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ABSTRACT

Deep neural network (DNN) scaling laws characterize how a model’s performance
(e.g. test loss) improves as a function of resources such as training data size,
model parameters, or compute. These laws hold for a wide variety of model and
data types. Empirical and theoretical results have found that the parameters of
the scaling laws depend on aspects of the target data function such as continuity
class and dimension. Here we show that another feature of the data, namely
the local oscillatory complexity (LOC) of the target function, can dramatically
alter scaling behavior. In particular, when the target function is highly oscillatory
(parity-like), the drop in loss with more training data becomes shallower. We
formalize a metric for local oscillatory complexity and study a family of parity-like
target functions where this complexity is controlled by a frequency parameter. We
show that high oscillatory complexity can shift the scaling curve upward (higher
error floor), change the scaling exponent, and induce an earlier saturation regime.
In our experiments, DNNs fail to benefit from additional data when the target
function is highly oscillatory. These findings reveal that data continuity class and
dimension are insufficient to guarantee standard scaling behavior – LOC must also
be accounted for.

1 INTRODUCTION

Deep neural network (DNN) scaling laws – empirical power-law relationships predicting how model
performance scales with data, model size, or compute – have become a cornerstone for designing
modern deep learning models. These laws have been validated across many architectures (feedforward
neural networks (FNNs), recurrent neural networks (RNNs), convolutional neural networks (CNNs),
transformers) and tasks (language modeling, image classification, speech recognition) (Hestness
et al., 2017; Kaplan et al., 2020; Rosenfeld et al., 2020; Alabdulmohsin et al., 2022; Sorscher et al.,
2022; Cherti et al., 2023; Caballero et al., 2023). By fitting scaling exponents on midsize experiments,
practitioners can forecast the dataset size or model size needed to reach a target accuracy without
exhaustive searches (Hernandez et al., 2021; Hoffmann et al., 2022). For example, such methods
guided the design of Chinchilla, which, with fewer parameters, outperformed much larger models
like generative pre-trained transformer (GPT)-3 (Brown et al., 2020) by solving optimal model and
data size using power-law relationship (Hoffmann et al., 2022). Scaling laws thus enable efficient
allocation of resources when training state-of-the-art models.

Beyond their empirical utility, there is substantial theoretical interest in why scaling laws hold. A
common theoretical formulation relates a model’s generalization error to the training sample size N
via a power-law form N−C/D. Here D is a notion of data dimension and C is a constant determined
by properties of the target function that DNN models try to learn (Oono & Suzuki, 2019; Schmidt-
Hieber, 2020). If data lie on a low-dimensional manifold, using its intrinsic dimension H ≪ D can
yield faster rates than the ambient dimension (Nakada & Imaizumi, 2020; Liu et al., 2021; Dahal
et al., 2022; Chen et al., 2022; Havrilla & Liao, 2024). These analyses – spanning fully-connected
networks, CNNs, transformers – clarify how function class smoothness, model capacity, and data
geometry together determine performance scaling.

Typically, the target function is assumed to belong to a smoothness class such as a Hölder (Oono &
Suzuki, 2019; Schmidt-Hieber, 2020; Nakada & Imaizumi, 2020; Chen et al., 2022) or Besov (Liu
et al., 2021) space with smoothness parameters and have an intrinsic dimension. The smoothness level
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controls the constant C (and sometimes exponent) in the generalization error bound Õ(N−C/D). In
practice, one often estimates an effective scaling exponent empirically by training models on various
dataset sizes and fitting a power-law curve. This curve guides extrapolation of dataset size and target
performance on larger scales (Kaplan et al., 2020; Hoffmann et al., 2022).

However, smoothness alone may be too coarse to fully determine scaling behavior. In this paper,
we investigate the role of local oscillatory complexity (LOC) on DNN scaling laws for data with
fixed dimension. By LOC, we mean local variations in the target mapping that make it challenging
for a network with spectral bias toward low frequencies to learn (Rahaman et al., 2019; Zhi-Qin
et al., 2020). Parity functions (Daniely, 2017; Daniely & Malach, 2020; Kim & Suzuki, 2025) are
an extreme example – highly oscillatory and notoriously hard for DNNs to learn – but our focus is
on more gradated control of oscillations. Oscillatory behavior could arise, for example, in a system
where multiple factors compensate each other while preserving some factors such as metabolic
factors.

Our contributions:

• We introduce a metric based on the expected norm of its gradient to quantitatively measure
a function’s local oscillatory complexity. This metric captures the “up-and-down” variation
of the target function on the data distribution.

• We propose a family of target functions with parity-like oscillations but continuous inputs.
This surrogate retains the challenging high-frequency behavior of parity while being easier
to learn and analyze in practice. We derive theoretical properties for this family: for any
two functions with different frequencies, the standard generalization error bounds (which
assume Hölder smoothness) differ only by constants regardless of frequencies. In log-log
space, those error bounds would appear as vertically shifted curves.

• We conduct extensive experiments on learning these oscillatory target functions with feed-
forward DNNs. We find that increasing oscillatory complexity can fundamentally alter
scaling behavior. In particular, when the target is highly wiggly, the test loss scaling curve
flattens out to an early saturation – adding more data yields little improvement, leading
to no improvement in classification performance. Furthermore, comparing scaling curves
across different oscillation levels, we observe that they are not mere shifts of one another
– their shapes (exponents and curvature) differ. In fact, there appears to be a threshold of
complexity beyond which the scaling exponent dramatically diminishes. We also compare
these empirical findings to theoretical predictions and to power-law extrapolations. The
classical theory would suggest scaling curves differ only by shifts; we find this holds only
when oscillatory complexity differences are modest. When complexity varies greatly, a
simple shift underestimates or overestimates performance.

In summary, data smoothness and dimension do not fully characterize for DNN scaling laws. Two
target functions with the same Hölder exponent β can exhibit very different scaling behavior if one is
highly oscillatory. Our work opens the door to a sharper characterization of target functions – beyond
traditional smoothness and dimension – that govern when and how DNN scaling laws break down.

The remainder of this paper is organized as follows. Sec. 2 provides background on generalization
bounds, empirical scaling laws, and why parity functions are difficult for DNNs. Sec. 3 formalizes
our problem statement. Sec. 4 introduces our oscillatory complexity measure, the parity-like target
function r(x), and potential scaling behavior for this function. Sec. 5 describes our experimental
setup and results, demonstrating the effect of oscillatory complexity on scaling laws. We analyze the
implications in Sec. 6, and conclude in Sec. 7.

2 BACKGROUND AND PRELIMINARIES

2.1 GENERALIZATION ERROR BOUNDS FOR DNNS

We begin by reviewing theoretical generalization error bounds for learning a target function with
DNNs. Consider supervised learning with training data {xn, f(xn)}Nn=1 where xn ∈ RD are
independent identically distributed (i.i.d.) samples and f : RD → R is the target mapping. Let f̂⋆(x)
be the empirical risk minimizer (ERM) to be obtained by solving the following optimization problem
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during the DNN training

f̂⋆(x) = argmin
f̂(x)∈F

1

N

N∑
n=1

ϕ
(
f̂(xn), f(xn)

)
(1)

where F represents the DNN models with specific network architectures, and the ϕ(·, ·) is the training
loss function. The generalization error is the expected loss of f̂⋆(x) on the true target

ψ(f(x), f̂⋆(x)) = Ef(x)

[
σ
(
f(x), f̂⋆(x)

)]
(2)

where σ(·, ·) is a chosen loss (e.g. mean-squared error). As an example, for regression with
squared loss and assuming f(x) lies in a Hölder space with smoothness β, a representative bound
from Schmidt-Hieber (2020) is

ψ(f(x), f̂⋆(x)) = Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C1N

− 2β
2β+DL log2N (3)

for a constant C1 when certain conditions on the DNN capacity are met. That is, when the depth L
of the DNNs in F is fixed, the error ψ(f(x), f̂⋆(x)) is bounded by Õ(N− 2β

2β+D ), where Õ(·) hides
constants and logarithm factors.

If the data lies on an H-dimensional manifold (intrinsic dimension H ≪ D), the rate improves. For
instance, Nakada & Imaizumi (2020) give

Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C2N

− 2β
2β+H (1 + logN)2 (4)

The error bound ψ(f(x), f̂⋆(x)) is on the order of Õ(N− 2β
2β+H ). Recently, Chen et al. (2022) derived

a bound accounting for both ambient and intrinsic dimensions

Ef(x)

[(
f(x)− f̂⋆(x)

)2
]
≤ C3

(
A2 + ξ2

)(
N− 2β

2β+H +
D

N

)
log3N (5)

where ∥f(x)∥∞ ≤ A, and ξ is the variance proxy of noise in the data. Therefore, the error
ψ(f(x), f̂⋆(x)) is bounded by Õ

(
N− 2β

2β+H + D
N

)
taking C3

(
A2 + ξ2

)
as a constant.

Across these results, the Hölder smoothness parameter β, and the dimensions (D,H) determine the
exponent of N in the bound. The Hölder radius K, which accounts for the LOC of the target, is
absorbed into the constant factors (e.g. C1, C2, C3) and does not affect the asymptotic rate N−C/D.

2.2 MODELING SCALING LAWS WITH POWER-LAW FITS

In practice, researchers often empirically verify scaling laws by log-log plotting error versus resource
and fitting a power-law. For a fixed DNN architecture, one commonly observes relationships of the
form

l(N) := C4N
−α1 (6)

l(M) := C5M
−α2 (7)

l(U) := C6U
−α3 (8)

for test loss l as a function of training set size N , model parameters M , or compute U . Here
C4, C5, C6 are prefactors and α1, α2, α3 are the fitted exponents. Kaplan et al. (2020) popularized
this approach for language models, demonstrating tight power-law fits over broad scales. Given a few
experimental points, one can extrapolate performance to larger N,M,U without exhaustive sweeps.

Hoffmann et al. (2022) extended this to two-variable scaling and introduced irreducible loss B to
handle plateaus. For example, they fit a form

l(N,M) := B + C8N
−α4 + C9M

−α5 (9)

where B is the asymptotic loss floor, C8 and C9 are multiplicative constants, and α4, α5 capture data
and model scaling respectively. Given a fixed compute budget U , such fits inform the optimal split
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between data and model size for training. Overall, the key content of these empirical models lies in
the fitted exponents and prefactors. Different papers may use slightly different fitting functions or
include extra terms, but they all boil down to estimating these parameters.

When focusing on test loss versus data size N (with model fixed), the various forms above can be
simplified. One can write

l(N) := B + C8N
−α4 (10)

as a general functional form. Fitting such a model can be done by solving a regression problem in
log-space using robust fitting like Huber loss ζθ(·) (Huber, 1964; Hoffmann et al., 2022)

min
c8,α4,b

1

W

W∑
w=1

ζθ
(
loga l(Nw)− loga

(
ac8−α4 loga Nw + ab

))
(11)

where the DNN model is trained with varying data size {Nw}Ww , and C8 = ac8 , B = ab. The (11)
can be solved for a local minima by choosing the best fit from multiple initializations of parameters
using Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Nocedal, 1980).

Scaling laws vs. theory: There are emerging theoretical links between empirical scaling exponents
and structural properties of models and data. For instance, in kernel or infinite-width network analyses,
the decay of kernel eigenvalues can determine the effective data-scaling exponent. Specifically, if
the eigenvalues λk follow a power-law tail λk ∝ k−(1+α6), then in the resolution-limited regime
the test loss scales as N−α6 up to logarithmic factors. In this setting, the empirical exponent α1

observed in practice can be identified with the theoretical spectral exponent α6 (Bahri et al., 2024).
This connection shows that classical smoothness and dimension parameters, which shape eigenvalue
decay, may reappear in practice as fitted scaling exponents. Consequently, scaling experiments allow
us to infer aspects of the target function’s effective smoothness and dimensionality through the fitted
exponent, even though β and D (or H) are not directly observable.

In our work, we will compare what theory would predict for varying oscillation (namely, only a shift
in the curve, not a change in α4) to what we actually observe empirically (which will show changes
in the fitted α4 for different oscillation levels).

2.3 WHY PARITY FUNCTIONS ARE HARD FOR DNNS

A canonical example of a highly oscillatory target is the parity function. Let g : {0, 1}D → {−1, 1}
be a parity function defined by

g(x) := (−1)x
⊤v, (12)

where v ∈ {0, 1}D. g(x) outputs 1 or −1 depending on whether the sum of the selected input
bits (those where vd = 1) is even or odd. Parity is extremely wiggly: flipping any one input bit
in the support S := {d ∈ {1, . . . , D}|vd ̸= 0} flips the output. Thus, parity’s Fourier spectrum
is concentrated on high-frequency components. Standard neural networks have a known spectral
bias: they tend to learn low-frequency (smooth) functions first and struggle with high-frequency
functions (Rahaman et al., 2019; Zhi-Qin et al., 2020). This makes parity notoriously difficult for
gradient-based training. Indeed, Shalev-Shwartz et al. (2017) showed that for learning tasks drawn
from a large family of orthogonal functions, which is the case for parity functions with different v,
gradient descent provides little target-specific signal – gradients are almost independent of which
particular function in the family one is trying to learn.

Additionally, while specialized methods can solve parity under certain conditions (e.g. input data
distribution (Dahal et al., 2022), transformers and reasoning techniques (Han & Ghoshdastidar,
2025; Kim & Suzuki, 2025) or certain DNN initializations (Abbe et al., 2025)), these are more like
exceptions than the rule. In general, parity represents an extreme case of oscillation that breaks many
of the assumptions under which DNNs perform well.

Because parity is so challenging and oscillatory, it serves as a useful testbed for our question: does a
function’s local oscillatory complexity affect not only whether it can be learned, but how the learning
scales with data? In other words, even if we eventually can learn a wiggly function given enough data
and a large network, do we observe a different scaling law compared to a smoother function? This is
precisely what we explore, using a parity-like function r(x) defined on RD as described in Sec. 4.2.
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3 PROBLEM STATEMENT

We study how the scaling behavior of DNNs is affected by the LOC of the target function. Our focus
is on parity-like target functions that exhibit strong local oscillations. Concretely, we pose three key
questions:

• (Q1) Does a highly oscillatory target function materially affect the empirical scaling behavior
of DNNs (test loss vs. training data size)?

• (Q2) If yes, how does this effect manifest? Is it simply a vertical shift of the scaling curve
(i.e. a higher error floor), a change in the power-law exponent, the appearance of distinct
scaling regimes or saturation effects, or some combination of these?

• (Q3) Do existing theoretical generalization bounds and practical power-law extrapolation
methods accurately predict the scaling behavior when the target is very oscillatory, or do
they break down?

4 METHODOLOGY

4.1 QUANTIFYING LOCAL OSCILLATORY COMPLEXITY

We define a metric to quantify how locally oscillatory a function is, which intuitively measures how
much the function output wiggles up and down in local regions of input space. A natural choice is the
expected magnitude of the function’s gradient, since large gradients indicate rapid changes. Formally,
for a target differentiable function f(x) and an input distribution p(x), we define

η(f(x)) := Ep(x)[∥∇f(x)∥2] (13)

This captures the average local variation of f under the data distribution. In practice, we focus on the
local oscillation on the test distribution, since generalization performance is directly impacted by how
the function behaves on test data. Thus, we estimate η(f) empirically using held-out test samples

η̂(f(x)) :=
1

I

I∑
i=1

∥∇f(xi)∥2 (14)

for test points {xi}Ii=1. In our experiments, η̂(f) provides a single scalar complexity measure for
each target function instance.

This metric effectively averages the local slope of the function. A function with many rapid oscillations
(high-frequency content) will have a larger gradient norm on average. Note that η(f) is related to the
Lipschitz constant of f , but instead of a worst-case maximum, it’s an average magnitude under the
data distribution. It is also related to the Sobolev or Besov smoothness norms, but we treat it as a
more direct empirical measure of LOC.

4.2 PARITY-LIKE OSCILLATORY TARGET FUNCTION

To systematically study the effect of oscillations, we consider a target function family where oscillatory
complexity is controllable. The strict parity function g(x) is too extreme. Instead, we use a continuous
surrogate that retains parity’s oscillatory flavor. Specifically, we define

r(x) := cos(ω∥x∥1) (15)

where ω > 0 is a frequency parameter.

This choice has several advantages. First, when x has binary components and ω is an odd multiple
of π, r(x) reduces to the parity function by Euler’s formula. Thus, parity is a special case of
r(x). Second, by varying ω, we can smoothly control the oscillation frequency: larger ω means r(x)
oscillates more rapidly as a function of x. Third, unlike strict parity, r(x) is differentiable (subgradient
at 0) and its frequency components are not orthogonal (which actually helps gradient-based learning).
In fact, ∥∇r(x)∥2 = ωD

1
2 | sin(ω∥x∥1)|, which shows how ω influences local variation directly.

Overall, r(x) behaves like a parity function in terms of LOC, but is easier for standard networks to
learn (especially at moderate ω). We use r(x) as our target function in all experiments, treating ω (or

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Loss scaling curves. (b) Classification error scaling curves.

Figure 1: Scaling curves.

equivalently η̂(r)) as the knob for oscillatory complexity. The Hölder class of r(x) does not change
with ω (proof in the Appendix A.1) but the Hölder radius does.

In one dimension,

r′(x) = −ω sin(ω|x|) sign(x) (x ̸= 0), |r′(x)| ≤ ω, (16)

and r is Lipschitz with constant ω. Thus r ∈ C0,1 with Hölder radius K(r) ≍ ω, but r /∈ Cβ for any
β > 1 due to the cusp at x = 0. In D dimensions with r(x) = cos(ω∥x∥1), for x ̸= 0,

∇r(x) = −ω sin(ω∥x∥1) sign(x), ∥∇r(x)∥2 ≤ ω
√
D, (17)

so the same conclusion holds: r ∈ C0,1 with K ≍ ω, but not in Cβ>1. Consequently, changing
ω leaves the theoretical N -exponent for β = 1 intact, while increasing the approximation budget
through the Hölder radius K ∼ ω.

5 EXPERIMENTS

5.1 SETUP

Data generation: We construct a binary classification task based on the target function r(x). For
each trial, we fix an input dimension D and frequency ω. We sample input vectors x ∼ N (0, I). We
then compute y = r(x) and binarize the output by thresholding at the median value, yielding labels
in {0, 1} (approximately balanced classes). This procedure ensures that the classification boundary is
implicitly defined by the oscillatory function r(x).

We vary the frequency ω over a range spanning low to high oscillation. Specifically, ω is swept
through 10−3π, 10−2π, 10−1π, 100π, 101π, 102π, 103π. This produces target functions r(x) with a
wide range of η̂(r(x)) values, from very smooth to highly wiggly. We also consider input dimensions
D ∈ {1, 2, 4} to see the effect of data dimensionality.

For each (D,ω) condition, we generate a dataset and then subsample training sets of various sizes N
to trace a scaling curve. We use N ∈ {25, 26, 27, ..., 215}. We hold out a validation set and a test set,
each of size 10, 000 examples, for early stopping and final evaluation.

Model and training: We use a fixed multi-layer perceptron (MLP) architecture for all experiments.
Since our focus is on data scaling, we keep the model fixed. We train with mean-squared-error (MSE)
loss to predict labels under various (D,ω) conditions. Details of DNN architecture and training are
in the Appendix A.2.

5.2 RESULTS

(Q1): Does LOC affect scaling? – Yes.

6
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(a) η̂max(r(x)) fitting and η̂min(r(x)) shifting. (b) η̂min(r(x)) fitting and η̂max(r(x)) shifting.

Figure 2: Fitted curves.

Fig. 1(a) shows test loss vs. training size for varying local oscillatory complexity with dimension
D = 2 (figures for other dimensions are attached in the Appendix A.3). As η̂(r(x)) increases
(higher ω), the scaling curves shift upward and compress. In particular, high-complexity targets have
significantly higher error floors and smaller ranges of improvement. For the most wiggly functions,
the test loss drops by less than two orders of magnitude across N , indicating an early onset of the
irreducible error (saturation). In contrast, low-complexity targets continue to improve steadily with
more data. In other words, when the target function is very oscillatory, adding more data yields
diminishing returns – the model struggles to convert additional samples into significantly lower error.
This directly answers (Q1): higher LOC does materially hurt and limit scaling performance.

Remark. While the test loss continues to decrease with larger N under high-complexity targets,
it quickly saturates, and the classification accuracy δ in Fig. 1(b) shows virtually no improvement.
This observation challenges a common assumption in the community: that simply increasing the
dataset size invariably leads to better DNN performance. Our results indicate that at a certain turn-off
frequency, scaling fails to occur. This highlights an important implication for future practice: beyond
model and data size, intrinsic data properties must also be accounted when forecasting scaling
behavior or planning large-scale training.

Q2: How does the effect manifest? – It changes both exponent and prefactor of the scaling law,
not just a simple shift.

In Fig. 1(a), we observe that the high-frequency (high η̂(r(x))) curves not only lie above the low-
frequency ones, but also tend to flatten in slope. For example, the curve for ω = 103π (very high
complexity) almost plateaus, whereas the curve for ω = 10−3π has a steep slope through the range
shown. A similar pattern holds for other dimensions (See figures in the Appendix A.3): low ω curves
drop rapidly (steep slope) and maintain power-law behavior longer, while high ω curves level off
sooner.

Fig. 1(a) also shows that the scaling curves are not simple shifts of one another. Only when comparing
among the most extreme frequencies (e.g., within a cluster of all very high ω curves) do differences
between curves become nearly zero. But across moderate vs. high frequencies, the differences are
pronounced.

Q3: Do theory and standard extrapolation hold? – Only partially.

Theoretical bounds based on Hölder class would suggest the curves in Fig. 1(a) (also for other
dimensions) differ by a constant factor. This does not hold across the full range of ω, as we have
discussed in the (Q2). The practical power-law extrapolation also fails when complexity changes
substantially. We attempted to use a power-law fit on a baseline (either lowest-η̂min(r(x)) or highest-
η̂max(r(x))) scaling curve by estimating C8, α4, B in (11), then shift it with an additive constant E to
predict the other scaling curves (either η̂max(r(x)) or η̂min(r(x))). This step mimics the theoretical
assumption of proportional error plus a shift in log-space. All estimations are performed with 3-fold
cross-validation. Details of curve fitting are attached in the Appendix A.4.
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Table 1: Power-law fitting and baseline shifting performance.

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0044 0.72 0.80 0.0025 1.4 1.6 0.0052 —1 — —
10−2π 0.044 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
10−1π 0.38 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
100π 2.8 0.57 0.72 0.0020 1.1 1.3 0.0041 0.56 0.69 0.0019
101π 28 0.21 0.23 0.00075 0.17 0.19 0.00060 1.3 1.6 0.0047
102π 280 0.15 0.17 0.00055 0.17 0.18 0.00064 1.4 1.6 0.0048
103π 2800 0.19 0.22 0.00071 — — — 1.3 1.7 0.0047

Fig. 2 illustrates the curves by power-law fitting and baseline shifting for D = 2 (Other figures are
shown in Appendix A.5). The shifted curves (red band) systematically misestimate the true behavior:
shifting from a η̂min(r(x)) baseline to a η̂max(r(x)) target leads to severe underestimation at small
N and overestimation at large N , whereas shifting a η̂max(r(x)) baseline to a η̂min(r(x)) target
does the opposite. This is because the target curve has a different curvature that a mere shift can’t
capture. We quantified the fitting error (mean absolute error (MAE), root mean square error (RMSE),
Huber loss (HL)) for both direct power-law fits and shifted fits in Tables 1 (Other tables are shown
in Appendix A.6). Notably, when η̂(r(x)) differs substantially from the baseline η̂max(r(x)) or
η̂min(r(x)), the direct power-law fit on each curve yields lower error than trying to use a shift from
baseline fits. Indeed, the error of the shifted approximation jumps dramatically when oscillatory
complexities differ beyond a certain point (e.g. comparing η̂(r(x)) ≈ 2.8 vs. η̂(r(x)) ≈ 28).

These results are anticipated in Schmidt-Hieber (2020) and related works on ReLU approximation
of Hölder functions (Yarotsky, 2017; 2018), which show that if f ∈ C0,1([0, 1]t,K) (the Lips-
chitz/Hölder class with β = 1 and radius K), then for ReLU networks of sparsity s and logarithmic
depth, one has the uniform approximation bound

inf
g∈F(L,p,s,F )

∥f − g∥∞ ≲ K s−1/t.

Thus the exponent in s depends only on β and t, but the Hölder radius K multiplies the error. For
our surrogate r(x) = cos(ω∥x∥1) we have β = 1 and K ≍ ω (global Lipschitz). Consequently,
increasing frequency ω leaves the statistical N -rate exponent unchanged but linearly inflates the
approximation budget: to achieve tolerance ε one requires s ≳ (ω/ε)t. If s is held fixed, larger K
lowers the crossover point N⋆ where approximation error dominates, explaining the earlier saturation
of high-LOC curves observed in our experiments.

Oscillatory complexity affects all parameters of the scaling law – the exponent, the prefactor, and
even the additive residual. Existing theoretical bounds, which absorb complexity into constants and
imply scaling curves should just shift, are valid only when oscillation levels are similar. Empirically,
when complexity exceeds a threshold, those bounds become loose and a new power-law regime
emerges. Meanwhile, practical power-law fitting inherently accounts for whatever oscillation is
present in the data (since it fits each case separately), but it offers no guarantee for generalization if
the complexity differs between training and deployment data. In fact, if a model were trained on a
low-oscillation dataset and tested on a high-oscillation scenario, our results indicate its performance
could be much worse than predicted by simply extrapolating the training scaling law. This underscores
the importance of considering local oscillatory complexity as a factor in generalization.

6 DISCUSSION

Scaling law behavior depends on target function complexity. Our findings highlight that the
commonly observed power-law scaling of DNN performance can break down when the target function
is highly oscillatory. In classical smoothness terms, all our target functions r(x) are equally smooth
(β = 1), yet their scaling behavior differs markedly. This indicates that oscillatory complexity is a
distinct aspect of function complexity not captured by β. High oscillation introduces an effective

1No shifting between identical local oscillatory complexities.
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data inefficiency: beyond a certain sample size, the model cannot improve much because it struggles
with the fine-grained patterns in the target. This manifests as an elevated “irreducible” error floor and
a smaller effective exponent.

Scaling regime changes with high oscillatory targets. In our experiments, highly oscillatory
targets often produced regime changes in the scaling curves. Instead of following a long power-law
decline, the curves flatten almost immediately. This indicates that when oscillations dominate, scaling
effectively fails—additional data yields little or no benefit, especially in the classification performance.
Such behavior underscores the need to consider data properties, not just size, when predicting the
scalability of deep models.

Theoretical implications: Our experiments confirm that data dimensionality and Hölder class
continuity alone do not fully determine theoretical bounds. When the LOC varies substantially, it
appears to influence the scaling laws in a nontrivial way. Specifically, the empirical scaling exponent
α4 (Eq. (10)) depends on η̂(r(x)), even when β remains fixed across different values of ω. Indeed,
our DNNs yielded distinct α4 for different ω. This arises because the Hölder radius K is governed by
the LOC: when LOC is large, approximation error dominates the scaling behavior. These findings
suggest that LOC is a critical determinant of scaling laws, shaping not only the specific exponents but
also whether meaningful scaling persists or ultimately breaks down.

Practical considerations: For practitioners, an important takeaway is that extrapolating a scaling
law beyond the regime of oscillatory complexity it was fit on can lead to error. If one’s training data
is much less complex (smoother) than the possible test scenarios, a model might appear to scale well
(following a steep power law) on the training distribution, yet perform worse on a more complex test
distribution than predicted by simply adding more data of the same smoothness. In other words, data
quality in terms of target complexity matters: simply collecting more samples may not close the gap
if the new scenario is more complex. One might need additional model capacity or fundamentally
different approaches (e.g. architectures or features that capture the oscillatory structure) to improve
in that case. Conversely, if test data is smoother than training data, the model might be over-prepared
(having learned to fit unnecessary wiggles).

7 CONCLUSION

We presented a systematic study of how target function LOC impacts the scaling laws of deep neural
networks. High oscillatory complexity can severely limit the benefits of additional training data,
causing early saturation of test performance. Our results answered three key questions: (Q1) LOC
materially affects scaling behavior, often leading to higher error floors. (Q2) This effect is not
merely a vertical shift in the log-log scaling plot, but a change in the apparent empirical exponent
and scaling regimes. (Q3) Classical generalization bounds, which absorb the Hölder radius K into
constants, do not contradict these findings: in theory the asymptotic rate is unchanged, but larger K
inflates approximation constants and lowers the crossover point where approximation error dominates.
Empirically, this shift in regimes manifests itself as a change in the fitted exponent, even though the
underlying theoretical exponent remains fixed. Oscillatory complexity does not alter the asymptotic
exponent itself, however, it critically determines when and how scaling laws break down in practice.

These findings emphasize that smoothness class alone is insufficient to characterize scaling behavior;
the oscillatory nature of the target plays a crucial role in how a DNN’s error scales with data.
For theory, this suggests that new parameters—related to higher-order derivatives or frequency
spectra—should be incorporated into generalization bounds. In practice, researchers should be
cautious when extrapolating scaling laws beyond regimes of similar complexity and should consider
methods that explicitly address highly oscillatory targets.
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A APPENDIX

A.1 PROOFS

Given the target mapping r(x) in (15), we show that its Hölder class is unaffected by ω

Proof: We first show that the smoothness parameter β is independent of frequency parameter ω.
∀x,y ∈ R \ {0},

|r(x)− r(y)| = |cos(ω∥x∥1)− cos(ω∥y∥1)| ≤ |ω| |∥x∥1 − ∥y∥1| ≤ |ω|∥x− y∥1
≤ |ω|D ∥x− y∥∞ (18)

From (18) we obtain that r(x) is Lipschitz with constant |ω|D. Also ∥r(x)∥∞ ≤ 1, so we may take a
Hölder radius K ≥ max(1, |ω|D) and conclude r(x) ∈ C0,1 (i.e.β = 1).

Therefore, the bounds in (3)– (5) keep the same N -exponent but differ by the multiplicative constants
that depend on ω (through the Hölder radius K).

A.2 DNN ARCHITECTURE AND TRAINING

The DNN is a multilayer perceptron with hidden-layer sizes {1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2}. Each hidden layer is followed by batch normal-
ization and a ReLU activation, except the final layer. This architecture is chosen to be sufficiently
expressive yet otherwise generic; it was not tailored to the parity task. The specific widths are not
critical, as our study focuses on scaling behavior with training data size rather than model design.

Training uses the Adam optimizer with a learning rate of 10−4 and a mini-batch size of 128. Early
stopping based on validation accuracy is applied. For each condition, we train with five random
initializations and report the average test performance.

A.3 SCALING CURVES

Fig. 3 and 4 present the scaling curves of test loss and classification error as the training data size
varies across all dimensions.

A.4 SCALING CURVE FITTING

We fit power-law models to the scaling curves in Fig. 1(a) by solving (11). The parameters b, c8, and
α4 were initialized as log2(l(Nmax)), log2(l(Nmin)− l(Nmax)), and 0.5, respectively, following the
same scale as in Hestness et al. (2017); Bahri et al. (2024); Rosenfeld et al. (2020); Sharma & Kaplan
(2022), with additional Gaussian noise added. We then performed 3-fold cross-validation on the full
set of 11 (log2N, log2 l) pairs for each curve. For each fold, 100 random initializations of (11) were
executed with a fixed θ = 10−3, and the fit achieving the lowest Huber loss on the training split was
selected.

To further compare empirical fits with theoretical generalization bounds, we carried out an additional
fitting procedure. To test if theoretical error bounds differ by shifts in logarithmic scale under varying
ω, we introduced an additional shift parameter E. Specifically, for each dimension D, we used the
fitted parameters c8, α4, and b obtained from scaling curves with η̂max(r(x)) and η̂min(r(x)) across
3 folds, yielding 6 baseline parameter sets. Given each baseline, we solved the following optimization
problem to estimate only the shift E:

min
E

1

W

W∑
w=1

ζθ
(
loga l(Nw)− loga

(
ac8−α4 loga Nw + ab

)
− E

)
(19)

This procedure was again applied with 3-fold cross-validation for each scaling curve under different
η̂(r(x)), with E initialized at 0.

A.5 FITTED CURVES

Fig. 5 and 6 present the fitted curves obtained from power-law fitting and baseline shifting across
different dimensions. In these figures, the baseline parameters c8, α4, and b are always taken from
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(a) D = 1. (b) D = 2. (c) D = 4.

Figure 3: Test loss scaling curves.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 4: Classification error scaling curves.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 5: Fitted curves for η̂max(r(x)) fitting and η̂min(r(x)) shifting.

(a) D = 1. (b) D = 2. (c) D = 4.

Figure 6: Fitted curves for η̂min(r(x)) fitting and η̂max(r(x)) shifting.
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Table 2: Power-law fitting and baseline shifting performance (D = 1).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0031 0.34 0.41 0.0012 1.4 1.7 0.0052 — — —
10−2π 0.031 0.34 0.41 0.0012 1.4 1.7 0.0052 0.29 0.34 0.0011
10−1π 0.30 0.34 0.41 0.0012 1.4 1.7 0.0052 0.29 0.34 0.0011
100π 2.0 0.30 0.40 0.0011 0.97 1.2 0.0035 0.47 0.57 0.0016
101π 20 0.12 0.15 0.00043 0.096 0.11 0.00036 1.3 1.5 0.0045
102π 200 0.19 0.25 0.00068 0.11 0.16 0.00041 1.3 1.5 0.0046
103π 2000 0.11 0.16 0.00038 — — — 1.3 1.5 0.0047

Table 3: Power-law fitting and baseline shifting performance (D = 2).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0044 0.72 0.80 0.0025 1.4 1.6 0.0052 — — —
10−2π 0.044 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
10−1π 0.38 0.72 0.80 0.0025 1.4 1.6 0.0052 0.68 0.76 0.0024
100π 2.8 0.57 0.72 0.0020 1.1 1.3 0.0041 0.56 0.69 0.0019
101π 28 0.21 0.23 0.00075 0.17 0.19 0.00060 1.3 1.6 0.0047
102π 280 0.15 0.17 0.00055 0.17 0.18 0.00064 1.4 1.6 0.0048
103π 2800 0.19 0.22 0.00071 — — — 1.3 1.7 0.0047

Table 4: Power-law fitting and baseline shifting performance (D = 4).

Power law η̂max(r(x)) shift η̂min(r(x)) shift

ω η̂(r(x)) MAE RMSE HL MAE RMSE HL MAE RMSE HL

10−3π 0.0063 0.66 0.78 0.0024 1.5 1.6 0.0055 — — —
10−2π 0.062 0.66 0.78 0.0024 1.5 1.6 0.0055 0.52 0.56 0.0019
10−1π 0.34 0.76 0.90 0.0028 1.4 1.5 0.0050 0.68 0.72 0.0026
100π 4.0 0.37 0.45 0.0013 0.72 0.78 0.0027 0.57 0.77 0.0020
101π 40 0.27 0.30 0.0010 0.21 0.23 0.00079 1.3 1.4 0.0046
102π 400 0.22 0.26 0.00083 0.21 0.24 0.00076 1.3 1.5 0.0048
103π 4000 0.24 0.28 0.00087 — — — 1.3 1.5 0.0047

the first fold of the cross-validation during power-law fitting. The additional shift parameter E is then
estimated using 3-fold cross-validation. Note that shifting is performed only between η̂max(r(x))
and η̂min(r(x)). This selection limits the number of figures shown, but the qualitative conclusions
remain the same as in other cases (e.g., using baseline parameters from different folds or shifting
between arbitrary pairs of η̂(r(x))).

A.6 FITTING PERFORMANCE

Tables 2–4 report the performance of power-law fitting and baseline shifting, evaluated with MAE,
RMSE, and HL across different dimensions. Metric values are averaged over three folds in the
estimation of the shifting parameter. The baseline parameters are taken from the first fold of the
cross-validation during power-law fitting. Using baseline parameters from other folds yields similar
trends and is therefore omitted here.
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