
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFECT OF LOCAL OSCILLATIONS ON THE SCALING
LAWS OF DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural network (DNN) scaling laws characterize how a model’s performance
(e.g. test loss) improves as a function of resources such as training data size,
model parameters, or compute. These laws hold for a wide variety of model and
data types. Empirical and theoretical results have found that the parameters of
the scaling laws depend on aspects of the target data function such as continuity
class and dimension. Here we show that another feature of the data, namely
the local oscillatory complexity (LOC) of the target function, can dramatically
alter scaling behavior. In particular, when the target function is highly oscillatory
(parity-like), the drop in loss with more training data becomes shallower. We
formalize a metric for local oscillatory complexity and study a family of parity-like
target functions where this complexity is controlled by a frequency parameter. We
show that high oscillatory complexity can shift the scaling curve upward (higher
error floor), change the scaling exponent, and induce an earlier saturation regime.
In our experiments, DNNs fail to benefit from additional data when the target
function is highly oscillatory. These findings reveal that data continuity class and
dimension are insufficient to guarantee standard scaling behavior – LOC must also
be accounted for.

1 INTRODUCTION

Deep neural network (DNN) scaling laws – empirical power-law relationships predicting how model
performance scales with data, model size, or compute – have become a cornerstone for designing
modern deep learning models. These laws have been validated across many architectures (feedforward
neural networks (FNNs), recurrent neural networks (RNNs), convolutional neural networks (CNNs),
transformers) and tasks (language modeling, image classification, speech recognition) (Hestness
et al., 2017; Kaplan et al., 2020; Rosenfeld et al., 2020; Alabdulmohsin et al., 2022; Sorscher et al.,
2022; Cherti et al., 2023; Caballero et al., 2023). By fitting scaling exponents on midsize experiments,
practitioners can forecast the dataset size or model size needed to reach a target accuracy without
exhaustive searches (Hernandez et al., 2021; Hoffmann et al., 2022). For example, such methods
guided the design of Chinchilla, which, with fewer parameters, outperformed much larger models
like generative pre-trained transformer (GPT)-3 (Brown et al., 2020) by solving optimal model and
data size using power-law relationship (Hoffmann et al., 2022). Scaling laws thus enable efficient
allocation of resources when training state-of-the-art models.

Beyond their empirical utility, there is substantial theoretical interest in why scaling laws hold. A
common theoretical formulation relates a model’s generalization error to the training sample size N
via a power-law form N−C/D. Here D is a notion of data dimension and C is a constant determined
by properties of the target function that DNN models try to learn (Oono & Suzuki, 2019; Schmidt-
Hieber, 2020). If data lie on a low-dimensional manifold, using its intrinsic dimension H ≪ D can
yield faster rates than the ambient dimension (Nakada & Imaizumi, 2020; Liu et al., 2021; Dahal
et al., 2022; Chen et al., 2022; Havrilla & Liao, 2024). These analyses – spanning fully-connected
networks, CNNs, transformers – clarify how function class smoothness, model capacity, and data
geometry together determine performance scaling.

Typically, the target function is assumed to belong to a smoothness class such as a Hölder (Oono &
Suzuki, 2019; Schmidt-Hieber, 2020; Nakada & Imaizumi, 2020; Chen et al., 2022) or Besov (Liu
et al., 2021) space with smoothness parameters and have an intrinsic dimension. The smoothness level

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

controls the constant C (and sometimes exponent) in the generalization error bound Õ(N−C/D). In
practice, one often estimates an effective scaling exponent empirically by training models on various
dataset sizes and fitting a power-law curve. This curve guides extrapolation of dataset size and target
performance on larger scales (Kaplan et al., 2020; Hoffmann et al., 2022).

However, smoothness alone may be too coarse to fully determine scaling behavior. In this paper,
we investigate the role of local oscillatory complexity (LOC) on DNN scaling laws for data with
fixed dimension. By LOC, we mean local variations in the target mapping that make it challenging
for a network with spectral bias toward low frequencies to learn (Rahaman et al., 2019; Zhi-Qin
et al., 2020). Parity functions (Daniely, 2017; Daniely & Malach, 2020; Kim & Suzuki, 2025) are
an extreme example – highly oscillatory and notoriously hard for DNNs to learn – but our focus is
on more gradated control of oscillations. Oscillatory behavior could arise, for example, in a system
where multiple factors compensate each other while preserving some factors such as metabolic
factors.

Our contributions:

• We introduce a metric based on the expected norm of its gradient to quantitatively measure
a function’s local oscillatory complexity. This metric captures the “up-and-down” variation
of the target function on the data distribution.

• We propose a family of target functions with parity-like oscillations but continuous inputs.
This surrogate retains the challenging high-frequency behavior of parity while being easier
to learn and analyze in practice. We derive theoretical properties for this family: for any
two functions with different frequencies, the standard generalization error bounds (which
assume Hölder smoothness) differ only by constants regardless of frequencies. In log-log
space, those error bounds would appear as vertically shifted curves.

• We conduct extensive experiments on learning these oscillatory target functions with feed-
forward DNNs. We find that increasing oscillatory complexity can fundamentally alter
scaling behavior. In particular, when the target is highly wiggly, the test loss scaling curve
flattens out to an early saturation – adding more data yields little improvement, leading
to no improvement in classification performance. Furthermore, comparing scaling curves
across different oscillation levels, we observe that they are not mere shifts of one another
– their shapes (exponents and curvature) differ. In fact, there appears to be a threshold of
complexity beyond which the scaling exponent dramatically diminishes. We also compare
these empirical findings to theoretical predictions and to power-law extrapolations. The
classical theory would suggest scaling curves differ only by shifts; we find this holds only
when oscillatory complexity differences are modest. When complexity varies greatly, a
simple shift underestimates or overestimates performance.

In summary, data smoothness and dimension do not fully characterize for DNN scaling laws. Two
target functions with the same Hölder exponent β can exhibit very different scaling behavior if one is
highly oscillatory. Our work opens the door to a sharper characterization of target functions – beyond
traditional smoothness and dimension – that govern when and how DNN scaling laws break down.

The remainder of this paper is organized as follows. Sec. 2 provides background on generalization
bounds, empirical scaling laws, and why parity functions are difficult for DNNs. Sec. 3 formalizes
our problem statement. Sec. 4 introduces our oscillatory complexity measure, the parity-like target
function r(x), and potential scaling behavior for this function. Sec. 5 describes our experimental
setup and results, demonstrating the effect of oscillatory complexity on scaling laws. We analyze the
implications in Sec. 6, and conclude in Sec. 7.

2 BACKGROUND AND PRELIMINARIES

2.1 GENERALIZATION ERROR BOUNDS FOR DNNS

We begin by reviewing theoretical generalization error bounds for learning a target function with
DNNs. Consider supervised learning with training data {xn, f(xn)}Nn=1 where xn ∈ RD are
independent identically distributed (i.i.d.) samples and f : RD → R is the target mapping. Let f̂⋆(x)
be the empirical risk minimizer (ERM) to be obtained by solving the following optimization problem

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

during the DNN training

f̂⋆(x) = argmin
f̂(x)∈F

1

N

N∑
n=1

ϕ
(
f̂(xn), f(xn)

)
(1)

where F represents the DNN models with specific network architectures, and the ϕ(·, ·) is the training
loss function. The generalization error is the expected loss of f̂⋆(x) on the true target

ψ(f(x), f̂⋆(x)) = Ef(x)

[
σ
(
f(x), f̂⋆(x)

)]
(2)

where σ(·, ·) is a chosen loss (e.g. mean-squared error). As an example, for regression with
squared loss and assuming f(x) lies in a Hölder space with smoothness β, a representative bound
from Schmidt-Hieber (2020) is

ψ(f(x), f̂⋆(x)) = Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C1N

− 2β
2β+DL log2N (3)

for a constant C1 when certain conditions on the DNN capacity are met. That is, when the depth L
of the DNNs in F is fixed, the error ψ(f(x), f̂⋆(x)) is bounded by Õ(N− 2β

2β+D), where Õ(·) hides
constants and logarithm factors.

If the data lies on an H-dimensional manifold (intrinsic dimension H ≪ D), the rate improves. For
instance, Nakada & Imaizumi (2020) give

Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C2N

− 2β
2β+H (1 + logN)2 (4)

The error bound ψ(f(x), f̂⋆(x)) is on the order of Õ(N− 2β
2β+H). Recently, Chen et al. (2022) derived

a bound accounting for both ambient and intrinsic dimensions

Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C3

(
A2 + ξ2

)(
N− 2β

2β+H +
D

N

)
log3N (5)

where ∥f(x)∥∞ ≤ A, and ξ is the variance proxy of noise in the data. Therefore, the error
ψ(f(x), f̂⋆(x)) is bounded by Õ

(
N− 2β

2β+H + D
N

)
taking C3

(
A2 + ξ2

)
as a constant.

Across these results, the Hölder smoothness parameter β, and the dimensions (D,H) determine the
exponent of N in the bound. The Hölder radius K, which accounts for the LOC of the target, is
absorbed into the constant factors (e.g. C1, C2, C3) and does not affect the asymptotic rate N−C/D.

2.2 MODELING SCALING LAWS WITH POWER-LAW FITS

In practice, researchers often empirically verify scaling laws by log-log plotting error versus resource
and fitting a power-law. For a fixed DNN architecture, one commonly observes relationships of the
form

l(N) := C4N
−α1 (6)

l(M) := C5M
−α2 (7)

l(U) := C6U
−α3 (8)

for test loss l as a function of training set size N , model parameters M , or compute U . Here
C4, C5, C6 are prefactors and α1, α2, α3 are the fitted exponents. Kaplan et al. (2020) popularized
this approach for language models, demonstrating tight power-law fits over broad scales. Given a few
experimental points, one can extrapolate performance to larger N,M,U without exhaustive sweeps.

Hoffmann et al. (2022) extended this to two-variable scaling and introduced irreducible loss B to
handle plateaus. For example, they fit a form

l(N,M) := B + C8N
−α4 + C9M

−α5 (9)

where B is the asymptotic loss floor, C8 and C9 are multiplicative constants, and α4, α5 capture data
and model scaling respectively. Given a fixed compute budget U , such fits inform the optimal split

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

between data and model size for training. Overall, the key content of these empirical models lies in
the fitted exponents and prefactors. Different papers may use slightly different fitting functions or
include extra terms, but they all boil down to estimating these parameters.

When focusing on test loss versus data size N (with model fixed), the various forms above can be
simplified. One can write

l(N) := B + C8N
−α4 (10)

as a general functional form. Fitting such a model can be done by solving a regression problem in
log-space using robust fitting like Huber loss ζθ(·) (Huber, 1964; Hoffmann et al., 2022)

min
c8,α4,b

1

W

W∑
w=1

ζθ
(
loga l(Nw)− loga

(
ac8−α4 loga Nw + ab

))
(11)

where the DNN model is trained with varying data size {Nw}Ww , and C8 = ac8 , B = ab. The (11)
can be solved for a local minima by choosing the best fit from multiple initializations of parameters
using Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Nocedal, 1980).

Scaling laws vs. theory: There are emerging theoretical links between empirical scaling exponents
and structural properties of models and data. For instance, in kernel or infinite-width network analyses,
the decay of kernel eigenvalues can determine the effective data-scaling exponent. Specifically, if
the eigenvalues λk follow a power-law tail λk ∝ k−(1+α6), then in the resolution-limited regime
the test loss scales as N−α6 up to logarithmic factors. In this setting, the empirical exponent α1

observed in practice can be identified with the theoretical spectral exponent α6 (Bahri et al., 2024).
This connection shows that classical smoothness and dimension parameters, which shape eigenvalue
decay, may reappear in practice as fitted scaling exponents. Consequently, scaling experiments allow
us to infer aspects of the target function’s effective smoothness and dimensionality through the fitted
exponent, even though β and D (or H) are not directly observable.

In our work, we will compare what theory would predict for varying oscillation (namely, only a shift
in the curve, not a change in α4) to what we actually observe empirically (which will show changes
in the fitted α4 for different oscillation levels).

2.3 WHY PARITY FUNCTIONS ARE HARD FOR DNNS

A canonical example of a highly oscillatory target is the parity function. Let g : {0, 1}D → {−1, 1}
be a parity function defined by

g(x) := (−1)x
⊤v, (12)

where v ∈ {0, 1}D. g(x) outputs 1 or −1 depending on whether the sum of the selected input
bits (those where vd = 1) is even or odd. Parity is extremely wiggly: flipping any one input bit
in the support S := {d ∈ {1, . . . , D}|vd ̸= 0} flips the output. Thus, parity’s Fourier spectrum
is concentrated on high-frequency components. Standard neural networks have a known spectral
bias: they tend to learn low-frequency (smooth) functions first and struggle with high-frequency
functions (Rahaman et al., 2019; Zhi-Qin et al., 2020). This makes parity notoriously difficult for
gradient-based training. Indeed, Shalev-Shwartz et al. (2017) showed that for learning tasks drawn
from a large family of orthogonal functions, which is the case for parity functions with different v,
gradient descent provides little target-specific signal – gradients are almost independent of which
particular function in the family one is trying to learn.

Additionally, while specialized methods can solve parity under certain conditions (e.g. input data
distribution (Dahal et al., 2022), transformers and reasoning techniques (Han & Ghoshdastidar,
2025; Kim & Suzuki, 2025) or certain DNN initializations (Abbe et al., 2025)), these are more like
exceptions than the rule. In general, parity represents an extreme case of oscillation that breaks many
of the assumptions under which DNNs perform well.

Because parity is so challenging and oscillatory, it serves as a useful testbed for our question: does a
function’s local oscillatory complexity affect not only whether it can be learned, but how the learning
scales with data? In other words, even if we eventually can learn a wiggly function given enough data
and a large network, do we observe a different scaling law compared to a smoother function? This is
precisely what we explore, using a parity-like function r(x) defined on RD as described in Sec. 4.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 PROBLEM STATEMENT

We study how the scaling behavior of DNNs is affected by the LOC of the target function. Our focus
is on parity-like target functions that exhibit strong local oscillations. Concretely, we pose three key
questions:

• (Q1) Does a highly oscillatory target function materially affect the empirical scaling behavior
of DNNs (test loss vs. training data size)?

• (Q2) If yes, how does this effect manifest? Is it simply a vertical shift of the scaling curve
(i.e. a higher error floor), a change in the power-law exponent, the appearance of distinct
scaling regimes or saturation effects, or some combination of these?

• (Q3) Do existing theoretical generalization bounds and practical power-law extrapolation
methods accurately predict the scaling behavior when the target is very oscillatory, or do
they break down?

4 METHODOLOGY

4.1 QUANTIFYING LOCAL OSCILLATORY COMPLEXITY

We define a metric to quantify how locally oscillatory a function is, which intuitively measures how
much the function output wiggles up and down in local regions of input space. A natural choice is the
expected magnitude of the function’s gradient, since large gradients indicate rapid changes. Formally,
for a target differentiable function f(x) and an input distribution p(x), we define

η(f(x)) := Ep(x)[∥∇f(x)∥2] (13)

This captures the average local variation of f under the data distribution. In practice, we focus on the
local oscillation on the test distribution, since generalization performance is directly impacted by how
the function behaves on test data. Thus, we estimate η(f) empirically using held-out test samples

η̂(f(x)) :=
1

I

I∑
i=1

∥∇f(xi)∥2 (14)

for test points {xi}Ii=1. In our experiments, η̂(f) provides a single scalar complexity measure for
each target function instance.

This metric effectively averages the local slope of the function. A function with many rapid oscillations
(high-frequency content) will have a larger gradient norm on average. Note that η(f) is related to the
Lipschitz constant of f , but instead of a worst-case maximum, it’s an average magnitude under the
data distribution. It is also related to the Sobolev or Besov smoothness norms, but we treat it as a
more direct empirical measure of LOC.

4.2 PARITY-LIKE OSCILLATORY TARGET FUNCTION

To systematically study the effect of oscillations, we consider a target function family where oscillatory
complexity is controllable. The strict parity function g(x) is too extreme. Instead, we use a continuous
surrogate that retains parity’s oscillatory flavor. Specifically, we define

r(x) := cos(ω∥x∥1) (15)

where ω > 0 is a frequency parameter.

This choice has several advantages. First, when x has binary components and ω is an odd multiple
of π, r(x) reduces to the parity function by Euler’s formula. Thus, parity is a special case of
r(x). Second, by varying ω, we can smoothly control the oscillation frequency: larger ω means r(x)
oscillates more rapidly as a function of x. Third, unlike strict parity, r(x) is differentiable (subgradient
at 0) and its frequency components are not orthogonal (which actually helps gradient-based learning).
In fact, ∥∇r(x)∥2 = ωD

1
2 | sin(ω∥x∥1)|, which shows how ω influences local variation directly.

Overall, r(x) behaves like a parity function in terms of LOC, but is easier for standard networks to
learn (especially at moderate ω). We use r(x) as our target function in all experiments, treating ω (or

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Loss scaling curves. (b) Classification error scaling curves.

Figure 1: Scaling curves.

equivalently η̂(r)) as the knob for oscillatory complexity. The Hölder class of r(x) does not change
with ω (proof in the Appendix A.1) but the Hölder radius does.

In one dimension,

r′(x) = −ω sin(ω|x|) sign(x) (x ̸= 0), |r′(x)| ≤ ω, (16)

and r is Lipschitz with constant ω. Thus r ∈ C0,1 with Hölder radius K(r) ≍ ω, but r /∈ Cβ for any
β > 1 due to the cusp at x = 0. In D dimensions with r(x) = cos(ω∥x∥1), for x ̸= 0,

∇r(x) = −ω sin(ω∥x∥1) sign(x), ∥∇r(x)∥2 ≤ ω
√
D, (17)

so the same conclusion holds: r ∈ C0,1 with K ≍ ω, but not in Cβ>1. Consequently, changing
ω leaves the theoretical N -exponent for β = 1 intact, while increasing the approximation budget
through the Hölder radius K ∼ ω.

5 EXPERIMENTS

5.1 SETUP

Data generation: We construct a binary classification task based on the target function r(x). For
each trial, we fix an input dimension D and frequency ω. We sample input vectors x ∼ N (0, I). We
then compute y = r(x) and binarize the output by thresholding at the median value, yielding labels
in {0, 1} (approximately balanced classes). This procedure ensures that the classification boundary is
implicitly defined by the oscillatory function r(x).

We vary the frequency ω over a range spanning low to high oscillation. Specifically, ω is swept
through 10−3π, 10−2π, 10−1π, 100π, 101π, 102π, 103π. This produces target functions r(x) with a
wide range of η̂(r(x)) values, from very smooth to highly wiggly. We also consider input dimensions
D ∈ {1, 2, 4} to see the effect of data dimensionality.

For each (D,ω) condition, we generate a dataset and then subsample training sets of various sizes N
to trace a scaling curve. We use N ∈ {25, 26, 27, ..., 215}. We hold out a validation set and a test set,
each of size 10, 000 examples, for early stopping and final evaluation.

Model and training: We use a fixed multi-layer perceptron (MLP) architecture for all experiments.
Since our focus is on data scaling, we keep the model fixed. We train with mean-squared-error (MSE)
loss to predict labels under various (D,ω) conditions. Details of DNN architecture and training are
in the Appendix A.2.

5.2 RESULTS

(Q1): Does LOC affect scaling? – Yes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) η̂max(r(x)) fitting and η̂min(r(x)) shifting. (b) η̂min(r(x)) fitting and η̂max(r(x)) shifting.

Figure 2: Fitted curves.

Fig. 1(a) shows test loss vs. training size for varying local oscillatory complexity with dimension
D = 2 (figures for other dimensions are attached in the Appendix A.3). As η̂(r(x)) increases
(higher ω), the scaling curves shift upward and compress. In particular, high-complexity targets have
significantly higher error floors and smaller ranges of improvement. For the most wiggly functions,
the test loss drops by less than two orders of magnitude across N , indicating an early onset of the
irreducible error (saturation). In contrast, low-complexity targets continue to improve steadily with
more data. In other words, when the target function is very oscillatory, adding more data yields
diminishing returns – the model struggles to convert additional samples into significantly lower error.
This directly answers (Q1): higher LOC does materially hurt and limit scaling performance.

Remark. While the test loss continues to decrease with larger N under high-complexity targets,
it quickly saturates, and the classification accuracy δ in Fig. 1(b) shows virtually no improvement.
This observation challenges a common assumption in the community: that simply increasing the
dataset size invariably leads to better DNN performance. Our results indicate that at a certain turn-off
frequency, scaling fails to occur. This highlights an important implication for future practice: beyond
model and data size, intrinsic data properties must also be accounted when forecasting scaling
behavior or planning large-scale training.

Q2: How does the effect manifest? – It changes both exponent and prefactor of the scaling law,
not just a simple shift.

In Fig. 1(a), we observe that the high-frequency (high η̂(r(x))) curves not only lie above the low-
frequency ones, but also tend to flatten in slope. For example, the curve for ω = 103π (very high
complexity) almost plateaus, whereas the curve for ω = 10−3π has a steep slope through the range
shown. A similar pattern holds for other dimensions (See figures in the Appendix A.3): low ω curves
drop rapidly (steep slope) and maintain power-law behavior longer, while high ω curves level off
sooner.

Fig. 1(a) also shows that the scaling curves are not simple shifts of one another. Only when comparing
among the most extreme frequencies (e.g., within a cluster of all very high ω curves) do differences
between curves become nearly zero. But across moderate vs. high frequencies, the differences are
pronounced.

Q3: Do theory and standard extrapolation hold? – Only partially.

Theoretical bounds based on Hölder class would suggest the curves in Fig. 1(a) (also for other
dimensions) differ by a constant factor. This does not hold across the full range of ω, as we have
discussed in the (Q2). The practical power-law extrapolation also fails when complexity changes
substantially. We attempted to use a power-law fit on a baseline (either lowest-η̂min(r(x)) or highest-
η̂max(r(x))) scaling curve by estimating C8, α4, B in (11), then shift it with an additive constant E to
predict the other scaling curves (either η̂max(r(x)) or η̂min(r(x))). This step mimics the theoretical
assumption of proportional error plus a shift in log-space. All estimations are performed with 3-fold
cross-validation. Details of curve fitting are attached in the Appendix A.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Power-law fitting and baseline shifting performance.

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0044 0.72 0.80 0.0025 1.4 1.6 0.0052 —1 — —
10−2π 0.044 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
10−1π 0.38 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
100π 2.8 0.57 0.72 0.0020 1.1 1.3 0.0041 0.56 0.69 0.0019
101π 28 0.21 0.23 0.00075 0.17 0.19 0.00060 1.3 1.6 0.0047
102π 280 0.15 0.17 0.00055 0.17 0.18 0.00064 1.4 1.6 0.0048
103π 2800 0.19 0.22 0.00071 — — — 1.3 1.7 0.0047

Fig. 2 illustrates the curves by power-law fitting and baseline shifting for D = 2 (Other figures are
shown in Appendix A.5). The shifted curves (red band) systematically misestimate the true behavior:
shifting from a η̂min(r(x)) baseline to a η̂max(r(x)) target leads to severe underestimation at small
N and overestimation at large N , whereas shifting a η̂max(r(x)) baseline to a η̂min(r(x)) target
does the opposite. This is because the target curve has a different curvature that a mere shift can’t
capture. We quantified the fitting error (mean absolute error (MAE), root mean square error (RMSE),
Huber loss (HL)) for both direct power-law fits and shifted fits in Tables 1 (Other tables are shown
in Appendix A.6). Notably, when η̂(r(x)) differs substantially from the baseline η̂max(r(x)) or
η̂min(r(x)), the direct power-law fit on each curve yields lower error than trying to use a shift from
baseline fits. Indeed, the error of the shifted approximation jumps dramatically when oscillatory
complexities differ beyond a certain point (e.g. comparing η̂(r(x)) ≈ 2.8 vs. η̂(r(x)) ≈ 28).

These results are anticipated in Schmidt-Hieber (2020) and related works on ReLU approximation
of Hölder functions (Yarotsky, 2017; 2018), which show that if f ∈ C0,1([0, 1]t,K) (the Lips-
chitz/Hölder class with β = 1 and radius K), then for ReLU networks of sparsity s and logarithmic
depth, one has the uniform approximation bound

inf
g∈F(L,p,s,F)

∥f − g∥∞ ≲ K s−1/t.

Thus the exponent in s depends only on β and t, but the Hölder radius K multiplies the error. For
our surrogate r(x) = cos(ω∥x∥1) we have β = 1 and K ≍ ω (global Lipschitz). Consequently,
increasing frequency ω leaves the statistical N -rate exponent unchanged but linearly inflates the
approximation budget: to achieve tolerance ε one requires s ≳ (ω/ε)t. If s is held fixed, larger K
lowers the crossover point N⋆ where approximation error dominates, explaining the earlier saturation
of high-LOC curves observed in our experiments.

Oscillatory complexity affects all parameters of the scaling law – the exponent, the prefactor, and
even the additive residual. Existing theoretical bounds, which absorb complexity into constants and
imply scaling curves should just shift, are valid only when oscillation levels are similar. Empirically,
when complexity exceeds a threshold, those bounds become loose and a new power-law regime
emerges. Meanwhile, practical power-law fitting inherently accounts for whatever oscillation is
present in the data (since it fits each case separately), but it offers no guarantee for generalization if
the complexity differs between training and deployment data. In fact, if a model were trained on a
low-oscillation dataset and tested on a high-oscillation scenario, our results indicate its performance
could be much worse than predicted by simply extrapolating the training scaling law. This underscores
the importance of considering local oscillatory complexity as a factor in generalization.

6 DISCUSSION

Scaling law behavior depends on target function complexity. Our findings highlight that the
commonly observed power-law scaling of DNN performance can break down when the target function
is highly oscillatory. In classical smoothness terms, all our target functions r(x) are equally smooth
(β = 1), yet their scaling behavior differs markedly. This indicates that oscillatory complexity is a
distinct aspect of function complexity not captured by β. High oscillation introduces an effective

1No shifting between identical local oscillatory complexities.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

data inefficiency: beyond a certain sample size, the model cannot improve much because it struggles
with the fine-grained patterns in the target. This manifests as an elevated “irreducible” error floor and
a smaller effective exponent.

Scaling regime changes with high oscillatory targets. In our experiments, highly oscillatory
targets often produced regime changes in the scaling curves. Instead of following a long power-law
decline, the curves flatten almost immediately. This indicates that when oscillations dominate, scaling
effectively fails—additional data yields little or no benefit, especially in the classification performance.
Such behavior underscores the need to consider data properties, not just size, when predicting the
scalability of deep models.

Theoretical implications: Our experiments confirm that data dimensionality and Hölder class
continuity alone do not fully determine theoretical bounds. When the LOC varies substantially, it
appears to influence the scaling laws in a nontrivial way. Specifically, the empirical scaling exponent
α4 (Eq. (10)) depends on η̂(r(x)), even when β remains fixed across different values of ω. Indeed,
our DNNs yielded distinct α4 for different ω. This arises because the Hölder radius K is governed by
the LOC: when LOC is large, approximation error dominates the scaling behavior. These findings
suggest that LOC is a critical determinant of scaling laws, shaping not only the specific exponents but
also whether meaningful scaling persists or ultimately breaks down.

Practical considerations: For practitioners, an important takeaway is that extrapolating a scaling
law beyond the regime of oscillatory complexity it was fit on can lead to error. If one’s training data
is much less complex (smoother) than the possible test scenarios, a model might appear to scale well
(following a steep power law) on the training distribution, yet perform worse on a more complex test
distribution than predicted by simply adding more data of the same smoothness. In other words, data
quality in terms of target complexity matters: simply collecting more samples may not close the gap
if the new scenario is more complex. One might need additional model capacity or fundamentally
different approaches (e.g. architectures or features that capture the oscillatory structure) to improve
in that case. Conversely, if test data is smoother than training data, the model might be over-prepared
(having learned to fit unnecessary wiggles).

7 CONCLUSION

We presented a systematic study of how target function LOC impacts the scaling laws of deep neural
networks. High oscillatory complexity can severely limit the benefits of additional training data,
causing early saturation of test performance. Our results answered three key questions: (Q1) LOC
materially affects scaling behavior, often leading to higher error floors. (Q2) This effect is not
merely a vertical shift in the log-log scaling plot, but a change in the apparent empirical exponent
and scaling regimes. (Q3) Classical generalization bounds, which absorb the Hölder radius K into
constants, do not contradict these findings: in theory the asymptotic rate is unchanged, but larger K
inflates approximation constants and lowers the crossover point where approximation error dominates.
Empirically, this shift in regimes manifests itself as a change in the fitted exponent, even though the
underlying theoretical exponent remains fixed. Oscillatory complexity does not alter the asymptotic
exponent itself, however, it critically determines when and how scaling laws break down in practice.

These findings emphasize that smoothness class alone is insufficient to characterize scaling behavior;
the oscillatory nature of the target plays a crucial role in how a DNN’s error scales with data.
For theory, this suggests that new parameters—related to higher-order derivatives or frequency
spectra—should be incorporated into generalization bounds. In practice, researchers should be
cautious when extrapolating scaling laws beyond regimes of similar complexity and should consider
methods that explicitly address highly oscillatory targets.

REFERENCES

Emmanuel Abbe, Elisabetta Cornacchia, Jan Hązła, and Donald Kougang-Yombi. Learning high-
degree parities: The crucial role of the initialization. In Proc. of the International Conf. on Learning
Representations, Singapore, Apr. 2025.

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws in
language and vision. In Proc. Adv. Neural Inf. Process. Syst., volume 35, pp. 22300–22312, New

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Orleans, LA, Nov. 2022.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proc. Natl. Acad. Sci., 121(27), 2024. Art. id. e2311878121.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proc. Adv. Neural Inf. Process. Syst., volume 33, pp. 1877–1901, 2020.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. In Proc.
of the International Conf. on Learning Representations, Kigali, Rwanda, May 2023.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression on low-
dimensional manifolds using deep relu networks: Function approximation and statistical recovery.
Inf. Inference J. IMA, 11(4):1203–1253, 2022.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proc. Conf. Comput. Vis. Pattern Recogn., pp. 2818–2829,
Vancouver, Canada, Jun. 2023.

Biraj Dahal, Alexander Havrilla, Minshuo Chen, Tuo Zhao, and Wenjing Liao. On deep generative
models for approximation and estimation of distributions on manifolds. In Proc. Adv. Neural Inf.
Process. Syst., volume 35, pp. 10615–10628, New Orleans, LA, Dec. 2022.

Amit Daniely. Depth separation for neural networks. In Proc. Conf. Learn. Theory, volume 65, pp.
690–696, Amsterdam, Netherlands, Jul. 2017.

Amit Daniely and Eran Malach. Learning parities with neural networks. In Proc. Adv. Neural Inf.
Process. Syst., volume 33, pp. 20356–20365, Dec. 2020.

Yaomengxi Han and Debarghya Ghoshdastidar. Attention learning is needed to efficiently learn parity
function. arXiv preprint arXiv:2502.07553, 2025.

Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and approximation
theory for transformer neural networks on intrinsically low-dimensional data. In Proc. Adv. Neural
Inf. Process. Syst., volume 37, pp. 42162–42210, Vancouver, Canada, Dec. 2024.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Peter J Huber. Robust estimation of a location parameter. Ann. Math. Stat., 35(1):73–101, 1964.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought. In
Proc. of the International Conf. on Learning Representations, Singapore, Apr. 2025.

Hao Liu, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Besov function approximation and binary
classification on low-dimensional manifolds using convolutional residual networks. In Proc. Int.
Conf. Machine Learning., pp. 6770–6780, Jul. 2021.

Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep neural
network with intrinsic dimensionality. J. Mach. Learning Res., 21(174):1–38, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Math. Comp., 35(151):773–782,
1980.

Kenta Oono and Taiji Suzuki. Approximation and non-parametric estimation of resnet-type convolu-
tional neural networks. In Proc. Int. Conf. Machine Learning., pp. 4922–4931, Long Beach, CA,
Jun. 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In Proc. Int. Conf. Machine
Learning., pp. 5301–5310, Long Beach, CA, Jun. 2019.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive predic-
tion of the generalization error across scales. In Proc. of the International Conf. on Learning
Representations, Apr. 2020.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activa-
tion function. Ann. Stat., 48(4):1875 – 1897, 2020.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In Proc. Int. Conf. Machine Learning., pp. 3067–3075, Sydney, Australia, Aug. 2017.

Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold dimension. J. Mach. Learning
Res., 23(9):1–34, 2022.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. In Proc. Adv. Neural Inf. Process. Syst.,
volume 35, pp. 19523–19536, New Orleans, LA, Nov. 2022.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Netw., 94:
103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In
Proc. Conf. Learn. Theory, pp. 639–649, Stockholm, Sweden, Jul. 2018.

Zhi-Qin John Xu Zhi-Qin, John Xu, Yaoyu Zhang Yaoyu Zhang, Tao Luo Tao Luo, Yanyang
Xiao Yanyang Xiao, and Zheng Ma Zheng Ma. Frequency principle: Fourier analysis sheds light
on deep neural networks. Comm. Phys. Comput., 28(5):1746–1767, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOFS

Given the target mapping r(x) in (15), we show that its Hölder class is unaffected by ω

Proof: We first show that the smoothness parameter β is independent of frequency parameter ω.
∀x,y ∈ R \ {0},

|r(x)− r(y)| = |cos(ω∥x∥1)− cos(ω∥y∥1)| ≤ |ω| |∥x∥1 − ∥y∥1| ≤ |ω|∥x− y∥1
≤ |ω|D ∥x− y∥∞ (18)

From (18) we obtain that r(x) is Lipschitz with constant |ω|D. Also ∥r(x)∥∞ ≤ 1, so we may take a
Hölder radius K ≥ max(1, |ω|D) and conclude r(x) ∈ C0,1 (i.e.β = 1).

Therefore, the bounds in (3)– (5) keep the same N -exponent but differ by the multiplicative constants
that depend on ω (through the Hölder radius K).

A.2 DNN ARCHITECTURE AND TRAINING

The DNN is a multilayer perceptron with hidden-layer sizes {1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2}. Each hidden layer is followed by batch normal-
ization and a ReLU activation, except the final layer. This architecture is chosen to be sufficiently
expressive yet otherwise generic; it was not tailored to the parity task. The specific widths are not
critical, as our study focuses on scaling behavior with training data size rather than model design.

Training uses the Adam optimizer with a learning rate of 10−4 and a mini-batch size of 128. Early
stopping based on validation accuracy is applied. For each condition, we train with five random
initializations and report the average test performance.

A.3 SCALING CURVES

Fig. 3 and 4 present the scaling curves of test loss and classification error as the training data size
varies across all dimensions.

A.4 SCALING CURVE FITTING

We fit power-law models to the scaling curves in Fig. 1(a) by solving (11). The parameters b, c8, and
α4 were initialized as log2(l(Nmax)), log2(l(Nmin)− l(Nmax)), and 0.5, respectively, following the
same scale as in Hestness et al. (2017); Bahri et al. (2024); Rosenfeld et al. (2020); Sharma & Kaplan
(2022), with additional Gaussian noise added. We then performed 3-fold cross-validation on the full
set of 11 (log2N, log2 l) pairs for each curve. For each fold, 100 random initializations of (11) were
executed with a fixed θ = 10−3, and the fit achieving the lowest Huber loss on the training split was
selected.

To further compare empirical fits with theoretical generalization bounds, we carried out an additional
fitting procedure. To test if theoretical error bounds differ by shifts in logarithmic scale under varying
ω, we introduced an additional shift parameter E. Specifically, for each dimension D, we used the
fitted parameters c8, α4, and b obtained from scaling curves with η̂max(r(x)) and η̂min(r(x)) across
3 folds, yielding 6 baseline parameter sets. Given each baseline, we solved the following optimization
problem to estimate only the shift E:

min
E

1

W

W∑
w=1

ζθ
(
loga l(Nw)− loga

(
ac8−α4 loga Nw + ab

)
− E

)
(19)

This procedure was again applied with 3-fold cross-validation for each scaling curve under different
η̂(r(x)), with E initialized at 0.

A.5 FITTED CURVES

Fig. 5 and 6 present the fitted curves obtained from power-law fitting and baseline shifting across
different dimensions. In these figures, the baseline parameters c8, α4, and b are always taken from

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 3: Test loss scaling curves.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 4: Classification error scaling curves.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 5: Fitted curves for η̂max(r(x)) fitting and η̂min(r(x)) shifting.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 6: Fitted curves for η̂min(r(x)) fitting and η̂max(r(x)) shifting.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Power-law fitting and baseline shifting performance (D = 1).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0031 0.34 0.41 0.0012 1.4 1.7 0.0052 — — —
10−2π 0.031 0.34 0.41 0.0012 1.4 1.7 0.0052 0.29 0.34 0.0011
10−1π 0.30 0.34 0.41 0.0012 1.4 1.7 0.0052 0.29 0.34 0.0011
100π 2.0 0.30 0.40 0.0011 0.97 1.2 0.0035 0.47 0.57 0.0016
101π 20 0.12 0.15 0.00043 0.096 0.11 0.00036 1.3 1.5 0.0045
102π 200 0.19 0.25 0.00068 0.11 0.16 0.00041 1.3 1.5 0.0046
103π 2000 0.11 0.16 0.00038 — — — 1.3 1.5 0.0047

Table 3: Power-law fitting and baseline shifting performance (D = 2).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0044 0.72 0.80 0.0025 1.4 1.6 0.0052 — — —
10−2π 0.044 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
10−1π 0.38 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
100π 2.8 0.57 0.72 0.0020 1.1 1.3 0.0041 0.56 0.69 0.0019
101π 28 0.21 0.23 0.00075 0.17 0.19 0.00060 1.3 1.6 0.0047
102π 280 0.15 0.17 0.00055 0.17 0.18 0.00064 1.4 1.6 0.0048
103π 2800 0.19 0.22 0.00071 — — — 1.3 1.7 0.0047

Table 4: Power-law fitting and baseline shifting performance (D = 4).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0063 0.66 0.78 0.0024 1.5 1.6 0.0055 — — —
10−2π 0.062 0.66 0.78 0.0024 1.5 1.6 0.0055 0.52 0.56 0.0019
10−1π 0.34 0.76 0.90 0.0028 1.4 1.5 0.0050 0.68 0.72 0.0026
100π 4.0 0.37 0.45 0.0013 0.72 0.78 0.0027 0.57 0.77 0.0020
101π 40 0.27 0.30 0.0010 0.21 0.23 0.00079 1.3 1.4 0.0046
102π 400 0.22 0.26 0.00083 0.21 0.24 0.00076 1.3 1.5 0.0048
103π 4000 0.24 0.28 0.00087 — — — 1.3 1.5 0.0047

the first fold of the cross-validation during power-law fitting. The additional shift parameter E is then
estimated using 3-fold cross-validation. Note that shifting is performed only between η̂max(r(x))
and η̂min(r(x)). This selection limits the number of figures shown, but the qualitative conclusions
remain the same as in other cases (e.g., using baseline parameters from different folds or shifting
between arbitrary pairs of η̂(r(x))).

A.6 FITTING PERFORMANCE

Tables 2–4 report the performance of power-law fitting and baseline shifting, evaluated with MAE,
RMSE, and HL across different dimensions. Metric values are averaged over three folds in the
estimation of the shifting parameter. The baseline parameters are taken from the first fold of the
cross-validation during power-law fitting. Using baseline parameters from other folds yields similar
trends and is therefore omitted here.

14

	Introduction
	Background and preliminaries
	Generalization error bounds for DNNs
	Modeling scaling laws with power-law fits
	Why parity functions are hard for DNNs

	Problem statement
	Methodology
	Quantifying local oscillatory complexity
	Parity-like oscillatory target function

	Experiments
	Setup
	Results

	Discussion
	Conclusion
	Appendix
	Proofs
	DNN architecture and training
	Scaling curves
	Scaling curve fitting
	Fitted curves
	Fitting performance

