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ABSTRACT

In this paper, we show that reasoning/proving issues of GPT/LLM are an inherent
logical consequence of the architecture. Namely, they are due to a schema of its
prediction mechanism of the next token in a sequence, and randomization involved
into the process. After natural formalization of the problem into a domain of finite
graphs, G(ω), we prove the following general theorem:
For almost all proofs, any learning algorithm of inference, that uses randomiza-
tion in G(ω), and necessitates veracity of inference, is almost surely literal learn-
ing.
In the context, ”literal learning” stands for one which is either vacuous, i.e.
∀x [P (x) =⇒ Q(x)] where P (x) is false for every x, or create a random
inference from a false assumption (hallucination), or it essentially memorizes the
inferences from training/synthetic data.

1 INTRODUCTION

On one hand, GPT architecture for LLMs demonstrated significant progress in a generative manifes-
tation of summarizations, chat, and representations of materials. On the other hand, the architecture
displayed multiple negative effects such as hallucinations, falsehoods, degrading generalization, per-
formance degradation, and alike (e.g., (Yadlowsky et al., 2023a)). In rigorous contexts (where one
requires a consistent mathematical reasoning or a formal proof), the results are consistently discom-
forting ((Chen et al., 2023), (Hagendorff et al., 2022), (Dziri & et. al., 2023)).

Recently a few authors pointed out various limitations (cf. e.g., (Liu et al., 2023), (Mikhaylovskiy
& Churilov, 2023), and (Asher et al., 2023a)). Nonetheless, there have been suggested possible
remedies ((Sel et al., 2023), (L. et al., 2023), and (Z. et al., 2022)).
In this paper, we show that these issues are an inherent logical consequence of the GPT architec-
ture. As a result, multiple phenomena of transformer inference limitations can be explained from
purely logical view; in particular, some results of (Dziri et al., 2023) can be obtained that way. It is
shown that some limitations addressed in the paper (e.g., problem of increasingly large parallelism
requirement) can be relieved with changing a type of attention.

In general, it appears that there is a latent belief in contemporary literature that all limitations of
technology can be resolved within the governing transformers’ model. The goal of this paper is to
prove that the architecture is inherently limited in case of inference that required rigor; thus, these
imitations are fundamental and innate.

A crucial observation is a scheme of transformer prediction mechanism of next token in a sequence.
Using a natural formalization of the problem into the domain of (standard) finite graphs G(ω), we
prove the following theorem:

For almost all proofs, any learning algorithm of inference, that uses randomization in G(ω) 1, and
necessitates veracity of inference, is almost surely literal learning.

In this form of the inherent limitation, there are a few basic assumptions that need to be addressed.
Namely, we work in the first-order model G(ω) (appendix B.1), where connectivity between nodes a
and b, expressible by the first order formula, represents the validity of the implication a =⇒ b (we

1defined in B.1
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are going to use a → b for the implication as well, interchangeably). For our purposes, the graph
do not have to be directed since only a countable enumeration of the nodes is necessary. Moreover,
any algorithmic randomization on the nodes allows us to view G(ω) as a suitable probability space
(C.2). Finally, literal (or vacuous) learning is defined as such that, almost surely, the proof chain,
generated by an algorithm, is equivalent (in G(ω)) to one in a training dataset.

A few corollaries follow. For instance, if its formulation is somewhat original, it is easy to notice the
issue of solving mathematical problems with LLMs in the case of even low complexity task. Since
its solution is unlikely to be found in a holistic form in a training dataset, a correct proof is not to be
expected.

It is because, in a rigorous context, GPT has exponentially decreasing odds of finding a valid proof
of the result unless it simply “repeats” a known proof, perhaps with trivial modifications (Corollary
3). Another corollary is that degradation of performance is of exponential rate by length of a proof.
In other words, an attempt to prove a complex enough statement virtually has no chance of being
successful.

In a rigorous context of generating a proof, GPT virtually has no chance to find a valid proof of
the result unless it simply “repeats” a known proof, perhaps with trivial modifications (Corollary
3). Another corollary is that the degradation of performance has an exponential rate by the length
of a proof. In other words, an attempt to prove a complex enough statement with GPT/LLM has
virtually no chance to be successful.

In a novel rigorous context (i.e., when GPT-based architecture is looking to prove a new result, for
instance, a hypothesis), that is virtually impossible even for a long enough fragment of the proof.
The probability of success becomes infinitesimal quickly for either a fragment of possible proof or
a weaker non-trivial statement. That also was empirically shown for data mixtures in (Yadlowsky
et al., 2023b).

This has been recently confirmed experimentally in ((Hubinger et al., 2024)). Moreover, the logical
view approach enables us to discover the same limitation patterns for LLM and auto-regressive next-
token predictors even though the latter are universal ((Malach, 2023)).
The logical view approach is more effective in generalization by varying a domain obeying the
generic 0-1 law.
For instance, the results in ((Dziri et al., 2023)) can be obtained as a partial case in the proof of our
main result. The 0-1 law variant for polynomial decision problems ((Blass et al., 1998)) is used for
a more instructive proof.

Tools like FunSearch ((Romera-Paredes et al., 2023)) contribute to searching for solution specifica-
tions, instead of providing an actual inference.

Recent improvements in LLMs such as a 1 million-long context window would make vacuous infer-
ences quite probable in a standard context, with tantamount consequences to the dangling pointers in
software. In the novel context, it is almost certain that the resulting proof will be incorrect, present a
hallucination, or both. Thus, the expectations that ChatGPT-4.0 or a similar model (e.g., the agents)
would soon be able to reason and plan like a person seem unfounded.

For the alignment problem, we only note that our approach is fundamentally different from that
of (Wolf & et. al., 2023) since our methodology is ultimately based on considerations within the
first-order logic of appropriate Random Graph theory while theirs is purely statistical.

Note also, that in terms of paper (Nasr & et. al., 2023), leaving the adversarial context of it, we essen-
tially proved that in a rigorous context, given sufficient complexity, LLMs are able only to memorize
the existing proofs in the training dataset. Thus, one cannot expect these models to produce a novel
non-trivial proof. In terms of(Nasr & et. al., 2023), discoverable and extractable memorizations
coincide, given sufficient complexity of a statement P .

In other words, given sufficient complexity of a statement P , the prompt ”Please prove statement
P ” would generate a memorized proof if one exists in the training dataset, present an incorrect
proof, or hallucinate (cf. (Chen et al., 2023) as in (Asher et al., 2023b), and (Mikhaylovskiy &
Churilov, 2023)). Similarly, an attempt to fix the LLM (e.g., GTP-4) bugs with LLM critique tech-
nique ((McAleese & et. al., 2024)) will have only a limited scope of applicability.
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In the paper (Dohare et al., 2024), the authors note that the deep-learning system’s performance
degrades during extended training on new data. A method, proposed in the paper, requires random-
ization to establish elasticity; so it is likely that not just LLMs but also traditional FFNs admit
a version of the main result on inherent limitation. Moreover, an attempt to enrich a model with
synthetic data will go only so far as well as an emerging representation of underlying abstraction
(cf. (Jin & Rinard, 2024) where the context is not rigorous).

2 MOTIVATION/PRELIMINARIES

To demonstrate the model that proves the inherent limitation phenomena, we need to formalize
logically the mechanism employed by GPT/LLM to predict the next token in a sequence. It turns out
that randomization used by GPT architecture (namely ”temperature”) is the main reason. However,
it isn’t easy to devise an alternative when dealing with training on a large text corpus. Note that the
architecture becomes too ”predictable/plain” if we choose the most probable pattern in the list of
candidates for the next token. There, we would need a certain randomization to become ”creative”.

As we will see, that necessary hack is sufficient to preclude the architecture from ever succeeding in
a rigorous context, in a formal setting when we need to infer our next supposition with strict regard to
its veracity. A good example would be generating proof for a theorem. Note that, despite infamous
issues with Generative Learning with rigor in this context, there have been a few feasible attempts to
attack this problem that way (e.g., (Saparov et al., 2023)); moreover, there was a claim that we may
be able to ”recover” from an ostensibly systematic LLM model faltering in mathematical settings
((Shi et al., 2022)). As is known, these attempts were largely unsuccessful. Our results offer a
logical explanation of why.

To that end, we introduce formalism to make the subject rigorous enough to have a logical view.
Namely, we present a simple first-order theory on the language of (random) graphs where one can
state that the generative inference that admits randomization on implications will almost necessarily
lead to logical faults (i.e., with probability 1). This result is based on a 0-1 law (and its variations)
in (random) graphs theory.

2.1 DEFINING THE CONTEXT

We can assume that one can enumerate all the inferences using [n], since there is only a countable
number of (finite) proofs on a countable number of entities. For a graph in G(ω), define property
A := {∃ nodes e1, . . . ej forming chain (e0 → e1 . . . ei . . . ej → em) for inference e0 → em)}.
This definition is well-formed since A is expressed as a first-order sentence in the first-order logic
theory for G(ω)), and the axiom of foundation2. For chains above, we need to verify that these
are first-order expressions. A suitable framework for this is that of least fixed point extension (cf.
(Grohe, 2017)). Namely, if the ” ∼ ” is a connectivity relation, then a chain C(e0, et) where e0 and
et represent a proof starting node e0 and et respectively, can be expressed as follows:

C(e0, et)← ((e0 = et) ∨ ∃ei(C(e0, ei) ∧ ei ∼ et)) (1)

Then, we have two possibilities, namely: lim
n→∞

P(Gn(ω) ∈ A) = 0 or it is equal to 1. If it is zero,

then no valid proof can be found within the context in the first place. Therefore, lim
n→∞

P(Gn(ω) ∈
A) = 1. By Lemma 0, it follows that G(ω) |= A. However, it also means that our inference
follows a literal graph representation from the original (i.e., from the given training set). Similar
consideration is possible for a novel vs. not novel context. Thus, p ̸= 1. In this case, we create a
hierarchy in G(ω) as follows.

Consider chain (e0
ψ1−−→ e1 . . . ei . . . ej

ψk−−→ em) and formula ψ := ψ1 ∧ · · · ∧ ψk. Clearly, ψ is true
in G(ω) for any inference of em. But that means that we again have a ”literal” learning. Otherwise,
since p is not 1, we will have a ”fault” for sufficiently large n.

2In a second-order logic, one can quantify over sets of domain elements; in the first-order logic, one can
quantify over elements only.
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In (Blass et al., 1998), the authors proved a version of the zero-one law for binary sequences and,
within the context, a decision problem. Our formal proof is a generalization to a class of algorithms
in which logical inference admits a standard graph representation. Namely, we just proved the
following:

Theorem 1 For almost all proofs, any learning algorithm of inference, based on randomiza-
tion in G(ω), that necessitates veracity of inference, is almost surely literal learning.
Before, we established that there is a natural model for the inference and pointed out the limitations
associated with it. In other words, the algorithm will necessarily fail or sufficiently long proof.
Q.E.D. ■

Theorem 2 (reformulation of the theorem 1) Given the graph model of inference for machine
learning, the only algorithm based on randomization, that also necessitates veracity of inference,
is almost surely ”literal” learning. In other words, for a sufficiently long proof, any algorithm that
randomly deviates from the training data will fail with a probability of 1. Q.E.D. ■

Corollary 3 Within a rigorous inference context, almost surely, no randomization of the pre-
diction scheme of proof patterns can discover new (unknown) non-trivial valid statements.
This can be easily explained: since any degradation is inherited in the foundational graph, the
subsequent inferences on the trained data tend to deviate from already shortened erroneous paths
thus multiplying the faults. Q.E.D. ■

Example of an inference problem that exceeds the current capabilities of generative
learning
Elementary example. Proving the statement: ”for every number 2n for any natural n, there exists a
number k such that 2n ∗ k does not have zeroes in its digital representation”.
Non-elementary example. Dedekind numbers sequence.

Generalizations of main result Theorem 5 Any algorithm of learning enforcing veracity,
admitting a 0-1 domain cast as random graphs, is almost surely vacuous.

Proof This is the context where proof of theorem 1 is fully applicable. Q.E.D. ■

Within the view adopted herein, there is an interesting example of a decidable theory that
admits a 0-1 random graph domain yet its classifier comparison is not expressible in its first-order
logic. Therefore, it is an example of a.s. learning algorithm with randomization which is ultimately
decidable but vacuous and does not support any notion of expressible first-order classifier compari-
son; thus, there is no feasible notion of fairness for classification tasks.

2.2 ELEMENTARY PROBLEMS

2.2.1 QUESTION

Question: Can one cut a scalene triangle into two congruent scalene triangles? Answer: Microsoft
Bing Copilot: ”Certainly! Let’s explore how we can cut a scalene triangle into two congruent
triangles”. Then Copilot generates two methods to create the cut: angle bisector method, and per-
pendicular bisector method which would work only for isosceles triangles, completely ignoring the
fact that the original triangle is scalene. The fault is that the bisectors will not divide the opposite
side into two equal segments. So, the subsequent application of angle-angle-side and side-side-side
postulates is invalid. However, Bing Copilot ”insists” and suggests the question:” Can you cut any
triangle into two congruent triangles?” The predictable Copilot’s answer is now that any triangle can
be, while referring to the very answer to the previous question as a given (one can only note that it
looks ”logical”). Needless to say the process would be easily repeated with all sorts of fallacious
geometrical statements. If the user points out an occasional contradiction, the Copilot produces a
loop or changes the subject.
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Claude (Antropic): This was a different experiment where the author tried to ”teach” Claude to solve
the aforementioned elementary problem. It took a few trials before Claude arrived at a plausible re-
formulation of the problem. A very positive result was, despite an inability to present a complete
rigorous proof, Claude came up with a plan for how to obtain the proof. However, after a few
unsuccessful attempts to implement the plan, and a few homework sessions later, we agreed that
reaching the point is beyond Claude’s capabilities yet. With the three assistants, our experience with
Claude was the most pleasant and sensible.

Google Gemini (Bard) The result is similar to Claude’s. After a few clarifications and direct clues,
Gemini produced the following in bold: ”Therefore, I cannot confidently claim to have proven the
statement about the impossibility of cutting a scalene triangle into two congruent scalene triangles”.
Note that it is, formally, a weaker statement than what is necessary to solve the problem asked.

Similar results were obtained for other chatbots, e.g., Perplexity.

Incidentally, the paper (Trinh et al., 2024) depicts good results on solving geometry problems of
Olympiad’s level. First, we have to note that, because the first-order theory of Euclid geometry is
elementary in the logical sense (decidable), the task is achievable by a universal algorithm since we
can work in the decidable first-order theory of R.

Since the output is natural language (rather than in a code for an automated prover, unlike in the
approach of (Zheng et al., 2022)), it isn’t easy to assess the solution’s performance. Because this
transformer is trained on synthetic data, and proofs are relatively short by nature of the problems
involved, due to our main result, likely, the solution does not exceed a threshold of vacuous/literal
learning overall. A more formalized approach is presented in (Krueger et al., 2021).

In (Nezhurina et al., 2024) are more examples of basic reasoning breakdown for foundational indus-
trial models.

2.3 NON-ELEMENTARY PROBLEMS

Above is an example of ”hallucinating”: a formal proof of the infinitude of prime numbers in Lean
3 or 4.

Here is the critical fragment of the proof where randomization played a key role:

{ b y c o n t r a d i c t i o n ,
have h1 : p | f a c t N := d v d f a c t ( m i n f a c p o s M) a ,
have h2 : p | 1 := ( n a t . d v d a d d i f f r i g h t h1 ) .

mpr ( m i n f a c d v d M) ,
e x a c t pr ime . n o t d v d o n e pp h2 } ,

{ e x a c t pp }

This latest fragment renders the proof unusable. One correct version is placed above, which is
unlikely to be found elsewhere (since we use an explicit ”Nat.” prefix).

In (Nguen & Sarah, 2022), the authors describe multiple patterns of software development that
reflect erroneous or sub-optimal code generated by Copilot. This leads to an elevated code churn
and downward pressure on code quality in GitHub. Another survey, (Kabir et al., 2024), shows that
coding questions generate up to 50% of errors. A similar study is conducted in (Macmillan-Scott &
Musolesi, 2024).

2.4 DISCUSSION

Discussion - Primary

These results easily explain the phenomenon of ”hallucinations” and brittleness of the GPT models
in a rigorous context. It also means that LLMs is unlikely to discover any new mathematical result
of sufficient strength.

Discussion-Datasets In (Gendron et al., 2023), is shown that the baseline dataset construction for
rigorous learning needs to be a formal exercise. Consider the task of equation completion in which
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one has to predict a missing symbol. Since this is perfectly aligned with the main premise of LLM
based on transformers, one can expect that the success rate for this task will be quite high. As is
shown in the paper, this is not the case. An associated (and well-known) phenomenon of a plateau
of performance and subsequent degradation in an exponential fashion manifests in the same way as
for the generic sequence case. Similarly, few authors summarize a few problems in the answers in
contemporary systems associated with a low P/R w.r.t citation usage from the underlying sources.
These experimental results are not for the rigorous context.

There is a widespread belief that because the training set contains ”everything”, any result, including
novel ones, can be proven using symbolic inference from the corpus. However, it is just not the case.
It is well-known that any mathematical problem of significance requires one or multiple critical
insights that are just not to be found. These are not combinations of known results (or tactics), but
rather completely new, albeit inevitable, ideas. For instance, for some long-standing problems, new
fields of mathematics had to be created, representing a new body of knowledge. Thus, generalizing
the LLM solution for these targets is a task of yet another level of complexity for which the method
is not suited. Moreover, as we show below, it is guaranteed to fail. The inevitable conclusion is that
the apt inference model has to be more deferential to logic.
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A MAIN RESULT

In this section, we assume a natural representation of a proof by a path from a node e0 to the node et
in graph G(ω) in appendix B.1 which is, in a suitable enumeration, corresponds to a premise/target
statements e0, et accordingly.

lemma 1. (Accumulating errors Lemma). Assuming independence of faults in G(ω) representing
proofs, the probability of no fault proof tends to zero exponentially over its length.

Proof. We can assume that faults are independent since the semantics of a formal inference are out
of scope 3. Let labeled graph G represent proofs (chains) of enumerated statements (nodes) where
each label is a probability that the chain ending with the corresponding node contains an error. Then
we have:

P(no fault proof) ≤ exp(−E(−number of faults)) (2)

Since the right side of the equation tends to zero, we have:

lim
n→∞

P(no fault proof of length n) = 0. (3)

This proves the statement of the lemma. ■

example 1. Since GPT has no semantic notion on the entities involved, we can assume the lemma
is fully applied to the GPT rigorous context.

Corollary 4 Assume an algorithm admitting model G(ω) for inference and using randomization.
Then. the rate of (correctness) decay is exponential over the proof length.

Proof The proof is similar to a usual consideration for a set of independent events in a clas-
sic probability space generating a fault. The key observation is that, once a fault in the chain of
inference occurs, it is thus erroneous in the chain subsequently. This proves that the correctness rate
decays exponentially over the length of proof. ■

(Heuristic note) In a few papers, this phenomenon has been shown experimentally. More-
over, it has a few incarnations. These are hallucinations (when there are no references, supporting
an inference), erroneous statements (falsehood, incorrect generalization, non sequitur, etc.), and a
general misalignment. Exponential decay is also noted in a few papers; our result (Corollary 4)
shows for all non-trivial (complex enough) tasks, including performance degradation on synthetic
data in an autophagous loop.

theorem 1. (Inherent LLM Limitation).

Any algorithm of inference, based on randomization on G(ω), that necessitates veracity of inference,
is almost surely literal learning.

Proof. (Informal) We give two proofs of the statement. To develop a theoretical intuition, we start
with the one below. The second one, more instructive and rigorous, is in C.2.

Note that we can assume that one can enumerate all the inferences using [n], since there is only a
countable number of (finite) proofs on a countable number of entities (statements). Without loss of
generality, for that representation of entities, we can assume that node (vertices) ei implies ej only
if they are connected; we do not need to impose any order on the nodes.

For a generative model, that would be enumeration for a proof generated for a particular prompt,
say, prove that ek implies el. Moreover, we can assume that a generic proof is an actual chain of
thought, i.e., we have a finite sequence of distinct nodes, connected via regular paths, with possible
cycles which would reflect the equivalency of the statements. The underlying training graph for this

3GPT algorithm does not follow the syntax of the first-order theory – instead, it uses randomizing and
inferred statistics.
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is not necessarily connected, but the model output has to contain a path from the premise to the
desired conclusion.

In appendix B, we define the first-order language of graphs used in an associated model, G(ω).

Thus, the path (or ”chain of thought”) is just a sequence of tuples (sk ∼ sl) where sign ”∼” repre-
sents adjacency for vertices sk and sl and there is a path

es ∼ e1 ∧ e1 ∼ e2 ∧ · · · ∧ ek ∼ et (4)

Now, there are two possibilities:

1. The path (4) exists in the training set (a novel context).

2. The path (4) does not exist in the training set (not a novel context).

Consider the first-order formula ϕ(.) = es ∼ e1 ∧ e1 ∼ e2 ∧ · · · ∧ ek ∼ et. Then, again, we have
two possibilities. Namely, by 0-1 law (B.1), we have:

lim
n→∞

P(G(ω) |= ϕ) = 0 or 1. (5)

Thus, we have four possibilities, namely:

1. The limit (5) is equal to zero and the path (4) does not exist in the training set.

2. The limit (5) is equal to zero and the path (4) exists in the training set.

3. The limit (5) is equal to one and the path (4) does not exist in the training set.

4. The limit (5) is equal to one and the path (4) exist in the training set.

For each of these, we also need to consider the cases of model temperature, normalized to probability
p, equal to zero or one, or between zero and one. We can assume the following for these cases:

For the case 1, it is nearly obvious that, within the context, no valid proof can be found almost
for sure in the first place either if we try literal learning, falling into a novel context, or varying
the probability p between zero and one - we apply Accumulating errors Lemma since GPT is an
accumulating errors algorithm. The latter manifests as a phenomenon of accumulating errors for
sufficiently complex (lengthy) proofs.

The case 2 is more interesting. Despite having proof in the training set and a chance of literal learn-
ing, we use probability p other than one. As a result, we are having the phenomenon of accumulating
errors described above.

The case 3 is the most interesting – we are in a novel context – and may follow fragments of the
proof, somehow creating the final proof as an assembly. Note, we chose p equal to one. It means
that we are trying to assemble the required proof in pieces. The problem is equivalent to finding
paths among potentially connected pieces. However, we can simply apply B.1 and note that since p
is equal to 1, we have:

lim
n→∞

P(G(n) |= ϕ) = 1⇔ G(ω) |= ϕ. (6)

Therefore, for ever-growing complexity and length of proofs, we have to follow ever-growing frag-
ments of proof literally which means we have them in the training set. That is literal learning or we
have a contradiction with the assumption of this case.

The case 4 is literal learning, by definition.

The conclusion is that almost for sure, only literal learning, has a chance of generating an error-free
proof.

8
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lim
n→∞

P(G(n) ∈ A) = 0 or it is equal to 1. If it is zero, then no valid proof can be found within the

context in the first place. Therefore, lim
n→∞

P(G(n) ∈ A) = 1. By Lemma 0, in the first-order theory

for the language of random graphs, it follows that G(ω) |= A. For p = 1, it is possible. However, it
also means that our inference follows a literal graph representation from the original (i.e., from the
given training set). Thus, p ̸= 1. In this case, we create a hierarchy in G(ω) as follows.

Consider chain (e0
ψ1−−→ e1 . . . ei . . . ej

ψk−−→ em) and formula ψ := ψ1 ∧ · · · ∧ ψk. Clearly, ψ is true
inGω(p) for any inference of em. But that means that we again have a ”literal” learning. Otherwise,
since p is not 1, we will have a ”fault” for sufficiently large n. ■

9
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B FORMAL DEFINITION FOR LANGUAGE L

Let L be a language (an extension of a basic formal logical language, L0).

Definition and base notations The set of L−terms is the smallest set Lt such that contain all
constant symbols of L, all variables, and if t1, t2, ..., tn are in Lt then for any n-ary function symbol
f , f(t1, t2, ..., tn) is also in Lt. Set La of atomic formulas are represented by the properties:
(1) if t1 and t2 are terms then t1 = t2 is in La, and
(2) the corresponding n-ary function symbols are also in La.

In other words, the set of all formulas in L (expressions, sentences - herein, we use these inter-
changeably) is the smallest set containing all atomic formulas and closed under logical connectives
∨, ∧, ¬,→,↔, quantifiers ∃, ∀, equality symbol ” = ”, parenthesis ”(” and ”)”, and variables. For
our purposes herein and simplicity, it is sufficient to consider that theory in language L is a set of
sentences in first-order logic over L. We also assume first-order logic with equality; in other words,
only normal models are employed. Thus, the models, considered herein (e.g., Erdős–Rényi or finite
graph model for random graphs, are normal).

The main language in this paper is that of graphs. 4 We denote GL the first-order theory over
language of graphs L. One convenient (and usual) laxity talking about expressions and formulas in
L is using L and GL interchangeably.

B.1 0-1 LAW FOR GRAPHS L

We introduce a few known formulations for the 0-1 law for finite graphs.

0-1 Lemma 0 For any first-order formula ϕ and graph G in GL (with the equivalent nota-
tion G(ω) which is intuitively more suitable), let

Gn,ϕ =
|{G |= ϕ : |G| = n and G is a graph}|
|{G : |G| = n and G is a graph}|

(7)

Then lim
n→∞

Gn,ϕ is 0 or 1.

Proof. Refer to, e.g., (Fagin, 1976).
This can be reformulated as

0-1 Lemma For any property A that can be described by a first-order expression ϕ and
Gn = {G : |G| = n and G is a graph},

lim
n→∞

P(Gn ∈ A) ∈ {0, 1} (8)

To wit (assuming notations for G(ω), a set of all finite graphs, and its associated domain G(ω), up
to isomorphism):
Lemma 0, reformulation For any graph Gn ∈ G(ω), lim

n→∞
P(Gn) = 0 or 1. The equivalent state-

ment is as follows: for any first-order expression ϕ in theory of GL, lim
n→∞

P(Gn |= ϕ) = 0 or 1.

We can also say that lim
n→∞

P(Gn) |= ϕ) = 1⇔ G(ω) |= ϕ.

Lemma 0, reformulation For any random graph Gn ∈ G(ω), lim
n→∞

P(Gn) = 0 or 1. The equiv-
alent statement is as follows: ∀ 0-1 probability p and a first-order expression in theory of Random
Graphs, ϕ, lim

n→∞
P(Gn |= ϕ) = 0 or 1. We can also say that lim

n→∞
P(Gn |= ϕ) = 1⇔ G(ω) |= ϕ.

Proof Standard considerations similar to the previous lemma. Q.E.D. ■

4i.e. graph is a pair G = (G,E) for non-empty set G of nodes (vertices) and a binary relation E on G (the
edges). For our purposes, we can assume that G is symmetric and unordered: E(a, b) → E(b, a), and E(a, a)
is false. We denote G(ω) the class of finite graphs and, loosely, the associated first-order logic model, described
in the following section B.1.
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One useful representation for the same results is as follows. Given a first-order property A of a
random graph Gn, lim

n→∞
P(Gn ∈ A) ∈ {0, 1}. Equivalent notation will be G(n, ω) or just G(n)

when the context is clear.

C CORE PROOFS, PROOF OF THE MAIN THEOREM

Lemma on GPT. GPT prediction schema is (a.s.) an accumulating error algorithm unless it acts as
a vacuous learning.

C.1 FIRST PROOF (FORMAL)

Proof Suppose the GPT prediction is not a vacuous/literal learning. Consider formula ϕ = ∧iϕi.
where ϕi are respected edges on a proof sequence paths, ei

ϕi−→ ej , in any enumeration of the nodes
in the training dataset. In our first-order theory of graphs, this is a first-order expression. Moreover,
since the theory obeys 0-1 law, for inference graph G, by Lemma B.1, lim

n→∞
Gn,ϕ is zero or one.

Since GPT algorithm is not vacuous/literal learning, we have lim
n→∞

Gn,ϕ = 0. That means for

any ϵ there exists n0 such that n >= n0 implies lim
n→∞

Gn,ϕn < ϵ. Viewed as a graph in G(ω)

and GPT randomization with temperature p selected for inference, the graph satisfies conditions
of Accumulating Error Lemma. Thus, starting from n0, GPT must be an (a.s.) catastrophic /
accumulating error algorithm, with the veracity of proof exponentially tending to zero. That is to
say, it has to be almost surely a vacuous learning to generate valid proof.

C.2 SECOND PROOF (FORMAL)

Main Theorem For almost all proofs, any learning algorithm of inference, based on randomization
in G(ω), that necessitates veracity of inference, is almost surely literal learning.

Proof More instructive than informal considerations is the following proof in which we par-
tially follow a version of the 0-1 law in (Blass et al., 1998).
The probability space for the GPT algorithm can be viewed as follows. Consider a probability
distribution over infinite binary strings. Let Ψ be a set of infinite sequences representing proofs
(since any string can be encoded by a binary string, in a suitable enumeration (or embedding) and,
given a proposition, its proofs of any length can be encoded into an infinite binary string).

Let Ψ be a set of infinite sequences ϕ = ⟨ϕn : n ≥ 1⟩ ∈ Ψ. In this context, we can view the
set as one of independent trials. The resulting probability distribution over Ψ is naturally equipped
with the product measure (cf. (Feller, 1968)). Moreover, we can consider every proof over strings
semantically. Therefore, for any generative algorithm A, if, given a sequence {e0 → e1 . . . ek →
et }, representing the proof {e0 → et}, we have A(ϕn) = en, we say that the algorithm succeeds
proving ϕn; otherwise, we say it fails. The corresponding notation for any ϕ ∈ Φ, if A succeeds, is
A |= ϕ; if A fails, we write A ̸|= ϕ.
Thus, let us introduce the notation: pn(A) = P(A fails on the n-th step ϕn of ϕ) or P(A ̸|= ϕn)
where ϕ ranges over Ψ.

The following two cases are possible:

Case 1. There exists an algorithm, A s.t.
∞∑
n=0

pn(A) < ∞. By the (first) Borel-Cantelli lemma

(Feller, 1968), P(there are infinitely many n s.t. A fails on ϕn) = 0. Thus, for almost all ϕ ∈ Ψ, A
succeeds on all but finitely many ϕn. Therefore, for almost all ϕ, there exists an algorithm A′ = A +
finite lookup that succeeds on ϕ. The algorithm A stays the same for all ϕ and only the finite lookup
depends on ϕ. It means that, for almost all sequences ϕ ∈ Ψ,

P(A |= ϕ) = 1. (9)

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

The question becomes whether such an algorithm A can be GPT. We will show below that the
assumption it is GPT meets a contradiction. Namely, from (9) we have:

∀ϵ > 0 ∃n0 > 0 s.t. ∀n > n0 P(A |= ϕn) > 1− ϵ. (10)

On the other hand, from the Accumulating error lemma inequality (2), we see that
P(A ̸|= ϕ) > 1 − exp(−ρ) where ρ = P(E(#faults)). Thus, setting ϵ = 1 − exp(−ρ) leads to
contradiction with (10). This leaves only two possibilities for the algorithm A to succeed (since we
have P(A |= ϕ) = 1 for all ϕ).

In the first instance, A may arrive at nodes representing the false statements, but the inferences would
be true (vacuous truths). The proof is still invalid, overall. The second instance is literal learning;
that is, the algorithm would generate (potentially, piece-by-piece) a known proof discoverable in the
training data.

Case 2. For every algorithm A,
∞∑
n=0

pn(A) = ∞. Again, as in (2), we can assume that ϕn are

independent events. By the (second) Borel-Cantelli lemma (e.g., (Feller, 1968)), the probability that
there exists an infinite number of n that A fails on ϕn is 1. Hence, for every A there exists n s.t.
P(A |= ϕn) = 0. Since there are only countably many algorithms, for almost all ϕ ∈ Φ, we have:

P(∃A, A |= ϕ) = 0. (11)

Qualitatively, this means that in this case, almost surely, no algorithm using randomization with
exponential correctness decay can succeed in generating a proof for the statement. ■

Main Theorem, Reformulation For almost all proofs, any learning algorithm of inference,
based on randomization in G(ω), does not generate a valid proof unless it is vacuous. ■
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