fields
like text and image classification, customer analysis, and
medical diagnosis. However, with increasing use in critical
sectors like healthcare and finance, the ability to explain
model decisions is vital for transparency, trust, and regula-
tory compliance [31].

Formal explanations play a central role in Explainable Ar-
tificial Intelligence (XAI), as they provide mathematically
validated justifications [29], which makes them particularly
suitable for sensitive applications, such as the medical, fi-
nancial, or legal domains. Unlike post-hoc agnostic methods
such as LIME [35], SHAP [27], Anchors [36], or counterfac-
tual explanations [18], which rely on local perturbations or
game theory without considering the internal structure of the
model, formal explanations are directly tied to the behavior
of the studied model. This structural link grants them crucial
properties of faithfulness, consistency, and robustness, often
absent in agnostic methods. The latter can, indeed, generate
identical explanations for opposite predictions [21], lack rig-
orous theoretical foundations [28], or be sensitive to input
perturbations [1], undermining their reliability in critical
contexts. Conversely, for a Boolean classifier h, a formal
abductive explanation is characterized by the PI (Prime Im-
plicant), which corresponds to a minimal subset of features
I such that the restriction xI of the input x is sufficient to
guarantee the output h(x) [21, 17]. Although finding such
an explanation may be an NP-hard problem [14, 4], efficient
solutions have been proposed for certain classes of models,
notably decision trees and random forests [2, 3, 23]. Finally,
we specify that our approximation proposed in this work
is also distinguished by the use of formal approximations,
which preserve the theoretical guarantees inherent to for-
mal explanations, unlike empirical approximations used in
agnostic approaches such as SHAP or LIME.

Conciseness is as important as validity in ensuring expla-
nation comprehensibility. Human cognitive limits [30] jus-
tify the need for smaller explanations. However, finding
minimum-size explanations is challenging, even for tree-



based models. Computing a minimum-size abductive ex-
planation for decision trees is NP-hard [5, 6], and for ran-
dom forests, computing a PI-explanation is DP-complete
[23], with minimum-size abductive explanations being

∑p
2-

complete [2]. Majoritary reasons, introduced for random
forests [2], are implicants of the majority of trees in the
forest, but finding their minimum size is also NP-hard. Con-
straint optimization and modern SAT solvers have been
applied to compute efficient explanations, such as the MUS
method [23] for PI-explanations and the MAXSAT solver
for minimum-size majoritary reasons [2].

The high computational complexity of these exact methods
can become prohibitive, particularly for hard-to-explain in-
stances or high-dimensional inputs, where computational
time increases significantly. This issue is compounded in
resource-constrained environments, where hardware and
time limitations further restrict computation. To address
this, we focus on approximating minimum-size explana-
tions using submodularity, applied efficiently to decision
trees and random forests. We aim to approximate minimum-
size sufficient reasons (PI-explanations) for decision trees
and minimum-size majoritary reasons (minMAJ) for random
forests. For tree-based models, we focus on path-restricted
explanations, which reflect the model’s internal decision-
making process. Our work proposes an efficient approxima-
tion method for minimum-size path-abductive explanations,
which aligns with the internal workings of decision trees
and ensures concise and relevant explanations.

Contributions and Main Motivation. In this work, we fo-
cus on approximating minimum-size explanations through
the lens of submodularity, with an efficient application to de-
cision trees and random forests. More specifically, we focus
on minimum-size path-abductive explanations, which are
based on decision paths (path-explanations) and are aligned
with the internal workings of tree-based models. These ex-
planations minimize the redundancy in path-explanations
that are redundant [24, 25], while remaining consistent with
the model’s reasoning.

Our contributions include: First, we reformulate the prob-
lem of computing minimum-size abductive explanations as
a submodular optimization task, applicable to a Boolean
classifier h and a data instance x. Second, we extend this
reformulation to the computation of minimum-size path-
majoritary reasons (denoted PminMAJ) for random forests
F . We demonstrate that this problem remains NP-complete,
even for a single tree (F = {T}), where majoritary rea-
sons coincide with PI-explanations. Finally, we propose an
efficient greedy algorithm with theoretical optimality guar-
antees, including an approximation bound on the size of the
explanations.

Our main motivations are: We aim to provide an effi-
cient alternative when computing minimum-size reasons
becomes challenging, particularly for complex instances

or high-dimensional inputs, where exact methods based on
SAT solvers are computationally expensive. Additionally,
we focus on delivering explanations in resource-constrained
environments, where the use of SAT solvers or powerful
machines is not feasible. Furthermore, we emphasize the im-
portance of path-explanations, as the local decision-making
process of tree-based models relies on these paths, offering
concise justifications that align with the internal reasoning
of the model.

In summary, this work proposes a practical and theoreti-
cally grounded solution for approximating minimum-size
abductive explanations, addressing the limitations of exist-
ing methods in demanding contexts. Path-explanations play
a central role in this approach, providing concise and in-
terpretable justifications that are aligned with the internal
reasoning of the model.

2 PRELIMINARIES

Classification problems. We assume that the reader is fa-
miliar with the basic concepts of machine learning, such as
supervised learning, binary classification, random forests,
and the principle of majority voting.

Notations. Let n be an integer, and let [n] denote the set
{1, . . . , n}. We denote by Fn the class of all Boolean func-
tions mapping {0, 1}n to {0, 1}, and Xn = {x1, . . . , xn}
refers to the set of Boolean variables. An assignment
x ∈ {0, 1}n is called an instance. A literal ℓ is either a
variable xi or its negation xi. A term t is a conjunction
of literals1, and a clause c is a disjunction of literals. A
DNF formula is a disjunction of terms, and a CNF formula
is a conjunction of clauses. A formula f is consistent if
and only if it has at least one model (i.e., an assignment
that satisfies it). Given an instance z ∈ {0, 1}n, the corre-
sponding term tz is defined as follows: tz =

∧n
i=1 x

zi
i =

{xz1
1 , . . . , xzn

n }, where x0
i = xi and x1

i = xi.

An implicant of a Boolean function f is a term t such that t
implies f (i.e., every assignment satisfying t also satisfies
f ). A prime implicant of f is an implicant t of f such that no
proper subset of t is an implicant of f . A partial instance is
a vector z ∈ {0, 1, ∗}n, where zi = ∗ indicates that the i-th
feature of z is undefined. An instance x is covered by z if
xi = zi for all features i ∈ [n] such that zi ̸= ∗. For a subset
S ⊆ [n] of features, the restriction of x to S, denoted xS ,
is the partial instance in {0, 1, ∗}n such that: (xS)i = xi if
i ∈ S, and ∗ otherwise. Any instance y ∈ {0, 1}n is covered
by xS if and only if yS = xS . The term txS

associated with
the partial instance xS is defined as:

txS
=
⋃n

i=1 ({xi : (xS)i = 1} ∪ {xi : (xS)i = 0}) .

1In this work, we treat a term as a set of literals for simplicity.



2.1 DECISION TREE AND RANDOM FOREST.

A binary decision tree on Xn is a binary tree T , where each
internal node is labeled with one of the n Boolean input
variables from Xn, and each leaf is labeled with either 0 or
1. Each variable is assumed to appear at most once on any
path from the root to a leaf (read-once property). The value
T (x) ∈ {0, 1} of T for an input instance x is determined
by the label of the leaf reached from the root node.

A random forest on Xn is a set F = {T1, · · · , Tm}, where
each Ti (i ∈ [m]) is a decision tree on Xn, and the value
F (x) is given by

F (x) =

{
1 if 1

m

∑m
i=1 Ti(x) >

1
2

0 otherwise.

The size of F is given by |F | =
∑m

i=1 |Ti|, where |Ti| is the
number of nodes present in Ti. The class of decision trees on
Xn is denoted by DTn, and the class of random forests with
at most m decision trees (for m ≥ 1) on DTn is denoted by
RFn,m. Finally, RFn =

⋃
m≥1 RFn,m and RF =

⋃
n≥1 RFn.

It is well known that any decision tree T ∈ DTn can be
transformed in linear time into an equivalent DNF (or an
equivalent CNF). This DNF is an orthogonal DNF (see [9] for
more detail). However, when moving to random forests, the
situation is quite different. Any formula in CNF or DNF can
be converted in linear time into an equivalent random forest,
but there is no polynomial space conversion from a random
forest to CNF or DNF [2].

2.2 ABDUCTIVE EXPLANATIONS

Abductive Explanations and Decision Trees. An abductive
explanation 2 for an instance x is a subset of features S
such that the restriction of x to S is sufficient to obtain
the same prediction. A sufficient reason (denoted as PI-
explanation) is a minimal abductive explanation with respect
to inclusion, while a minimum-size sufficient reason is an
abductive explanation containing the smallest number of
literals.

Decision trees are naturally interpretable, as each instance
x can be explained by a unique direct path from the root to
a decision leaf, called a direct reason (or path-explanation),
denoted Ph

x . However, these direct reasons may contain
redundant features [24], justifying the use of more con-
cise explanations, such as sufficient reasons and minimum-
size sufficient reasons. Although sufficient reasons can be
computed in polynomial time for decision trees, finding a
minimum-size sufficient reason is an NP-hard problem [6].

Definition 1 (Path-Sufficient Reason (Path− PI)). Let h
be a classifier represented by a tree T ∈ DTn and x ∈

2Unlike [21], we do not require abductive explanations to be
minimal with respect to inclusion.

{0, 1}n an instance. A Path− PI for x given h is a set of
features S such that the associated term txS

is a sufficient
reason for x given h and txS

⊆ Ph
x . A Minimum-Size Path-

Sufficient Reason (PminPI) is a Path− PI of minimum-
size.

It is evident that it is always possible to derive a sufficient
reason t (PI-explanation) from path explanation Ph

x . How-
ever, a PminPI generally does not coincide with a minPI.

Remark 1. When h is a classifier represented by a decision
tree T ∈ DTn, it is important to note that the PminPI rea-
son generally does not coincide with minPI, although all
PminPI and Path− PI reasons are PI-explanations.

Furthermore, for an instance x and a classifier h represented
by a tree T , the number of Path− PI can be exponential in
the size of the input.

Proposition 1. There exists a decision tree T ∈ DTn of
depth log2(n+ 1) such that, for any instance x ∈ {0, 1}n,

the number of Path− PI for x given T is at least
⌊
3
2

n+1
2

⌋
.

Due to the large number of Path− PI, finding a PminPI is
not always straightforward.

Proposition 2. Let h be a classifier represented by a deci-
sion tree T ∈ DTn and x ∈ {0, 1}n an instance. Computing
a Minimum-size path-sufficient reason (PminPI) for x
given h is an NP-hard problem.

Despite this result, it is possible to compute a PminPI in
many practical cases. To achieve this, we use a slightly mod-
ified version of the encoding proposed in [5], which relies on
PARTIAL MAXSAT solvers. However, these encodings re-
quire significant memory resources and powerful machines,
especially for handling high-dimensional or challenging
instances.

Abductive Explanations and Random Forests. The no-
tions of PI-explanation (or sufficient reason) and minPI are
general and applicable to any classifier h, including when
h is a random forest F ∈ RFn,m. However, as mentioned
in Section 1, computing minPI and PI-explanations for a
random forest remains opaque. In this work, we focus on a
type of explanation better suited to the internal workings of
random forests, introduced by [2]: direct reasons and, more
specifically, majoritary reasons (MAJ). A direct reason for a
random forest is defined as the conjunction of the reasons
for the features located on the paths of the trees that vote for
the majority class.

Definition 2. Let F = {T1, . . . , Tm} be a random forest
(random forest) in RFn,m, and x ∈ {0, 1}n be an instance.
The direct reason for x given by F is the term PF

x defined
by PF

x =
∧

Ti∈Fx PTi
x where F x = {Ti ∈ F | Ti(x) =

F (x)}. By construction, PF
x can be computed in time O(n ·

|F |).



However, as with decision trees, PF
x often contains redun-

dant features [2]. We therefore focus on a stronger version
of abductive explicitons than PF

x : majoritary reasons. A
majoritary reason, as defined in [2], is an implicant t of the
majority of trees in F , where the removal of a single feature
invalidates the majority condition.

Definition 3. Let F = {T1, . . . , Tm} be a random forest
in RFn,m and x ∈ {0, 1}n an instance. A majoritary reason
(MAJ) for x given by F is a term t covering x such that t
is an implicant of at least

⌊
m
2

⌋
+ 1 decision trees Ti, and

for every literal l ∈ t, the term t \ l does not satisfy this
condition.

A Path-majoritary reason (PMAJ) for x given by F is a
MAJ such that t ⊆ PF

x . A minimum-size majoritary rea-
son (minMAJ) is a MAJ with the smallest number of literals,
and a minimum-size Path-majoritary reason (PminMAJ) is a
PMAJ with the smallest number of literals.

In analogy with the proposition 1, and considering that a
decision tree is a special case of a random forest where
F = {T}, it is obvious that the number of reasons PMAJ
can also be exponential. Moreover, in this special case, the
reasons minMAJ coincide with the minPI. Note that all rea-
sons PMAJ and PminMAJ are MAJ reasons, but they are not
necessarily minMAJ. While deriving a reason MAJ or PMAJ is
feasible in linear time, finding their minimum-size versions
(minMAJ and PminMAJ) is computationally more complex.
Finding a reason minMAJ has been shown to be an NP-
complete problem [2], and the following proposition shows
that computing PminMAJ is also hard.

Proposition 3. Let F ∈ RFn,m, x ∈ {0, 1}n, and k ∈ N.
Deciding whether there exists a reason PminMAJ t for x
given F , such that t contains at most k features, is an NP-
complete problem.

Proposition 3 illustrates the difficulty of deriving explana-
tions in a random forest, particularly when the size of F or
the dimension of x is large. To overcome this complexity,
we explore efficient approximations with few resources. Fi-
nally, we recall abductive explanations of minimum size in
the context of the error function.

Error function. We now define a central concept for the
rest of this work, the explanation error function ϵh,x(S) for
a classifier h and an instance x, which can be interpreted
as the probability of making an explanation error using a
subset S of features. Given a classifier h and an instance
x for which the prediction h(x) must be explained, let
ϵh,x : 2[n] → R be the explanation error function [8, 7] de-
fined by: ϵh,x(S) =

µh,x(S)

2n−|S| where µ(S) = |{y ∈ {0, 1}n :
h(y) ̸= h(x),yS = xS}|. As noted earlier, ϵh,x(S) can be
interpreted as the probability of making an explanation er-
ror, where µh,x(S) represents the number of errors induced
by the choice of S. For a feature subset S, txS

is an abduc-
tive explanation for x, given h, if ϵh,x(S) = 0. Moreover,

txS
is a PI-explanation if ϵh,x(S) = 0 and ϵh,x(S

′) > 0
for any proper subset S′ of S. txS

is minPI if it is a PI-
explanation that contains a minimal number of features.
Note that when h is represented by a decision tree T , the
function µh,x can be simply rewritten as follows:

µh,x(S) =


∑

t∈DNF(T )|txS

2n−|t| if h(x) = 0

2n−|S| −
∑

t∈DNF(T )|txS

2n−|t| if h(x) = 1

The result shows that the evaluation of ϵh,x(S) can be
achieved in time O(|S| · |T |) when h is represented by
a decision tree T [8, 26], which is not always the case in
general. Indeed, in the general case, the problem of evaluat-
ing ϵh,x(S) is #P-hard (or #-SAT) [16]. We now formulate
the problem of finding a minPI reason for x given h.

3 PROBLEM FORMULATION

Main idea. A term txS
, associated with a feature subset

S ⊆ V = [n], constitutes an abductive explanation for x
given h if and only if ϵh,x(S) = 0, i.e. µh,x(S) = 0. Thus,
a minimum-size abductive explanation corresponds to the
smallest set S (in cardinality) satisfying µh,x(S) = 0.

3.1 APPROXIMATION OF A MINIMUM-SIZE
ABDUCTIVE EXPLANATION

The problem of finding a minimum-size abductive explana-
tion (or a minPI) for an instance x, given a classifier h, can
be formulated as an optimization problem. The objective is
to select a subset S of minimum-size features satisfying an
upper bound constraint α ≥ 0 on a function gh,x(S), which
depends on the classifier h and the instance x.

Problem 1. Let h be a classifier, an instance x and a con-
stant bound α ≥ 0. Let gh,x be a non-negative set function
depending on h and x. The problem studied consists in
finding a subset of features S ⊆ V solution of the problem:

min
S⊆V

|S|

s.t. gh,x(S) ≥ α

Proposition 4. Let h : {0, 1}n → {0, 1} be a classifier,
x ∈ {0, 1}n be an instance, and S∗ ⊆ V be a subset of
features. For V = [n], gh,x(S) = µh,x(∅) − µh,x(S) and
α = µh,x(∅), S∗ is an optimal solution to the problem 1 if
and only if txS∗ is a minPI reason for x given at h.

Application to decision trees. When a classifier h is repre-
sented by a decision tree, we restrict ourselves to the features
present in the explanation based on the path Ph

x (denoted



V path
x

3) to generate a minimum-size explanation PminPI. To
do this, it suffices to define V = V path

x .

Proposition 5. Let h be a classifier represented by a deci-
sion tree T ∈ DTn and an instance x to be explained. For
V = V path

x , gh,x(S) = µh,x(∅)−µh,x(S) and α = µh,x(∅),
S∗ is an optimal solution to the problem 1 if and only if txS∗

is a PminPI reason for x given h.

In the case of decision trees, the evaluation of the error
function µh,x(.) can be done in polynomial time (see [24]),
and more precisely in linear time [9]. This evaluation is
also feasible in polynomial time for linear classifiers [6], d-
DNNF classifiers [20], and [19] decision diagrams. However,
optimization problems, such as 1, are generally NP-hard in
these cases (see [32], Chapter III).

This is consistent with the 4 and 5 propositions, as well as
with the NP-hardness of computing the minimum expla-
nations minPI and PminPI when h is a decision tree. In
general, the evaluation of µh,x is #P-hard [16], making its
computation intractable in polynomial time. For a random
forest, this problem is equivalent to a #SAT, and the approx-
imation or exact computation of minPI (of DP-complete
complexity) remains out of reach. We therefore focus on an-
other type of abductive explanation, majoritary reasons, and
we will introduce a new error function adapted to random
forests, efficiently computable in linear time.

3.2 APPROXIMATION OF MINIMUM-SIZE
MAJORITARY REASONS

To circumvent the problem of evaluating the error function
ϵh,x when h is represented by a random forest F ∈ RFn,m,
we focus on a subset of trees in F , namely those that vote
for the majoritary class. This means that we consider the
whole: F x = {Ti ∈ F, i ∈ [m] | Ti(x) = F (x)}. Inspired
by the fact that a majoritary reason is an implicant of at
least half of the trees in the forest and that the number
of errors must be zero when considering an implicant of
the majority of the trees (i.e. a MAJ-reason), we define the
function: ϵFx(S) = µFx (S)

#Fx·2n−|S| with:

µFx(S) =

[ ∑
Ti∈Fx

µx,Ti
(S)

]
I

( ∑
Ti∈Fx

I{µx,Ti
(S)=0} ≤

m

2

)

where #F x denotes the number of trees in F x, and I is the
indicator function. The function ϵFx can be interpreted as
the average probability of making an explanation error by
selecting a subset S of features. Note that when F = {T},
µFx coincides with µT,x.

3In the rest of the article, V path
x denotes the set of features

appearing in the direct paths leading to the decision for x, whose
classification must be explained.

Evaluation of µFx . For any Ti ∈ F , the function µx,Ti(S)
can be computed in O(|S| · |Ti|) [8, 26]. The evaluation
of µFx(S) then consists in computing µx,Ti

(S) for each
Ti ∈ F x. Since |F x| represents the sum of the sizes of the
trees that compose it, the total cost is O(|S| · |F x|), with
|F x| =

∑
Ti∈Fx

|Ti|.

Approximation of a mimumm-size majoritary reason.
When a classifier h is a random forest and we seek to explain
the prediction of a given instance x, the problem 1 can be
reformulated so that its optimal solution corresponds to a
reason minMAJ for x given h.

Formally, this problem can be adapted as follows:

• Let a classifier h be represented by a random forest
F ∈ RFn,m.

• Let an instance x whose prediction is to be explained.

• Let gh,x(S) = µFx(∅)− µFx(S), α = µFx(∅).

With these parameter adjustments in the formulation of
the problem 1, the latter becomes a version adapted to the
context of majority voting when the classifier h is a random
forest F .

Proposition 6. Let h be a classifier represented by a random
forest F ∈ RFn,m and x ∈ {0, 1}n be an instance. If we set:
V = [n], α = µFx(∅) and gh,x(S) = µFx(∅) − µFx(S),
then a set S∗ ⊆ V is an optimal solution to the problem 1
if and only if txS∗ is a minMAJ reason for x given h. And if
V = V path

x then S∗ is an optimal solution to the problem 1
if and only if txS∗ is a PminMAJ reason for x given h.

4 APPROXIMATION ALGORITHMS

The main objective of this study is to relax the optimality
constraint for the Problem 1 (as well as its version adapted
to the random forest context) by prioritizing obtaining a
sufficiently good solution in terms of quality. To do so, we
exploit submodular optimization techniques and a greedy
algorithm, which have the advantage of being less resource-
intensive than exact approaches based on SAT encodings or
constraint optimization. This section begins with a reminder
of the fundamental concepts of submodularity, followed by
an analysis of the essential properties of the error functions
µh,x and µFx . Finally, we propose a greedy algorithm to
obtain an approximate solution, accompanied by a study of
its theoretical guarantees and experimental performances.

4.1 SUPERMODULAR FUNCTIONS

Let f : 2[n] → R be a function with real parts. We say that
f is non-decreasing if f(S ∪ {i}) ≥ f(S) for all S ⊆
[n] and i ∈ [n] \ S, and non-increasing if f(S ∪ {i}) ≤
f(S) for all S ⊆ [n] and i ∈ [n] \ S.



f is supermodular if it satisfies the following condition for
all subsets A,B of [n]: f(A ∪ B) + f(A ∩ B) ≥ f(A) +
f(B). On the other hand, f is submodular if, for all subsets
A and B of [n], the following condition is satisfied: f(A ∪
B) + f(A ∩B) ≤ f(A) + f(B).

For all S ⊆ [n] and i ∈ S, a function f is supermodular if
and only if −f is submodular. Moreover, f is modular if it
is both submodular and supermodular.

In general, the error function ϵh,x(·) is neither supermodular
nor submodular, and it is neither non-increasing nor non-
decreasing [8]. However, by considering the non-normalized
version µh,x(·), useful properties can be derived. For any
classifier h and an instance x ∈ {0, 1}n, the function µh,x is
non-negative, supermodular, and non-increasing [8]. Conse-
quently, since µFx is a linear combination of supermodular,
non-negative, and non-increasing functions, it inherits these
properties: µFx remains supermodular, non-negative, and
non-increasing.

Proposition 7. Let h : {0, 1}n → {0, 1} be a classi-
fier, and let x ∈ {0, 1}n be an instance. Then, the func-
tion gh,x(S) = µh,x(∅) − µh,x(S) is submodular, non-
decreasing, and non-negative, with gh,x(∅) = 0.

When h is represented by a random forest F ∈ RFn,m and
gh,x(S) = µFx(∅) − µFx(S), Proposition 7 shows that
gh,x is a non-negative, submodular, non-decreasing function
satisfying gh,x(∅) = 0. Therefore, Problem 1 can be refor-
mulated as a submodular optimization problem. Although
such problems are often NP-hard (cf. Chapter III of [32]), the
use of a greedy algorithm provides an approximate solution
with performance guarantees close to optimal.

4.2 GREEDY ALGORITHM

A natural approach to minimize a supermodular and non-
increasing function f under the strong constraint of mini-
mizing |S| consists of formalizing the problem as a leader
selection problem for f , of minimum-size, reaching an error
bound α. Greedy algorithms can then be used to compute
an approximate solution. As shown in [13, 12], this greedy
method benefits from mathematical guarantees on solution
quality. In our study, the function µh,x(·) is supermodular
and non-increasing. However, the approach in [13] is also
based on the work of [32] and on the fact that gh,x(∅) = 0,
but [13] does not emphasize the details, being rather generic.
Therefore, using supermodular minimization algorithms is
not possible, as most rely on the assumption µh,x(∅) = 0,
which in our case (µh,x(∅) ̸= 0). The same applies to µFx .

To circumvent this limitation, we are interested in a modi-
fied version of µh,x, defined by the function gh,x(.). This
function is submodular, non-negative, and non-decreasing,
and it satisfies g(∅) = 0. These properties allow the use of
the greedy algorithm 1, described as follows:

Algorithm 1: Greedy Approximation Algorithm

Input: A submodular funciton g, termination bound α

Output: A set of feateurs S

S ← ∅
error← 0

V {A set of features, by default V ← [n]}

while error < α do
e∗ ← argmax

e∈V \S
g(S ∪ {e})− g(S)

if g(S ∪ {e})− g(S) ≤ 0 then
return S

else
S ← S ∪ {e∗}
error← g(S)

end if
end while
return S

Theorem 1. Let h : {0, 1}n → {0, 1} be a classifier and
x ∈ {0, 1}n an instance. For g(S) = µh,x(∅) − µh,x(S),
let |S∗| = k∗ be the size of the optimal solution of problem
1, and let |S| = k be the set returned by algorithm 1. Then,

|S|
|S∗|

=
k

k∗
≤ 1 + ln

(
µmax

µh,x(Sk−1)

)
.

Where µmax = maxi∈V µh,x({i})

Theorem 1 establishes an approximation guarantee for the
greedy algorithm, by comparing the size of the set S to
that of the optimal set S∗. This bound remains valid for the
adaptive version of the problem 1 applied to random forests,
i.e. when h is represented by a random forest F . More-
over, by constructing Sk−1 via the algorithm 1, we have
µh,x(Sk−1) ̸= 0 (µh,x is non-increasing), which guarantees
the validity of the approximation bounds. In the worst case,
the algorithm 1 runs in time O(n3 · |h|) (i.e. O(n3 · |T |) for
decision trees and O(n3 · |F |) for random forests).

Discussion on the approximation bound. The approx-
imation bounds of theorem 1 depend on the value of
µh,x(Sk−1), which varies depending on the instance con-
sidered. However, we believe that it is possible to obtain
fixed and more precise bounds by using other greedy algo-
rithms. Our experimental results support this intuition: by
comparing the numerical values of the bounds described in
theorem 1 with log(n) (see Table 1), we observe that the av-
erage value of the bound is typically a multiplicative factor
γ ·log(n), with γ being non-negative constant. This suggests
that the bounds could be reduced to a form proportional to
log(n), without dependence on µh,x(Sk−1). However, this



remains a conjecture, as no theoretical result yet rigorously
supports the bound being in O(log(n)), although we have
strong reasons to believe so. We think that it is possible to
obtain a fixed and more precise bounds inspired in particular
by the work of [22, 37], by reformulating the problem 1 as
a bicriteria submodular optimization problem with submod-
ular cover and submodular knapsack constraints.

Dataset log(n) Bound

compas 3.78 5.84
titanic 4.43 5.86
yeast 3.30 9.19
malware 3.43 4.86
gisette 4.88 10.31
tae 3.40 4.26
spambase 5.37 10.70
mnist38 5.32 12.16
letter 4.43 6.62
meta 3.61 4.42

Table 1: Additional experimental results on several datasets
when h is represented by a decision tree T . log(n) denotes
the logarithm of the number of binary features n, and Bound
is the average value of the approximation bound from Theo-
rem 1, computed over at most m = 250 instances.

Improvement of the output from algorithm 1. The out-
put of algorithm 1 does not necessarily guarantee a minimal
abductive explanation for inclusion (sufficient or majoritary
reason) for x given h. To refine this result, we extract a
less redundant explanation from the solution S returned by
algorithm 1, using a simple greedy procedure. Algorithm 24

takes as input the set S and iteratively removes elements
that do not contribute to a minimal abductive explanation
for the inclusion. Specifically, it discards any element ℓ such
that µh,x(S \ {ℓ}) still yields a valid explanation. The final
output is a minimal abductive explanation for the inclusion
for x given h.

Algorithm 2: Improving Solution Parsimony

Input: a classifier h, instance x ∈ {0, 1}n, a set S

Output: a minimal abductive explanation for inclusion

I ← S {S is the output of the algorithm 1}

for ℓ ∈ I do
if µh,x(S) = 0 then
S ← S − {ℓ}

end if
end for
return S

4Recall that algorithm 2 runs in time O(|S| · |h|).

The algorithm 2 iteratively traverses the elements of S, elim-
inating those that do not affect the validity of the explana-
tion. The output of the algorithm 2 constitutes a minimal
explanation for inclusion.

5 EXPERIMENTS

In this section, we evaluate the performance of our approach
by comparing the solutions returned by our greedy algorithm
with exact methods based on Partial MaxSAT solver. Our
goal is to measure the efficiency of our algorithm in approx-
imating the optimal solution to Problem 1. We demonstrate
that our method is a high-performing alternative, partic-
ularly for challenging instances where exact approaches
become inefficient due to their high computational cost. Fi-
nally, we discuss the relevance of our approach in resource-
constrained environments and explain why it represents a
more suitable solution than existing exact methods.

5.1 EXPERIMENTAL PROTOCOL

We conducted experiments on various instances of Prob-
lem 1. Since, when F = {T}, the concepts minPI, PminPI,
Path− PI, and PT

x coincide with minMAJ, PminMAJ, PMAJ,
and PF

x , respectively, we focus on the case where h is rep-
resented by a random forest F ∈ RFn,m. The experiments
were performed using Python code executed on a machine
equipped with an Intel(R) Core i9−9900 processor clocked
at 3.1 GHz and 64 GiB of RAM.

George Nemhause We studied a set of B = 52 datasets from
well-known sources such as Kaggle (www.kaggle.com),
OpenML (www.openml.org), and UCI (archive.
ics.uci.edu/ml/). Categorical features were encoded
as integers, while numerical features were binarized during
the training of random forests. All datasets used are related
to binary classification tasks.

Methodology. For each instance x in the test set of a dataset
b, an explanation task is defined by the pair (Fb,x), where
Fb denotes the random forest representing a classifier h,
trained on the training set of b using the Scikit-Learn library
[33]. The training of Fb was performed with default hyper-
parameters, except for the nb_estimator parameter, which
controls the number of trees in the forest. This parameter
was adjusted to ensure high performance while avoiding an
explosion in the size of the forest and the encodings, while
maintaining good accuracy. A time limit of 60 minutes per
instance was defined.

To evaluate the performance of the algorithm 1 in ap-
proximating a solution to Problem 1, we randomly select
m = min(q, 250) instances x from the test set of b, where q
is the size of this set. And due to space constraints, we limit
ourselves to comparing the average sizes of the approximate
solutions to those of the explanations (PminMAJ).

www.kaggle.com
www.openml.org
archive.ics.uci.edu/ml/
archive.ics.uci.edu/ml/


Comparison with exact methods. To compare the perfor-
mance of the algorithm 1 with an exact solution, we used an
approach based on a PARTIAL MAXSAT solver described
in [2]. Concretely, given a random forest F associated with
a classifier h and an instance x, the hard clauses (Chard) of
the encoding represent the clause CNF of the forest, while
the soft clauses encode the literals of the instance x. The
optimal solution of this instance PARTIAL MAXSAT corre-
sponds to a minMAJ reason for x given h [2] (i.e. the optimal
solution of Problem 1 with V = [n] and α = µFx(∅)).

In the case of minimum-size majoritary reasons restricted to
paths (PminMAJ), the above-mentioned encoding has been
extended by adding the clause:

∨
{xi : (xI)i = 1}∨

∨
{xi :

(xI)i = 0} where I = V path
x to the hard clauses

(Chard). Thus, the optimal solution of the extended PARTIAL
MAXSAT problem corresponds to a PminMAJ for x given
h (optimal solution of Problem 1 with V = V path

x , g(S) =
µFx(∅)− µFx(S), α = µFx(∅)).

Analysis of Hard Instances. We focus here on instances
for which the optimal resolution of Problem 1 becomes dif-
ficult for the PARTIAL MAXSAT solver. These situations
arise when the size of the random forest F is large, or when
the input instance’s dimension is large, leading to an ex-
plosion in the size of the Boolean circuit encoding (CNF
formula). However, even in datasets with lower dimension-
ality, complex instances may arise. This difficulty can also
stem from the random and complex structure of the consid-
ered instances, making convergence to an optimal solution
more difficult for the PARTIAL MAXSAT solver, thus pos-
ing computational challenges. Due to space constraints, our
analysis is limited to the two datasets Placement and Cars.

5.2 EXPERIMENTAL RESULTS

Table 2 presents a sample of our results for 15 datasets. The
columns include the dataset name, the number of binary
features (#F ), the number of instances (#I), the accu-
racy of the forest Fb (%A), and the size of the forest (|F |).
The column |Path-Reason| indicates the average size of the
explanations computed for the m selected instances. The
columns S∗, Salgo1, and Simprove respectively present the
average sizes of the PminMAJ reasons, the output of Algo-
rithm 1, and its improvement obtained with Algorithm 2.
Similarly, the column |Times-Reason| shows the average
time required to derive PminMAJ (sub-column S∗) and its
approximation (sub-column Salgo1).

For the column |Path-Reason|, we observe that the aver-
age size of the approximate solutions to Problem 1 (with
V = [n]) generated by Algorithm 1 is close to that of the op-
timal solutions (PminMAJ). For most of the studied datasets,
the maximum average error ||Salgo1| − |S∗|| is on the order
of 2 on average, demonstrating the accuracy of the approx-
imate solutions. This error slightly decreases with the im-

proved solutions Simprove, reaching a precision close to 1.2.
This error can be as low as 10−3 for some datasets, such as
monk, vote, tic-tac-toe, compas, and heart. Moreover, the
average size of the outputs of Algorithm 1 is significantly
smaller than that of MAJ and PMAJ (see the supplementary
material in https://github.com/Lounesbo). The
column |Times-Reason| shows the average time required to
find PminMAJ and its approximation. For the datasets in the
table, the computation time is almost identical. However,
this is not always the case, as shown by our study on Place-
ment and Cars. The results in Table 2 demonstrate that the
algorithm can compute an efficient approximation solution.

Figure 1: Placement and Cars

Table 3 presents experimental results for 2 datasets. The
columns #I , #F , %A, and |F | respectively indicate the
number of instances, the number of binary features, the ac-
curacy of the forest, and its size. The column Path-Times
shows the average computation times for the m = 65 se-
lected instances. The sub-columns S∗ and Salg1 reflect the
average computation times for the exact and approximate
solutions. We note that the average computation time of the
exact solvers often exceeds 10 minutes (as already shown in
the experimental part of the work by [2]), while Algorithm 1
generates a solution in less than 5 seconds.

Figure 1 illustrates the number of instances for which the
PARTIAL MAXSAT solvers failed to find a PminMAJ reason
within the allotted time limits of 3, 5, 10, 15, 20, 30, and 50
minutes (Placement in orange, Cars in blue). These results
show that exact methods can take a significant amount of
computation time, while the greedy algorithm requires neg-
ligible time. Although these results highlight the slowness
of solvers in producing results, Figure 1 shows that some
instances deemed difficult remain unresolved even after 50
minutes. For example, for the Placement dataset, out of 65
instances in the test set, 14 remain unsolved after 3 minutes,
12 after 5 minutes, 9 after 10 minutes, and 4 after 20 min-
utes, with 1 remaining after 30 minutes. Similar results are
observed for the Cars dataset. This phenomenon typically
occurs when the forest consists of complex, large, and deep
trees, and/or when the dataset is high-dimensional. These
results highlight the utility of our greedy algorithms.

https://github.com/Lounesbo


dataset random forest |Path-Reason| Times-Reason

name #F #I %A #T |F | |PF
x | S∗ Salgo1 Simprove S∗ Salgo1

tic-tac-toe 9 958 100.0 53 10265 9.00 (± 0.00) 5.75 (± 1.02) 5.79 (± 1.03) 5.75 (± 1.07) 0.0640 0.0595
monk 16 601 66.85 33 9047 12.26 (± 0.96) 8.31 (± 1.61) 8.89 (± 2.16) 8.42 (± 2.09) 0.0672 0.0686
titanic 498 623 79.68 23 3631 61.98 (± 15.08) 27.59 (± 9.13) 30.17 (± 10.82) 28.16 (± 10.82) 0.8162 0.8206

biomed 267 209 90.48 23 777 73.54 (± 15.09) 32.08 (± 8.52) 38.75 (± 10.64) 36.05 (± 10.04) 0.8134 0.4040
vote 16 434 94.66 25 1321 15.56 (± 0.57) 5.87 (± 1.23) 5.97 (± 1.30) 5.90 (± 1.23) 0.0361 0.0135

compas 63 6172 65.77 31 28303 21.75 (± 6.31) 11.14 (± 4.09) 12.15 (± 4.86) 11.43 (± 4.28) 0.9147 0.7103
vehicle 272 846 98.43 17 839 53.90 (± 8.63) 21.46 (± 6.08) 24.94 (± 6.97) 24.94 (± 6.97) 0.1162 0.1037

heart 400 303 85.71 33 2447 64.53 (± 12.32) 27.98 (± 8.50) 31.21 (± 9.54) 30.19 (± 9.1) 9.9494 0.4648
hepatitis 172 142 86.05 35 931 51.16 (± 5.96) 18.70 (± 7.12) 21.30 (± 6.69) 21.30 (± 6.69) 0.5841 0.1043

horse 394 299 84.44 29 1771 80.21 (± 15.04) 37.99 (± 10.14) 42.98 (± 11.93) 42.98 (± 11.93) 11.4389 0.7641
student.por 142 649 91.79 23 1861 48.44 (± 3.97) 18.35 (± 5.02) 20.25 (± 5.42) 20.21 (± 5.36) 1.0457 0.1747

haberman 154 306 69.57 31 3329 56.39 (± 8.28) 28.50 (± 7.31) 31.29 (± 7.18) 30.76 (± 7.65) 4.1101 0.5890
employee 72 4653 84.67 19 23063 32.82 (± 6.61) 15.03 (± 4.99) 17.85 (± 7.41) 16.92 (± 6.77) 0.1571 0.1790

Table 2: Statistics on the approximation of PminMAJ reasons when h is a random forest.

Dataset #I #F %A #T |F | Path-Times

S∗ Salg1

Placement 215 371 95.38 47 1947 239.74 0.61
Cars 406 611 91.8 53 2685 199.55 1.35

Table 3: Experimental results on Placement and Cars

6 CONCLUSION

This work addressed the challenge of generating minimum-
size abductive explanations for classification models, focus-
ing on decision trees and random forests. By formulating
the problem as a submodular optimization, we leveraged
structural properties that enable high-quality approximate
solutions. We showed that computing minimum-size abduc-
tive explanations for these classifiers is an NP-complete
problem, even when restricted to the features of direct paths
in decision trees or random forest trees, highlighting the
complexity of providing concise explanations. To address
this, we developed efficient greedy algorithms with theoret-
ical optimality guarantees, producing near-optimal expla-
nations in reasonable time. Our experiments demonstrated
that the greedy algorithm is as effective as exact methods,
and sometimes more computationally efficient, generating
intelligible and relevant explanations, as shown in our case
study on the placement benchmark. This makes our ap-
proach a viable alternative, particularly in resource-limited
environments where modern solvers are costly. Our method,
based on submodular optimization, is well-suited for hard-
to-explain instances, offering a robust alternative to exact
solvers. Future work could explore new formulations of the
problem, develop more sophisticated algorithms, and extend
our approach to other classification models, including neural
networks, to broaden its applicability in diverse contexts.
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