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ABSTRACT

This article explores federated long-tail learning (Fed-LT) tasks, where clients
possess private, heterogeneous data, collectively following a global long-tail dis-
tribution. We propose two methods: (a) Client Re-weighted Prior Analyzer
(CRePA), which balances the global model’s performance on tail and non-tail
categories and enhances performance on tail categories while maintaining it on
non-tail categories. (b) Federated Long-Tail Causal Intervention Model (FedLT-
CI) computes clients’ causal effects on the global model’s performance in the tail
and enhances the interpretability of Fed-LT. Extensive experiments on the CIFAR-
10-LT and CIFAR-100-LT datasets demonstrate the following: (1) CRePA outper-
forms other baselines, achieving state-of-the-art (SOTA) performance. In scenar-
ios with high heterogeneity and severe long-tail distributions, CRePA improves
tail performance by 6.3% and 5% compared to CReFF and FedGrab, respectively.
(2) FedLT-CI, by intervening during the aggregation process in federated learning
(FL), effectively enhances the tail performance of baselines while maintaining sta-
ble non-tail performance. For instance, applying the intervention strategy to the
FedAvg, FedGrab, and CRePA models improves tail performance by 4.5%, 2.1%,
and 1.9%, respectively.

1 INTRODUCTION

The issue of tackling the long-tail problem of client data and server’s aggregated data in FL has
emerged as a crucial concern in algorithm design. Unlike traditional machine learning, FL brings the
learning task directly to the end-user devices for local training, requiring only intermediate param-
eters (such as gradients) to be sent to the server for model aggregation and updates. This approach
contributes to obtaining a globally applicable model while preserving the privacy of client-side data,
facilitating the development of trustworthy intelligent systems (Xiao et al., 2023). Despite the great
potential of FL, its real-world applications still face numerous challenges. One significant challenge
is the heterogeneity of data among clients, i.e., Non-IID (Li et al., 2022b; Xu et al., 2022; Li et al.,
2023; Tang et al., 2024). Additionally, while the assumption is that the distribution of data sets for
clients may be locally balanced, aggregating the data from various clients might result in a severe
long-tail distribution issue, named the Fed-LT (Xiao et al., 2023; Zeng et al., 2023; Shang et al.,
2022). For example, there may be significant differences in data between different hospitals, and
different types of diseases exhibit a severe long-tail distribution (Caesar et al., 2020). Although
the tail categories are less common in a long-tail distribution, they are crucial for identifying rare
diseases(Zhang et al., 2023), dangerous behaviors in autonomous driving (Wang et al., 2022), and
more.

In the FL scenario, if the training data of different clients exhibit long-tailed and heterogeneous
characteristics, the problem becomes complex and challenging because each client may contain dif-
ferent categories and quantities of tail data. This situation significantly impacts the performance
of the global model, especially in tail categories. Currently, algorithms used to address data het-
erogeneity in FL ignore the potential long-tailed issues (McMahan et al., 2017; Karimireddy et al.,
2020; Luo et al., 2021). However, if one directly adopts some long-tail learning algorithms to ad-
dress the long-tail problem in FL, local or global class distribution information is needed as prior
knowledge for optimization, which may expose potential privacy concerns (Shang et al., 2022). For
example, some methods typically rely on statistical information from client data, such as the sample
count or feature distribution of different classes, as well as global class distribution information.
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Some researchers have proposed solutions to the heterogeneity and long-tail problems in FL (Shang
et al., 2022; Xiao et al., 2023). These methods have shown significant improvements in tail perfor-
mance, but they all come with increased communication costs. Importantly, none of these methods
consider the impact of different clients on the aggregation model’s performance on tail data from a
causal perspective, and they lack interpretability.

Given the challenges above, this paper addresses the long-tail and heterogeneity issues in FL by
proposing two novel models to enhance tail performance: Client Re-weighted Prior Analyzer and
the Federated Long-Tail Causal Intervention Model. The CRePA learns the prior distribution of
weights for each client through tail and non-tail gradient information (as shown in Fig. 2). Thus,
it allows flexible balancing between tail and non-tail data in the heterogeneous datasets of different
clients, thereby improving the global model’s performance on tail categories.

In order to address the long-tail challenges more comprehensively in FL, we propose a novel and
general FedLT-CI model inspired by the do-operator proposed by Pearl (1995) (as shown in Fig.
4). This model improves the traditional FL aggregation process by introducing an intervention
mechanism, significantly enhancing tail performance (as shown in Fig. 1). The FedLT-CI can
discern the causal effects of each client on the server-aggregated model regarding tail data. This
model enhances the overall model’s performance on tail data and possesses interpretability (for
instance, it can be understood as likening the performance of the aggregated model to a disease,
treating client participation as a form of treatment, and evaluating its causal effect to measure the
treatment outcome).

Our main contributions are summarized as follows.

1. We propose CRePA, a client-weighted sampling algorithm that uses Monte Carlo sampling to
dynamically allocate weights, addressing heterogeneity and long-tail challenges in FL. Without re-
lying on prior client knowledge, CRePA employs an adaptive loss function to seamlessly integrate
tail and non-tail gradients, enabling online learning of weight parameters for flexible model adapta-
tion. CRePA outperforms SOTA models, especially in enhancing tail data performance.

2. We propose FedLT-CI, a model that enhances tail performance in FL by leveraging causal in-
terventions. FedLT-CI assesses clients’ causal effects on the global model’s tail performance and
adjusts intervention frequency to mitigate the impact of weaker contributors. This adaptable mecha-
nism integrates seamlessly with most FL algorithms. Experiments demonstrate that FedLT-CI signif-
icantly improves tail performance while maintaining non-tail performance across various baselines.

3. Without compromising algorithm performance, our algorithm utilizes fewer clients in the in-
formation aggregation process due to the introduction of causal inference. This ingenious design
improves the model’s performance on the tail data and reduces communication overhead. In this
way, a core issue of FL algorithms, namely security, has been indirectly improved.
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Figure 1: Comparison Before and After Embedding Interventions in Federated Learning. In step (7)
of integrating FedLT-CI into the FL framework, we can use baseline models, including CRePA.

2 RELATED WORK

2.1 FEDERATED LEARNING WITH DATA HETEROGENEITY

Researchers have proposed various methods to investigate the challenge of heterogeneous or im-
balanced data distribution in FL (Xiao et al., 2024). To address the challenge of heterogeneous or
imbalanced data distribution in FL, researchers have proposed various methods, such as adding a
regularizer locally to modify the local loss function (Li et al., 2020; Durmus et al., 2021). Karim-
ireddy et al. (2020) proposed a control variable-based method to reduce client distribution drift

2
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caused by differences in data distribution. CCVR samples virtual features from an approximated
Gaussian Mixture Model for classifier calibration to avoid uploading raw features to the server (Luo
et al., 2021). However, the above methods neglect the global long-tail distribution, leading to poor
performance on tail classes.

2.2 LONG-TAILED LEARNING

Due to the widespread presence of long-tail data in the real world, long-tail learning in machine
learning has garnered considerable attention from various researchers (Zhang et al., 2023; Wang
et al., 2024; Zhang et al., 2024; Narasimhan et al., 2024). Methods include techniques that re-weight
based on the frequencies of different classes (Cao et al., 2019) or utilize information augmentation
techniques to enhance the performance of tail categories (Li et al., 2021). Among these, re-weighting
methods aim to improve the model’s performance in tail categories by balancing losses or gradients.
In addition, some methods decouple the training phase into representation learning and classifier
re-training (Kang et al., 2020; Shang et al., 2022). These methods aim to generate more general
representations and enhance the performance of tail categories on a re-balanced classifier. However,
most of the methods mentioned rely on the global class distribution. During FL’s training process,
collecting information on the class distribution from each client is impractical to obtain the global
class distribution. This renders the majority of long-tail learning methods unsuitable for the FL
scenario.

2.3 CAUSAL EFFECT

Some researchers directly learn causal effects from local data (Alaa & Schaar, 2018; Künzel et al.,
2019; Yao et al., 2018). Others use the Structural Causal Model (SCM) proposed by Pearl (1995) to
estimate the causal effects involving latent confounding variables (Madras et al., 2019; Kawakami
et al., 2023; Wang et al., 2023; Shirahmad Gale Bagi et al., 2023). Shirahmad Gale Bagi et al.
(2023) designed a causal model to address the motion prediction task. In this paper, we employ the
SCM method to calculate the causal effects of clients on the global model’s performance in the tail.
Unlike previous methods for causal effect estimation, which typically require access to all data, in
FL, we cannot directly aggregate all client data, posing unique challenges (Li et al., 2024). To the
best of our knowledge, no solutions have been designed from a causal effects perspective to address
the challenges of Fed-LT. Therefore, the method proposed in this paper represents a novel attempt
to tackle the issues associated with Fed-LT, and the experimental results validate the effectiveness
of this approach.

3 PROPOSED METHODS

3.1 PRELIMINARIES

Federated Learning: Assuming we have K clients, each denoted as k ∈ [K], with
data categorized into tail and non-tail classes, represented as Dk = {Dk

nott, D
k
t } =

{dknott1 , d
k
nott2 , · · · , d

k
notti , d

k
ti+1
· · · , dktn}. Here, Dk

nott represents the non-tail data for client k.
Dk

t represents the tail data for client k, and |Dk| indicates the size of the data. These data sources
Dk belong to different clients, and their distributions may be entirely different. FL aims to achieve
convergence of the global model through multiple rounds of communication with clients. Clients
locally train models, and the results are aggregated on the server.

Definition of Tail gradient and Non-tail gradient: In tasks such as visual recognition (Tan
et al., 2020) and object detection (Tan et al., 2021), gradient information is crucial in address-
ing long-tail issues. Unlike these tasks that use gradient information, we further classify gradi-
ents into two types: tail and non-tail. Considering a classification model based on a neural net-
work, with the cross-entropy loss function denoted as L, we represent the parameters of the last
layer classifier of the model as w = [w1, w2, · · · , wC ], where C represents the number of classes,
wi = [wi1, wi2, · · · , wid] denotes the parameters for class i and d is the size of the neurons in the
preceding layer. After deriving the loss function L with respect to w, the gradient information on
the parameters for class i is represented as ∇wi(L) = [∇wi1(L),∇wi2(L), · · · ,∇wid

(L)]. If class
i belongs to the tail, the gradients for this class are labeled as tail gradients. This differentiation be-
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tween tail and non-tail gradients helps adopt distinct optimization strategies for addressing long-tail
issues, enabling the model to learn and adapt to the features of tail classes more effectively.

Prior PkPr ior Pk 

…

∇C−1
k,t (ℒ)∇C−1
k,t (ℒ) 

∇C
k,t(ℒ)∇C
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∇1
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 CosCos
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…

Client 1Client 1 Client KClient KClient kClient k 

… …

Gg,nottGg,nott   

Obtain the Gradient of the NeuronNeuron
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Figure 2: CRePA Online Learning Process.

3.2 CLIENT RE-WEIGHTED PRIOR ANALYZER (CREPA)

Prior Pk: Pk represents the prior distribution of weights for client k, with parameters wpk initialized
and updated by the server. During model aggregation, the expected value Es(Pk) is approximated
using Monte Carlo sampling, and this is used as the weight for client k. As a self-adjusting balancer,
we employ a Gaussian distribution to construct the prior distribution, addressing the challenges of
long-tail and heterogeneous data. The specific learning process is illustrated in Fig. 2.

Collector: In the process of learning distribution parameters, the primary role of the collector is
to gather gradient information (i.e., Gk,nott, Gk,tail) from client k ∈ [K], and approximate the
expectation Es(Pk) through Monte Carlo sampling.

Gk,nott = ηk∇Wk,nott
(L) = ηk(∇wk,1

(L) · · · ∇wk,j
(L))T = ηk∇


w1,1 w1,2 · · · w1,d

w2,1 w2,2 · · · w2,d

...
...

...
...

wj,1 wj,2 · · · wj,d

 .

(1)
Gk,nott implies the non-tail gradients information of client k, L represents the loss of the local
training classification model on the client, ηk represents the learning rate of client k, ∇Wk,nott

(L)
indicates the gradients of client k on the classification layer parameters for non-tail classes, and j
represents the number of non-tail categories.

Gk,tail = ηk∇Wk,tail
(L) = ηk(∇wk,1

(L) · · · ∇wk,i
(L))T = ηk∇


w1,1 w1,2 · · · w1,d

w2,1 w2,2 · · · w2,d

...
...

...
...

wi,1 wi,2 · · · wi,d

 .

(2)

Es(Pk) =
1

M

M∑
xi∼Pk

xi. (3)

Gk,tail denotes the tail gradients of client k, ∇Wk,tail
(L) denotes the gradients of client k on

the classification layer parameters for tail classes, and i denotes the number of tail categories.
M is the sampling size, and xi denotes the sampled value from Pk. In Fig. 2, the function of
Cos is to calculate the cosine similarity between the client gradients (i.e., Gk,nott, Gk,tail) and
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the global gradients (i.e., Gg,nott, Gg,tail). Define Sk,nott := ηk
∑

l/∈[tail]

∇wk,l
·∇wg,l

∥∇wk,l
∥∥∇wg,l

∥ and

Sk,tail := ηk
∑

l∈[tail]

∇wk,l
·∇wg,l

∥∇wk,l
∥∥∇wg,l

∥ as the sums of the similarity scores between the client’s
non-tail gradients and tail gradients, respectively.

CRePA Loss Function Design: First, we define the set B as the weighted sum of client
{Sk,not, Sk,tail}:

B := {βSk,tail + (1− β)Sk,nott}Ki=1 (4)
Where β is the weight focusing on the tail gradient, a larger weight indicates a greater emphasis on
the tail information of each client when learning the prior distribution comprehensively. Sort the set
B in descending order, we get: B′

,B(1,x1) ≥ · · · ≥ B(i,xi) ≥ B(i+1,xi+1) ≥ · · · ≥ B(K,xK).
Where xi represents the index of the client with identifier i. Let ∆i = Es(Pxi)B(i,xi) −
Es(Pxi+1

)B(i+1,xi+1), The loss Lprior is designed as follows:

Lprior =

K−1∑
i=1

∆i. (5)

Therefore, we update the prior distribution parameters wpk for each client using the designed Lprior
function. We present the full algorithm in Appendix B.1.

4 FEDERATED LONG-TAIL CAUSAL INTERVENTION MODEL (FEDLT-CI)

4.1 PROBLEM DESCRIPTION

Problem setting & notations: In the case where the client data sources Dk have completely differ-
ent distributions, our goal is to develop a global causal intervention model that satisfies the following
two conditions: (i) The causal intervention model is trained in a process where information from
each source is not shared with external parties, and the server is not aware of any client data infor-
mation in advance, (ii) During the iteration process, the causal intervention model can estimate the
causal effects of each client on the global model’s performance on the tail. The model is illustrated
in Fig. 3, and its role is to intervene in the aggregation process through causal effects, allowing the
aggregated model to perform better on tail data.

Causal effects: Given the causal model trained under the above settings, we consider the perfor-
mance of the global model on tail data as the outcome (Y ), When intervening on client k ∈ [K], this
client is treated as the treatment, while the remaining clients serve as confounding factors. In a loose
sense, our interest can be viewed as estimating the individual treatment effect (ITE). In this scenario,
treating each client as an individual, every client can be considered a target for intervention. Our
primary goal is to estimate ITE, i.e., the causal effect on the global model’s tail performance when
client k participates or does not participate. This can be expressed using the following formula:

τ : = E[Y |do(ck = 1), c1, · · · , ck−1, ck+1, · · · , cK ]

− E[Y |do(ck = 0), c1, · · · , ck−1, ck+1, · · · , cK ]
(6)

We use the symbol τ to represent the expectation of the outcome Y when intervening on client
k, which is also the core of our task. Where do(ck = 1) denotes the intervention of client k
participating in the aggregation of the server-side model, and do(ck = 0) indicates that client k does
not participate. This utilizes Pearl’s do-calculus operation (Pearl, 1995) to calculate causal effects.

In the causal graph, Y
′

is defined as follows. Assuming the current iteration is the t-th iteration, Y
′

represents the cosine similarity vector between the tail gradients of each client in the t-th iteration
and the aggregated tail gradient at the t− 1 time step.

Y
′
= [Y

′

1 , Y
′

2 , · · · , Y
′

K ]T , where Y
′

k,k∈[K] =
1

NCtail

∑
l∈[tail]

∇wk,l
· ∇wg,l

∥∇wk,l
∥∥∇wg,l

∥
. (7)

4.2 LEARNING LATENT VARIABLES THROUGH VARIATIONAL INFERENCE

According to Fig. 3, there are K potential confounding factors that can influence the performance
of the global model on tail data. Therefore, based on the causal graph, we can use do-calculus to
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CkCkC1C1 CKCK

YY Y ′ Y ′ 

… …

Figure 3: Graphical structure of the proposed FedLT-CI. Where Ck represents the client confounding
factor, Y denotes the outcome (performance of the aggregated model on tail data), and Y

′
represents

the tail gradient information from clients during iterations, as seen in Equation 7. Solid circles denote
observed variables, while hollow shapes represent unobserved variables.

compute the causal effect of client k on the model:

p(Y |do(ci = w)) =

∫
p(Y |c1, · · · , ci = w · · · , cK , Y

′
) ∗ p(c1|Y

′
) · · · p(cK |Y

′
)dY

′

= Ep(c1|Y ′ ),··· ,p(cK |Y ′ ) [p(Y |c1, · · · , ci = w · · · , cK)] .
(8)

Where w ∈ {0, 1}. Eq. (8) indicates that if we can find each client, the causal effect is identifiable.
The second step is to use the backdoor adjustment formula. Although we do not know the true
posterior distributions of latent variables (c1, c2, · · · , cK), we can use mean variational inference to
approximate them (Goodfellow et al., 2016).

Standard logarithmic likelihood function is:

max
p

Ep∗(Y,Y ′ )

[
log p(Y, Y

′
)
]
. (9)

Here, p∗(Y, Y
′
) is the true joint distribution of Y and Y ′, but computing log p(Y, Y ′) is challenging,

as we only have access to a small number of samples in each communication round. However, mean-
field variational inference can be employed to approximate the true posterior distribution of latent
variables, providing us with an approach to address this issue.

We use the Evidence Lower Bound (ELBO) as the objective function to train the model, which is
given by:

max
p,q

Ep∗(Y,Y ′ )Eq(c1,c2,··· ,cK |Y,Y ′ )

[
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK |Y, Y ′)

]
(10)

In theory, the ELBO function will guide q(c1, c2, · · · , cK |Y, Y
′
) towards the target

p(c1, c2, · · · , cK |Y, Y
′
). To train the causal model further, the loss function in Equation 10 is further

transformed as:
max
p q

Ep∗(Y Y ′ ) [log q(Y )] + Ep∗(Y Y ′ )Eq(c1,c2,··· ,cK |Y ′ )[
q(Y |c1, c2, d · · · , cK , Y

′
)

q(Y )
log

p(Y
′ |c1, c2, · · · , cK)p(c1)p(c2) · · · p(cK)

q(c1|Y ′)q(c2|Y ′) · · · q(cK |Y ′)

]
(11)

The derivation from Equation 10 to Equation 11 can be referred to in Ap-
pendix A. Additionally, on top of the mentioned loss, we introduce a penalty

term: 1
K

∑K
i=1

(
p(Y |do(ci = 1))− p(Y |do(ci = 0))− Y

′

k

)2

. The purpose of this penalty
term is to consider the corresponding impact of the gradient information from client k in the current
iteration when calculating the causal effect of client k. The overall overview of our model is
shown in Fig. 4. We calculate Y

′
by processing the tail gradient information from each client,

followed by interaction and modeling to approximate the posterior distribution of each client.
Simultaneously, we sample from the approximate posterior distribution and interact to reconstruct
the information Y

′
. We use a Gaussian Mixture Models (GMMs) to model the prior distribution

P (ck) of each client. The GMMS is considered a universal approximator, possessing powerful
modeling capabilities to flexibly capture and generate various variant features. Therefore, it is
frequently employed in models such as VAE (Jiang et al., 2017; Shirahmad Gale Bagi et al., 2023).
We chose to use a Gaussian Mixture Prior based on the research by Kivva et al. (2022), who

6
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Figure 4: The overall overview of the FedLT-CI

demonstrated the identifiability of variational models with a GMM prior. In the model, we also
borrowed the idea of coupling layers (Dinh et al., 2016; Shirahmad Gale Bagi et al., 2023) to learn
rich priors P (ck).

Intervention process: As the communication iteration progresses, we intervene at a certain fre-
quency F during the aggregation process. The process of each intervention is as follows: Calculate
the causal effect of each client on the global model based on the formula (Eq. 6). Then, select a
certain numberN of clients with lower causal effects, making them excluded from the aggregation.

The detailed process of applying FedLT-CI to the baseline is introduced in Appendix B.2.

4.3 COMMUNICATION COST ANALYSIS:

In the intervention model, with intervention frequency F , communication rounds T , client count K,
and intervention client count N , the communication cost of applying FedLT-CI can be reduced to 1−
N

2TK

⌊
T

F+1

⌋
times the original cost (i.e., N

2TK

⌊
T

F+1

⌋
represents the percentage of communication

cost reduction after intervention). For detailed proof, please refer to the Appendix A.2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines: We adopt two SOTA baselines for comparative experiments. Firstly, targeting data het-
erogeneity, we chose the FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020) methods.
Secondly, focusing on long-tail learning, we selected the CReFF (Shang et al., 2022), GCL-loss (Li
et al., 2022a), DisA (Gao et al., 2024), and Fed-GraB (Xiao et al., 2023) methods.

Datasets: We conduct long-tail classification experiments on three benchmark datasets, i.e., CIFAR-
10/100-LT (Krizhevsky & Hinton, 2009) and PTB-XL (Wagner et al., 2020). To simulate a long-
tail distribution, we reshape the originally balanced the datasets into a long-tail distribution with
IF = 100, 50, and 10. IF represents the degree of the long-tail distribution, defined as the ratio
of the number of training samples in the largest class to that in the smallest class. We used the
Dirichlet distribution (the parameter α quantifies the Non-IID degree) to generate heterogeneous
data partitions among clients (Lin et al., 2020). On CIFAR-10/100-LT, we set the values of α to 0.5
and 1. In the publicly available PTB-XL electrocardiography dataset, we set the value of α to 0.1.
In the tests, we further divided the head data into Head and Medium, while representing the tail data
as Few, to provide a more detailed demonstration of the model’s effectiveness.

Federated Learning Setting: During training on the CIFAR-10-LT dataset, we use the ResNet18
model and set the number of clients K = 40,F = 2 andN = 10. When training on the CIFAR-100-
LT dataset, we use the ResNet34 model and set the number of clients K = 20/40, F = 2 and N =

7
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5. For fair comparison, we implemented all FL methods using the same model. All experiments were
conducted on the PyTorch framework and executed on an NVIDIA GeForce RTX 3090 GPU. We
utilized standard cross-entropy as the client loss function, running for 300 communication rounds.
SGD was chosen as the optimizer for all optimization processes with a learning rate of 0.01.

5.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Evaluation on CIFAR-10-LT.
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(a) CIFAR-10-LT with the set-
tings of IFG=100, α=1, K=40).
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(b) CIFAR-10-LT with the set-
tings of IFG=100, α=0.5, K=40).
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(c) CIFAR-10-LT with the set-
tings of IFG=100, α=0.1, K=40).

Figure 5: Without causal intervention, the testing accuracy of CRePA was compared with baselines
across different categories, with the last four categories being tail classes.
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(a) Performance of tail under different F .
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Figure 6: Ablation experiments under FedProx algorithm. The black dashed line represents the
performance without our causal intervention algorithm (α = 0.5, IFG = 100). To highlight the
differences between the curves, we zoom in on the results of the last few rounds in the top left
corner of the figure.

CRePA’s Performance: Table 1 depicts the experimental results for all SOTA baselines under
three different Non-IID settings and three different IF settings. Two main results can be derived
from the table: (1) Without considering causal intervention, our CRePA algorithm maintains good
performance on head categories while outperforming other algorithms on tail data (For example, in
the case of α=0.5 and IFG=100, the tail performance is improved by 6%, 6.2%, 4.8% compared to
FedAvg, FedProx, and CReFF, respectively. In the case of α=0.1 and IFG=100, the tail performance
is improved by 14.4%, 13.6%, 6.3%, 5% compared to FedAvg, FedProx, CReFF, and Fed-GraB,
respectively.); (2) In most cases, the overall performance of the CRePA algorithm is superior to
other baselines. For instance, under the settings of α=0.5 and IFG=100, the highest overall test
accuracy reaches 72.5%.

For a more in-depth analysis of CRePA’s performance on tail data, we compared the test accuracy
achieved by different baselines in each category and visualized the results in Fig. 5. It is evident that
our model performs better, particularly in tail data and categories 8 and 9, achieving optimal results.
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Table 1: Top 1 test accuracies of our methods and SOTA methods on CIFAR-10-LT with diverse
imbalanced and heterogeneous data settings. + indicates the incorporation of our intervention al-
gorithm in the baseline aggregation task. Bold: best results. Underlined: the best results without
intervention.

SETTING METHOD
IFG = 10 IFG = 50 IFG = 100

MANY MED FEW ALL MANY MED FEW ALL MANY MED FEW ALL

α = 1

FEDAVG 0.968 0.833 0.870 0.875 0.974 0.764 0.691 0.777 0.970 0.714 0.540 0.696
FEDAVG+ 0.959 0.831 0.882+.012 0.877 0.970 0.764 0.709+.018 0.783 0.972 0.723 0.580+.040 0.716
FEDPROX 0.962 0.827 0.863 0.869 0.969 0.771 0.682 0.775 0.972 0.724 0.560 0.708

FEDPROX+ 0.960 0.821 0.876+.013 0.871 0.970 0.773 0.698+.017 0.782 0.973 0.731 0.583+.023 0.720
CREFF 0.962 0.835 0.873 0.876 0.951 0.734 0.672 0.753 0.962 0.721 0.554 0.702

CREFF+ 0.966 0.836 0.878+.005 0.879 0.955 0.743 0.679+.007 0.760 0.963 0.731 0.577+.023 0.716
GCL-FL 0.940 0.757 0.873 0.840 0.962 0.783 0.721 0.794 0.957 0.731 0.584 0.717

GCL-FL+ 0.932 0.758 0.885+.012 0.844 0.950 0.793 0.742+.021 0.804 0.959 0.740 0.608+.024 0.731
FED-GRAB 0.948 0.834 0.882 0.876 0.962 0.793 0.708 0.793 0.964 0.760 0.576 0.727

FED-GRAB+ 0.949 0.829 0.891+.009 0.876 0.965 0.786 0.730+.022 0.799 0.964 0.758 0.597+.021 0.735
CREPA 0.960 0.839 0.887 0.883 0.968 0.783 0.728 0.798 0.970 0.737 0.593 0.726

CREPA+ 0.963 0.836 0.893+.006 0.884 0.970 0.787 0.721+.007 0.797 0.971 0.750 0.591−.002 0.731

α = 0.5

FEDAVG 0.965 0.806 0.868 0.863 0.975 0.744 0.683 0.766 0.972 0.709 0.529 0.690
FEDAVG+ 0.958 0.818 0.881+.013 0.871 0.974 0.752 0.704+.021 0.778 0.970 0.713 0.561+.032 0.704
FEDPROX 0.960 0.825 0.868 0.869 0.969 0.748 0.684 0.767 0.973 0.700 0.527 0.686

FEDPROX+ 0.964 0.833 0.877+.009 0.878 0.969 0.752 0.701+.017 0.775 0.967 0.723 0.575+.048 0.713
CREFF 0.947 0.786 0.872 0.853 0.952 0.734 0.668 0.751 0.945 0.712 0.541 0.690

CREFF+ 0.951 0.790 0.885+.013 0.860 0.953 0.736 0.686+.018 0.759 0.942 0.720 0.559+.018 0.700
GCL-FL 0.932 0.813 0.871 0.860 0.959 0.759 0.712 0.780 0.959 0.709 0.571 0.704

GCL-FL+ 0.927 0.812 0.890+.019 0.866 0.961 0.763 0.727+.015 0.788 0.955 0.706 0.605+.034 0.716
FED-GRAB 0.932 0.813 0.887 0.866 0.946 0.764 0.711 0.779 0.964 0.716 0.581 0.712

FED-GRAB+ 0.937 0.807 0.896+.009 0.869 0.949 0.783 0.731+.020 0.796 0.960 0.735 0.596+.015 0.724
CREPA 0.957 0.821 0.889 0.875 0.964 0.762 0.721 0.786 0.969 0.739 0.589 0.725

CREPA+ 0.955 0.823 0.891+.002 0.877 0.965 0.776 0.716−.005 0.790 0.969 0.727 0.601+.012 0.725

α = 0.1

FEDAVG 0.898 0.729 0.790 0.787 0.892 0.574 0.623 0.657 0.940 0.533 0.440 0.577
FEDAVG+ 0.880 0.744 0.808+.018 0.797 0.878 0.595 0.647+.024 0.672 0.958 0.530 0.485+.045 0.598
FEDPROX 0.894 0.715 0.792 0.782 0.893 0.572 0.618 0.655 0.948 0.534 0.448 0.582

FEDPROX+ 0.898 0.736 0.817+.025 0.801 0.899 0.582 0.629+.011 0.664 0.943 0.555 0.469+.021 0.598
CREFF 0.825 0.704 0.768 0.754 0.827 0.465 0.602 0.592 0.909 0.479 0.521 0.582

CREFF+ 0.816 0.702 0.783+.015 0.757 0.835 0.464 0.623+.021 0.602 0.905 0.484 0.537+.016 0.589
GCL-FL 0.840 0.723 0.761 0.762 0.915 0.579 0.520 0.623 0.902 0.407 0.331 0.476

GCL-FL+ 0.810 0.729 0.814+.053 0.779 0.895 0.566 0.536+.016 0.620 0.919 0.430 0.364+.033 0.502
FED-GRAB 0.855 0.737 0.816 0.792 0.871 0.560 0.627 0.649 0.902 0.481 0.534 0.587

FED-GRAB+ 0.847 0.724 0.843+.027 0.796 0.862 0.545 0.698+.071 0.670 0.919 0.550 0.555+.021 0.626
CREPA 0.886 0.754 0.842 0.816 0.904 0.599 0.652 0.681 0.899 0.582 0.584 0.646

CREPA+ 0.885 0.728 0.853+.011 0.809 0.882 0.612 0.691+.039 0.698 0.911 0.598 0.603+.019 0.662
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Figure 7: Comparison of performance in different categories after adding intervention model to
different baselines.

FedLT-CI’s Performance: Table 1 shows that applying FedLT-CI to different baselines can further
enhance the algorithm’s performance on tail data. It is worth noting that this does not impair the
performance of the head and middle. Especially in the case of α=0.5 and IFG=100, where data
heterogeneity and tail data are incredibly severe, the performance of intervention strategies is more
significant. The performance of FedLT-CI is more significant in the case of high data heterogeneity
and severe tail data distribution (α=0.5, IFG=100). For instance, adding the intervention strategy to
the FedProx and GCL-FL increased the test accuracy for tail data by 4.8% and 3.4%, respectively.

To further analyze the performance of FedLT-CI, we present a comparison of different baselines
and their added interventions in various categories in Fig. 7. Fig.7 shows that FedLT-CI reduces
communication costs and further enhances the performance of the baseline in tail data. This further
demonstrates the general effectiveness of FedLT-CI among different algorithms. We will provide
comparative experimental results on the CIFAR-100-LT dataset in the Appendix C. For experiments
on the real-world medical dataset PTB-XL, please refer to Appendix E.
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Figure 8: Client data distribution and the change in mean and variance of the client’s prior distribu-
tion with communication rounds (Conducting experiments on the CIFAR-10-LT with the settings of
IFG=100, α=0.5, K=40).

5.3 MODEL ANALYSIS AND ABLATION EXPERIMENTS

CRePA model analysis: The left graph in Fig. 8 illustrates the data sample distribution among 40
clients, while the right graph displays the changes in the mean and variance of the prior distribu-
tion for selected clients with increasing communication rounds. An analysis was conducted for six
clients, including c16, c29, c36 with more tail data, and c17, c22, c36 with fewer tail data. Experi-
mental results indicate that CRePA, by leveraging both tail and non-tail gradient information during
communication, dynamically balances tail and non-tail performance as the global model updates.
When the communication rounds exceed 100, CRePA begins to increase the distribution expecta-
tion for clients with a higher proportion of tail data, and this trend becomes more pronounced with
increasing rounds. For example, as the model has already converged on non-tail classes during the
100 rounds, and client c37 (yellow) contains very few tail data, leading to a decrease in its prior
mean during later aggregation processes. In contrast, client c16, with abundant tail data, experi-
ences an increase in its mean. This also indicates that with increased communication rounds, the
model has converged on the categories of the head and middle, while the tail data can still achieve
further improvement.

Impact of F on the FedLT-CI: To investigate the effect of the hyper-parameter F , we observed
the variation in test accuracy for different values of F , as shown in Fig. 6(a). The results indicate
that regardless of the value of F , FedLT-CI can improve the performance on tail data in imbalanced
datasets. However, the smaller the F , the relatively better the performance. Due to the low F ,
clients with lower causal effects on the global model will be excluded more frequently during the
aggregation process. Further analysis of F on other baselines will be provided in the Appendix D.1.

Impact of N on the FedLT-CI: N as a critical hyper-parameter of the FedLT-CI. To test its im-
pact on tail performance, we conducted experiments on the CIFAR-10-LT dataset with α=0.5 and
IFG=100. We plotted the changes in tail accuracy for different values of N , as shown in Fig. 6(b).
It is evident that there are many suitable choices for N . Therefore, tuning N in causal intervention
is relatively easy in this setting. For more ablation experiments, please refer to the Appendix D.2.

6 CONCLUSION

This paper proposes two innovative algorithms to tackle the challenges of data heterogeneity and
the long-tail phenomenon in Fed-LT. Firstly, we introduce the CRePA, which divides gradient in-
formation into tail and non tail information to achieve online learning of weight prior distribution
parameters for each client. Experimental results demonstrate that, compared to other baselines, the
CRePA algorithm not only preserves the performance of non-tail data but also enhances the per-
formance of tail data. To address the interpretability challenges in Fed-LT, we draw inspiration
from Pearl’s causal structure model and present the FedLT-CI. FedLT-CI assesses the causal effects
of individual clients on the global model’s performance on tail data and intervenes during the ag-
gregation process to significantly enhance tail effects. Experimental results showcase that, across
multiple experiments, the FedLT-CI algorithm significantly improves the performance of various
baseline models on tail data. This algorithm not only achieves promising results in addressing the
challenges of Fed-LT but also makes a breakthrough in interpretability. It introduces fresh ideas and
methods for this direction, establishing a solid foundation for future research.
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A PROPOSE FEDLT-CI METHOD DETAILS.

A.1 METHODOLOGY DETAILS

FedLT-CT Objective Function: The objective function in FedLT-CT is shown in Equation 10.
Due to the unknown causal effects of clients on the global aggregated model, the approximation
posterior q(c1, c2, · · · , cK |Y, Y

′
) is challenging. Therefore, we need to transform Equation 10 to

make the approximate posterior conditional only on the gradient information Y
′
.

Equation (10) = max
p q

Ep∗(Y,Y ′ )

[
Eq(c1,c2,··· ,cK |Y,Y ′ )

[
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK |Y, Y ′)

]]
︸ ︷︷ ︸

A

(12)
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We will derive A as follows:

A =

∫ [
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK |Y, Y ′)

]
q(c1, c2, · · · , cK |Y, Y

′
)dc1dc2 · · · dcK

=

∫ [
log

p(c1, c2, · · · , cK , Y, Y
′
)q(Y )

q(c1, c2, · · · , cK , Y |Y ′)

]
q(c1, c2, · · · , cK |Y, Y

′
)dc1dc2 · · · dcK

=

∫ [
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK , Y |Y ′)

]
q(c1, c2, · · · , cK , Y |Y ′

)

q(Y )
dc1dc2 · · · dcK

+

∫
[log q(Y )] q(c1, c2, · · · , cK |Y Y

′
)dc1dc2 · · · dcK

=

∫ [
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK , Y |Y ′)

]
q(c1, c2, · · · , cK , Y |Y ′

)

q(Y )
dc1dc2 · · · dcK + log q(Y )

(13)

So, we obtain an equivalent simplification of Equation 12:

max
p q

Ep∗(Y,Y ′ )

∫ log p
(
c1, c2, · · · , cK , Y, Y

′
)

q(c1, c2, · · · , cK , Y |Y ′)

 q(c1, c2, · · · , cK , Y |Y ′
)

q(Y )
dc1dc2 · · · dcK

+ log q(Y )

= max
p q

∫ [
log

p(c1, c2, · · · , Y, Y
′
)

q(c1, c2, · · · , Y |Y ′)

]
q(c1, c2, · · · , cK , Y |Y ′

)

q(Y )
p∗(Y Y

′
)dc1dc2 · · · dcKdY dY

′

+

∫
p∗(Y Y

′
) log q(Y )dY dY

′

= max
p q

∫
Eq(c1,c2,··· ,cK ,Y |Y ′ )

p∗(Y )

q(Y )

[
log

p(c1, c2, · · · , Y, Y
′
)

q(c1, c2, · · · , Y |Y ′)

]
p∗(Y

′
)dY

′

︸ ︷︷ ︸
B

+Ep∗(Y Y ′ ) log q(Y )

(14)
Then, we transformed B into:

B = Ep∗(Y ′ )

[
Eq(c1,c2,··· ,cK ,Y |Y ′ )

p∗(Y )

q(Y )

[
log

p(c1, c2, · · · , Y, Y
′
)

q(c1, c2, · · · , Y |Y ′)

]]

= Ep∗(Y ′ )

[∫
p∗(Y )

q(Y )

[
log

p(c1, c2, · · · , Y, Y
′
)

q(c1, c2, · · · , Y |Y ′)

]
q(c1, c2, · · · , cK , Y |Y

′
)dc1dc2 · · · dcKdY

]

= Ep∗(Y ′ )

[∫ [
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK , Y |Y ′)

]
q(Y |c1, c2, · · · , cK , Y

′
)q(c1, c2, · · · , cK |Y

′
)

q(Y )

+p∗(Y )dY dc1dc2 · · · dcK ]

= Ep∗(Y Y ′ )

[
Eq(c1,c2,··· ,cK |Y ′ )

q(Y |c1, c2, · · · , cK , Y
′
)

q(Y )
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK , Y |Y ′)

]
(15)
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max
p q

Ep∗(Y Y ′ )

[
log q(Y ) + Eq(c1,c2,··· ,cK |Y ′ )

q(Y |c1, c2, · · · , cK , Y
′
)

q(Y )
log

p(c1, c2, · · · , cK , Y, Y
′
)

q(c1, c2, · · · , cK , Y |Y ′)

]

= max
p q

Ep∗(Y Y ′ )

[
log q(Y ) + Eq(c1,c2,··· ,cK |Y ′ )

q(Y |c1, c2, d · · · , cK , Y
′
)

q(Y )

log
p(Y |c1, c2, · · · , cK , Y

′
)p(Y

′
, c1, c2, · · · , cK)

q(Y |c1, c2, · · · , cK , Y ′)q(c1, c2, · · · , cK |Y ′)

]

= max
p q

Ep∗(Y Y ′ )

[
log q(Y ) + Eq(c1,c2,··· ,cK |Y ′ )

q(Y |c1, c2, d · · · , cK , Y
′
)

q(Y )
log

p(Y
′
, c1, c2, · · · , cK)

q(c1, c2, · · · , cK |Y ′)

]

= max
p q

Ep∗(Y Y ′ )

[
log q(Y ) + Eq(c1,c2,··· ,cK |Y ′ )

q(Y |c1, c2, d · · · , cK , Y
′
)

q(Y )

log
p(Y

′ |c1, c2, · · · , cK)p(c1)p(c2) · · · p(cK)

q(c1|Y ′)q(c2|Y ′) · · · q(cK |Y ′)

]
(16)

q(Y ) can be written as:

q(Y ) =

∫
q(Y |c1, c2, · · · , cK)q(c1, c2, · · · , cK |Y

′
)

= p(Y |do(ci))
= Ep(c1|Y ′ ),··· ,p(cK |Y ′ ) [p(Y |c1, · · · , ci · · · , cK)]

(17)

Where p(Y |do(ci)) represents the causal effect of ci on Y and can be computed through sampling.
Therefore, we also obtain the objective loss function of FedLT-CI (i.e., Equation 11).

A.2 THE COMMUNICATION COST ANALYSIS

Proof of Reduced Communication Cost:

Assuming the size of the global model parameters is Sg , with the size of the parameters in the
classification layer denoted as Sgc , it is evident that Sg >> Sgc . Let K be the number of clients.

Firstly, in the absence of causal intervention, let the transmission cost for T communication rounds
be denoted as Cost. Clearly, Cost = 2TKSg .

When causal intervention strategy is introduced, with F as the intervention frequency and N as the
number of intervened clients, let Costint represent the communication cost at this point. We get:

Costint =

(
T −

⌊
T

F + 1

⌋)
(Sg + Sgc)K +

⌊
T

F + 1

⌋
[Sg(K −N ) +KSgc ] + TKSg (18)

We define γ =
⌊

T
F+1

⌋
. The we obtain:

Costint = (T − γ) (Sg + Sgc)K + γ [Sg(K −N ) +KSgc ] + TKSg

= TKSg + TKSgc − γSgN + TKSg

= (2TK −QN)Sg + TKSgc

(19)

Finally, we calculate Costint

Cost :

Costint
Cost

=
(2TK −QN)Sg + TKSgc

2TKSg

= 1− QN

2TK
+

Sgc

2Sg

(b1)
= 1− QN

2TK
= 1− N

2TK

⌊
T

F + 1

⌋ (20)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

b1 is Sg >> Sgc .

From the conclusions, we know that N
2TK

⌊
T

F+1

⌋
represents the percentage of communication cost

reduction, and it is correlated with the intervention frequencyF and the number of intervened clients
N . The communication cost decreases with an increase in the number of N (i.e., the larger the
number ofN , the smaller the communication cost, but one must also consider the impact on perfor-
mance). The communication cost increases with an increase in the intervention frequency F (i.e.,
the more frequent the intervention, the smaller the communication cost). When F = 0 (i.e., inter-
vention in every aggregation), according to the conclusion, the percentage of communication cost
reduction is N

2K . For example, if N is set to 1
4K (as in most of our experiments), the communication

cost can be reduced by 1/8.

B ALGORITHMS

B.1 CREPA ALGORITHM

Algorithm 1 CRePA: Client Re-weighted Prior Analyzer. θt denotes the parameters of the global
model at the t-th round, and wpk denotes the prior distribution parameters for client k. Gg,nott

and Gg,tail denote the non-tail gradient and tail gradient change information of the global model,
respectively.
Server executes:

Initialize θ0, wp1, wp2, · · · , wpK , Gg,nott = 0, Gg,tail = 0
for each round t = 1, · · · , T do

for each client k ∈ [K] in parallel do
θt+1, Gk,nott, Gk,tail ← ClientUpdate(k, θt)

end for
B ← Obtain set B through Eq. ( 4)
B′ ← Sort the set B in descending order
for each client k ∈ [K] do
wpk ← wpk − η∇Lprior // by Eq. (5)

end for
θt+1 =

∑K
k=1

Es(Pk)∑K
k=1 Es(Pk)

θk,t+1 // Calculate E through Eq. (3)

Gg,nott ←
∑K

k=1
Es(Pk)∑K

k=1 Es(Pk)
Gk,nott ,

Gg,tail ←
∑K

k=1
Es(Pk)∑K

k=1 Es(Pk)
Gk,tail

end for

ClientUpdate(k, θ): // Run on client k
// Cache the change vectors of tail and non-tail gradients from this iteration.
Initialize Gk,nott = 0, Gk,tail = 0
B ← (split Dk into batches of size B)
// E denotes the number of local training epochs.
for each local epoch i from 1 to E do

for batch b ∈ B do
θ ← θ − ηk∇L(θ; b)
Gk,nott ← Gk,nott + ηk∇Wk,nott

(L)
Gk,tail ← Gk,tail + ηk∇Wk,tail

(L)
end for
return θ, Gk,nott, Gk,tail to server

end for

B.2 FEDLT-CI ALGORITHM
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Algorithm 2 FedLT-CI: Federated Long-Tail Causal Intervention Model. As an example, we apply
the FedLT-CI algorithm to the FedAvg baseline. θCI denotes the parameters of the FedLT-CI model.
Server executes:

Initialize θ0, θCI , Gg,tail = 0.
for each round t = 1, · · · , T do

for each client k ∈ [K] in parallel do
θk,t+1, Gk,tail ← ClientUpdate(k, θt)

end for
Y

′ ← Using Eq. (7), compute Y
′

through the Gk,tail and Gg,tail

// LCI denotes the loss function of the causal model (as shown in Eq. 11)
θCI ← θCI − ηLCI

for each client k ∈ [k] do
τk ← compute the causal effect of client k using Eq. 6

end for
St ← select N clients with smaller τ values
// nk denotes the dataset size of client k
n =

∑
k/∈St

nk // n =
∑K

k=1 nk is the original FedAvg model process
θt+1 =

∑
k/∈St

nk

n θk,t+1 // θt+1 =
∑K

k=1
nk

n θk,t+1 is the original FedAvg model process
end for

ClientUpdate(k, θ): // Run on client k
B ← (split Dk into batches of size B)
Initialize Gk,tail = 0
// E denotes the number of local training epochs.
for each local epoch i from 1 to E do

for batch b ∈ B do
θ ← θ − ηk∇L(θ; b)
Gk,tail ← Gk,tail + ηk∇Wk,tail

(L)
end for
return θ, Gk,tail to server

end for
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C ADDITIONAL RESULTS: COMPARISON WITH STATE-OF-THE-ART
METHODS

Evaluation on CIFAR-10-LT. The experiments in this section supplement the evaluation of CIFAR-
10-LT presented in Section 5.2. Fig. 9, further illustrating the performance of the tail during the
entire communication iteration process when the causal intervention strategy is applied to different
models. Fig. 9 shows that the proposed causal model can quickly understand the causal mechanism
and variables through online learning, leading to an improvement in tail performance.
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Figure 9: Comparison of the effects on the tail data for various methods with and without our causal
intervention on the CIFAR-10-LT dataset (IFG=100, α=0.5).

How is the comprehensive impact of FedLT-CI assessed across the entire iteration process?
Based on the intervention status of the Fed-LT model during the training process, clients are ex-
cluded. This experiment provides a comprehensive evaluation of the proposed intervention model,
and we employ the following evaluation method: during the process of 300 communication rounds,
with an intervention frequency set at F = 2 and the number of intervened clients at N = 1/4K
(K=40), we collected statistics on the clients that were intervened and excluded in rounds 100 to 300.
We selected the topN clients with the highest intervention exclusion frequencies. Subsequently, we
conducted comparative experiments to compare the model performance between aggregating with
exclusion of these N clients and training with all clients. Specifically, in the case of K = 40, we
permanently excluded the N clients that were removed and compared the results with the model
trained with all clients, as shown in Table 2. From an imprecise perspective, by analyzing the com-
parison in Table 2, we can comprehensively assess how the proposed intervention model functions
throughout the entire iteration process. It is evident from Table 2 that FedLT-CI is reliable in dis-
cerning the causal effects of clients on the aggregation model, particularly in FedAvg, FedProx, and
GCL-GraB models, where FedLT-CI leads to an improvement in tail class accuracy by 2.2%, 1.3%,
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and 2.2%, respectively. This indicates that the introduction of FedLT-CI significantly enhances the
model’s performance on tail data.

Table 2: Comparing the effects of selectingN clients with low causal effects during the intervention
process of the Fed-LTCI model for permanent exclusion from aggregation.

METHOD
IFG = 100

MANY MED FEW ALL

FEDAVG 0.971 0.706 0.523 0.686
FEDAVG+ 0.975 0.658 0.545+.022 0.676
FEDPROX 0.973 0.700 0.527 0.686
FEDPROX+ 0.974 0.652 0.540+.013 0.672
FED-GRAB 0.964 0.716 0.581 0.712
FED-GRAB+ 0.963 0.695 0.603+.022 0.712

Evaluation on CIFAR-100-LT.

Table 3: Top 1 test accuracies of our methods and SOTA methods on CIFAR-100-LT with diverse
imbalanced data settings. + indicates the incorporation of our intervention algorithm in the baseline
aggregation task.

METHOD
IFG = 10 IFG = 50 IFG = 100

MANY MED FEW ALL MANY MED FEW ALL MANY MED FEW ALL

FEDAVG 0.699 0.594 0.423 0.547 0.672 0.481 0.196 0.405 0.674 0.449 0.133 0.367
FEDAVG+ 0.695 0.614 0.439+.0.016 0.560 0.682 0.493 0.209+0.013 0.417 0.673 0.443 0.142+0.009 0.369
FEDPROX 0.704 0.589 0.423 0.546 0.686 0.493 0.202 0.415 0.669 0.429 0.125 0.355
FEDPROX+ 0.709 0.606 0.436+0.013 0.559 0.688 0.486 0.211+0.009 0.416 0.664 0.440 0.137+.012 0.364
CREFF 0.685 0.568 0.397 0.523 0.641 0.435 0.202 0.383 0.634 0.398 0.132 0.339
CREFF+ 0.691 0.571 0.413+0.016 0.532 0.636 0.426 0.227+0.025 0.388 0.639 0.406 0.136+0.04 0.345
GCL-FL 0.681 0.587 0.416 0.537 0.636 0.491 0.209 0.407 0.591 0.406 0.138 0.336
GCL-FL+ 0.677 0.595 0.421+0.005 0.542 0.619 0.498 0.205−0.004 0.405 0.584 0.409 0.144+0.06 0.338
FED-GRAB 0.705 0.616 0.461 0.572 0.717 0.563 0.247 0.467 0.707 0.539 0.159 0.421
FED-GRAB+ 0.701 0.638 0.470+.009 0.583 0.727 0.573 0.263+.016 0.480 0.716 0.544 0.168+.009 0.428
CREPA 0.703 0.601 0.439 0.557 0.709 0.524 0.229 0.443 0.674 0.459 0.142 0.375
CREPA+ 0.727 0.627 0.459+.020 0.580 0.706 0.527 0.243+.014 0.449 0.693 0.476 0.157+.015 0.392

CRePA’s Performance. In Table 3, we summarize the experimental results of all methods under
a Non-IID setting (α = 0.5) and three different IF settings. In the context of the extremely im-
balanced CIFAR-100-LT dataset, CRePA exhibits superior tail testing accuracy over other baseline
methods in most scenarios. For instance, under the IFG=10 setting, the tail accuracy is improved by
1.6%, 1.6%, and 2.3% compared to FedAvg, FedProx, and GCL-FL, respectively. Similarly, under
the IFG=50 setting, the improvements are 3.3%, 2.7%, and 2% compared to FedAvg, FedProx, and
GCL-FL, respectively. Meanwhile, in most scenarios, CRePA also achieves superior overall perfor-
mance. For example, under the IFG=50 condition, the overall accuracy improvements compared to
FedAvg, FedProx, and GCL-FL are 3.8%, 2.8%, and 3.6%, respectively.

The reason for this superiority is that when the model is tasked with a classification involving a
large number of categories, it typically converges quickly on non-tail data. In such cases, CRePA
leverages the gradient variation information of the tail data from each client during communication,
thereby enhancing the weighted prior distribution expectations for clients with relatively rich tail
data. This, in turn, further improves performance on tail data during subsequent server-side model
aggregation.

FedLT-CI’s Performance: In Table 3, the introduction of the intervention algorithm significantly
enhances the performance of different algorithms, especially in terms of tail data. Observing the
data in the table, especially in the case of high data heterogeneity and severe tail data (i.e., α=0.5,
IFG=50), the performance of the intervention strategy is particularly prominent. For example,
adding the intervention strategy in FedAvg and Fed-GraB algorithms can respectively improve the
testing accuracy in tail data by 1.3% and 1.6%.

The additional experiments presented here, as well as those conducted in Section 5.2, thoroughly
validate the strong performance of CRePA in federated long-tail learning. Furthermore, the intro-
duced causal intervention model can further enhance the performance of FL algorithms on tail data.
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On the CIFAR-100-LT, a comparison of test accuracy for the last ten classes: Table 4 presents
a performance comparison of various baselines on the last ten tail classes of the CIFAR-100-LT
dataset. By observing the AVG. column, the following conclusions can be drawn: (i) CRePA
achieves the best performance without intervention (2.3%, 2.1%, and 2.1% higher than FedAvg,
FedProx, and CReFF, respectively). (ii) Our proposed intervention strategy significantly improves
the model’s performance on tail classes. The table shows that introducing the intervention strategy
in different baselines enhances of tail class performance. For instance, GCL-FL exhibits a 1.1%
improvement and achieves the best performance among all results.

Table 4: Comparison of the highest average test accuracy on the last 10 classes of tail data on
CIFAR-100-LT (α = 0.5, IFG = 100). Bold: best results.

METHOD
IFG = 100

CLASS91 CLASS92 CLASS93 CLASS94 CLASS95 CLASS96 CLASS97 CLASS98 CLASS99 CLASS100 AVG.

FEDAVG 0.00 0.02 0.01 0.00 0.04 0.04 0.00 0.00 0.00 0.03 0.014
FEDAVG+ 0.01 0.07 0.05 0.02 0.08 0.02 0.00 0.00 0.01 0.02 0.028+.014

FEDPROX 0.00 0.01 0.03 0.00 0.04 0.03 0.00 0.01 0.01 0.03 0.016
FEDPROX+ 0.00 0.05 0.03 0.02 0.02 0.02 0.00 0.01 0.02 0.03 0.020+.004

CREFF 0.01 0.03 0.01 0.01 0.05 0.01 0.01 0.0 0.0 0.03 0.016
CREFF+ 0.02 0.04 0.03 0.00 0.07 0.00 0.01 0.01 0.0 0.03 0.021+.005

GCL-FL 0.00 0.06 0.01 0.02 0.08 0.08 0.00 0.03 0.00 0.03 0.031
GCL-FL+ 0.00 0.11 0.00 0.03 0.15 0.09 0.01 0.00 0.00 0.03 0.042+.011

FED-GRAB 0.04 0.1 0.01 0.00 0.16 0.01 0.00 0.01 0.00 0.06 0.039
FED-GRAB+ 0.04 0.11 0.03 0.02 0.09 0.04 0.03 0.01 0.00 0.04 0.041+.002

CREPA 0.03 0.04 0.01 0.03 0.08 0.06 0.05 0.01 0.00 0.06 0.037
CREPA+ 0.04 0.05 0.02 0.02 0.13 0.06 0.02 0.02 0.0 0.06 0.042+.005

Fig. 10 displays the test accuracy of various models on the last 10 tail classes of CIFAR-100-LT. The
graph provides a clearer view, demonstrating the consistent effectiveness of our proposed FedLT-CI
in improving the performance on tail classes.

On the CIFAR-100-LT, set a larger number of clients (K = 40). In contrast to the previous
experiment where the client quantity K was set differently, this time, the experiment sets K to 40 to
further observe the effect of intervention in more diverse categories. By comparing the results with
and without intervention, we present the performance variation of the model in Fig. 11. The figure
clearly demonstrates that our proposed causal intervention model, when applied to any baseline
model, can enhance the performance on tail class data while maintaining the overall performance.

D ADDITIONAL RESULTS: ABLATION EXPERIMENTS

D.1 IMPACT OF INTERVENTION FREQUENCY F ON THE FEDLT-CI

To further investigate the impact of the intervention frequency F on the algorithms, We supplement
the experiments in Section 5.3 here. As shown in Fig. 12(a), we plot the curves of test accuracy over
iterations for different values of F . The results once again confirmed the findings in Section 5.3,
indicating that FedLT-CI can improve the performance of other models on tail data in imbalanced
datasets. Moreover, it was observed that the algorithm performed relatively better when F was
set to smaller values. This is because, with a minor intervention frequency, clients with lower
causal effects on the global model would be excluded from aggregation more frequently, leading
to enhanced algorithm performance.

D.2 IMPACT OF N ON THE FEDLT-CI

Here, we supplement the experiments investigating the impact of N on intervention performance
from Section 5.3. As shown in Fig. 12(b), we plot the curve of test accuracy over iterations for
different values ofN . The experimental results are consistent with the conclusions from Section 5.3,
indicating that various values of N can improve the model’s performance on the tail, highlighting
the ease of tuning the parameter N in causal intervention.

D.3 STABILITY EXPERIMENT

Table 5 illustrates the frequency of achieving a certain tail testing accuracy on the two datasets.
Informally, the more times a model reaches or exceeds this accuracy, the more stable the model
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Figure 10: Performance visualization of models on the last 10 classes of tail test data on CIFAR-
100-LT.

is. From this table, we find that in most scenarios, our FedLT-CI achieves a higher frequency,
demonstrating that the intervention strategy enhances the performance of each baseline in tail classes
and exhibits strong stability.
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Figure 11: Comparing the intervention effects and overall performance of different models on
CIFAR-100-LT with a large client number K.

E EXPERIMENTAL RESULTS FROM REAL-WORLD DATASETS

The experimental results on the PTB-XL dataset are shown in Table 6, where we compare various FL
algorithms across different categories (Many, Med, Few). Without intervention, the CRePA method
demonstrates the best performance on tail data (Few). For example, at IFG = 100, CRePA achieves
a Few category score of 0.100, significantly outperforming other non-intervention algorithms such
as FedAvg (0.053) and FedGraB (0.082).
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Figure 12: Ablation experiments under FedAvg algorithm. The black dashed line represents the
performance without causal intervention algorithm.

After the intervention, the performance of all algorithms improved. For example, when IFG = 100,
the score for FedAvg in the Few category increased from 0.053 to 0.072, and Fed-GraB’s score
rose from 0.082 to 0.102. Among them, CRePA+ achieved the best result. Specifically, when
IFG = 50, CRePA+ scored 0.144 in the Few category. Moreover, CRePA+ also demonstrated
excellent performance in the overall metric (All categories), reaching 0.429 when IFG = 100,
showing that it not only optimized the tail performance but also maintained an improvement in the
head performance.

Figure 13 shows a comparison of ROC curves for different FL algorithms before and after the in-
tervention, across different categories. Each subplot corresponds to a comparison of algorithms,
with the left side displaying head data (Head), the middle showing tail data (Tail), and the right side
showing rare disease data (HYP), where HYP represents the rare disease category with the fewest
samples. As seen in the figure, the intervention improves the performance of all models on the tail
data. For example, FedAvg’s score on the tail increased from 0.488 to 0.526, and FedGraB’s score
increased from 0.490 to 0.520.

Figure 14 shows a comparison of the ROC curves of different federated learning algorithms and our
proposed CRePA, without any interventions, across different categories. Each subplot displays the
comparison for one algorithm, with the left side showing the head data (Head) and the right side
showing the tail data (Tail). As seen in the figure, CRePA achieves the best performance in the tail
category without sacrificing the performance on the head data.
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Table 5: Comparing the frequencies of models achieving a specified accuracy or higher in the tail
classes across different datasets.

METHOD ACCURACY CIFAR-10-LT ACCURACY CIFAR-100-LT

FEDAVG 0.520 4 0.125 74
FEDAVG+ 38 108

FEDPROX 0.520 9 0.120 11
FEDPROX+ 32 73

CREFF 0.530 18 0.125 24
CREFF+ 79 36

GCL-FL 0.550 45 0.135 11
GCL-FL+ 85 38

FED-GRAB 0.570 31 0.150 56
FED-GRAB+ 30 86

CREPA 0.570 38 0.135 48
CREPA+ 47 98

Table 6: Test accuracies of our methods and SOTA methods on real-word datasets with diverse het-
erogeneous data settings. + indicates the incorporation of our intervention algorithm in the baseline
aggregation task. Bold: best results. Underlined: the best results without intervention.

SETTING METHOD
IFG = 50 IFG = 100

MANY MED FEW ALL MANY MED FEW ALL

α = 0.1

FEDAVG 0.817 0.219 0.061 0.399 0.740 0.185 0.053 0.359
FEDAVG+ 0.767 0.158 0.125+.064 0.418 0.742 0.222 0.072+.019 0.395
FEDPROX 0.866 0.148 0.043 0.423 0.812 0.227 0.039 0.411

FEDPROX+ 0.756 0.133 0.085+.042 0.373 0.742 0.161 0.068+.029 0.364
CREFF 0.818 0.132 0.083 0.422 0.845 0.029 0.070 0.409

CREFF+ 0.772 0.138 0.108+.025 0.411 0.776 0.074 0.118+.048 0.406
DISA-FL 0.870 0.178 0.021 0.439 0.805 0.244 0.034 0.413

DISA-FL+ 0.871 0.106 0.060+.039 0.414 0.798 0.167 0.081+.042 0.406
FED-GRAB 0.747 0.253 0.091 0.412 0.737 0.095 0.082 0.362

FED-GRAB+ 0.772 0.226 0.117+.026 0.428 0.740 0.123 0.102+.0.020 0.390
CREPA 0.741 0.265 0.120 0.423 0.765 0.111 0.100 0.398

CREPA+ 0.714 0.260 0.144+.024 0.418 0.777 0.219 0.118+.018 0.429

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Head

FedAvg Mean ROC (0.557± 0.003)
FedAvg+ Mean ROC (0.568 ± 0.020)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Tail

FedAvg Mean ROC (0.488± 0.017)
FedAvg+ Mean ROC (0.526 ± 0.024)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

HYP

FedAvg Mean ROC (0.466±0.000)
FedAvg+ Mean ROC (0.496±0.000)

(a) Fedavg vs. FedAvg+

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Head

fedprox Mean ROC (0.565± 0.005)
fedprox+ Mean ROC (0.560 ± 0.007)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Tail

fedprox Mean ROC (0.487± 0.018)
fedprox+ Mean ROC (0.497 ± 0.036)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

HYP

fedprox Mean ROC (0.474±0.000)
fedprox+ Mean ROC (0.480±0.000)

(b) FedProx vs. FedProx+

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Head

fedgrab Mean ROC (0.505± 0.015)
fedgrab+ Mean ROC (0.501 ± 0.006)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Tail

fedgrab Mean ROC (0.490± 0.011)
fedgrab+ Mean ROC (0.520 ± 0.031)

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

HYP

fedgrab Mean ROC (0.478±0.000)
fedgrab+ Mean ROC (0.564±0.000)

(c) FedGraB vs. FedGraB+

Figure 13: Comparison of ROC curves after intervention with different FL models. Among them,
HYP represents the class of rare diseases with the smallest sample size.
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Figure 14: Comparison of ROC Curves Between the Proposed CRePA and Baseline Models.
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